带传动实验报告
机械设计实验报告带传动
实验一 带传动性能分析实验一、实验目的1、了解带传动试验台的结构和工作原理。
2、掌握转矩、转速、转速差的测量方法,熟悉其操作步骤。
3、观察带传动的弹性滑动及打滑现象。
4、了解改变预紧力对带传动能力的影响。
二、实验内容与要求1、测试带传动转速n 1、n 2和扭矩T 1、T 2。
2、计算输入功率P 1、输出功率P 2、滑动率ε、效率η。
3、绘制滑动率曲线ε—P 2和效率曲线η—P 2。
三、带传动实验台的结构及工作原理传动实验台是由机械部分、负载和测量系统三部分组成。
如图1-1所示。
1直流电机 2主动带轮 3、7力传感器 4轨道 5砝码 6灯泡8从动轮 9 直流发电机 10皮带 图1-1 带传动实验台结构图1、机械部分带传动实验台是一个装有平带的传动装置。
主电机1是直流电动机,装在滑座上,可沿滑座滑动,电机轴上装有主动轮2,通过平带10带动从动轮8,从动轮装在直流发电机9的轴上,在直流发电机的输出电路上,并接了八个灯泡,每个40瓦,作为发电机的负载。
砝码通过尼龙绳、定滑轮拉紧滑座,从而使带张紧,并保证一定的预拉力。
随着负载增大,带的受力增大,两边拉力差也增大,带的弹性滑动逐步增加。
当带的有效拉力达到最大有效圆周力时,带开始打滑,当负载继续增加时则完全打滑。
2、测量系统测量系统由转速测定装置和扭矩测量装置两部分组成。
(1)转速测定装置用硅整流装置供给电动机电枢以不同的端电压实现无级调速,转动操纵面板上“调速”旋钮,即可实现无级调速,电动机无级调速范围为0~1500r/min ;两电机转速由光电测速装置测出,将转速传感器(红外光电传感器)分别安装在带轮背后的“U ”形糟中,由此可获得转速信号,经电路处理即可得到主、从动轮上的转速n 1、n 2。
(2)扭矩测量装置电动机输出转矩1T (主动轮转矩)、和发电机输入转矩2T (从动轮转矩)采用平衡电机外壳(定子)的方法来测定。
电动机和发电机的外壳支承在支座的滚动轴承中,并可绕转子的轴线摆动。
带传动试验
带传动实验一、实验目的⒈了解带传动的基本原理,并观察、分析有关带的弹性滑动和打滑等重要物理现象;⒉分析并验证预紧力对带的工作能力的影响;⒊了解转速、转差速以及扭矩的测量原理与方法;⒋绘制带的滑动曲线及传动效率曲线图。
二、实验原理带传动是依靠V 带与带轮接触表面间产生摩擦传递运动和动力的。
由于工作时带两边的拉力不等(F 1<F 2),使得V 带在沿带轮接触弧上各位置产生的弹性变形也不相同,这样V 带在运转过程中相对于带轮表面必然要产生一定的微量滑动,即弹性滑动。
滑动量的大小通常用滑动率ε%表示。
即:%%11221121n D n D n D V V -==ε当21D D =时 %%10121n n n n n =-=ε 式中:1V 、2V1V 、2V ——主、从动轮的线速度;1D 、2D ——主、从动轮的基准(计算)直径1n 、2n ——主、从动轮的转速0n ——转速差(滑动转速)当实验条件相同且预紧力10F 一定时,ε的大小取决于负载的大小, 1F 与2F 的差值越大,产生弹性滑动的范围也随之扩大。
当V 带在整个接触弧上都产生滑动时会沿带轮表面出现打滑现象。
此时,带传动已经不能正常工作因此,应该避免打滑现象。
带传动机的结构是由两等径且具卸荷功能的V 带带轮分别安装在固定和可移动支座上。
实验前可通过螺旋调整机构使移动支座沿左右移动,保证V 带获得所需的预紧力。
电动机驱动主动轮经V 带使从动轮及加载轮一起转动。
调节铁芯中线圈输入电压的大小,可改变铁芯作用于加载轮上的电磁吸力,实现改变V带负载的作用。
三、实验操作步骤⒈确定预紧力F0松开紧定螺钉,轻按皮带待弹回后,旋紧圆螺母,预紧力的大小通过旋转圆螺母移动螺旋套使压簧变形来实现,拉杆指针每移动一格,单边带的预紧力就增加3N。
⒉检查:分别将加载(调压)电位器和调速手轮反转到底使加载铁芯脱开加载轮。
⒊接通测试仪电源开关和试验机开关,测量仪置P。
⒋缓慢放置调整手轮,试验机即运转,按E u测量加载电压和n1, 使n1至n1=250~280的实验范围。
带传动的滑动和效率测定实验报告
带传动的滑动和效率测定实验报告带传动的滑动率和效率测定的实验方案设计带传动的滑动率和效率测定的实验方案设计一、实验目的1.深入了解带传动的原理以及传动摩擦和滑动时候的相关问题。
2.深入了解、掌握机械带传动效率及滑动率测量方法及原理,了解测量过程所使用的仪器、仪表以及传感器的工作原理。
3.观察带传动的弹性滑动和打滑现象,加深对带传动工作原理和设计准则的理解。
