机器人学蔡自兴课后习题答案电子教案

合集下载

人工智能及其应用(蔡自兴)课后答案

人工智能及其应用(蔡自兴)课后答案

第二章知识表示方法2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。

问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。

问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。

谓词逻辑法:采用谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。

节点用于表示物体、概念和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?用S i(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,由于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。

考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况:1. nC=02. nC=33. nC=nY>=0 (当nC不等于0或3)用d i(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY表示,第i次渡河后,对岸野人数目的变化。

人工智能及其应用(蔡自兴)课后答案知识分享

人工智能及其应用(蔡自兴)课后答案知识分享

人工智能及其应用(蔡自兴)课后答案第二章知识表示方法2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。

问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。

问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。

谓词逻辑法:采用谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。

节点用于表示物体、概念和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?用S i(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,由于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。

考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况:1. nC=02. nC=33. nC=nY>=0 (当nC不等于0或3)用d i(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY表示,第i次渡河后,对岸野人数目的变化。

人工智能及其应用(蔡自兴)课后答案

人工智能及其应用(蔡自兴)课后答案

For personal use only in study and research;not for commercial use第二章知识表示方法2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。

问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。

问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。

谓词逻辑法:采用谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。

节点用于表示物体、概念和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?用S i(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,由于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。

考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况:1. nC=02. nC=33. nC=nY>=0 (当nC不等于0或3)用d i(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY 表示,第i 次渡河后,对岸野人数目的变化。

人工智能及其应用(蔡自兴)课后答案

人工智能及其应用(蔡自兴)课后答案

第二章知识表示方法2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。

问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。

问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。

谓词逻辑法:采用谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。

节点用于表示物体、概念和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?用S i(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,由于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。

考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况:1. nC=02. nC=33. nC=nY>=0 (当nC不等于0或3)用d i(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY表示,第i次渡河后,对岸野人数目的变化。

人工智能及其应用(蔡自兴)课后问题详解

人工智能及其应用(蔡自兴)课后问题详解

第二章知识表示方法2-1状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系与异同点?答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为根底来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。

问题规约法:问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。

问题规约的实质:从目标〔要解决的问题〕出发逆向推理,建立子问题以与子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。

谓词逻辑法:采用谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从的正确语句导出的,从而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。

节点用于表示物体、概念和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?用S i(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,由于总人数确实定的,河对岸的状态确定了,河这边的状态也即确定了。

考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况:1. nC=02. nC=33. nC=nY>=0 (当nC不等于0或3)用d i(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY表示,第i次渡河后,对岸野人数目的变化。

人工智能及其应用(蔡自兴)课后答案

人工智能及其应用(蔡自兴)课后答案

第二章知识表示方法2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。

问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。

问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。

谓词逻辑法:采用谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。

节点用于表示物体、概念和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?用S i(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,由于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。

考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况:1. nC=02. nC=33. nC=nY>=0 (当nC不等于0或3)用d i(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY表示,第i次渡河后,对岸野人数目的变化。

人工智能及其应用(蔡自兴)课后答案

人工智能及其应用(蔡自兴)课后答案

第二章知识表示方法2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。

问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。

问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。

谓词逻辑法:采用谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。

节点用于表示物体、概念和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?用S i(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,由于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。

考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况:1. nC=02. nC=33. nC=nY>=0 (当nC不等于0或3)用d i(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY表示,第i次渡河后,对岸野人数目的变化。

人工智能及其应用(蔡自兴)课后答案

人工智能及其应用(蔡自兴)课后答案

第二章知识表示方法2-1状态空间法、问题归约法、谓词逻辑法和语义网络法的重点是什么它们有何本质上的联系及异同点答:状态空间法:鉴于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递加的成立起操作符的试验序列,直抵达到目标状态为止。

问题规约法:已知问题的描绘,经过一系列变换把此问题最后变为一个子问题会合:这些子问题的解能够直接获得,进而解决了初始问题。

问题规约的本质:从目标(要解决的问题)出发逆向推理,成立子问题以及子问题的子问题,直至最后把出示问题规约为一个平庸的本原问题会合。

谓词逻辑法:采纳谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,而后采纳消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,进而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链构成。

节点用于表示物体、观点和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和般配而获得的拥有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后能够表示更复杂的问题2-2设有3个传教士和 3 个野人到达河畔,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,假如野人人数超出传教士人数,那么野人就会把传教士吃掉。

