【精品】小学数学典型难题汇总
小学数学最难的13种典型题
正方体展开图正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
231型中间一行3个作侧面,共3种基本图形。
222型中间两个面,只有1种基本图形。
33型中间没有面,两行只能有一个正方形相连,只有1种基本图形。
和差问题已知两数的和与差,求这两个数。
【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=12浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过。
小学数学考试最难的13种典型题详解
小学数学考试最难的13种典型题详解今天小编给大家带来小学数学最难的13种典型题详解,希望可以帮助到大家。
一、正方体展开图正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:1、141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
2、231型中间一行3个作侧面,共3种基本图形。
3、222型中间两个面,只有1种基本图形。
4、33型中间没有面,两行只能有一个正方形相连,只有1种基本图形。
二、和差问题已知两数的和与差,求这两个数。
【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
三、鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=12四、浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)五、路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过。
小学数学最难的13种典型题
小学数学最难的13种典型题,暑假在家多练习!1正方体展开图正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:1141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
2231型中间一行3个作侧面,共3种基本图形。
3222型中间两个面,只有1种基本图形。
433型中间没有面,两行只能有一个正方形相连,只有1种基本图形。
和差问题已知两数的和与差,求这两个数。
【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
3鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=124浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)5路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过。
小学数学最难的典型题(十七种)
小学数学最难的典型题(十七种)在小学阶段,正是我们孩子打下基础的关键时期,要想学好数学,必须要掌握好它,但是对于大多数的孩子,甚至是家长,也都不知道该怎么去掌握好它,以至于数学成绩也不怎么理想。
小学数学最难的典型题集合,给孩子吃透,小学六年不用愁!下面,我就为大家分享出来,希望看到的家长可以为孩子们收藏一份,相信对于孩子的数学学习会有帮助的。
一、行程问题(1)相遇题型【口诀】:相遇那一刻,路程全走过。
除以速度和,就把时间得。
例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?相遇那一刻,路程全走过。
即甲乙走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得。
即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120÷60=2(小时)(2)追及题型【口诀】:慢鸟要先飞,快的随后追。
先走的路程,除以速度差,时间就求对。
例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?先走的路程,为3X2=6(千米)速度的差,为6-3=3(千米/小时)。
所以追上的时间为:6÷3=2(小时)。
做一做:(3)、甲乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?(4)小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?(5)甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.(6)某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?二、比赛问题一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?三、数的问题有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?四、比较问题1、某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?六、物体问题01正方体展开图正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:1141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
小学数学难题集锦
小学数学难题集锦在小学阶段,数学是一个重要的学科,也是许多学生感到困惑的学科之一。
为了帮助大家更好地理解和解决小学数学的难题,本文将为大家整理一些常见的小学数学难题及其解答。
一、加法难题1. 题目:小明有3块苹果糖,小华给他3块苹果糖,那么小明一共有几块苹果糖?解答:小明有3块苹果糖,小华给他3块苹果糖,所以小明一共有3 + 3 = 6块苹果糖。
2. 题目:小红有5只红色的气球,小明有3只红色的气球,小华有2只红色的气球,他们一共有多少只红色的气球?解答:小红有5只红色的气球,小明有3只红色的气球,小华有2只红色的气球,所以他们一共有5 + 3 + 2 = 10只红色的气球。
二、减法难题1. 题目:小明有7块巧克力,他吃掉2块,还剩下几块?解答:小明有7块巧克力,吃掉2块,所以还剩下7 - 2 = 5块巧克力。
2. 题目:小花有9颗糖果,她送给了小明3颗糖果,还剩下几颗?解答:小花有9颗糖果,送给了小明3颗糖果,所以还剩下9 - 3 =6颗糖果。
三、乘法难题1. 题目:小明有3本课本,每本课本有4页,那么他一共有多少页的课本?解答:小明有3本课本,每本课本有4页,所以他一共有3 × 4 = 12页的课本。
2. 题目:甲班有4排座位,每排座位有5个学生,那么甲班一共有多少个学生?解答:甲班有4排座位,每排座位有5个学生,所以甲班一共有4× 5 = 20个学生。
四、除法难题1. 题目:有12颗苹果,要平均分给3个人,每个人分到几颗苹果?解答:有12颗苹果,要平均分给3个人,所以每个人分到12 ÷ 3 =4颗苹果。
2. 题目:甲班有30个学生,要均匀分成5个小组,每个小组有多少个学生?解答:甲班有30个学生,要均匀分成5个小组,所以每个小组有30 ÷ 5 = 6个学生。
五、混合运算难题1. 题目:小明有10元钱,他买了一本数学书花了7元,又买了一袋糖花了3元,他还剩下多少钱?解答:小明有10元钱,买了一本数学书花了7元,又买了一袋糖花了3元,所以他还剩下10 - 7 - 3 = 0元。
小学数学最难的题——13种典型题全面解析
小学数学最难的题——13种典型题全面解析1、正方体展开图正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:1141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
2231型中间一行3个作侧面,共3种基本图形。
3222型中间两个面,只有1种基本图形。
433型中间没有面,两行只能有一个正方形相连,只有1种基本图形。
2、和差问题已知两数的和与差,求这两个数。
【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)÷2=6,小数=(10-2)÷2=4。
3、鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36×2)÷(4-2)=24求鸡时,假设全是兔,则鸡数 =(4×36-120)÷(4-2)=124、浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20×15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3÷10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20×(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17÷(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)5、路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过。
小学数学最难的13种典型题
小学数学最难的13种典型题一、正方体展开图正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:1、141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
2、231型中间一行3个作侧面,共3种基本图形。
3、222型中间两个面,只有1种基本图形。
4、33型中间没有面,两行只能有一个正方形相连,只有1种基本图形。
二、和差问题已知两数的和与差,求这两个数。
【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
三、鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=12四、浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)五、路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过。
小学数学1-6年级典型易错难题集锦