4.通过对滑动曲线(? —F曲线)和效率曲线(?—F曲线)的测定和分析,深刻认识带传动特性、承载能力、效率及其影响因素。
二、实验的理论依据由于带是弹性体,受力不同的时候伸长量不等,使带传动发生弹性滑动现象。
在带绕带轮滑动传动时候,带的压力由F1 下降到F2所以带的弹性变形也要相应减小,亦即带在逐渐缩短,带的速度要落后于带轮,因此两者之间必然发生相对滑动。
同样的现象也发生在从动轮上,但是情况恰好相反。
带从松边转到紧边时,带所受到的拉力逐渐增加,带的弹性变形量也随之增大,带微微向前伸长,带的运动超前于带轮。
带与带轮间同样也发生相对滑动。
其中:带收到的张紧力F0,紧边拉力F1,松边拉力F2。
则:有效拉力F=F1- F2等于带沿带轮的接触弧上摩擦力的总和Ff带传动中滑动的程度用滑动率表示,其表达式为v1?v2D2n2(1?)?100% v1D1n1式中v1、v2——分别为主动轮、从动轮的圆周速度,单位:m/s;n1、n2——分别为主动轮、从动轮的转速,r/min;D1、D2——分别为主动轮、从动轮的直径,mm。
如图2-1所示,带传动的滑动(曲线1)随着带的有效拉力F的增大而增大,表示这种关系的曲线称为滑动曲线。
当有效拉力F小于临界点F?点时,滑动率与有效拉力F成线性关系,带处于弹性滑动工作状态;当有效拉力F超过临界点F?点以后,滑动率急剧上升,带处于弹性滑动与打滑同时存在的工作状态。
当有效拉力等1-滑动曲线2-效率曲线图2-1 带传动的滑动曲线和效率曲线于Fmax时,滑动率近于直线上升,带处于完全打滑的工作状态。
机械设计实验报告带传动
实验一带传动性能分析实验一、实验目的1、了解带传动试验台的结构和工作原理。
2、掌握转矩、转速、转速差的测量方法,熟悉其操作步骤。
3、观察带传动的弹性滑动及打滑现象。
4、了解改变预紧力对带传动能力的影响。
二、实验内容与要求1、测试带传动转速n1、n2和扭矩T1、T2。
2、计算输入功率P1、输出功率P2、滑动率ε、效率η。
3、绘制滑动率曲线ε—P2和效率曲线η—P2。
三、带传动实验台的结构及工作原理传动实验台是由机械部分、负载和测量系统三部分组成。
如图1-1所示。
1直流电机2主动带轮3、7力传感器4轨道5砝码6灯泡8从动轮9直流发电机10皮带图1-1带传动实验台结构图1、机械部分带传动实验台是一个装有平带的传动装置。
主电机1是直流电动机,装在滑座上,可沿滑座滑动,电机轴上装有主动轮2,通过平带10带动从动轮8,从动轮装在直流发电机9的轴上,在直流发电机的输出电路上,并接了八个灯泡,每个40瓦,作为发电机的负载。
砝码通过尼龙绳、定滑轮拉紧滑座,从而使带张紧,并保证一定的预拉力。
随着负载增大,带的受力增大,两边拉力差也增大,带的弹性滑动逐步增加。
当带的有效拉力达到最大有效圆周力时,带开始打滑,当负载继续增加时则完全打滑。
2、测量系统测量系统由转速测定装置和扭矩测量装置两部分组成。
(1)转速测定装置用硅整流装置供给电动机电枢以不同的端电压实现无级调速,转动操纵面板上“调速”旋钮,即可实现无级调速,电动机无级调速范围为0~1500r/min;两电机转速由光电测速装置测出,将转速传感器(红外光电传感器)分别安装在带轮背后的“U”形糟中,由此可获得转速信号,经电路处理即可得到主、从动轮上的转速n1、n2。
(2)扭矩测量装置电动机输出转矩T(主动轮转矩)、和发电机输入转矩2T(从动轮转矩)采用平衡电机外1壳(定子)的方法来测定。
电动机和发电机的外壳支承在支座的滚动轴承中,并可绕转子的轴线摆动。
当电动机通过带传动带动发电机转动后,由于受转子转矩的反作用,电动机定子将向转子旋转的相反方向倾倒,发电机的定子将向转子旋转的相同方向倾倒,翻转力的大小可通过力传感器测得,经过计算电路计算可得到作用于电机和发电机定子的转矩,其大小与主、从动轮上的转矩T、2T相等。
带传动实验
带传动实验实验一带传动实验一、实验目的1、观察带传动中的弹性滑动和打滑现象以及它们与带传递的载荷之间的关系。
2、测定弹性滑动率与所传递的载荷和带传效率之间的关系,绘制带传动的弹性滑动曲线和效率曲线。
3、了解带传动实验台的设计原理与扭矩、转速的测量方法。
二、实验台的构造和工作原理由于弹性滑动率ε之值与打滑现象的出现,以及带传动的效率η都与带传递的载荷的大小有密切关系,本实验台用灯泡作负荷。
本实验台由主机和测量系统两大部分组成。
1、主机主机是一个装有平带的传动装置。
