机械能守恒定律只有动能和势能相互转化
4.5 机械能守恒定律-2020-2021学年高一物理精讲精练(新粤教版必修第二册)(解析版)
4.5 机械能守恒定律考点精讲考点1:机械能守恒的条件1.从能量特点看:只有系统动能和势能相互转化,无其他形式能量(如内能)之间转化,则系统机械能守恒。
2.从机械能的定义看:根据动能与势能之和是否变化判断机械能是否守恒,如一个物体沿水平方向匀速运动时,动能和势能之和不变,机械能守恒;但沿竖直方向匀速运动时,动能不变,势能变化,机械能不守恒。
3.从做功特点看:只有重力和系统内的弹力做功。
【例1】(多选)如图,物体m机械能守恒的是(均不计空气阻力)()【答案】CD【解析】物块沿固定斜面匀速下滑,在斜面上物块受力平衡,重力沿斜面向下的分力与摩擦力平衡,摩擦力做负功,机械能减少;物块在力F作用下沿固定光滑斜面上滑时,力F做正功,机械能增加;小球沿光滑半圆形固定轨道下滑,只有重力做功,小球机械能守恒;用细线拴住小球绕O点来回摆动,只有重力做功,小球机械能守恒,选项C、D符合题意。
【技巧与方法】判断机械能是否守恒应注意的问题1.合外力为零是物体处于平衡状态的条件。
物体受到的合外力为零时,它一定处于匀速运动状态或静止状态,但它的机械能不一定守恒。
2.合外力做功为零是物体动能守恒的条件。
合外力对物体不做功,它的动能一定不变,但它的机械能不一定守恒。
3.只有重力做功或系统内弹力做功是机械能守恒的条件。
只有重力对物体做功时,物体的机械能一定守恒;只有重力或系统内弹力做功时,系统的机械能一定守恒。
【针对训练】1.如图所示,下列说法正确的是(所有情况均不计摩擦、空气阻力以及滑轮质量) ()A.甲图中,火箭升空的过程中,若匀速升空则机械能守恒,若加速升空则机械能不守恒B.乙图中,物块在外力F的作用下匀速上滑,物块的机械能守恒C.丙图中,物块A以一定的初速度将弹簧压缩的过程中,物块A的机械能守恒D.丁图中,物块A加速下落、物块B加速上升的过程中,A、B系统机械能守恒【答案】D【解析】甲图中,不论是匀速还是加速,由于推力对火箭做功,火箭的机械能不守恒,是增加的,故A 错误;乙图中,物块匀速上滑,动能不变,重力势能增加,则机械能必定增加,故B错误;丙图中,在物块A压缩弹簧的过程中,弹簧和物块A组成的系统只有重力和弹力做功,系统机械能守恒,由于弹性势能增加,则A的机械能减小,故C错误;丁图中,对A、B组成的系统,不计空气阻力,只有重力做功,A、B组成的系统机械能守恒,故D正确。
机械能守恒定律:机械能=动能 重力势能 弹性势能(条件系统只有内部的重力或弹力做功)
机械能守恒定律:机械能=动能+重力势能+弹性势能(条件:系统只有内部的重力或弹力做功). 守恒条件:(功角度)只有重力,弹力做功;(能转化角度)只发生动能与势能之间的相互转化。
“只有重力做功”不等于“只受重力作用”。
在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。
列式形式:E 1=E 2(先要确定零势面) P 减(或增)=E 增(或减) E A 减(或增)=E B 增(或减)mgh 1 +121212222mV mgh mV =+ 或者 ∆E p 减 = ∆E k 增5. 如图所示在一根细棒的中点C 和端点B ,分别固定两个质量、体积完全相同的小球,棒可以绕另一端A 在竖直平面内无摩擦地转动. 若从水平位置由静止释放,求两球到达最低位置时线速度的大小. 小球的质量为m ,棒的质量不计. 某同学对此题的解法是:设AB=L ,AC=L2,到最低位置时B 球和C 球的速度大小分别为v 1、v 2.运动过程中只有重力对小球做功,所以每个球的机械能都守恒.:C 球有21122Lmv mg =,1v (m/s) B 球有 2212m v m g L =,2v =(m/s) 你同意上述解法吗?若不同意,请简述理由并求出你认为正确的结果. 5. (10分)解: 不同意,因为在此过程中,细棒分别对小球做功,所以每个小球的机械能不守恒. 说出“不同意”得3分,说出理由得2分 但对棒、小球组成的系统,机械能守恒:mgL+mg L 2=12m 2C v +12m 2B v (2分) 又v B =2vC , (1分)可解得: v C =15gL 5, v B =215gL5(2分) 17.质量不计的直角形支架两端分别连接质量为m 和2m 的小球A 和B 。