他们如何才能用这条船安全地把全部人都渡过河去用 S i(nC, nY) 表示第 i 次渡河后,河对岸的状态, nC 表示传教士的数量, nY 表示野人的数量,因为总人数确实定的,河对岸的状态确立了,河这边的状态也即确立了。

考虑到题目的限制条件,要同时保证,河两岸的传教士数量许多于野人数量,故在整个渡河的过程中,同意出现的状态为以下 3 种状况:1.nC=02.nC=33.nC=nY>=0 (当 nC 不等于 0 或 3)用 d i(dC,dY)表示渡河过程中,对岸状态的变化,dC 表示,第i 次渡河后,对岸传教士数量的变化,dY 表示,第i 次渡河后,对岸野人数量的变化。

(完整版)机器人学蔡自兴课后习题答案

(完整版)机器人学蔡自兴课后习题答案

其余的比较简单,大家可以自己考虑。

3. 坐标系}B {的位置变化如下:初始时,坐标系}A {与}B {重合,让坐标系}B {绕B Z 轴旋转θ角;然后再绕B X 旋转φ角。

给出把对矢量P B 的描述变为对P A描述的旋转矩阵。

解: 坐标系}B {相对自身坐标系(动系)的当前坐标系旋转两次,为相对变换,齐次变换顺序为依次右乘。

∴对P A 描述有 P T P BA B A = ;其中 ),(),(φθx Rot z Rot T AB = 。

9. 图2-10a 示出摆放在坐标系中的两个相同的楔形物体。

要求把它们重新摆放在图2-10b 所示位置。

(1)用数字值给出两个描述重新摆置的变换序列,每个变换表示沿某个轴平移或绕该轴旋转。

(2)作图说明每个从右至左的变换序列。

(3)作图说明每个从左至右的变换序列。

解:(1)方法1:如图建立两个坐标系}{1111z y x o 、}{2222z y x o ,与2个楔块相固联。

图1:楔块坐标系建立(方法1)对楔块1进行的变换矩阵为:)90,()90,(1z Rot y Rot T = ;对楔块2进行的变换矩阵为:)180,()90,()90,()4,0,3(oo 02o 2z Rot x TRot z Rot Trans T --= ;其中 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100001005010000102T ; 所以 :⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10000010000101001T ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=10004010000121002T 对楔块2的变换步骤:① 绕自身坐标系X 轴旋转︒90; ② 绕新形成的坐标系的Z 轴旋转︒180; ③ 绕定系的Z 轴旋转︒-90; ④ 沿定系的各轴平移)4,0,3(-。

方法2:如图建立两个坐标系}{1111z y x o 、}{2222z y x o 与参考坐标系重合,两坐标系与2个楔块相固联。

图1:楔块坐标系建立(方法2)对楔块1进行的变换矩阵为:)90,()90,(1z Rot y Rot T = ; 对楔块2进行的变换矩阵为:)90,()180,()90,()0,0,4()9,0,2(o o o 2--=z Rot x Rot y Rot Trans Trans T ;所以 :⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10000010000101001T ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=10009010000121002T 。

人工智能及其应用(蔡自兴)课后答案

人工智能及其应用(蔡自兴)课后答案

第二章知识表示方法2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。

问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。

问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。

谓词逻辑法:采用谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。

节点用于表示物体、概念和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?用S i(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,由于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。

考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况:1. nC=02. nC=33. nC=nY>=0 (当nC不等于0或3)用d i(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY表示,第i次渡河后,对岸野人数目的变化。

人工智能及其应用(蔡自兴)课后答案

人工智能及其应用(蔡自兴)课后答案

第二章知识表示方法2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。

问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。

问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。

谓词逻辑法:采用谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。

节点用于表示物体、概念和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?用S i(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,由于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。

考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况:1. nC=02. nC=33. nC=nY>=0 (当nC不等于0或3)用d i(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY表示,第i次渡河后,对岸野人数目的变化。

人工智能及其应用(蔡自兴)课后答案

人工智能及其应用(蔡自兴)课后答案

第二章知识表示方法2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。

问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。

问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。

谓词逻辑法:采用谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。

节点用于表示物体、概念和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?用S i(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,由于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。