主电机是直流电动机装在滑座上,可沿滑座滑动,电机轴上装有主动轮,通过平带带动从动轮,从动轮装在直流发电机的轴上,在直流发电机的输出电路上,并接了八个灯泡,每个40瓦,作为带传动的加载装置,砝码通过钢丝绳,定滑轮拉紧滑座,从而使带张紧,并保证一定的初拉力。
开启灯泡,以改变发电机的负载电阻,随着开启灯泡的增多,发电机的负载增大,带的受力增大,两边拉力差也增大,带的弹性滑动逐步增加。
当带断传递的载荷刚好达到所能传递的最大有效圆周力时,带开始打滑,当负载继续增加时则安全打滑。
2、测量系统测量系统由电转速测定装置和电机的测扭矩装置两部分组成。
A、光电测转速装置主动轮的扭矩下T1和从动轮的扭矩T2均通过在主动轮和从动轮的轴上分别安装一同步转盘,在转盘的同一半径上钻有一个小孔,在小孔一侧固定有光电传感器,并使传感器的测头已对小孔。
带轮转动时,就可在数码管上直接读出带轮的转迹。
B、扭矩测量装置主动轮的矩T1和从动轮的扭矩T2下均通过电动机外壳来测定。
电动机和发电机的外壳支承在支座的滚动轴承中,并可绕与转子相重合的轴线摆动,当电动机启动和发电机负载后,由于定子磁场和转子磁场的相互作用,电动机的外壳将向转子旋转的同向倾倒,发电机的外壳将向转子旋转的反向倾倒,它们的倾倒力矩可分别通过固定在定子外壳上的测力计所测得的力矩来平衡。
即:主动轮上的扭矩T1 = Q1K1L1(N·mm)从动轮上的扭矩T2 = Q2K2L2(N·mm)式中Q1、Q2——测力计上百分表的读数K1、K2——测力计算定值L1、L2——测力计的力臂L1 =L2 =120mm从动轮的功率N2T1N2带传动的效率η= =主动轮的功率N1T2N1同学们只要测得不同负载下主动轮的转速N1和从动轮的转速N2以及主动轮的扭矩下T1和从动轮的扭矩下T2,就可算出在不同的有效拉力下的弹性滑动率ε以及效率η之值。
带传动的实训报告
一、实训目的本次带传动实训的主要目的是通过实际操作,加深对带传动原理、结构、工作性能和应用的理解,掌握带传动的安装、调试和维护方法,提高动手能力和工程实践能力。
二、实训环境实训地点:机械工程系带传动实训室实训设备:带传动实训台、电机、测力计、转速表、千分尺、扳手、螺丝刀等工具三、实训原理带传动是一种常用的机械传动方式,利用带与带轮之间的摩擦力传递动力。
其基本原理是:主动轮通过带子带动从动轮旋转,实现动力传递。
四、实训过程1. 实训准备(1)熟悉实训设备、工具和操作规程;(2)了解实训目的、要求和注意事项;(3)检查设备是否完好,如有问题及时报告。
2. 实训步骤(1)安装带传动系统:按照规定的顺序和步骤,将主动轮、从动轮、带子等组件安装到实训台上;(2)调试带传动系统:调整带张紧度,使带子与带轮之间保持适当的压力,确保带传动系统正常运行;(3)测量带传动性能:使用测力计、转速表等工具,测量带传动系统的传动比、功率、效率等参数;(4)分析带传动性能:根据实测数据,分析带传动系统的性能优劣,找出存在的问题;(5)维护与保养:了解带传动系统的维护与保养方法,掌握更换、调整带子、润滑等操作技能。
3. 实训总结(1)总结实训过程中的收获,包括对带传动原理、结构、工作性能和应用的理解;(2)分析实训过程中遇到的问题及解决方法;(3)提出改进带传动系统性能的建议。
五、实训结果1. 实训数据(1)传动比:1.5;(2)功率:5kW;(3)效率:0.85。
2. 实训心得(1)通过本次实训,加深了对带传动原理、结构、工作性能和应用的理解;(2)掌握了带传动的安装、调试和维护方法;(3)提高了动手能力和工程实践能力。
六、实训总结1. 总结实训过程中的收获,包括对带传动原理、结构、工作性能和应用的理解;2. 分析实训过程中遇到的问题及解决方法;3. 提出改进带传动系统性能的建议。
通过本次带传动实训,我深入了解了带传动的基本原理和应用,掌握了带传动的安装、调试和维护方法,提高了自己的动手能力和工程实践能力。
带传动传动效率测试实验指导
实验三带传动传动效率测试一、实验目的1.观察带传动中的弹性滑动和打滑现象,以及它们与带传递载荷之间的关系。
2.比较预紧力大小对带传动承栽能力的影响。
3.比较分析平带、V带和圆带传动的承载能力。
4.测定并绘制带传动的弹性滑动曲线和效率曲线,观察带传动弹性滑动和打滑的动画仿真,了解带传动所传递载荷与弹性滑差率及传动效率之间的关系。
5.了解带传动实验台的构造和工作原理,掌握带传动转矩、转速的测量方法。
二、实验台结构及工作原理本实验台主要结构如图1所示。
1.电动机移动底板2.砝码及砝码架3.力传感器4.转矩力测杆5.电动机6.试验带7.光电测速装置8.发电机9.负载灯泡组10.机座11.操纵面板图1 CQP-C带传动实验台主要结构图1.试验带6装在主动带轮和从动带轮上。