小学数学1-6年级典型易错难题集锦十大易错重点题【重点1】小芳拍球拍了50下,小明拍的比小芳少一些。
(1)小明可能拍了多少下?(请打“√”)(2)小明最多拍了()下。
【分析】因为“小明拍的比小芳少一些”,这就说明小明拍的球比“50下”少一点。
“12下”比“50下”少得多,而“52下”是比“50下”多一些,都不符合要求。
所以比“50下”少一些应该是“47下”。
“小明最多拍了()下”这个问题,首先要了解“最多”的意思,其实应该是在比“50下”少的范围内的一种“最多”情况。
故而因比“50下”只少“1下”,才算“最多”的情况,即“49下”。
【重点2】小文看一本童话书,第1天看了16页,第2天看了20页,第3天应该从第()页开始看起。
【分析】小朋友容易理解为第3天从第(21)页开始看起。
其实第3天看的页数应该在第1天和第2天的基础上再往下看的,因此要先求出小文第1天和第2天一共看的页数:16+20=36(页),再用36+1=37(页),即第3天应该从第(37)页开始看起。
【重点3】王叔叔收了一批鸭蛋,前3天卖出30个,还剩8个。
他一共收了多少个鸭蛋?【分析】此题关键要理解“前3天卖出30个”这个条件的意思,它是指前3天一共卖出30个,而并不是前3天每天都是卖出30个。
因此,这题要求“一共收了多少个鸭蛋”,只要把“共卖出的30个”和“还剩的8个”合起来就行。
题中的“前3天”在解题时不起作用。
【重点4】在计数器上用5颗珠表示两位数,最大可以表示多少?最小呢?先画一画,再填空。
最大是()最小是()【分析】用5颗珠表示两位数,最大应该把这5颗珠都放在十位上,即50;最小的话应该尽量多的把珠放在个位上,但由于是两位数,十位上必须得保留一颗,即14。
其实这题还可继续思考:5颗珠还能表示出哪些两位数呢?可以有序地拨一拨,从最大的50开始,每次把一颗珠拨到个位,直至14。
也就是说,用5颗珠表示的两位数有:50、41、32、23、14。
小学数学典型难题汇总
小学数学典型难题汇总612111141、141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
2、231型中间一行3个作侧面,共3种基本图形。
3、222型中间两个面,只有1种基本图形。
4、33型中间没有面,两行只能有一个正方形相连,只有1种基本图形。
二、和差问题已知两数的和与差,求这两个数。
【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
三、鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=12(1)加水稀释【口诀】:加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)(1)相遇问题【口诀】:相遇那一刻,路程全走过。
除以速度和,就把时间得。
例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?相遇那一刻,路程全走过。
小学数学14种难题类型题例题解析汇总
小学数学14种难题类型题例题解析汇总1、余数问题例题解析例:如果时钟现在表示的时间是18点整,那么分针旋转1990圈后是几点钟?分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。
1980/24的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈相当于时针向前走22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔了2小时。
即时针相当于是18-2=16(点)。
2、年龄问题例题解析例1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26 /(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
3、牛吃草问题的例题解析例:整个牧场上草长得一样密,一样快。
27头牛6天可以把草吃完;23头牛9天也可以把草吃完。
问21头多少天把草吃完。
每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)结果就是草的生长速率。
所以草的生长速率是45/3=15(牛/天);原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
所以原有的草量=27X6-6X15=72(牛/天)。
将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)4、盈亏问题例题解析例1:小朋友分桃子,每人10个少9个;每人8个多7个。
小学数学难题
小学数学难题题目一:时间之迷小明的爸爸告诉他,他每天早上花费的时间比下午和晚上花费的时间之和多一个小时。
小明非常好奇,于是他用一个乘法口诀表尝试回答这个谜题。
他写下了以下答案:早上花费的时间 = 4 × 5 = 20分钟下午花费的时间 = 7 × 5 = 35分钟晚上花费的时间 = 8 × 5 = 40分钟然而,这个答案是错误的。
小明没有成功解决这个谜题。
你能够帮助他吗?题目二:神奇的平方和小红发现了一个有趣的数学规律。
她发现,任意一个正整数n的立方和可以表示为连续n个奇数的和。
例如,当n=3时:1^3 + 2^3 + 3^3 = 1 + 8 + 27 = 36小红的问题是,对于给定的一个正整数x,如何判断它是否是一个立方和。
你能帮助她解决这个问题吗?题目三:巧妙的数字小明在一个谜题书上看到了一个有趣的数学题目。
题目是这样的:选取任意一个2位正整数n,将十位数和个位数互换,然后将得到的新数和原数相加。
例如,对于数56来说:56 → 6556 + 65 = 121奇怪的是,不论小明选择任何2位正整数进行这个操作,得到的结果总是一个回文数。
你能够解释为什么吗?题目四:奇妙的分数一个学校的学生们正比例地参加了一场比赛。
比赛结束后所有参赛学生获得的分数总和是一位数。
当老师告诉学生们她的分数总和是一个真分数,并且分母的数值是各位数和而分子是各位数差时,学生们感到很惊讶。
你能找到满足这些条件的分数吗?题目五:神奇的数字小明研究了一个奇怪的数学问题。
他发现了一个规律:一个自然数的平方末尾两位数是奇数当且仅当这个数的个位数是3或7。
例如,25的平方末尾是25,是奇数;而16的平方末尾是56,不是奇数。
小明想知道这个规律是否适用于立方数。
你能够帮助他找到答案吗?题目六:奇妙的正方形小红在画一张奇特的图形。
她发现,一个正方形中的每个对角线长度平方都等于其他两条边长度平方的和。
她将这个图形命名为“奇妙的正方形”。
小学数学最难的题——13种典型题全面解析
小学数学最难的题——13种典型题全面解析1、正方体展开图正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:1141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
2231型中间一行3个作侧面,共3种基本图形。
3222型中间两个面,只有1种基本图形。
433型中间没有面,两行只能有一个正方形相连,只有1种基本图形。
2、和差问题已知两数的和与差,求这两个数。
【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)÷2=6,小数=(10-2)÷2=4。
3、鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36×2)÷(4-2)=24求鸡时,假设全是兔,则鸡数 =(4×36-120)÷(4-2)=124、浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20×15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3÷10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20×(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17÷(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)5、路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过。
小学数学难题专题(带解析)
小学数学难题专题(带解析)一、解答题1.一列火车每小时行87千米,从甲站到乙站行了小时,甲乙两站间的铁路长多少千米?从乙站到丙站行了30分钟,甲乙两站间的铁路和乙丙两站间的铁路相差多少千米?【答案】相差14.5千米【解析】试题分析:根据速度×时间=路程,可求出甲乙两站间的铁路长和乙丙两站间的铁路长,然后即可求出甲乙两站间的铁路和乙丙两站间的铁路相差多少千米.解:甲乙两站间的铁路长:87×=58(千米),30分钟=小时,乙丙两站间的铁路长:87×=43.5(千米)甲乙两站间的铁路和乙丙两站间的铁路相差:58﹣43.5=14.5(千米)答:甲乙两站间的铁路长58千米;甲乙两站间的铁路和乙丙两站间的铁路相差14.5千米.点评:此题主要考查关系式速度×时间=路程及其计算.2.小东家养的鸡一天下了8个蛋,一共千克,平均每个多少千克?【答案】千克【解析】试题分析:用鸡蛋的总重量除以鸡蛋的个数即可.解:÷8=(千克);答:平均每个鸡蛋重千克.点评:本题根据除法的意义求解:把一个数平均分成若干份,求每份是几用除法.3.一个正方形的周长是米,它的边长是多少米?【答案】它的边长是【解析】试题分析:用正方形的周长除以4就是它的边长.解:÷4=(米);答:它的边长是.点评:本题根据正方形周长公式的变形:正方形的边长=周长÷4,直接求解.4.一段钢材长4米.做一个零件用了米,已经做了15个这样的零件,还剩多少米?【答案】还剩1.75米【解析】试题分析:做一个零件用了米,根据乘法的意义,做15个这样的零件需用×15=2.25米,根据减法的意义可知,用总米数减去做这15个零件用去的米数即是还剩下多少米.解:4﹣×15,=4﹣2.25,=1.75(米).答:还剩1.75米.点评:先根据乘法的意义求出做了15个这样的零件用的米数是完成本题的关键.5.一张长方形桌面的面积是1平方米.一张正方形桌面边长是米.长方形桌面的面积比正方形的多多少平方米?【答案】多平方米【解析】试题分析:因为正方形桌面边长为米,则正方形桌面的面积是(×)平方米.用长方形桌面面积(1平方米)减去平方米即可.解:1﹣×,=1﹣,=(平方米).答:长方形桌面的面积比正方形桌面的面积多平方米.