支架的两直角边长度分别为2l 和l ,支架可绕固定轴O 在竖直平面内无摩擦转动,如图所示。
开始时OA 边处于水平位置,由静止释放,则 ( ) A .A 球的最大速度为gl )12(632- B .A 球的速度最大时,两小球的总重力势能为零C .A 球的速度最大时,两直角边与竖直方向的夹角为45°D .A 、B 两球的最大速度之比v 1∶v 2=2∶116.质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图所示,则杆的上端受到的作用力大小为(C )A. R m 2ωB. 24222R m g m ω-C.24222R m g m ω+D .不能确定22.如图所示,轻杆长为3L ,在杆的A 、B 两端分别固定质量均为m 的球A 和球B ,杆上距球A 为L 处的点O 装在光滑的水平转动轴上,杆和球在竖直面内转动,已知球B 运动到最高点时,球B 对杆恰好无作用力.求:(1)球B 在最高点时,杆对水平轴的作用力大小.(2)球B 转到最低点时,球A 和球B 对杆的作用力分别是多大?方向如何? 解:(1)球B 在最高点时速度为v 0,有Lvm mg 220=,得gL v 20=.此时球A 的速度为gL v 221210=,设此时杆对球A 的作用力为F A ,则 ,5.1,)2/(20mg F Lv mmg F A A ==-, A 球对杆的作用力为,5.1mg F A ='.水平轴对杆的作用力与A 球对杆的作用力平衡,再据牛顿第三定律知,杆对水平轴的作用力大小为F 0=1. 5 mg.(2)设球B 在最低点时的速度为B v ,取O 点为参考平面,据机械能守恒定律有222020)2(21212)2(21212B B v m m g L m v L m g v m m gL m v L m g +++⋅-=+-+⋅解得gL v B 526=。
机械能守恒定律及其应用
机械能守恒定律的意义
揭示了能量守恒的实质
机械能守恒定律是能量守恒定律在力 学系统中的具体表现,它表明在满足 一定条件下,系统中的机械能可以自 发的相互转化,但总能量保持不变。
提供了解决问题的方法
在解决力学问题时,如果满足机械能 守恒定律的条件,可以将问题简化为 求解初末状态的机械能,从而大大简 化计算过程。
VS
详细描述
火箭升空过程中,燃料燃烧产生大量气体 ,向下喷射产生推力,使火箭加速上升。 在这个过程中,火箭的重力势能和动能之 间相互转化,机械能总量保持不变,也是 机械能守恒定律的应用。
水利发电站工作过程中的机械能守恒
ቤተ መጻሕፍቲ ባይዱ总结词
水轮机在水的冲力作用下旋转,将水的重力 势能转化为水轮机的动能,再通过发电机转 化为电能,整个过程中机械能总量保持不变 。
之间的关系。
数学表达式的理解
机械能守恒
机械能守恒定律表明,在没有外 力做功的情况下,质点的机械能 (动能和势能之和)保持不变。
适用范围
机械能守恒定律适用于没有外力 做功的系统,如自由落体运动、 弹性碰撞等。
守恒原因
机械能守恒的原因是重力做功与 路径无关,只与初末位置的高度 差有关。
数学表达式的应用
单摆在摆角小于5°的理想情况下,只受重力和摆线的拉力,不涉及其他外力。因此,其 机械能守恒。
详细描述
单摆是一种简单的机械系统,由一根悬挂的细线和下面的小球组成。当单摆在垂直平面 内摆动时,其动能和势能之间相互转换。在摆角小于5°的理想情况下,由于空气阻力和 摩擦力可以忽略不计,因此只有重力和摆线的拉力作用在单摆上。根据机械能守恒定律
,单摆的动能和势能之和保持不变,即机械能守恒。
弹簧振子的机械能守恒
机械能守恒的条件只有重力或弹力做功