主动带轮装在直流伺服电动机5的主轴前端,该电动机为特制的两端外壳由滚动轴承支承的直流伺服电动机,滚动轴承座固定在移动底板1上,整个电动机可相对两端滚动轴承座转动,移动底板1能相对机座10在水平方向滑移。
从动带轮装在发电机8的主轴前端,该发电机为特制的两端外壳由滚动轴承支承的直流伺服发电机,滚动轴承座固定在机座10上,整个发电机也可相对两端滚动轴承座转动。
2.砝码及砝码架2通过尼龙绳与移动底板1相连,用于张紧试验带,增加或减少砝码,即可增大或减少试验带的初拉力。
3.发电机8的输出电路中并联有8个40W灯泡9,组成实验台加载系统,该加载系统可通过计算机软件主界面上的加载按钮控制,也可用实验台面板上触摸按钮6、7(见图2)进行手动控制并显示。
4.实验台面板布置如图2所示。
图2 带传动实验台面板布置图1. 电源开关2. 电动机转速调节3.电动机转矩力显示4. 发电机转矩力显示5. 加载显示6. 卸载按钮7. 加载按钮8.发电机转速显示9. 电动机转速显示5.主动带轮的驱动转矩T1和从动带轮的负载转矩T2均是通过电机外壳的反力矩来测定的。
当电动机5启动和发电机8加负载后,由于定子与转子间磁场的相互作用,电动机的外壳(定子)将向转子回转的反向(逆时针)翻转,而发电动机的外壳将向转子回转的同向(顺时针)翻转。
带传动滑动实验报告
带传动滑动实验报告实验目的:探究带传动滑动的原理和影响因素,分析实验结果,提出改进措施。
实验设备:带传动滑动试验台、带传动系统、加力传感器、计时器、数据采集器、计算机。
实验原理:带传动是通过带传递力矩和运动的一种传动方式。
在带传动中,带与滑轮之间发生着滑动现象,故称为带传动滑动。
其传动方式依赖于摩擦力的转换和调节。
实验步骤:1. 将带传动系统安装到试验台上,并调整好带的松紧度。
2. 将加力传感器固定到实验台上的合适位置,并连接到数据采集器上。
3. 将实验台的带传动系统启动,并通过计时器记录数据。
4. 在不同转速和不同负荷下进行实验数据采集,包括摩擦力、转速和时间等。
5. 完成实验后,导出实验数据并进行分析。
实验结果:根据实验数据和图表分析,可以得到以下结论:1. 随着负荷的增加,带传动滑动的摩擦力也随之增加。
这是由于负荷增加导致带与滑轮之间的接触面积增加,从而增加了摩擦力的产生。
2. 随着转速的增加,带传动滑动的摩擦力也有所增加。
这是由于转速增加导致摩擦力的传递面积增加,从而增加了摩擦力的产生。
3. 带传动滑动的时间与负载和转速呈正相关。
负载增加或转速增加都会导致带与滑轮之间滑动的时间增加。
改进措施:基于以上结论,可以提出以下改进措施来减少带传动滑动的摩擦力和时间:1. 适当增加带与滑轮之间的摩擦系数,可以通过优化带材质或涂覆摩擦剂来实现。
这样可以减少摩擦力的产生。
2. 优化带传动系统的设计,减少负荷对带的影响。
可以通过增加滑轮的直径或改变带的角度来减小负荷对带的作用。
3. 控制转速在合适的范围内,避免过高或过低的转速。
可以通过调整动力系统的传动比例来实现。
结论:通过带传动滑动实验,我们可以了解带传动滑动的原理和影响因素。
根据实验结果分析,我们可以得出结论并提出改进措施,以减少带传动滑动的摩擦力和时间。
这对于优化带传动系统的设计和提高传动效率非常重要。
带传动实训报告
一、实训目的通过本次带传动实训,使我对带传动的基本原理、结构、安装与调整、工作特性及维护保养等方面有一个全面的了解,提高动手操作能力,为今后从事相关技术工作打下基础。
二、实训环境本次实训在机械工程系的带传动实验室进行,实验室配备了多种带传动装置、检测仪器和工具。
三、实训原理带传动是一种常用的机械传动方式,它利用皮带与轮之间的摩擦力传递动力。
根据传动方式的不同,可分为普通V带传动、同步带传动和多头带传动等。
四、实训过程1. 实习动员及安全教育实训前,实验室负责人进行了实习动员和安全教育,强调了实训过程中的注意事项,确保实习过程的安全。
2. 带传动装置的识别与拆装(1)识别带传动装置:通过观察和了解,识别带传动装置的各个部件,如主动轮、从动轮、张紧轮、皮带等。
(2)拆装带传动装置:在指导老师的指导下,学习带传动装置的拆装步骤,并亲自进行拆装操作。
3. 带传动装置的安装与调整(1)安装带传动装置:按照拆卸的相反顺序,将带传动装置安装到设备上。
(2)调整张紧力:根据设备要求,调整张紧轮的松紧程度,确保皮带与轮之间的摩擦力适当。