点评:解答此题的关键是求正方形桌面的面积.6.把升橙汁灌到能装升的小瓶里,可以灌多少瓶?【答案】灌3瓶【解析】试题分析:把升橙汁灌到能装升的小瓶里,根据除法的意义可知,用总升数除以每个小瓶的容量,即得以灌多少瓶.解:=3(瓶)答:可以灌3瓶.点评:完成本题的依据为:包含除法的意义.7.六1班有学生44人,参加合唱队的占全班人数的.参加合唱队有多少人?【答案】参加合唱队有8人【解析】试题分析:根据题意,参加合唱队的占全班人数的,把这个班的学生人数看作单位“1”,根据一个数乘分数的意义,用乘法解答.解:44×=8(人);答:参加合唱队有8人.点评:此题属于分数乘法应用题的基本类型,求一个数的几分之几是多少,把已知的数量看作单位“1”,根据一个数乘分数的意义列式解答即可.8.一桶水,用去它的,正好是15千克,这桶水重多少千克?【答案】这桶水重60千克【解析】试题分析:“用去它的,”是把一桶水看作单位“1”,用去,剩下(1﹣),正好是15千克,由此根据已知一个数的几分之几是多少,求这个数,用除法解答即可.解:15÷(1﹣),=15,=15×4,=60(千克);答:这桶水重60千克.点评:关键是找准单位“1”,找出15千克的对应分数,用除法列式解答即可.9.一只鸭重3千克,一只鸡的重量是鸭的,这只鸡重多少千克?【答案】这只鸡重2千克【解析】试题分析:根据题意,一只鸡的重量是鸭的,把鸭的重量看作单位“1”,根据一个数乘分数的意义,用乘法解答.解:3×=2(千克);答:这只鸡重2千克.点评:此题属于分数乘法应用题的基本类型,求一个数的几分之几是多少,根据一个数乘分数意义解答即可.10.一个排球定价60元,篮球的价格是排球的.篮球的价格是多少元?【答案】篮球的价格是50元【解析】试题分析:把排球的价格看成单位“1”,用排球的价格乘就是篮球的价格.解:60×=50(元);答:篮球的价格是50元.点评:本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法.11.王军买了一本书和一支笔,书的价格4元,是笔的,笔的价格是多少元?【答案】笔的价格是10元【解析】试题分析:把笔的价格看成单位“1”,它的对应的数量是4元,由此用除法求出笔的价格.解:4=10(元),答:笔的价格是10元.点评:本题的关键是找出单位“1”,已知一个数的几分之几是多少,求这个数用除法.12.一种小汽车的速度是飞机的,小汽车速度是140千米/小时,飞机的速度是多少?【答案】飞机的速度是2100千米/小时【解析】试题分析:把飞机的速度看成单位“1”,它的对应的数量是140千米/小时;由此用除法求出飞机的速度.解:140=2100(千米/小时);答:飞机的速度是2100千米/小时.点评:本题的关键是找出单位“1”,已知一个数的几分之几是多少,求这个数用除法.13.(2014秋•泰兴市期末)小林有36枚邮票,小新的邮票是小林的,小明的邮票是小新的,小明有多少枚邮票?【答案】小明有40枚邮票【解析】试题分析:依据分数乘法意义,先求出小新的邮票数:36×=30枚,再根据小明的邮票是小新的解答.解:36××,=30×,=40(枚);答:小明有40枚邮票.点评:本题主要考查学生运用分数乘法意义解答应用题能力.14.一块长方形地,长24米,宽是长的.这块地的面积是多少平方米?【答案】这块地的面积是240平方米【解析】试题分析:已知长方形的长是24米,宽是长的.把长看作单位“1”,根据求一个数的几分之几是多少,用乘法求出宽,再根据长方形的面积公式s=ab,把数据代入公式解答即可.解:24×(24×)=24×10,=240(平方米);答:这块地的面积是240平方米.点评:此题主要考查长方形的面积计算,首先根据一个数乘分数的意义求出宽,再利用长方形的面积公式解答.15.同学们练习跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的.小亮跳了多少下?【答案】小亮跳了50下【解析】试题分析:先把小明跳的数量看成单位“1”,用乘法求出它的就是小强跳的数量;再把小强跳的数量看成单位“1”,它的就是小亮跳的数量,用乘法求出小亮跳的数量.解:120××,=75×,=50(下);答:小亮跳了50下.点评:解答此题的关键是分清两个不同的单位“1”,已知单位“1”的量,求它的几分之几是多少用乘法.16.小丽比小兰多12张邮票,这个数目正好是小兰邮票张数的,小兰有多少张邮票?小丽有多少张邮票?【答案】小兰有40张邮票,小丽有52张邮票【解析】试题分析:把小兰的张数看成单位“1”,它的对应的数量是12张,由此用除法求出小兰的张数;进而求出小丽的张数.解:12=40(张);40+12=52(张);答:小兰有40张邮票,小丽有52张邮票.点评:本题的关键是找出单位“1”,并找出数量对应的单位“1”的几分之几,用除法就可以求出单位“1”的量.17.长跑练习,小雄跑了3千米,小雄跑的等于小刚跑的,小勇跑的是小雄的.小刚和小勇各跑了多少千米?【答案】小刚跑了千米,小勇跑了千米【解析】试题分析:把小雄跑的路程看成单位“1”,用小雄跑的路程乘就是小刚跑的路程;用小雄跑的路程乘就是小勇跑的路程.解:3×=(千米);3×=(千米);答:小刚跑了千米,小勇跑了千米.点评:本题属于基本的分数乘法应用题,找出单位“1”,求它的几分之几是多少用乘法.18.垃圾分类,六年级同学收集了180个易拉罐,其中是一班收集的,是二班收集的.两班共收集了多少个?【答案】两个班一共收集了132个【解析】试题分析:把收集的总数量看成单位“1”,用乘法求出它的就是一班收集的数量;用乘法求出它的就是二班收集的数量,再把两个班收集的数量加在一起即可.解:180×+180×,=60+72,=132(个);答:两个班一共收集了132个.点评:本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法.19.食堂买了270千克萝卜,其中运到食堂,运到食堂多少千克?已经吃了运来的,吃了多少千克?【答案】运到食堂108千克,已经吃了36千克【解析】试题分析:先把萝卜的总量看成单位“1”,用乘法求出它的就是运到食堂的重量;再把运到食堂的重量看成单位“1”,用乘法求出它的就是已经吃了多少千克.解:270×=108(千克);108×=36(千克);答:运到食堂108千克,已经吃了36千克.点评:解答此题的关键是分清两个不同的单位“1”,已知单位“1”的量,求它的几分之几是多少用乘法.20.一种沐浴液,大瓶装450克/瓶,小瓶装125克/瓶,大瓶装是小瓶装的几倍?小瓶装是大瓶装的几分之几?【答案】大瓶装是小瓶装的3.6倍,小瓶装是大瓶装的【解析】试题分析:大瓶的重量除以小瓶的重量就是大瓶是小瓶的几倍;用小瓶的重量除以大瓶的重量就是小瓶的重量是大瓶的几分之几.解:450÷125=3.6;125÷450=;答:大瓶装是小瓶装的3.6倍,小瓶装是大瓶装的.点评:此题属于分数除法应用题中的一个基本类型:已知两个数,求一个数是另一个数的几分之几.21.小红体重42千克,小云体重40千克,小新的体重是两人体重的.小新体重多少千克?【答案】小新体重41千克【解析】试题分析:先求出小红和小云的体重和,并把他们的体重和看成单位“1”,用乘法求出体重和的就是小新的体重.解:(42+40)×,=82×,=41(千克);答:小新体重41千克.点评:本题先找出单位“1”是什么,然后求出单位“1”的量,再根据求单位“1”的几分之几是多少用乘法求解.22.六年级同学种树42棵,五年级种的比六年级少,五年级比六年级少种多少棵?五年级种了多少棵?【答案】五年级比六年级少种12棵;五年级种了30棵【解析】试题分析:把六年级种树的棵数看成单位“1”,用六年级种树的棵数乘就是五年级比六年级少种了多少棵树;进而求出五年级种的棵数.解:42×=12(棵);42﹣12=30(棵).答:五年级比六年级少种12棵;五年级种了30棵.点评:本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法.23.(2011秋•诏安县期中)六年级有学生111人,相当于五年级学生人数的,五年级和六年级一共有多少人?【答案】五年级和六年级一共有259人【解析】试题分析:已知六年级人数相当于五年级人数的,把五年级人数看作单位“1”,根据已知一个数的几分之几是多少求这个数,用除法求出五年级人数,再与六年级人数合并起来即可.解:111+111=111+111×,=111+148,=259(人);答:五年级和六年级一共有259人.点评:此题属于分数除法的基本应用题,直接用除法求出五年级的人数,再把五、六年级的人数合并起来即可.24.打字员打一篇文稿,每天完成,5天完成这篇文稿的几分之几?【答案】5天完成这篇文稿的【解析】试题分析:每天完成,也就是打字员的工作效率,要求5天完成这篇文稿的几分之几,根据“工作效率×工作时间=工作量”列式解答.解:×5=;答:5天完成这篇文稿的.点评:此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,掌握关系式,是解答的关键.25.(1)汽车每小时行80千米,燕子的飞行速度是汽车的,燕子每小时飞多少千米?(2)汽车每小时行80千米,燕子每小时飞200千米,汽车速度是燕子的几分之几?(3)燕子每小时飞200千米,汽车速度是燕子的,汽车每小时行多少千米?(4)汽车每小时行80千米,速度是燕子的,燕子每小时飞多少千米?【答案】(1)燕子每小时飞200千米(2)汽车的速度是燕子速度的(3)汽车每小时行80千米(4)燕子每小时飞200千米【解析】试题分析:(1)把汽车的速度看成单位“1”,用汽车的速度乘就是燕子的速度;(2)用汽车的速度除以燕子的速度,就是汽车的速度是燕子速度的几分之几;(3)把燕子的速度看成单位“1”,用燕子的速度乘就是汽车的速度;(4)把燕子的速度看成单位“1”,它的对应的数量是80千米,由此用除法求出燕子的速度.解:(1)80×=200(千米);答:燕子每小时飞200千米.(2)80÷200=;答:汽车的速度是燕子速度的.(3)200×=80(千米);答:汽车每小时行80千米.(4)80=200(千米);答:燕子每小时飞200千米.点评:这种类型的题目属于基本的分数乘除应用题的对比练习,只要找清单位“1”,利用基本数量关系解决问题即可.26.小刚家买来一袋面粉,吃了18千克,正好是这袋面粉的,这袋面粉还剩多少千克?【答案】这袋面粉还剩6千克【解析】试题分析:吃掉的18千克对应的分率是,用对应量除以对应分率,就是这袋面粉的总重量;面粉总重量﹣吃掉的=剩余的面粉量,问题得解.解:18÷﹣18,=24﹣18,=6(千克);答:这袋面粉还剩6千克.点评:解决此题的关键是找准对应量和对应分率,从而求得总量,再用总量减吃掉的就是剩下的.27.