考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况:1. nC=02. nC=33. nC=nY>=0 (当nC不等于0或3)用d i(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY表示,第i次渡河后,对岸野人数目的变化。

人工智能及其应用(蔡自兴)课后答案教案资料

人工智能及其应用(蔡自兴)课后答案教案资料

人工智能及其应用(蔡自兴)课后答案第二章知识表示方法2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。

问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。

问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。

谓词逻辑法:采用谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。

节点用于表示物体、概念和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?用S i(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,由于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。

考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况:1. nC=02. nC=33. nC=nY>=0 (当nC不等于0或3)用d i(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY表示,第i次渡河后,对岸野人数目的变化。

机器人学蔡自兴课后习题答案

机器人学蔡自兴课后习题答案

其余的比较简单,大家可以自己考虑。

3. 坐标系{B}的位置变化如下:初始时,坐标系{A}与{B}重合,让坐标系{B}绕描述AB的描述变为对PZ轴旋转角;然后再绕X B旋转角。

给出把对矢量PB的旋转矩阵。

解:坐标系{B}相对自身坐标系(动系)的当前坐标系旋转两次,为相对变换,齐次变换顺序为依次右乘。

A;对P A A B描述有P T PBA其中T Rot(z,)Rot(x,)B。

9. 图2-10a 示出摆放在坐标系中的两个相同的楔形物体。

要求把它们重新摆放在图2-10b 所示位置。

(1)用数字值给出两个描述重新摆置的变换序列,每个变换表示沿某个轴平移或绕该轴旋转。

(2)作图说明每个从右至左的变换序列。

(3)作图说明每个从左至右的变换序列。

解:(1)方法1:如图建立两个坐标系{1x y z}o2x y z,与2个楔块相固联。

o、{}111222图1:楔块坐标系建立(方法1)对楔块1进行的变换矩阵为:T1Rot(y,90)Rot(z,90);对楔块2进行的变换矩阵为:o0o o T2Trans(3,0,4)Rot(z,90)TRot(x,90)Rot(z,180);21000其中01052T;0010000100100012所以:1000T;10100T2114 00010001对楔块2的变换步骤:①绕自身坐标系X轴旋转90;②绕新形成的坐标系的Z轴旋转180;③绕定系的Z轴旋转90;④沿定系的各轴平移(3,0,4)。

方法2:如图建立两个坐标系{o1x y z}、{o2x2y2z2}与参考坐标系重合,两坐标系111与2个楔块相固联。

图1:楔块坐标系建立(方法2)对楔块1进行的变换矩阵为:T1Rot(y,90)Rot(z,90);对楔块2进行的变换矩阵为:o o oT2Trans(2,0,9)Trans(4,0,0)Rot(y,90)Rot(x,180)Rot(z,90);00100012所以:1000T;101001000T。

《人工智能及其应用》(蔡自兴)课后习题答案第3章

《人工智能及其应用》(蔡自兴)课后习题答案第3章

第三章搜索推理技术3-1什么是图搜索过程?其中,重排OPEN表意味着什么,重排的原则是什么?图搜索的一般过程如下:(1) 建立一个搜索图G(初始只含有起始节点S),把S放到未扩展节点表中(OPEN表)中。

(2) 建立一个已扩展节点表(CLOSED表),其初始为空表。

(3) LOOP:若OPEN表是空表,则失败退出。

(4) 选择OPEN表上的第一个节点,把它从OPEN表移出并放进CLOSED表中。

称此节点为节点n,它是CLOSED表中节点的编号(5) 若n为一目标节点,则有解并成功退出。

此解是追踪图G中沿着指针从n到S这条路径而得到的(指针将在第7步中设置)(6) 扩展节点n,生成不是n的祖先的那些后继节点的集合M。

将M添入图G中。

(7) 对那些未曾在G中出现过的(既未曾在OPEN表上或CLOSED表上出现过的)M成员设置一个通向n的指针,并将它们加进OPEN表。

对已经在OPEN或CLOSED表上的每个M成员,确定是否需要更改通到n的指针方向。

对已在CLOSED表上的每个M成员,确定是否需要更改图G中通向它的每个后裔节点的指针方向。

(8) 按某一任意方式或按某个探试值,重排OPEN表。

(9) GO LOOP。

重排OPEN表意味着,在第(6)步中,将优先扩展哪个节点,不同的排序标准对应着不同的搜索策略。

重排的原则当视具体需求而定,不同的原则对应着不同的搜索策略,如果想尽快地找到一个解,则应当将最有可能达到目标节点的那些节点排在OPEN表的前面部分,如果想找到代价最小的解,则应当按代价从小到大的顺序重排OPEN表。