4. 带传动装置的工作特性测试(1)测试带传动装置的传动效率:通过测量主动轮和从动轮的转速,计算传动效率。
(2)测试带传动装置的承载能力:在规定的工作条件下,对带传动装置进行承载试验,观察其工作情况。
5. 带传动装置的维护保养了解带传动装置的日常维护保养方法,包括清洁、润滑、检查和更换等。
五、实训结果1. 成功拆装、安装带传动装置,掌握了拆装步骤和操作技巧。
2. 熟悉了带传动装置的结构和工作原理,了解了传动效率、承载能力等性能指标。
3. 掌握了带传动装置的维护保养方法,提高了实际操作能力。
六、实训总结1. 通过本次实训,我对带传动的基本原理、结构、安装与调整、工作特性及维护保养等方面有了全面的了解。
2. 实践操作过程中,提高了自己的动手能力,为今后从事相关技术工作打下了基础。
3. 在实训过程中,发现了自身在理论知识和实践操作方面存在的不足,需要在今后的学习中加以改进。
传动特性研究实验报告(3篇)
第1篇一、实验目的本实验旨在通过实验研究,验证和探究不同传动方式(如带传动、齿轮传动、链传动等)的传动特性,包括传动效率、承载能力、工作平稳性等,为实际工程应用提供理论依据。
二、实验原理1. 传动效率:传动效率是指输入功率与输出功率之比,即η = P出 / P入,其中P出为输出功率,P入为输入功率。
2. 承载能力:承载能力是指传动装置在正常运行条件下所能承受的最大载荷。
3. 工作平稳性:工作平稳性是指传动装置在运行过程中,传动部件的振动、冲击和噪声等影响程度。
三、实验仪器与设备1. 实验台:包括带传动、齿轮传动、链传动等不同传动方式的实验装置。
2. 功率计:用于测量输入功率和输出功率。
3. 承载力测试仪:用于测量传动装置的承载能力。
4. 振动测试仪:用于测量传动装置的振动情况。
5. 噪声测试仪:用于测量传动装置的噪声情况。
四、实验步骤1. 准备实验装置,确保各传动装置安装正确。
2. 根据实验要求,调整传动装置的参数,如带轮直径、齿轮模数、链条张紧力等。
3. 测量传动装置的输入功率和输出功率,计算传动效率。
4. 测量传动装置的承载能力,确保其在正常工作条件下能够承受所需的载荷。
5. 测量传动装置的振动和噪声情况,评估其工作平稳性。
6. 重复实验步骤,验证实验结果的可靠性。
五、实验结果与分析1. 传动效率:实验结果显示,带传动、齿轮传动和链传动的传动效率分别为97.5%、96.8%和95.3%。
由此可见,带传动和齿轮传动的传动效率较高,链传动略低。
2. 承载能力:实验结果显示,带传动、齿轮传动和链传动的承载能力分别为5kN、8kN和6kN。
齿轮传动的承载能力最高,带传动次之,链传动最低。
3. 工作平稳性:实验结果显示,带传动、齿轮传动和链传动的振动和噪声情况分别为0.5mm、1.2mm和0.8mm,55dB、60dB和50dB。
齿轮传动的工作平稳性最好,带传动次之,链传动最低。
六、实验结论1. 带传动、齿轮传动和链传动在传动效率、承载能力和工作平稳性方面存在一定差异。
实验一.带传动实验
实验二带传动实验一、实验目的1、观察带传动中的弹性滑动和打滑现象以及它们与带传递的载荷之间的关系。
2、了解预紧力及从动轮负载的改变对带传动的影响,测绘出弹性滑动曲线和效率曲线。
3、了解试验机的工作原理与扭矩、转速的测量方法。
二、实验的主要内容1.观察弹性滑动和打滑现象。
2.测量数值并绘制滑动曲线及效率曲线三、实验设备和工具CPQ―A带传动试验机,其示意图如图:1.砝码30N、2.砝码20N、3.滑轮、4.发电机紧固螺栓、5.发电机、6.发电机带轮、7.试验带、8.测力环支座、9.百分表、10. 测力环、11.杠杆、12.电动机、13.电动机带轮、14.加载旋钮、15.数码管、16.电压表、17.电流表、18.启动开关、19.调速旋钮、20.复零按钮、21.电源指示灯、22.数显开关、23.停止开关。
图一××―××带传动试验示意图主动带轮13装在电动机12的转子轴上,从动带轮6装在发电机5 的转子轴上,实验用的传动带(V带或平型带)7套装在主动带轮与从动带轮上。
利用砝码1与2对带产生拉力,砝码的重力经过导向滑轮3,拖动发电机支座沿滚动导轨水平移动,以实现传动带的张紧。
四、实验原理1、调速与加载调速与稳速是由可控硅半控桥式整流,触发电路及速度、电流两个调整环节组成。
转动面板上的“调速”旋钮19,即可实现调速;电动机的转速值由数码管显示。
在电动机轴的后端,装有检测元件,它不断检测转速,反馈到输入端,与给定值比较,并有自动调节,以保证恒转速。
加载与控制负载大小,是通过开启灯泡来实现的。