学校食堂九月份用煤气640立方米,十月份计划用气是九月份的,而十月份实际用气比原计划节约,十月份节约用气多少立方米?【答案】十月份节约用气48立方米【解析】试题分析:根据条件“十月份计划用气是九月份的”,把九月份用煤气的数量看作单位“1”,根据一个数乘分数的意义,用乘法求出十月份的计划用量,而十月份实际用气比原计划节约,再把十月份的计划用量看作单位“1”,再用乘法求出十月份节约用气多少立方米.解:640××=576×=48(立方米);答:十月份节约用气48立方米.点评:此题解答关键是找准单位“1”,一般是“谁”、占“谁”、比“谁”,就把“谁”看作单位“1”.28.有一叠纸,共120张,第一次用了它的,第二次用了它的,两次共用了多少张?第二次比第一次少用多少张?【答案】两次共用了92张,第二次比第一次少用52张【解析】试题分析:把这叠纸的总张数看成单位“1”,分别用乘法求出第一次和第二次用的张数,进而求出一共用了多少张,以及第二次比第一次少用多少张.解:120×=72(张);120×=20(张);72+20=92(张);72﹣20=52(张);答:两次共用了92张,第二次比第一次少用52张.点评:本题属于基本的分数乘法应用题,找出单位“1”,求它的几分之几是多少用乘法求出.29.六年级3个班帮助图书馆修补图书,一班修补了54本,二班修补的是一班的,三班修补的是二班的.三班修补了多少本?【答案】三班修补了60本【解析】试题分析:一班修补了54本,二班修补的是一班的,二班修补的就是54的,三班修补的是二班的,就是(54×)的,据此解答.解:54×,=45×,=60(本).答:三班修补了60本.点评:本题主要考查了分数乘法的意义:求一个数的几分之几是多少,同乘法计算.30.学校航模组人数是生物组的,生物组人数是美术组的,航模组有8人,美术有多少人?【答案】美术组有30人【解析】试题分析:根据“学校航模组人数是生物组的,”知道的单位“1”是生物组的人数,即学校航模组人数=生物组的人数×,由此用除法列式求出生物组的人数;再根据“生物组人数是美术组的,”知道的单位“1”是美术组的人数,即生物组人数=美术组的人数×,即可求出美术组的人数.解:8,=8××3,=30(人),答:美术组有30人.点评:解答此题的关键是找准单位“1”,再根据基本的数量关系解决问题.31.商店运来一些水果,梨的筐数是苹果筐数的,苹果的筐数是橘子筐数的.运来梨15筐,运来橘子多少筐?【答案】运来橘子25筐【解析】试题分析:由“梨的筐数是苹果筐数的,”得出:是把苹果的筐数看做单位“1”,而梨的筐数又告诉我们,就可以求出苹果的筐数.由“苹果的筐数是橘子筐数的.”知道是把橘子的筐数看做单位“1”,根据已知一个数的几分之几是多少,求这个数,用除法解答即可.解:15÷=15××=25(筐)答:运来橘子25筐.点评:此题目属于基本的分数除法应用题,只要找清单位“1”,利用基本数量关系解决问题.32.商店运来一些水果.苹果有20筐,梨的筐数是苹果的,同时又是桔子的.桔子有多少筐?【答案】桔子有25筐【解析】试题分析:苹果有20筐,梨的筐数是苹果的,梨的筐数就是20筐的,既(20×)筐,梨同时又是桔子的,就是桔子的是(20×)筐,桔子的筐数就是(20×)筐,据此解答.解:20×,=15,=25(筐).答:桔子有25筐.点评:本题考查了学生根据分数乘除法的意义解答应用题的能力.33.停车场有小汽车36辆,是大客车的4倍,大客车的辆数是运货车的,运货车有多少辆?【答案】运货车有15辆【解析】试题分析:先用小汽车的数量除以4求出大客车的数量;然后把运货车的数量看成单位“1”,它的对应的数量是大客车的数量,由此用除法求出运货车的数量.解:36÷4,=9,=15(辆);答:运货车有15辆.点评:这种类型的题目属于基本的分数乘除应用题,只要找清单位“1”,利用基本数量关系解决问题.34.为庆祝“少代会”召开,同学们要做180面小旗,已经做了,还有几面没做?【答案】还有30面没有做【解析】试题分析:把要做的红旗的全部数量180面看成单位“1”,还没有做的是全部的1﹣,由此用乘法求出还没有做的数量.解:180×(1﹣),=180×,=30(面);答:还有30面没有做.点评:本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法.35.制造一种机床,原来每台用钢材2吨,现在每台用钢材比原来节约,现在每台用钢材多少吨?【答案】现在每台用钢材1.6吨【解析】试题分析:原来每台用钢材2吨,现在每台用钢材比原来节约,现在每台用钢材对应的分率就是(1﹣),据此解答.解:2×(1﹣),=2×,=1.6(吨).答:现在每台用钢材1.6吨.点评:本题的关键是求出现在每台用钢材对应的分率,再根据分数乘法的意义解答.36.(1)一个饲养场,养鸭1200只,养的鸡比鸭多,养的鸡比鸭多多少只?(2)一个饲养场,养鸭1200只,养的鸡比鸭多,养的鸡有多少只?【答案】(1)养的鸡比鸭多720只(2)养的鸡有1920只【解析】试题分析:(1)把鸭的只数看成单位“1”,用鸭的只数乘就是鸡的只数比鸭多几只;(2)把鸭的只数看成单位“1”,鸡的只数是鸭的(1+),由此用乘法求出鸭的只数.解:(1)1200×=720(只);答:养的鸡比鸭多720只.(2)1200×(1+),=1200×,=1920(只);答:养的鸡有1920只.点评:此题考查的是分数应用题的列式,要先找准单位“1”,再据题中的数量关系列式求解.37.(1)一条绳长2米,剪去,还剩多少米?(2)一条绳长2米,剪去米,还剩多少米?【答案】(1)还剩米(2)还剩1米【解析】试题分析:(1)把这根绳子的全长看成单位“1”,减去就还剩下这条绳长(1﹣),由此用乘法求出剩下的长度;(2)用总长度减去米就是剩下的长度.解:(1)2×(1﹣),=2×,=(米);答:还剩米.(2)2﹣=1(米);答:还剩1米.点评:此题重在区分分数在具体的题目中的区别:有些表示是某些量的几分之几,有些就表示具体的数量;带单位是一个具体的数量,不带单位是把某一个数量看单位“1”,是单位“1”的几分之几.38.小红看一本60页的故事书,第一天看了全书的,第二天看了全书的,两天共看了多少页?【答案】两天共看了27页【解析】试题分析:把全书的页数看作单位“1”,要求最后的问题,可先求两天一共看了全书的几分之几,再由单位“1”已知,用乘法列式解答即可.解:60×(+)=12+15=27(页);答:两天共看了27页.点评:此题是简单的分数乘法应用题,关键是找准单位“1”,再据数量关系解答.39.(2012秋•潞城市校级期中)一种服装原价105元,现在降价,现在售价多少元?【答案】现在的售价是75元【解析】试题分析:把这件服装的原价看成单位“1”,现价是原价的(1﹣),由此用乘法求出现价.解:105×(1﹣),=105×,=75(元);答:现在的售价是75元.点评:本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法.40.某场九月份生产洗洁精350000箱,十月份比九月份多.十月份生产多少箱?【答案】十月份生产了450000箱【解析】试题分析:把九月份生产的数量看成单位“1”,十月份是九月份的1+,由此用乘法求出十月份生产的数量即可.解:350000×(1+),=350000×,=450000(箱);答:十月份生产了450000箱.点评:这道题先找出单位“1”,已知单位“1”的量,以及另一个数量是单位“1”的几分之几,求另一个数量,用乘法解答.41.同学们参加运砖,两天共运7500块.第一天运了,第二天运多少块?【答案】第二天运3000块【解析】试题分析:把7500块看作“1”,第一天运了,第二天就运了1﹣,用7500乘对应的分数即可.解:7500×(1﹣),=7500×,=3000(块).答:第二天运3000块.点评:解答此题关键是找准单位“1”和所求量相对应的分数.42.某汽车厂去年计划生产汽车12600辆,结果上半年完成了全年计划的,下半年完成全年计划的.全年超产汽车多少辆?【答案】全年超产1960辆【解析】试题分析:把计划的生产数量看成单位“1”,全年实际一共完成了计划的(+),用乘法求出实际一共完成了多少辆,然后再用实际完成的数量减去计划的数量就是超产完成了多少辆.解:12600×(+)﹣12600,=12600×﹣12600,=14560﹣12600,=1960(辆);答:全年超产1960辆.点评:此题考查的是分数应用题的列式,要先找准单位“1”,再据题中的数量关系列式求解.43.一条水渠,修了,还剩240米没修.这条水渠全长多少米?【答案】这条水渠长600米【解析】试题分析:将这条水渠总长当做单位“1”,已修了,根据分数减法的意义,还剩下总长的1﹣没有修,剩下的长度为240米,根据分数除法的意义可知,这条水渠长240÷(1﹣)米.解:240÷(1﹣)=240÷,=600(米).答:这条水渠长600米.点评:首先根据分数减法的意义求出剩下的占总长的分率是完成本题的关键.44.(1)某工厂十月份用水480 吨,比原计划节约了.十月份计划用水多少吨?(2)某工厂十月份用水480 吨,比原计划多用了.十月份计划用水多少吨?【答案】(1)十月份计划用水540吨(2)十月份计划用水432吨【解析】试题分析:(1)将原计划用水当做单位“1”,十月份用水比原计划节约了,则十月份用水是原计划的1﹣=,十月份用水480吨,根据分数除法的意义,十月份计划用水480=540吨;(2)将原计划用水当做单位“1”,则十月份用水是原计划的1+=1,根据分数除法的意义可知,原计划用水480÷1=432吨.解:(1)480÷(1﹣)=480,=540(吨).答:十月份计划用水540吨.(2)480÷(1+)=480,=432(吨).答:十月份计划用水432吨.点评:完成本题要注意单位“1”的确定,单位“1”一般处于“比、是、占”的后边.45.一根电线杆,埋在地下的部分占全长的,露在地面地部分是5米.这根电线杆全长多少米?【答案】这根电线杆全长米【解析】试题分析:根据题意,把这根电线杆的全长看作单位“1”,埋在地下的部分占全长的,那么露在地面的部分是5米,占全长的(1),单位“1”是未知的,用除法解答.解:5÷(1)=5=5×=(米);答:这根电线杆全长米.点评:此题属于已知比一个数少几分之几的数是多少求这个数,解答关键是确定单位“1”(未知),直接用除法列式解答.46.(1)人造地球卫星每秒运行8千米,相当于宇宙飞船速度的.宇宙飞船每秒运行多少千米?(2)人造地球卫星每秒运行8千米,比宇宙飞船的速度慢.宇宙飞船每秒运行多少千米?【答案】(1)宇宙飞船每秒运行11.4千米(2)宇宙飞船每秒运行11.4千米【解析】试题分析:(1)把宇宙飞船的速度看成单位“1”,它的对应的数量是8千米,由此用除法求出宇宙飞船的速度;(2)把宇宙飞船的速度看成单位“1”,它的1﹣对应的数量是8千米,由此用除法求出宇宙飞船的速度;解:(1)8=11.4(千米);答:宇宙飞船每秒运行11.4千米.(2)8÷(1﹣),=8,=11.4(千米);答:宇宙飞船每秒运行11.4千米.点评:本题的关键是找出单位“1”,已知一个数的几分之几是多少,求这个数用除法.。