(2)D点到水平线AB的高度h; (3)弹簧所获得的最大弹性势能Ep。
[课堂训练3] 有一个固定的光滑直杆,该直杆与水平面的夹角
为53°,杆上套着一个质量为m=2 kg的滑块(可视为质点)。
(1)如图甲所示,滑块从O点由静止释放,下滑了位移x=1 m后到 达P点,求滑块此时的速率。
A.4v2/g
B.3v2/g
C.3v2/4g
D.4v2/3g
【课堂小结】
守恒的内容
机械能守恒定律 及其应用
守恒的条件
守恒的应用
[课堂训练 1]如图所示,固定的倾斜光滑杆上套有一个质量
为 m 的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧 的另一端固定在地面上的 A 点,弹簧处于原长 h.让圆环由
多个物体组成的系统机械能守恒定律的应用
[例 3]如图所示,一固定的楔形木块,其斜面长为 3 m,
倾角为 θ=30°,另一边与地面垂直,顶上有一定滑 轮.一轻绳跨过定滑轮,两端分别与物块 A 和 B(可视 为质点)连接,A 的质量为 4m,B 的质量为 m.开始时将 B 按在地面上不动,然后放开手,让 A 自斜面顶端沿斜 面下滑而 B 上升.当 A、B 位于同一 高度时轻绳突然断了,不计物块 A 与
形式。
[小试身手2]如图所示,一竖直放置的“T”形架表 面光滑,滑块A、B分别套在水平杆与竖直杆上, A、B用一不可伸长的轻绳相连,A、B质量相等, 且可看作质点.开始时细绳水平伸直,A、B静 止.由静止释放B后,当细绳与竖直方向的夹角 为60°时,滑块B沿着竖直杆下滑的速度为v, 则连接A、B的绳长为( )
机械能守恒的判断
[例1] 如图所示,下列关于机械能是否守恒的判断正确的是 ( )
高中物理必修二 第四章 第五节 机械能守恒定律
√A.下落至C处速度最大
B.由A至D的过程中机械能守恒
√C.由B至D的过程中,动能先增大后减小 √D.由A运动到D时,重力势能的减少量等于弹簧弹性势能的增加量
小球从B至C过程,重力大于弹力,合力向下,小球做加速 运动,小球从C至D过程,重力小于弹力,合力向上,小球 做减速运动,所以小球由B至D的过程中,动能先增大后减 小,在C点动能最大,速度最大,故A、C正确; 由A至B下落过程中小球只受重力,其机械能守恒,从B至D过程,小 球和弹簧组成的系统机械能守恒,但小球的机械能不守恒,故B错误; 在D位置小球速度减小到零,小球的动能为零,则从A运动到D时,小 球重力势能的减少量等于弹簧弹性势能的增加量,故D正确.
1 2 3 4 5 6 7 8 9 10 11 12 13
题图丁中,不计细绳与滑轮间的摩擦和滑轮质量时,绳子 张力对A做负功,对B做正功,代数和为零,空气阻力对A、 B均做负功所以A、B组成的系统机械能减少,故D错误.
1 2 3 4 5 6 7 8 9 10 11 12 13
4.(多选)如图所示,一轻弹簧一端固定于O点,另一端系一重物,将重物 从与悬点O在同一水平面且弹簧保持原长的A点无初速度释放,让它自由 摆下,不计空气阻力,在重物由A点摆到最低点的过程中
答案 32 J 对弹簧和木块组成的系统由机械能守恒定律有12mv02=12mv12+Ep1 则 Ep1=12mv02-12mv12=32 J.
例4 (多选)如图,一根轻弹簧下端固定,竖立在水平面上.其上方A位置有
一小球,小球从静止开始下落到B位置接触弹簧的上端,在C位置小球所
受弹力大小等于重力,在D位置小球速度减小到零.不计空气阻力,弹簧
针对训练 (多选)如图所示,下列关于机械能是否守恒的判断正确的是
解读机械能守恒定律的条件
面以初速度 姨 5 v0 下滑, 求小
图1
球到达斜面底端 B 点时的速度.
分析: 小球沿斜面从 A 点运动到底端 B 点的过程中, 只
有小球所受的重力做功, 其它的力不做功, 则由小球和地球
组成的系统 (通常就说小球) 机械能守恒. 取斜面底端处的重
力势能为零, 由机械能守恒定律得:
小球由静止下滑时:
时, 滑块的反冲速度为多大?