在直流发电机的输出电路上,并接了八个灯泡,每个40瓦,作为带传动的加载装置。
开启灯泡,以改变发电机的负载电阻,随着开启灯泡的增多,发电机的负载增大,带的受力增大,两边拉力差也增大,带的弹性滑动逐步增加。
当带断传递的载荷刚好达到所能传递的最大有效圆周力时,带开始打滑,当负载继续增加时则全面打滑。
带传动实验报告
带传动实验报告本次实验是关于带传动的研究和分析。
带传动是应用在工业生产中广泛的一种传动方式。
本实验从理论分析到现场测试,对带传动的工作原理、特点以及优缺点进行了深入的探讨。
一、实验目的1.了解带传动的工作原理和特点,掌握带传动的计算方法。
2.研究不同类型带传动的适用范围,分析带传动与其他传动方式的比较。
3.通过实际测试,验证理论公式的正确性和计算方法的可靠性。
二、实验原理带传动是利用带子的弯曲刚度,将动力从发动机传到轮子上的一种传动方式。
因为带子弯曲刚度很小,因此带传动的传动效率较低,但是它有很多优点,例如传动平稳、噪音小、不会损伤轮胎、易于维修等。
在带传动中,带子受到张力的作用而实现传动,因此正确确定带张力是带传动的一个关键问题。
当确保带张力适当时,带子与轮轴之间必须接触,并且带子必须与轮轴上的套筒相接触。
根据能量守恒定律,带传动的传动比可以用以下公式表示:i = (T2/T1)*(Q2/Q1)其中,T1和T2是张力,Q1和Q2是转矩。
前者用公式T=KFTA计算,其中,KF为带传动系数;T为张力;A为受张力面的弧长;F为每单位宽度的带子受力。
后者用公式Q=nπTd/60计算,其中,n为发动机的转速;Td为输出轴的扭矩。
三、实验设备1.带传动试验台2.数字万用表3.磅秤4.滑动支撑5.带子6.调节杆7.定位槽8.润滑器四、实验步骤1.在试验台上安装带传动系统,将带子固定在后轮上,并将磅秤衡量输出轴的扭矩。
2.通过调节杆,调节主轴和后轮之间的距离,确保带子与轮轴上的套筒相接触。
3.用数字万用表检测主轴的转速,并将其记录下来。
4.在不同的实验条件下进行测试,包括不同的张力、不同的转速和不同的传动比。
5.通过测试数据计算传动比,并与理论值进行比较。
五、实验结果和分析1.测试结果表明,带传动的传动比随着张力的增加而增加,但到一定程度后就会趋于稳定。
2.当传动比增加时,输出轴的扭矩也随之增加。
3.与其他传动方式相比,带传动具有传动平稳、噪音小、易于修理等优点,但效率较低。
带传动实验报告步骤
带传动实验报告步骤实验目的本实验的目的是通过实际操作,了解和掌握不同传动装置的原理、特点和使用方法,提高学生对传动装置的认识和应用能力。
实验原理传动装置是将动力从原动机传递给工作机械的装置,它可以将动力的大小、方向和形式进行改变。
在本实验中,我们将通过以下几种传动方式进行研究和实验:1. 齿轮传动:通过齿轮的啮合传递动力,可以实现不同转速和转向的转动。
2. 带传动:通过带子的摩擦传递动力,适用于中小功率传动。
3. 铰链传动:通过链条的链接传递动力,适用于长距离传动。
4. 蜗杆传动:通过蜗杆的啮合传递动力,适用于大功率传动和转向传动。
实验器材1. 齿轮传动实验装置2. 带传动实验装置3. 铰链传动实验装置4. 蜗杆传动实验装置实验步骤1. 齿轮传动实验1. 准备齿轮传动实验装置,确保齿轮的啮合状态正确。
2. 将电动机连接到齿轮传动装置,通电并调整电机的转速。
3. 观察齿轮的转动情况,记录齿轮的转速比和转动方向。
4. 更换不同大小的齿轮,重复步骤2和3,继续观察和记录结果。
2. 带传动实验1. 准备带传动实验装置,确保带子的紧固状态良好。
2. 将电动机连接到带传动装置,通电并调整电机的转速。
3. 观察带子的摩擦传动情况,记录带子传动的力矩和转动方向。
4. 更换不同宽度和材质的带子,重复步骤2和3,继续观察和记录结果。
3. 铰链传动实验1. 准备铰链传动实验装置,确保链条的安装和润滑良好。
2. 将电动机连接到铰链传动装置,通电并调整电机的转速。
3. 观察链条的链接和传动情况,记录链条传动的力矩和转动方向。
4. 更换不同长度和强度的链条,重复步骤2和3,继续观察和记录结果。
4. 蜗杆传动实验1. 准备蜗杆传动实验装置,确保蜗杆和蜗轮的啮合状态良好。
2. 将电动机连接到蜗杆传动装置,通电并调整电机的转速。
3. 观察蜗杆和蜗轮的传动情况,记录传动的力矩和转动方向。
4. 更换不同蜗杆和蜗轮的参数,重复步骤2和3,继续观察和记录结果。
实验报告作业—带传动
带型
Z
A
75 90 100 112 125
0.42 0.63 0.77 0.93 1.11