小学数学难题专题(带解析)
小学数学难题专题(带解析)一、解答题1.一列火车每小时行87千米,从甲站到乙站行了小时,甲乙两站间的铁路长多少千米?从乙站到丙站行了30分钟,甲乙两站间的铁路和乙丙两站间的铁路相差多少千米?【答案】相差14.5千米【解析】试题分析:根据速度×时间=路程,可求出甲乙两站间的铁路长和乙丙两站间的铁路长,然后即可求出甲乙两站间的铁路和乙丙两站间的铁路相差多少千米.解:甲乙两站间的铁路长:87×=58(千米),30分钟=小时,乙丙两站间的铁路长:87×=43.5(千米)甲乙两站间的铁路和乙丙两站间的铁路相差:58﹣43.5=14.5(千米)答:甲乙两站间的铁路长58千米;甲乙两站间的铁路和乙丙两站间的铁路相差14.5千米.点评:此题主要考查关系式速度×时间=路程及其计算.2.小东家养的鸡一天下了8个蛋,一共千克,平均每个多少千克?【答案】千克【解析】试题分析:用鸡蛋的总重量除以鸡蛋的个数即可.解:÷8=(千克);答:平均每个鸡蛋重千克.点评:本题根据除法的意义求解:把一个数平均分成若干份,求每份是几用除法.3.一个正方形的周长是米,它的边长是多少米?【答案】它的边长是【解析】试题分析:用正方形的周长除以4就是它的边长.解:÷4=(米);答:它的边长是.点评:本题根据正方形周长公式的变形:正方形的边长=周长÷4,直接求解.4.一段钢材长4米.做一个零件用了米,已经做了15个这样的零件,还剩多少米?【答案】还剩1.75米【解析】试题分析:做一个零件用了米,根据乘法的意义,做15个这样的零件需用×15=2.25米,根据减法的意义可知,用总米数减去做这15个零件用去的米数即是还剩下多少米.解:4﹣×15,=4﹣2.25,=1.75(米).答:还剩1.75米.点评:先根据乘法的意义求出做了15个这样的零件用的米数是完成本题的关键.5.一张长方形桌面的面积是1平方米.一张正方形桌面边长是米.长方形桌面的面积比正方形的多多少平方米?【答案】多平方米【解析】试题分析:因为正方形桌面边长为米,则正方形桌面的面积是(×)平方米.用长方形桌面面积(1平方米)减去平方米即可.解:1﹣×,=1﹣,=(平方米).答:长方形桌面的面积比正方形桌面的面积多平方米.点评:解答此题的关键是求正方形桌面的面积.6.把升橙汁灌到能装升的小瓶里,可以灌多少瓶?【答案】灌3瓶【解析】试题分析:把升橙汁灌到能装升的小瓶里,根据除法的意义可知,用总升数除以每个小瓶的容量,即得以灌多少瓶.解:=3(瓶)答:可以灌3瓶.点评:完成本题的依据为:包含除法的意义.7.六1班有学生44人,参加合唱队的占全班人数的.参加合唱队有多少人?【答案】参加合唱队有8人【解析】试题分析:根据题意,参加合唱队的占全班人数的,把这个班的学生人数看作单位“1”,根据一个数乘分数的意义,用乘法解答.解:44×=8(人);答:参加合唱队有8人.点评:此题属于分数乘法应用题的基本类型,求一个数的几分之几是多少,把已知的数量看作单位“1”,根据一个数乘分数的意义列式解答即可.8.一桶水,用去它的,正好是15千克,这桶水重多少千克?【答案】这桶水重60千克【解析】试题分析:“用去它的,”是把一桶水看作单位“1”,用去,剩下(1﹣),正好是15千克,由此根据已知一个数的几分之几是多少,求这个数,用除法解答即可.解:15÷(1﹣),=15,=15×4,=60(千克);答:这桶水重60千克.点评:关键是找准单位“1”,找出15千克的对应分数,用除法列式解答即可.9.一只鸭重3千克,一只鸡的重量是鸭的,这只鸡重多少千克?【答案】这只鸡重2千克【解析】试题分析:根据题意,一只鸡的重量是鸭的,把鸭的重量看作单位“1”,根据一个数乘分数的意义,用乘法解答.解:3×=2(千克);答:这只鸡重2千克.点评:此题属于分数乘法应用题的基本类型,求一个数的几分之几是多少,根据一个数乘分数意义解答即可.10.一个排球定价60元,篮球的价格是排球的.篮球的价格是多少元?【答案】篮球的价格是50元【解析】试题分析:把排球的价格看成单位“1”,用排球的价格乘就是篮球的价格.解:60×=50(元);答:篮球的价格是50元.点评:本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法.11.王军买了一本书和一支笔,书的价格4元,是笔的,笔的价格是多少元?【答案】笔的价格是10元【解析】试题分析:把笔的价格看成单位“1”,它的对应的数量是4元,由此用除法求出笔的价格.解:4=10(元),答:笔的价格是10元.点评:本题的关键是找出单位“1”,已知一个数的几分之几是多少,求这个数用除法.12.一种小汽车的速度是飞机的,小汽车速度是140千米/小时,飞机的速度是多少?【答案】飞机的速度是2100千米/小时【解析】试题分析:把飞机的速度看成单位“1”,它的对应的数量是140千米/小时;由此用除法求出飞机的速度.解:140=2100(千米/小时);答:飞机的速度是2100千米/小时.点评:本题的关键是找出单位“1”,已知一个数的几分之几是多少,求这个数用除法.13.(2014秋•泰兴市期末)小林有36枚邮票,小新的邮票是小林的,小明的邮票是小新的,小明有多少枚邮票?【答案】小明有40枚邮票【解析】试题分析:依据分数乘法意义,先求出小新的邮票数:36×=30枚,再根据小明的邮票是小新的解答.解:36××,=30×,=40(枚);答:小明有40枚邮票.点评:本题主要考查学生运用分数乘法意义解答应用题能力.14.一块长方形地,长24米,宽是长的.这块地的面积是多少平方米?【答案】这块地的面积是240平方米【解析】试题分析:已知长方形的长是24米,宽是长的.把长看作单位“1”,根据求一个数的几分之几是多少,用乘法求出宽,再根据长方形的面积公式s=ab,把数据代入公式解答即可.解:24×(24×)=24×10,=240(平方米);答:这块地的面积是240平方米.点评:此题主要考查长方形的面积计算,首先根据一个数乘分数的意义求出宽,再利用长方形的面积公式解答.15.同学们练习跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的.小亮跳了多少下?【答案】小亮跳了50下【解析】试题分析:先把小明跳的数量看成单位“1”,用乘法求出它的就是小强跳的数量;再把小强跳的数量看成单位“1”,它的就是小亮跳的数量,用乘法求出小亮跳的数量.解:120××,=75×,=50(下);答:小亮跳了50下.点评:解答此题的关键是分清两个不同的单位“1”,已知单位“1”的量,求它的几分之几是多少用乘法.16.小丽比小兰多12张邮票,这个数目正好是小兰邮票张数的,小兰有多少张邮票?小丽有多少张邮票?【答案】小兰有40张邮票,小丽有52张邮票【解析】试题分析:把小兰的张数看成单位“1”,它的对应的数量是12张,由此用除法求出小兰的张数;进而求出小丽的张数.解:12=40(张);40+12=52(张);答:小兰有40张邮票,小丽有52张邮票.点评:本题的关键是找出单位“1”,并找出数量对应的单位“1”的几分之几,用除法就可以求出单位“1”的量.17.长跑练习,小雄跑了3千米,小雄跑的等于小刚跑的,小勇跑的是小雄的.小刚和小勇各跑了多少千米?【答案】小刚跑了千米,小勇跑了千米【解析】试题分析:把小雄跑的路程看成单位“1”,用小雄跑的路程乘就是小刚跑的路程;用小雄跑的路程乘就是小勇跑的路程.解:3×=(千米);3×=(千米);答:小刚跑了千米,小勇跑了千米.点评:本题属于基本的分数乘法应用题,找出单位“1”,求它的几分之几是多少用乘法.18.垃圾分类,六年级同学收集了180个易拉罐,其中是一班收集的,是二班收集的.两班共收集了多少个?【答案】两个班一共收集了132个【解析】试题分析:把收集的总数量看成单位“1”,用乘法求出它的就是一班收集的数量;用乘法求出它的就是二班收集的数量,再把两个班收集的数量加在一起即可.解:180×+180×,=60+72,=132(个);答:两个班一共收集了132个.点评:本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法.19.食堂买了270千克萝卜,其中运到食堂,运到食堂多少千克?已经吃了运来的,吃了多少千克?【答案】运到食堂108千克,已经吃了36千克【解析】试题分析:先把萝卜的总量看成单位“1”,用乘法求出它的就是运到食堂的重量;再把运到食堂的重量看成单位“1”,用乘法求出它的就是已经吃了多少千克.解:270×=108(千克);108×=36(千克);答:运到食堂108千克,已经吃了36千克.点评:解答此题的关键是分清两个不同的单位“1”,已知单位“1”的量,求它的几分之几是多少用乘法.20.一种沐浴液,大瓶装450克/瓶,小瓶装125克/瓶,大瓶装是小瓶装的几倍?小瓶装是大瓶装的几分之几?【答案】大瓶装是小瓶装的3.6倍,小瓶装是大瓶装的【解析】试题分析:大瓶的重量除以小瓶的重量就是大瓶是小瓶的几倍;用小瓶的重量除以大瓶的重量就是小瓶的重量是大瓶的几分之几.解:450÷125=3.6;125÷450=;答:大瓶装是小瓶装的3.6倍,小瓶装是大瓶装的.点评:此题属于分数除法应用题中的一个基本类型:已知两个数,求一个数是另一个数的几分之几.21.小红体重42千克,小云体重40千克,小新的体重是两人体重的.小新体重多少千克?【答案】小新体重41千克【解析】试题分析:先求出小红和小云的体重和,并把他们的体重和看成单位“1”,用乘法求出体重和的就是小新的体重.解:(42+40)×,=82×,=41(千克);答:小新体重41千克.点评:本题先找出单位“1”是什么,然后求出单位“1”的量,再根据求单位“1”的几分之几是多少用乘法求解.22.六年级同学种树42棵,五年级种的比六年级少,五年级比六年级少种多少棵?五年级种了多少棵?【答案】五年级比六年级少种12棵;五年级种了30棵【解析】试题分析:把六年级种树的棵数看成单位“1”,用六年级种树的棵数乘就是五年级比六年级少种了多少棵树;进而求出五年级种的棵数.解:42×=12(棵);42﹣12=30(棵).答:五年级比六年级少种12棵;五年级种了30棵.点评:本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法.23.(2011秋•诏安县期中)六年级有学生111人,相当于五年级学生人数的,五年级和六年级一共有多少人?【答案】五年级和六年级一共有259人【解析】试题分析:已知六年级人数相当于五年级人数的,把五年级人数看作单位“1”,根据已知一个数的几分之几是多少求这个数,用除法求出五年级人数,再与六年级人数合并起来即可.