分析: 在小球下滑过程中, 由小球和滑块组成的系统,
除小球所受的重力做功外, 小球与滑块间的弹力也做功, 小
球所受到的弹力对小球做负功, 滑块所受到的小球对它的弹
力对滑块做正功, 使得小球的一部分机械能转移到滑块上. 但
由于两个弹力大小相等, 作用点始终在同一点, 因此, 这两
水面刚好相平时左管液面的速度是
多大? (摩擦阻力忽略不计)
分析: 取水柱和地球组成的系
统为研究对象, 在水柱运动的过程
图5
中, 系统内有重力做功, 系统外有大气压力做功, 其中左边
水柱受到的大气压力做正功, 右边水柱受到的大气压力做负
功, 这两个力做功的代数和等于零, 因此, 系统与外界无能
量交换, 系统的机械能守恒.
应考方略 理综高参
解读机械能守恒定律的条件
■ 浙江省义乌市第二中学 成金德
在只有重力或者弹力做功的情形下, 物体的动能和势能
发生相互转化, 但机械能的总量保持不变, 这个规律叫做机
械能守恒定律. 对某个研究系统而言, 机械能是否守恒? 可以
从以下七个方面进行分析和判断.
1. 只有重力做功时机械能守恒
即系统机械能守恒.
【例 2】 如图 2 所示, 一轻弹簧一端固定在墙上, 另一端
机械能守恒定律基本知识点总结
机械能守恒定律基本知识点总结————————————————————————————————作者:————————————————————————————————日期:23 / 7一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θ4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
例1. (09年上海卷)46.与普通自行车相比,电动自行车骑行更省力。
下表为某一品牌电动自行车的部分技术参数。
在额定输出功率不变的情况下,质量为60Kg 的人骑着此自行车沿平直公路行驶,所受阻力恒为车和人总重的0.04倍。
当此电动车达到最大速度时,牵引力为 N,当车速为2s/m 时,其加速度为 m/s 2(g=10m m/s 2)规格后轮驱动直流永磁铁电机 车型14电动自行车 额定输出功率 200W 整车质量40Kg 额定电压 48V 最大载重 120 Kg 额定电流 4.5A例2. (09年广东理科基础)9.物体在合外力作用下做直线运动的v 一t 图象如图所示。
下列表述正确的是A .在0—1s 内,合外力做正功B .在0—2s 内,合外力总是做负功C .在1—2s 内,合外力不做功D .在0—3s 内,合外力总是做正功二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
机械能守恒定律知识点总结及本章试题
机械能守恒定律知识点总结及本章试题一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θ——某力功,单位为焦耳()——某力(要为恒力),单位为牛顿()S——物体运动的位移,一般为对地位移,单位为米(m)——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
功的正负表示能量传递的方向,即功是能量转化的量度。
当时,即力与位移成锐角,力做正功,功为正;当时,即力与位移垂直,力不做功,功为零;当时,即力与位移成钝角,力做负功,功为负;5功是一个过程所对应的量,因此功是过程量。
6功仅与F、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W总=W1+W2+…+Wn 或W总= F合Scos θ二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:(平均功率)(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P实≤P额。
5应用:(1)机车以恒定功率启动时,由(为机车输出功率,为机车牵引力,为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力时,速度不再增大达到最大值,则。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力恒定为,速度不断增加汽车输出功率随之增加,当时,开始减小但仍大于因此机车速度继续增大,直至时,汽车便达到最大速度,则。
三、重力势能1定义:物体由于被举高而具有的能,叫做重力势能。