0.45 0.68 0.83 1.00 1.19
0.52 0.79 0.97 1.18 1.40
0.60 0.93 1.14 1.39 1.66
0.68 1.07 1.32 1.61 1.93
0.73 1.15 1.42 1.74 2.07
6-17
V带传动正常工作的实际根数Z:将ZC 圆整为Z根。当V带根 数超过表6.1中荐用的轮槽数时,应改选带轮直径或改选V带 型号重新设计。
(1)在特定条件下,单根V带的基本额定功率P0
特定条件 载荷平稳 α 1= α 2 = 1800 ,即:i=1
Ld为特定长度
V带型号 特定长度 Y 450 Z 800 A 1700 B 2240 C 3750 D 6300 E 7100
考虑安装、更换V带和调整、补偿初拉力(例如带 伸长而松弛后的张紧)中心距变化范围: 安装时所需的最小中心距 amin=a-0.015Ld=510- 0.015 ×1600=486(mm) 张紧或补偿带伸长所需的最大中心距 amax=a+0.03Ld=510+0.03×1600=558(mm)
P0 P0 Δ P0 Kα K L
kW
式中: P0 —额定功率增量,考虑传动比i≠1时,带在大带轮
上的弯曲应力较小,在相同寿命的条件下,额定 功率可比i =1时的传动功率大。根据V带型号、n1 及i查表6.7。
P0 P0 Δ P0 Kα K L
根据小带轮包角α 1查表6.8。
普通V带轮最小基准直径dd1及轮槽数Z
机械设计带传动实训报告
一、实训目的本次实训旨在通过实际操作和理论学习的结合,使学生深入了解带传动的工作原理、结构特点、设计计算方法以及安装调试和维护保养等知识,提高学生的动手能力和工程实践能力。
二、实训时间2023年11月1日至2023年11月5日三、实训地点XX学院机械工程实验室四、实训内容1. 了解带传动的概念、类型及工作原理;2. 学习带传动的结构特点及材料选择;3. 掌握带传动的张紧力、速度、功率等参数的计算方法;4. 熟悉带传动的安装、调试和维护保养;5. 完成带传动系统的设计与制作。
五、实训过程1. 理论学习首先,我们对带传动的基本概念、类型及工作原理进行了深入学习。
带传动是一种利用柔性带作为传动媒介,通过摩擦力传递动力和运动的一种传动方式。
常见的带传动类型有三角带传动、平带传动和圆带传动等。
带传动具有结构简单、传动平稳、运行可靠等优点。
2. 结构分析接着,我们对带传动的结构特点及材料选择进行了分析。
带传动主要由主动轮、从动轮、带和带轮组成。
带轮分为外轮和内轮,外轮为主动轮,内轮为从动轮。
带轮的材料通常采用铸铁或铝合金。
带的材料主要有橡胶、棉布、尼龙等。
3. 计算分析然后,我们学习了带传动的张紧力、速度、功率等参数的计算方法。
张紧力是保证带传动正常工作的重要参数,计算公式为:张紧力 = 预紧力 + 摩擦力。
速度计算公式为:n = πd/60,其中n为转速,d为带轮直径。
功率计算公式为:P = T n/9.55,其中P为功率,T为扭矩。
4. 安装与调试在完成计算分析后,我们进行了带传动系统的安装与调试。
首先,将主动轮和从动轮分别安装在机器上,然后调整带轮的间距,使带张紧适度。
接着,调整张紧力,使带在轮上的接触面积达到规定值。
最后,进行试运行,检查带传动系统的运行是否平稳,有无异常噪声等。
5. 维护保养最后,我们学习了带传动的维护保养知识。
带传动系统在使用过程中,要注意以下几点:(1)定期检查带张紧力,确保带传动正常工作;(2)定期检查带轮和带的状态,及时更换磨损严重的带轮和带;(3)保持传动系统清洁,避免灰尘、油污等杂物进入;(4)定期检查润滑情况,确保传动系统润滑良好。
带传动试验报告
带传动试验报告随着工业自动化和机械化程度的不断提高,带传动作为一种常见的传动方式,在各个领域被广泛应用。
为了确保带传动的性能和可靠性,需要对其进行试验和测试。
本文将介绍带传动试验的相关内容。
一、试验前的准备工作在进行带传动试验前,需要对试验样品进行检查和准备。
首先,要检查样品是否符合试验要求,包括轴的尺寸、带的类型、张力调节装置等。
其次,要对样品进行清洁和润滑,以确保试验的准确性和可靠性。
最后,应按照试验要求对试验设备进行检查和校准,以确保试验数据的准确性。
二、试验过程与方法带传动试验的主要目的是测试带传动的传动效率、承载能力、寿命等性能指标。
在试验过程中,需要根据试验要求选择合适的试验方法和测试参数。
一般来说,带传动试验可以分为静态试验和动态试验两种类型。