解:111+111=111+111×,=111+148,=259(人);答:五年级和六年级一共有259人.点评:此题属于分数除法的基本应用题,直接用除法求出五年级的人数,再把五、六年级的人数合并起来即可.24.打字员打一篇文稿,每天完成,5天完成这篇文稿的几分之几?【答案】5天完成这篇文稿的【解析】试题分析:每天完成,也就是打字员的工作效率,要求5天完成这篇文稿的几分之几,根据“工作效率×工作时间=工作量”列式解答.解:×5=;答:5天完成这篇文稿的.点评:此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,掌握关系式,是解答的关键.25.(1)汽车每小时行80千米,燕子的飞行速度是汽车的,燕子每小时飞多少千米?(2)汽车每小时行80千米,燕子每小时飞200千米,汽车速度是燕子的几分之几?(3)燕子每小时飞200千米,汽车速度是燕子的,汽车每小时行多少千米?(4)汽车每小时行80千米,速度是燕子的,燕子每小时飞多少千米?【答案】(1)燕子每小时飞200千米(2)汽车的速度是燕子速度的(3)汽车每小时行80千米(4)燕子每小时飞200千米【解析】试题分析:(1)把汽车的速度看成单位“1”,用汽车的速度乘就是燕子的速度;(2)用汽车的速度除以燕子的速度,就是汽车的速度是燕子速度的几分之几;(3)把燕子的速度看成单位“1”,用燕子的速度乘就是汽车的速度;(4)把燕子的速度看成单位“1”,它的对应的数量是80千米,由此用除法求出燕子的速度.解:(1)80×=200(千米);答:燕子每小时飞200千米.(2)80÷200=;答:汽车的速度是燕子速度的.(3)200×=80(千米);答:汽车每小时行80千米.(4)80=200(千米);答:燕子每小时飞200千米.点评:这种类型的题目属于基本的分数乘除应用题的对比练习,只要找清单位“1”,利用基本数量关系解决问题即可.26.小刚家买来一袋面粉,吃了18千克,正好是这袋面粉的,这袋面粉还剩多少千克?【答案】这袋面粉还剩6千克【解析】试题分析:吃掉的18千克对应的分率是,用对应量除以对应分率,就是这袋面粉的总重量;面粉总重量﹣吃掉的=剩余的面粉量,问题得解.解:18÷﹣18,=24﹣18,=6(千克);答:这袋面粉还剩6千克.点评:解决此题的关键是找准对应量和对应分率,从而求得总量,再用总量减吃掉的就是剩下的.27.学校食堂九月份用煤气640立方米,十月份计划用气是九月份的,而十月份实际用气比原计划节约,十月份节约用气多少立方米?【答案】十月份节约用气48立方米【解析】试题分析:根据条件“十月份计划用气是九月份的”,把九月份用煤气的数量看作单位“1”,根据一个数乘分数的意义,用乘法求出十月份的计划用量,而十月份实际用气比原计划节约,再把十月份的计划用量看作单位“1”,再用乘法求出十月份节约用气多少立方米.解:640××=576×=48(立方米);答:十月份节约用气48立方米.点评:此题解答关键是找准单位“1”,一般是“谁”、占“谁”、比“谁”,就把“谁”看作单位“1”.28.有一叠纸,共120张,第一次用了它的,第二次用了它的,两次共用了多少张?第二次比第一次少用多少张?【答案】两次共用了92张,第二次比第一次少用52张【解析】试题分析:把这叠纸的总张数看成单位“1”,分别用乘法求出第一次和第二次用的张数,进而求出一共用了多少张,以及第二次比第一次少用多少张.解:120×=72(张);120×=20(张);72+20=92(张);72﹣20=52(张);答:两次共用了92张,第二次比第一次少用52张.点评:本题属于基本的分数乘法应用题,找出单位“1”,求它的几分之几是多少用乘法求出.29.六年级3个班帮助图书馆修补图书,一班修补了54本,二班修补的是一班的,三班修补的是二班的.三班修补了多少本?【答案】三班修补了60本【解析】试题分析:一班修补了54本,二班修补的是一班的,二班修补的就是54的,三班修补的是二班的,就是(54×)的,据此解答.解:54×,=45×,=60(本).答:三班修补了60本.点评:本题主要考查了分数乘法的意义:求一个数的几分之几是多少,同乘法计算.30.学校航模组人数是生物组的,生物组人数是美术组的,航模组有8人,美术有多少人?【答案】美术组有30人【解析】试题分析:根据“学校航模组人数是生物组的,”知道的单位“1”是生物组的人数,即学校航模组人数=生物组的人数×,由此用除法列式求出生物组的人数;再根据“生物组人数是美术组的,”知道的单位“1”是美术组的人数,即生物组人数=美术组的人数×,即可求出美术组的人数.解:8,=8××3,=30(人),答:美术组有30人.点评:解答此题的关键是找准单位“1”,再根据基本的数量关系解决问题.31.商店运来一些水果,梨的筐数是苹果筐数的,苹果的筐数是橘子筐数的.运来梨15筐,运来橘子多少筐?【答案】运来橘子25筐【解析】试题分析:由“梨的筐数是苹果筐数的,”得出:是把苹果的筐数看做单位“1”,而梨的筐数又告诉我们,就可以求出苹果的筐数.由“苹果的筐数是橘子筐数的.”知道是把橘子的筐数看做单位“1”,根据已知一个数的几分之几是多少,求这个数,用除法解答即可.解:15÷=15××=25(筐)答:运来橘子25筐.点评:此题目属于基本的分数除法应用题,只要找清单位“1”,利用基本数量关系解决问题.32.商店运来一些水果.苹果有20筐,梨的筐数是苹果的,同时又是桔子的.桔子有多少筐?【答案】桔子有25筐【解析】试题分析:苹果有20筐,梨的筐数是苹果的,梨的筐数就是20筐的,既(20×)筐,梨同时又是桔子的,就是桔子的是(20×)筐,桔子的筐数就是(20×)筐,据此解答.解:20×,=15,=25(筐).答:桔子有25筐.点评:本题考查了学生根据分数乘除法的意义解答应用题的能力.33.停车场有小汽车36辆,是大客车的4倍,大客车的辆数是运货车的,运货车有多少辆?【答案】运货车有15辆【解析】试题分析:先用小汽车的数量除以4求出大客车的数量;然后把运货车的数量看成单位“1”,它的对应的数量是大客车的数量,由此用除法求出运货车的数量.解:36÷4,=9,=15(辆);答:运货车有15辆.点评:这种类型的题目属于基本的分数乘除应用题,只要找清单位“1”,利用基本数量关系解决问题.34.为庆祝“少代会”召开,同学们要做180面小旗,已经做了,还有几面没做?【答案】还有30面没有做【解析】试题分析:把要做的红旗的全部数量180面看成单位“1”,还没有做的是全部的1﹣,由此用乘法求出还没有做的数量.解:180×(1﹣),=180×,=30(面);答:还有30面没有做.点评:本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法.35.制造一种机床,原来每台用钢材2吨,现在每台用钢材比原来节约,现在每台用钢材多少吨?【答案】现在每台用钢材1.6吨【解析】试题分析:原来每台用钢材2吨,现在每台用钢材比原来节约,现在每台用钢材对应的分率就是(1﹣),据此解答.解:2×(1﹣),=2×,=1.6(吨).答:现在每台用钢材1.6吨.点评:本题的关键是求出现在每台用钢材对应的分率,再根据分数乘法的意义解答.36.(1)一个饲养场,养鸭1200只,养的鸡比鸭多,养的鸡比鸭多多少只?(2)一个饲养场,养鸭1200只,养的鸡比鸭多,养的鸡有多少只?【答案】(1)养的鸡比鸭多720只(2)养的鸡有1920只【解析】试题分析:(1)把鸭的只数看成单位“1”,用鸭的只数乘就是鸡的只数比鸭多几只;(2)把鸭的只数看成单位“1”,鸡的只数是鸭的(1+),由此用乘法求出鸭的只数.解:(1)1200×=720(只);答:养的鸡比鸭多720只.(2)1200×(1+),=1200×,=1920(只);答:养的鸡有1920只.点评:此题考查的是分数应用题的列式,要先找准单位“1”,再据题中的数量关系列式求解.37.(1)一条绳长2米,剪去,还剩多少米?(2)一条绳长2米,剪去米,还剩多少米?【答案】(1)还剩米(2)还剩1米【解析】试题分析:(1)把这根绳子的全长看成单位“1”,减去就还剩下这条绳长(1﹣),由此用乘法求出剩下的长度;(2)用总长度减去米就是剩下的长度.解:(1)2×(1﹣),=2×,=(米);答:还剩米.(2)2﹣=1(米);答:还剩1米.点评:此题重在区分分数在具体的题目中的区别:有些表示是某些量的几分之几,有些就表示具体的数量;带单位是一个具体的数量,不带单位是把某一个数量看单位“1”,是单位“1”的几分之几.38.小红看一本60页的故事书,第一天看了全书的,第二天看了全书的,两天共看了多少页?【答案】两天共看了27页【解析】试题分析:把全书的页数看作单位“1”,要求最后的问题,可先求两天一共看了全书的几分之几,再由单位“1”已知,用乘法列式解答即可.解:60×(+)=12+15=27(页);答:两天共看了27页.点评:此题是简单的分数乘法应用题,关键是找准单位“1”,再据数量关系解答.39.(2012秋•潞城市校级期中)一种服装原价105元,现在降价,现在售价多少元?【答案】现在的售价是75元【解析】试题分析:把这件服装的原价看成单位“1”,现价是原价的(1﹣),由此用乘法求出现价.解:105×(1﹣),=105×,=75(元);答:现在的售价是75元.点评:本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法.40.某场九月份生产洗洁精350000箱,十月份比九月份多.十月份生产多少箱?【答案】十月份生产了450000箱【解析】试题分析:把九月份生产的数量看成单位“1”,十月份是九月份的1+,由此用乘法求出十月份生产的数量即可.解:350000×(1+),=350000×,=450000(箱);答:十月份生产了450000箱.点评:这道题先找出单位“1”,已知单位“1”的量,以及另一个数量是单位“1”的几分之几,求另一个数量,用乘法解答.41.同学们参加运砖,两天共运7500块.第一天运了,第二天运多少块?【答案】第二天运3000块【解析】试题分析:把7500块看作“1”,第一天运了,第二天就运了1﹣,用7500乘对应的分数即可.解:7500×(1﹣),=7500×,=3000(块).答:第二天运3000块.点评:解答此题关键是找准单位“1”和所求量相对应的分数.42.某汽车厂去年计划生产汽车12600辆,结果上半年完成了全年计划的,下半年完成全年计划的.全年超产汽车多少辆?【答案】全年超产1960辆【解析】试题分析:把计划的生产数量看成单位“1”,全年实际一共完成了计划的(+),用乘法求出实际一共完成了多少辆,然后再用实际完成的数量减去计划的数量就是超产完成了多少辆.解:12600×(+)﹣12600,=12600×﹣12600,=14560﹣12600,=1960(辆);答:全年超产1960辆.