2公式:h——物体具参考面的竖直高度3参考面a重力势能为零的平面称为参考面;b选取:原则是任意选取,但通常以地面为参考面若参考面未定,重力势能无意义,不能说重力势能大小如何选取不同的参考面,物体具有的重力势能不同,但重力势能改变与参考面的选取无关。
高考物理考点分析之机械能守恒
高考物理考点分析之机械能守恒定律【考向分析】机械能守恒定律——在只有重力或弹力做功的物体系统内,动能与重力势能、弹性势能之间相互转换,但机械能的总量保持不变。
机械能守恒定律在力学部分占有非常重要的地位,是由动能与势能两方面组成,同时机械能是一种比较常见的能量形式,因此这部分很容易与动能定理、动量定理和直线运动等内容相联系起来考查。
【判断机械能守恒四种题型】题型一:阻力不计的抛体类包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。
那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。
例:在高为h的空中以初速度v0抛也一物体,不计空气阻力,求物体落地时的速度大小?分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等题型二:固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。
例,以初速度v0 冲上倾角为q光滑斜面,求物体在斜面上运动的距离是多少?分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等题型三:固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。
例:固定的光滑圆弧竖直放置,半径为R,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:所以题型四:悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。
机械能守恒定律及其应用
§3 机械能守恒定律及其应用一、机械能守恒定律1.机械能守恒定律的两种表述(1)在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
(2)如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
2.对机械能守恒定律的理解:(1)机械能守恒定律的研究对象一定是系统,至少包括地球在内。
通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。
另外小球的动能中所用的v,也是相对于地面的速度。
(2)当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。
(3)“只有重力做功”不等于“只受重力作用”。
在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。
【例1】如图物块和斜面都是光滑的,物块从静止沿斜面下滑过程中,物块机械能是否守恒?系统机械能是否守恒?3.解题步骤⑴确定研究对象和研究过程。
⑵判断机械能是否守恒。
⑶选定一种表达式,列式求解。
4.应用举例【例2】 如图所示,半径为R 的光滑半圆上有两个小球B A 、,质量分别为M m 和,由细线挂着,今由静止开始无初速度自由释放,求小球A 升至最高点C 时B A 、两球的速度?【例3】如图所示,均匀铁链长为L ,平放在距离地面高为L2的光滑水平面上,其长度的51悬垂于桌面下,从静止开始释放铁链,求铁链下端刚要着地时的速度?二、机械能守恒定律的综合应用【例4】 质量为0.02 kg 的小球,用细线拴着吊在沿直线行驶着的汽车顶棚上,在汽车 距车站15 m 处开始刹车,在刹车过程中,拴球的细线与竖直方向夹角θ=37°保持不变,如图所示,汽车到车站恰好停住.求:(1)开始刹车时汽车的速度;(2)汽车在到站停住以后,拴小球细线的最大拉力。
高中物理关于机械能守恒的知识点详解
高中物理关于机械能守恒的知识点详解机械能守恒表达式在只有重力或系统内弹力做功的物体系统内,物体的动能和势能可以相互转化,但机械能保持不变。
其数学表达式可以有以下两种形式:2.△Ek=-△Ep机械能守恒的条件只有系统内的弹力或重力所做的功,而且是系统内机械能守恒。
一般做题的时候好多是机械能不守恒的,但是可以用能量守恒,比如说把丢失的能量给补回来,从功能关系式中的 WF外=△E机可知:更广义的机械能守恒条件应是系统外的力所做的功为零。