静态试验主要是对带传动的静态承载能力进行测试,包括带轮的最大扭矩和最大扭矩比。
试验时,需要将试验样品固定在试验台上,然后通过施加不同大小的力矩来测试带轮的扭矩和扭矩比。
动态试验则主要是对带传动的动态性能进行测试,包括传动效率、寿命等指标。
试验时,需要将试验样品安装在试验台上,然后通过加速器或电机等装置来测试带传动的运动性能。
三、试验结果与分析在试验完成后,需要对试验结果进行分析和处理。
首先,需要对试验数据进行统计和整理,得出各项指标的平均值和标准差。
然后,根据试验要求和标准,将试验结果进行比较和分析,以确定试验样品的性能是否符合要求。
最后,应将试验结果进行报告和归档,以备后续参考。
四、试验注意事项在进行带传动试验时,需要注意以下几点:1. 试验时应按照试验要求和标准进行操作,避免出现误差和偏差。
2. 在试验过程中,应注意安全问题,避免发生意外事故。
3. 试验时应注意环境温度和湿度等因素的影响,以确保试验结果的准确性。
4. 在试验完成后,应对试验设备进行清洁和维护,以保证设备长期的使用寿命。
带传动试验是一项重要的工作,对于确保带传动的性能和可靠性具有重要的意义。
机械设计实验报告带传动
机械设计带传动设计报告一. 实验目的1. 了解带传动实验台的结构及工作原理2. 观察带传动中的弹性滑动和打滑现象3. 掌握转矩和转速的测量方法4. 绘制带传动的滑动曲线和效率曲线二. 实验仪器传动实验台是由机械部分、负载和测量系统三部分组成。
如图1-1所示。
转速、转矩显示调速负载192345678101、直流电机2、主动带轮3、7力传感器 4轨道 5砝码 6灯泡8从动轮 9 直流发电机 10皮带图1-1 带传动实验台结构图三.实验原理和步骤 原理:传动带装在主动轮和从动轮上,直流电动机和发电机均由一对滚动轴承支撑,其定子(外壳)可以绕转子轴线摆动。
通过转速测定装置和专据测定装置,可以得到主动轮和从动轮的转速1n 、2n 及主动轮和从动轮的转矩1T 和2T 。
带传动的滑动系数: 121-100%n in n ε=⨯ (i 为传动比) 由于实验台的带轮直径D 1=D 2=120mm ,i =1,所以 121100%n n n ε-=⨯ 带传动的传动效率: 00112212100⨯==n T n T p p η(1P 、2P 分别为主动轮的输入功率和从动轮的输出功率)随着负载的改变,1n 、2n 和1T 、2T 值也将随之改变。
这样,可以获得不同负载下的ε和η值,由此可以得出带传动的滑动率曲线和效率曲线。
改变带的预紧力0F ,又可以得到在不同预紧拉力下的一组测试数据。
显然,实验条件相同且预紧力0F 一定时,滑动率的大小取决于负载的大小,1F 与2F 之间的差值越大,则产生弹性滑动的范围也随之增大。
当带在整个接触弧上都产生滑动时,就会沿带轮表面出现打滑现象,这时,带传动已不能正常工作。
所以打滑现象是应该避免的。
滑动曲线上临界点(A 和B )所对应的有效拉力即不产生打滑现象时带所能传递的最大有效拉力。
通常,我们以临界点为界,将降曲线分为两个区,即弹性滑动区和打滑区(见图1-2所示)F 01< F 02F 01 ε% ε% η B P 2 F 02P 2BA o o打滑 弹性滑动 A图1-2 带传动滑动曲线 图1-3 带传动效率曲线 实验证明,不同的预紧力具有不同的滑动曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验机型号
带型
测力杆臂长
带轮包角
张紧方式
据记录表
序号 F0 N
n1 / r min 1
1 2 3 4 5 6 7 8 9 10 11
n2 / r min 1
/%
F1 N
F2 N
/%
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
注:F0 为预紧力;n1、n2 为主、从动轮转速;F1、F2 为带的紧边、松边拉力; 为滑动率; 为效率。
2)绘制滑动率和传动效率曲线
四、 实验小结
1) 简单描述带传动的弹性滑动与打滑现象。 2) 确定不同初拉力、不同转速下带传动效率为最高时的载荷大小、效率及滑动率大小,并进行比较。
带传动实验报告
实验名称
实验日期
组号
姓名
班级
学号
一、实验目的 (1) 了解带传动试验台结构及工作原理 (2) 观察带传动中的弹性滑动和打滑现象 (3) 了解带传动在不同初拉力、不同转速下的载荷与滑动率、载荷与效率的关系 (4) 掌握转矩、转速的基本测量方法 (5) 绘制带传动的滑动率曲线和效率曲线
二、 实验设备主要技术参数