3-2 试举例比较各种搜索方法的效率。

宽度优先搜索(1) 把起始节点放到OPEN表中(如果该起始节点为一目标节点,则求得一个解答)。

(2) 如果OPEN是个空表,则没有解,失败退出;否则继续。

(3) 把第一个节点(节点n)从OPEN表移出,并把它放入CLOSED扩展节点表中。

(4) 扩展节点n。

人工智能及其应用(蔡自兴)课后答案

人工智能及其应用(蔡自兴)课后答案

For personal use only in study and research;not for commercial use第二章知识表示方法2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。

问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。

问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。

谓词逻辑法:采用谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。

节点用于表示物体、概念和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?用S i(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,由于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。

考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况:1. nC=02. nC=33. nC=nY>=0 (当nC不等于0或3)用d i(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY 表示,第i 次渡河后,对岸野人数目的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机器人学蔡自兴课后习题答案其余的比较简单,大家可以自己考虑。

3. 坐标系}B {的位置变化如下:初始时,坐标系}A {与}B {重合,让坐标系}B {绕B Z 轴旋转θ角;然后再绕B X 旋转φ角。

给出把对矢量P B 的描述变为对P A描述的旋转矩阵。

解:Θ坐标系}B {相对自身坐标系(动系)的当前坐标系旋转两次,为相对变换,齐次变换顺序为依次右乘。

∴对P A 描述有 P T P BA BA = ; 其中 ),(),(φθx Rot z Rot T AB = 。

9. 图2-10a 示出摆放在坐标系中的两个相同的楔形物体。

要求把它们重新摆放在图2-10b 所示位置。

(1)用数字值给出两个描述重新摆置的变换序列,每个变换表示沿某个轴平移或绕该轴旋转。

(2)作图说明每个从右至左的变换序列。

(3)作图说明每个从左至右的变换序列。

解:(1)方法1:如图建立两个坐标系}{1111z y x o 、}{2222z y x o ,与2个楔块相固联。

图1:楔块坐标系建立(方法1)对楔块1进行的变换矩阵为:)90,()90,(1z Rot y Rot T = ; 对楔块2进行的变换矩阵为:)180,()90,()90,()4,0,3(oo 02o 2z Rot x TRot z Rot Trans T --= ;其中 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100001005010000102T ; 所以 :⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10000010000101001T ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=10004010000121002T 对楔块2的变换步骤:① 绕自身坐标系X 轴旋转︒90; ② 绕新形成的坐标系的Z 轴旋转︒180; ③ 绕定系的Z 轴旋转︒-90; ④ 沿定系的各轴平移)4,0,3(-。

方法2:如图建立两个坐标系}{1111zyxo、}{2222zyxo与参考坐标系重合,两坐标系与2个楔块相固联。

图1:楔块坐标系建立(方法2)对楔块1进行的变换矩阵为:)90,()90,(1zRotyRotT=;对楔块2进行的变换矩阵为:)90,()180,()90,()0,0,4()9,0,2(ooo2--=zRotxRotyRotTransTransT;所以:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11111T;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=1911212T。

备注:当建立的相对坐标系位置不同时,到达理想位置的变换矩阵不同。

(2)、(3)略。

2. 图3-11 给出一个3自由度机械手的机构。

轴1和轴2垂直。

试求其运动方程式。

解:方法1建模:如图3建立各连杆的坐标系。

图3:机械手的坐标系建立根据所建坐标系得到机械手的连杆参数,见表1。

表1:机械手的连杆参数连杆i αi a i d i θ1o 901L1θ2 0 2L0 2θ 3 03θ该3自由度机械手的变换矩阵: 32130A A A T = ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=1000001000111111111θθθθθθs L c s c L s c A ; ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=100010000222222222θθθθθθs L c s c L s c A ; ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=100010*******333θθθθc s s c A ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-++----+---=1000223232323221211132132132132121211132132132132130θθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθs L c c s s s c c s c s L s L c c s s s c s s s s c c s c c L c L s c s c s c c s s c c c c T方法二进行建模:坐标系的建立如图4所示。