当系统不受外力或所受外力做功之和为零,这个系统的总动量保持不变,叫动量守恒定律。
当只有动能和势能包括重力势能和弹性势能相互转换时,机械能才守恒。
守恒方法1做功条件分析法:当发生动能与重力势能的转化时,只有重力做功,当发生动能与弹性势能的转化时,只有弹力做功,其他力均不做功,则系统的机械能守恒。
2能量转换分析法:若只有系统内物体间动能和重力势能及弹性势能的转化,系统跟外界没有发生机械能的传递,机械能也没有转化成其他形式的能如没有内能的增加,比如温度升高,则系统的机械能守恒。
3增减情况分析法:若系统的动能与势能均增加或均减少,则系统的机械能不守恒:若系统的动能或势能不变,而势能或动能却发生了变化,则系统的机械能不守恒:若系统内各个物体的机械能均增加或均减少,则系统的机械能也不守恒。
机械能守恒解题技巧在动能和势能的相互转化的过程中,若考虑摩擦,则机械能减小滚摆运动过程中,每次上升的高度逐渐降低,对此以下说法错误的是:A. 滚摆运动到最高处时,动能为零;B. 滚摆下落过程中重力势能转变成动能;C. 滚摆运动过程中克服阻力做功,机械能不断的减小;D. 滚摆运动过程中重力势能不变。
解析:滚摆运动过程中,在最高点时,速度等于零,此时,滚摆的重力势能最大,动能最小;滚摆在上升的过程中,动能转化为重力势能;在下降过程中,由于滚摆要不断的克服摩擦阻力做功,所以滚摆的机械能减小,因此,A、B、C都是正确的,故本题应选答案D。
机械能守恒定律表达式是什么
机械能守恒定律表达式是什么
基本的公式是Ek1+Ep1=Ek2+Ep2 等号前的是初始状态的机械能,等号后的是末态的机械能。
ΔE1=ΔE2,E 减=E 增,W=ΔE。
1 机械能守恒定律表达式机械能守恒定律
在只有重力或系统内弹力做功的物体系统内,物体的动能和势能可以相互
转化,但机械能保持不变。
其数学表达式可以有以下两种形式:
过程式:
1.WG+WFn=∆Ek
2.E 减=E 增(Ek 减=Ep 增、Ep 减=Ek 增)
状态式:
1.Ek1+Ep1=Ek2+Ep2(某时刻,某位置)
2.1/2mv12+mgh1=1/2mv22+mgh2[这种形式必须先确定重力势能的参考平面] 1 机械能守恒定律的三种表达式1.从能量守恒的角度
选取某一平面为零势能面,系统末状态的机械能和初状态的机械能相等。
2.从能量转化的角度
系统的动能和势能发生相互转化时,若系统势能的减少量等于系统动能的
增加量,系统机械能守恒。
3.从能量转移的角度。
动量守恒的条件和机械能守恒的条件
动量守恒与机械能守恒:相似之处与不同之处动量守恒和机械能守恒是物理学中两个非常常见、基础的概念。
虽然它们都是守恒定律,但是其适用范围和表现形式各不相同。
下面我们分别来看一下动量守恒和机械能守恒的条件和特点。
一、动量守恒的条件和特点动量是物体的运动状态的度量,是物体质量和速度的乘积。
按照动量守恒定律,系统内各个部分的动量之和,在外力作用下保持不变。
具体来讲,动量守恒包括以下条件和特点:1.系统内部无外力作用2.系统内部只有内部作用力3.总动量守恒动量守恒的一个著名实例是台球运动。
当一只球击中另一只球的时候,两只球之间会产生相互作用力,但是由于这个作用力是内部作用力,因此系统内部无外力作用,总动量守恒。
这也是为什么我们在打台球的时候,需要保持静止的球杆和手臂,从而在击球的瞬间将球杆和手臂的动量转移到球上,使得总的动量守恒。
二、机械能守恒的条件和特点机械能是物体的动能和势能之和,它是刻画物体运动状态的另一种方式。
机械能守恒指的是系统内部的机械能,在无外力作用下保持不变。
具体来讲,机械能守恒包括以下条件和特点:1.系统内部不受外力作用2.系统内部只有势能和动能的相互转换3.总机械能守恒机械能守恒的一个典型示例是自由落体运动。
当一个物体自由落体,它的重力势能逐渐转化为动能,最终全部转化为动能,同时由于在空气中不存在明显的空气阻力,因此系统内部不受外力作用,总机械能守恒。
综合来说,动量守恒和机械能守恒有着相似之处,它们都是物理学中的重要守恒定律。
但是它们适用的对象和条件却不相同,需要具体情况具体分析。
对于物理学的学习和应用,我们需要深刻理解动量守恒和机械能守恒的特点和条件,才能更好地理解和应用物理学的知识。
系统的功能定理机械能守恒定律能量守恒定律
02 03
拓展功能定理和机械能守恒定律的应用范围
功能定理和机械能守恒定律在解决许多物理问题时具有重 要价值,未来可以进一步拓展其应用范围,探索其在其他 领域的应用可能性,如材料科学、生物医学等。