点评:此题考查的是分数应用题的列式,要先找准单位“1”,再据题中的数量关系列式求解.43.一条水渠,修了,还剩240米没修.这条水渠全长多少米?【答案】这条水渠长600米【解析】试题分析:将这条水渠总长当做单位“1”,已修了,根据分数减法的意义,还剩下总长的1﹣没有修,剩下的长度为240米,根据分数除法的意义可知,这条水渠长240÷(1﹣)米.解:240÷(1﹣)=240÷,=600(米).答:这条水渠长600米.点评:首先根据分数减法的意义求出剩下的占总长的分率是完成本题的关键.44.(1)某工厂十月份用水480 吨,比原计划节约了.十月份计划用水多少吨?(2)某工厂十月份用水480 吨,比原计划多用了.十月份计划用水多少吨?【答案】(1)十月份计划用水540吨(2)十月份计划用水432吨【解析】试题分析:(1)将原计划用水当做单位“1”,十月份用水比原计划节约了,则十月份用水是原计划的1﹣=,十月份用水480吨,根据分数除法的意义,十月份计划用水480=540吨;(2)将原计划用水当做单位“1”,则十月份用水是原计划的1+=1,根据分数除法的意义可知,原计划用水480÷1=432吨.解:(1)480÷(1﹣)=480,=540(吨).答:十月份计划用水540吨.(2)480÷(1+)=480,=432(吨).答:十月份计划用水432吨.点评:完成本题要注意单位“1”的确定,单位“1”一般处于“比、是、占”的后边.45.一根电线杆,埋在地下的部分占全长的,露在地面地部分是5米.这根电线杆全长多少米?【答案】这根电线杆全长米【解析】试题分析:根据题意,把这根电线杆的全长看作单位“1”,埋在地下的部分占全长的,那么露在地面的部分是5米,占全长的(1),单位“1”是未知的,用除法解答.解:5÷(1)=5=5×=(米);答:这根电线杆全长米.点评:此题属于已知比一个数少几分之几的数是多少求这个数,解答关键是确定单位“1”(未知),直接用除法列式解答.46.(1)人造地球卫星每秒运行8千米,相当于宇宙飞船速度的.宇宙飞船每秒运行多少千米?(2)人造地球卫星每秒运行8千米,比宇宙飞船的速度慢.宇宙飞船每秒运行多少千米?【答案】(1)宇宙飞船每秒运行11.4千米(2)宇宙飞船每秒运行11.4千米【解析】试题分析:(1)把宇宙飞船的速度看成单位“1”,它的对应的数量是8千米,由此用除法求出宇宙飞船的速度;(2)把宇宙飞船的速度看成单位“1”,它的1﹣对应的数量是8千米,由此用除法求出宇宙飞船的速度;解:(1)8=11.4(千米);答:宇宙飞船每秒运行11.4千米.(2)8÷(1﹣),=8,=11.4(千米);答:宇宙飞船每秒运行11.4千米.点评:本题的关键是找出单位“1”,已知一个数的几分之几是多少,求这个数用除法.。
小学难题汇总年级一解析
小学难题汇总年级一解析一、数学难题解析1. 加减法难题“小明有5个苹果,他吃了3个,还剩下几个?”这是一个典型的加减法难题。
解决这类问题的关键在于理解加法和减法的概念,并能够将实际情境与数学运算符号进行对应。
对于这个问题,学生可以通过将5个苹果减去3个苹果得到答案,即5-3=2,所以小明还剩下2个苹果。
2. 乘除法难题“小红有3个装满红色饼干的袋子,每个袋子有4个饼干。
她一共有多少个饼干?”这是一个典型的乘除法难题。
解决这类问题的关键在于理解乘法和除法的含义,并能够运用乘法算式求解。
对于这个问题,学生可以将每个袋子的饼干数量4个乘以袋子的数量3个,即4*3=12,所以小红一共有12个饼干。
3. 数字排列难题“请将下列数字按从大到小的顺序排列:9、3、6、2、5。
”这是一个典型的数字排列难题。
解决这类问题的关键在于比较数字的大小,并能够正确排序。
对于这个问题,学生可以通过比较每两个数字的大小关系,逐步确定它们的相对顺序,即9、6、5、3、2。
二、语文难题解析1. 词语搭配难题“请用合适的动词填空:鱼游____、鸟飞____、人走____。
”这是一个典型的词语搭配难题。
解决这类问题的关键在于理解词语之间的搭配关系,并能够根据语境选择合适的词语。
对于这个问题,学生可以通过对每个动词进行分析,根据鱼的特点选择“游”、根据鸟的特点选择“飞”、根据人的特点选择“走”。
2. 句子衔接难题“请将下面的句子补充完整:小明每天早上都起床,______去学校。
”这是一个典型的句子衔接难题。
解决这类问题的关键在于理解句子的逻辑关系,并能够进行衔接。
对于这个问题,学生可以通过思考每天早上起床后的常见行为,如刷牙、洗脸、吃早饭等,选择合适的动作进行衔接,如“然后”、“接着”等。
3. 诗歌理解难题“请根据下面的诗句回答问题:花开的小路上,______。
”这是一个典型的诗歌理解难题。
解决这类问题的关键在于理解诗句的意境,并能够从中找出相关信息。
小学数学最难的题——13种典型题全面解析
小学数学最难的题——13种典型题全面解析1、正方体展开图正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:1141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
2231型中间一行3个作侧面,共3种基本图形。
3222型中间两个面,只有1种基本图形。
433型中间没有面,两行只能有一个正方形相连,只有1种基本图形。
2、和差问题已知两数的和与差,求这两个数。
【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)÷2=6,小数=(10-2)÷2=4。
3、鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36×2)÷(4-2)=24求鸡时,假设全是兔,则鸡数 =(4×36-120)÷(4-2)=124、浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20×15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3÷10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20×(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17÷(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)5、路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过。
小学数学试卷难题大全
小学数学试卷难题大全一、选择题(每题2分,共10分)1. 一个数的3倍是48,这个数是多少?A. 16B. 24C. 12D. 482. 一个长方形的长是15厘米,宽是10厘米,它的周长是多少?A. 30厘米B. 40厘米C. 50厘米D. 60厘米3. 一个班级有45个学生,其中女生占2/3,这个班级有多少男生?A. 15B. 20C. 30D. 454. 一个数加上它的一半等于18,这个数是多少?A. 12B. 9C. 6D. 35. 一个数的4倍减去它的一半等于36,这个数是多少?A. 12B. 9C. 8D. 6二、填空题(每题2分,共20分)6. 一个数的平方是36,这个数是______。
7. 一个数的5倍是25,这个数的7倍是______。
8. 如果一个数的2/3是8,那么这个数是______。
9. 一个数的1/4加上另一个数的1/3等于1,如果另一个数是12,那么这个数是______。
10. 一个数的3/4是27,这个数是______。
三、计算题(每题5分,共25分)11. 计算下列各题:- 23 + 45 - 12- 18 × 4 ÷ 212. 一个班级有60个学生,其中男生比女生多10人,求女生有多少人。
13. 一个长方形的长是20厘米,宽是8厘米,求它的面积。
14. 一个数的2倍加上另一个数的3倍等于56,如果另一个数是8,求这个数。
15. 一个数的5/6加上另一个数的1/3等于9,如果这个数是6,求另一个数。
四、应用题(每题10分,共40分)16. 小明有120元钱,他买了一个玩具花了40元,剩下的钱他打算买书。
每本书的价格是20元,他最多可以买几本书?17. 一个农场有鸡和鸭共200只,鸡的数量是鸭的3倍,求鸡和鸭各有多少只?18. 一个班级有40个学生,平均分是85分。
如果班级里有一个学生得了95分,那么除了这个学生外,其他学生的平均分是多少?19. 一个长方形的长是宽的2倍,如果长方形的周长是32厘米,求这个长方形的长和宽各是多少?五、解答题(每题5分,共5分)20. 一个数的3/4比它的1/2多12,求这个数。
小学数学疑难难题汇总
1.【题目】甲乙两人从周长为1600米的正方形水池ABCD相对的两个顶点A、C同时出发绕水池的边沿顺时针方向行走.甲的速度是每分钟50米,乙的速度是每分钟46米,则甲乙第一次在同一边上行走,是发生在出发后的第多少分钟?第一次在同一边上行走了多少分钟?【解答】要使两人在同一边行走,甲乙相距必须小于一条边,并且甲要迈过顶点。
甲追乙1600÷4=400米,至少需要400÷(50-46)=100分钟,此时甲行了50×100=5000米,5000÷400=12条边……200米。
因此还要行200÷50=4分钟,出发后100+4=104分钟在同一边上行走。
此时甲乙相距400×2-104×(50-46)=384米,乙行完这条边还有16米,因此第一次在同一边上走了16÷46=8/23分钟。
2.【题目】甲乙两地相距35千米,小张,小李都要从甲地去乙地,他们只有一辆自行车,小张先步行,小李先乘车,同时出发.小张步行的速度是每小时5千米,小李步行的速度是每小时4千米.两人乘车的速度都是每小时20千米.那么两人从甲地到乙地最短需要时间多少小时?【解答】如图,假设小李先乘车到丙地再步行,小张步行到丙地再乘车,要使两人时间最短,则必须满足同时到达。
则有从甲地到丙地两人的时间差相当于两人从丙地到乙地的时间差。
从甲地到丙地,车和小张的速度比是20:5=4:1,时间比是1:4;从丙地到乙地,小李和车的速度比是4:20=1:5,时间比是5:1;由于时间差相同,则相差[3,4]=12份的时间。
则有从甲地到丙地,车和小张的时间比是4:16还有从丙地到乙地,小李和车的时间比是15:3行完全程车行了7份的时间,则每份的时间是35÷20÷7=1/4小时每人行完全程用了19份的时间,则共用去19×1/4=19/4小时。
3.【题目】现有速度固定的甲、乙两车。
小学数学难题集锦