图4:机械手的坐标系建立根据所建坐标系得到机械手的连杆参数,见表2。

表2:机械手的连杆参数连杆1-i α 1-i a i d i θ1 00 01θ2 o 901L 0 2θ 3 02L3θ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=10000100000011111θθθθc s s c A ; ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=10000001000221222θθθθc s L s c A ; ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=1000100000332333θθθθc s L s c A ; ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-++----+---=1000223232323221211132132132132121211132132132132130θθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθθs L c c s s s c c s c s L s L c c s s s c s s s s c c s c c L c L s c s c s c c s s c c c c T3. 图3-12 所示3 自由度机械手,其关节1与关节2相交,而关节2与关节3平行。

图中所示关节均处于零位。

各关节转角的正向均由箭头示出。

指定本机械手各连杆的坐标系,然后求各变换矩阵10T ,21T 和32T 。

解:对于末端执行器而言,因为单独指定了末端执行器的坐标系,则要确定末端执行器与最后一个坐标系之间的变换关系。

方法1建模:按照方法1进行各连杆的坐标系建立,建立方法见图5。

图5:机械手的坐标系建立连杆3的坐标系与末端执行器的坐标系相重合。

机械手的D-H 参数值见表3。

表3:机械手的连杆参数注:关节变量 04321====θθθθ 。

将表3中的参数带入得到各变换矩阵分别为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-=10000100100012110L L T ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000010********321L T ; ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100001000010001432L T ; ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10000100001000013末T 方法2建模:按照方法2进行各连杆的坐标系建立,建立方法见图6。

图6:机械手的坐标系建立3自由度机械手的D-H 参数值见表4。

表4:机械手的连杆参数连杆1-i α 1-i a i d i θ1 021L L + 1θ2 o 900 2θ 30 3L0 3θ末端执行器4L 04θ注:关节变量 04321====θθθθ 。

将表4中的参数带入得到各变换矩阵分别为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+=100010000100012110L L T ; ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=10000010010000121T ; ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100001000010001332L T ; ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10000100001000143L T 末1. 已知坐标系}C {对基座标系的变换为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000000131004010C ;对于基座标系的微分平移分量分别为沿X 轴移动0.5,沿Y 轴移动0,沿Z 轴移动1;微分旋转分量分别为0.1,0.2和0。

(1) 求相应的微分变换;(2) 求对应于坐标系}C {的等效微分平移与旋转。

解:(1)对基座标系的微分平移:T d ]1,0,5.0[=;对基座标系的微分旋转: T ]0,2.0,1.0[=δ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=∆0000101.02.001.0005.02.000; 相应的微分变换:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=∆=00005.01.02.000001.05.0002.0c dc (2)由相对变换C 可知n 、o 、a 、p ,5.0))((=+⨯⋅=d p n d x cδ;5.0))((=+⨯⋅=d p o d y c δ;0))((=+⨯⋅=d p a d z cδ0=⋅=δδn x c;1.0=⋅=δδo y c ;2.0=⋅=δδa z c对应于坐标系}{C 的等效微分平移:]0;5.0;5.0[=d c ;微分旋转:]2.0;1.0;0[=δc。

2. 试求图3.11所示的三自由度机械手的雅可比矩阵,所用坐标系位于夹手末端上,其姿态与第三关节的姿态一样。

解:设第3个连杆长度为3L 。

1)使用方法1建模,末端执行器的坐标系与连杆3的坐标系重合,使用微分变换法。

图7:机械手的坐标系建立表5:D-H 参数表连杆i αi a i d i θ1o 901L1θ2 0 2L0 2θ 3 03θ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++-+=100001000)()(0)()(22323222323231θθθθθθθθθθs L c s c L s c T ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=100010*********32θθθθc s s c T ; E T =33;由上式求得雅可比矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=11000000000000003232θθc L s L J T; 2)使用方法2建模,使用微分变换法。

图8:机械手的坐标系建立表6:D-H 参数表连杆1-i α 1-i a i d i θ1 00 01θ2 o 901L 0 2θ 3 02L3θ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++-++-+=10000)()(01000)()(223232221323231θθθθθθθθθθs L c s c L L s c T ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=1000010*********32θθθθc s L s c T ;E T =33;由上式求得雅可比矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡++--=11000)(00)(00000032322213232θθθθθθθc s c L L c L s L J T;。

相关文档
最新文档