小学数学难题集锦1、农药厂生产一批农药,原计划每天生产2.5吨可按期完成,结果每天增产0.5吨,只用20天就完成任务,这样比原计划提前几天完成?2、碾米厂4台碾米机2小时可碾米6.4吨,现在增加同样的碾米机2台,要碾米40吨需要多少小时?(得数保留一位小数)3、小红家在学校东面,小刚家在学校西面,他们同时分别从家里向学校走来,小红每分钟走60米,小刚每分钟走65米,走了3分钟后,小红到达学校,小刚离学校还有55米,小红家与小刚家的距离是多少米?4、海口化肥厂原计划生产化肥1650吨,已经生产了7个月,每月生产150吨,按这样生产,剩下的任务还要几个月才能完成?5、甲、乙两人合挖一条长178.5米的水渠,甲队每天挖10.5米,乙队每天挖9.7米。
两队合挖5天后,还剩下多少米没挖?6、修路队修一条长48千米的公路,原计划24天完成,实际提前4天完成,每天比原计划多修多少米?7、一个水利工地用4辆汽车运水泥,每天可运90吨,后来增加同样的汽车9辆,每天可运多少吨水泥?8、学校运回4吨煤,7天烧了1.12吨,这样计算,这堆煤还可以烧多少天?9、小数加减和整数加减法一样都要数位对齐。
()10、两因数的积是1.3,其中一个因数扩大10倍,另一个因数缩小5倍,这个数是()。
11、小林把一只蝙蝠放在有蚊子的地方做试验,这只蝙蝠原来体重10.9克,16分钟后,由于吃了蚊子体重增加到11.412克。
平均一只蚊子的重量是0.002克。
计算这只蝙蝠平均一分钟吃了多少只蚊子?12、甲、乙两列火车从相距486千米的两地同时相对开出,经4.5小时两车相遇。
已知甲列车每小时比乙列车多行4千米。
甲乙两列火车每小时各行多少千米?13、一个服装厂原来做一件儿童服装,每套用布2.2米,现在改进了裁剪技术,每套节约用布0.2米。
原来做1200套服装所用的布,现在可以多做多少套?(用两种方法解)14、14行播种机的宽度是2米,用拖拉机牵引,每小时6千米,3小时可播种多少公顷土地?15、某车间计划组装725台机器,前5天一共组装165台,改进技术后,每天比原来多装7台,完成剩下的任务需要几天?16、小玲看一本290页的书,前4天每天看20页,以后每天多看10页,看完这本书一共需要多少天?17、学校食堂运来1吨煤,计划烧40天,改进炉灶后,每天节约5千克,这吨煤可以烧多少天?(用两种方法解答)18、甲乙两车同时从济南开往北京,甲车每小时行36.5千米,乙车每小时行43.2千米,经过8小时,两车相距多少千米?(两种方法解答)19、农具厂生产一批农具,原计划30天完成任务,实际每天生产45件,24天就完成了任务,实际比计划每天多生产多少件?20、某车间计划40天生产960个零件,实际每天比计划多生产6个,实际多少天完成任务?21、用6辆同样的汽车运货,每天能运96吨,后来增加同样的汽车3辆,每天能运货多少吨?22、修一条长1125米的公路,甲队每天修55米,修了3天后,乙队也来参加,乙队每天修65米,两队还要几天才能修完?23、两辆汽车同时从两地相对开出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学典型难题汇总
一、正方体展开图正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开
图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只
有11种,11种展开图形又可以分为4种类型:
1、141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
2、231型中间一行3个作侧面,共3种基本图形。
3、222型中间两个面,只有1种基本图形。
4、33型中间没有面,两行只能有一个正方形相连,只有1种基本图形。
二、和差问题已知两数的和与差,求这两个数。
【口诀】:
和加上差,越加越大;
除以2,便是大的;
和减去差,越减越小;
除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
三、鸡兔同笼问题
【口诀】:
假设全是鸡,假设全是兔。
多了几只脚,少了几只足?
除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=12
四、浓度问题
(1)加水稀释
【口诀】:
加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?
加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)
(2)加糖浓化
【口诀】:
加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?
加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)
五、路程问题
(1)相遇问题
【口诀】:
相遇那一刻,路程全走过。
除以速度和,就把时间得。
例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?
相遇那一刻,路程全走过。
即甲乙走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得。
即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)
(2)追及问题
【口诀】:
慢鸟要先飞,快的随后追。
先走的路程,除以速度差,
时间就求对。
例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?先
走的路程,为3X2=6(千米)速度的差,为6-3=3(千米/小时)。
所以追上的时间为:6/3=2(小时)。
六、和比问题已知整体求部分。
【口诀】:
家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。
分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例
分别为2/9,3/9,4/9。
和乘以比例,所以甲数为27X2/9=6,乙数为:27X3/9=9,丙数为:27X4/9=12。
七、差比问题(差倍问题)
【口诀】:
我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,
乘以各自的倍数,
两数便可求得。
例:甲数比乙数大12,甲:乙=7:4,求两数。
先求一倍的量,12/(7-4)=4,所以甲数为:4X7=28,乙数为:4X4=16。
八、工程问题
【口诀】:
工程总量设为1,
1除以时间就是工作效率。
单独做时工作效率是自己的,
一齐做时工作效率是众人的效率和。
1减去已经做的便是没有做的,
没有做的除以工作效率就是结果。
例:一项工程,甲单独做4天完成,乙单独做6天完成。
甲乙同时做2天后,由乙单独做,几天完成?[1-(1/6+1/4)X2]/(1/6)=1(天)
九、植树问题
【口诀】:
植树多少颗,
要问路如何?
直的减去1,
圆的是结果。
例1:在一条长为120米的马路上植树,间距为4米,植树多少颗?
路是直的。
所以植树120/4-1=29(颗)。
例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少颗?路是圆的,所以植树120/4=30(颗)。
十、盈亏问题
【口诀】:
全盈全亏,大的减去小的;
一盈一亏,盈亏加在一起。
除以分配的差,
结果就是分配的东西或者是人。
例1:小朋友分桃子,每人10个少9个;每人8个多7个。
求有多少小朋友多少桃子?
一盈一亏,则公式为:
(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)
例2:士兵背子弹。
每人45发则多680发;每人50发则多200发,多少士兵多少子弹?
全盈问题。
大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96X50+200=5000(发)。
例3:学生发书。
每人10本则差90本;每人8 本则差8本,多少学生多少书?
全亏问题。
大的减去小的。
则公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)
十一、牛吃草问题
【口诀】:
每牛每天的吃草量假设是份数1,
A头B天的吃草量算出是几?
M头N天的吃草量又是几?
大的减去小的,除以二者对应的天数的差值,
结果就是草的生长速率。
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
有的草量除以剩余的牛数就将需要的天数求知。
例:整个牧场上草长得一样密,一样快。
27头牛6天可以把草吃完;23头牛9天也可以把草吃完。
问21头多少天把草吃完。
每牛每天的吃草量假设是1,则27头牛 6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;大的减去小的,207-162=45;二者对应的天数的差值,是 9-6=3(天)结果就是草的生长速率。
所以草的生长速率是45/3=15(牛/天);原有的草量依此反推。
公
式就是A头B天的吃草量减去B天乘以草的生长速率。
所以原有的草量=27X6-6X15=72(牛/天)。
将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;
这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的
21-15=6去吃原有的草,所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)
十二、年龄问题
【口诀】:
岁差不会变,同时相加减。
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?
岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?
岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
十三、余数问题【口诀】:
余数有(N-1)个,
最小的是1,最大的是(N-1)。
周期性变化时,
不要看商,
只要看余。
例:如果时钟现在表示的时间是18点整,那么分针旋转1990圈后是几点钟?
分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。
980/24
的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈相当于时针向前走
22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔了2小时。
即时针相当于是 18-2=16(点)。