加强能量守恒定律与其他物理定律的联系研究
能量守恒定律是物理学中的基本原理之一,与其他物理定 律有着密切的联系。未来可以进一步研究能量守恒定律与 其他物理定律的内在联系,揭示它们之间的相互作用和影 响机制。
问题描述
系统功能定理应用
守恒定律应用
一个由两个质点组成的系统在光 滑水平面上运动,质点1的质量 为m1,速度为v1,质点2的质 量为m2,速度为v2。两质点之 间用一根轻弹簧连接,求弹簧的 伸长量x。
根据系统功能定理,外力对系 统所做的功等于系统动能的增 量。由于系统内部只有弹力做 功,因此可以根据动能定理求 出弹簧的伸长量x。
根据热力学第一定律,系统吸收的热量 等于系统内能的增量与对外做功之和。 即Q=ΔU+W,其中ΔU为系统内能增 量,W为气体对外所做的功。
在加热过程中,气体的质量保持不变 。因此,可以根据质量守恒定律求出 气体的最终温度T2和吸收的热量Q。
PART 06
总结与展望
REPORTING
WENKU DESIGN
通过测量物体在不同位置的速度和高度,可以验证机械能是否守恒。如果动能和势能之和 在物体运动过程中保持不变,则可以确认机械能守恒。
分析复杂运动
对于涉及多种力作用的复杂运动,可以通过分析机械能是否守恒来简化问题。如果机械能 守恒,则可以只关注动能和势能的变化,而不必考虑其他力的影响。
工程应用
在工程领域,机械能守恒定律被广泛应用于各种机械装置和系统的设计、分析和优化中。 例如,在机械设计中,可以利用机械能守恒定律来评估机构的性能、优化设计方案或预测 系统的动态行为。
机械能守恒定律能量守恒定律
机械能守恒定律与能量守恒定律的重要性
理论意义
机械能守恒定律和能量守恒定律是物 理学中的基本定律,对于理解自然界 的运动规律和物质性质具有重要意义 。
实践应用
这两个定律在工程、技术、经济和社 会等领域中有着广泛的应用,例如在 能源利用、机械设计、经济分析等方 面提供重要的理论支持和实践指导。
02 机械能守恒定律
能量守恒定律是许多其他物理定律的基础,如牛顿运动定律、动量守恒定律、 角动量守恒定律等。
能量守恒定律的适用范围
能量守恒定律适用于宇宙中的一切物理现象,无论是宏观的天体运动还是微观的粒子运动,无论是经 典力学还是相对论力学。
能量守恒定律适用于各种类型的能量,包括动能、势能、内能、电磁能等,以及它们的组合和转化。
需要注意的是,在量子力学中,能量守恒定律有时会受到一些限制,如能量量子化、不确定性原理等。
能量守恒定律的实例
摩擦生热
当两个物体相互摩擦时, 机械能转化为内能,总的 能量保持不变。
水力发电
水从高处流到低处时,重 力势能转化为动能,然后 动能转化为电能,总的能 量保持不变。
核反应
在核反应过程中,原子核 的结合能转化为热能和光 能等其他形式的能量,但 总的能量保持不变。
机械能守恒定律的定义
01
机械能守恒定律是指在只有重力 或弹力做功的情况下,物体的动 能和势能相互转化,且总机械能 保持不变的规律。
02
机械能守恒定律是经典力学中的 基本定律之一,它反映了能量在 机械运动中的守恒性质。
机械能守恒定律的适用范围
适用于只有重力或弹力做功,没有其 他力(如摩擦力、电磁力等)做功或 外力做功为零的情况。
04 机械能守恒定律与能量守 恒定律的应用
机械能守恒定律
机械能守恒定律机械能守恒定律力学中的重要定律。
物质系统内只有保守内力作功,非保守内力(如摩擦力)和一切外力所作的总功为零时,系统内各物体的动能和势能可以互相转换,但它们的总量保持不变。
说明:(1)根据质点系的动能定理,我们有W外+W内保+W内非=Ek2-Ek1,由于保守内力所作的功可以表示为势能增量的负值,即W内保=-(Ep2-Ep1),这样就可得W外+W内非=(Ek2+Ep2)-(Ek1+Ep1),W外+W内非=E2-E1。
此式表示,质点系在运动过程中,它所受外力的功与系统内非保守力的功之总和,等于它的机械能的增量。
当W外=0、W内非=0时,就有系统机械能保持不变的守恒定律E2=E1=常量。
(2)机械能守恒定律是牛顿运动定律的一个推论,因此只有在惯性系中成立。
当W外=0,W内非=0以及Fi外=0的条件下,系统的机械能守恒在所有惯性系中绝对成立。
而当Fi外≠0,但W外=0,W内非=0时,系统的机械能守恒只对某个特定的惯性系成立。
(3)在中学物理中,保守力遇到最多的是重力和弹力。
因此,如果物体系各物体只有重力和弹力对它们做功,而无其他力做功时,系统机械能守恒。
这一守恒是运动变化中的守恒,是转化中的守恒,总量的守恒,但就系统内各物体而言,其动能和势能各自并不是不变的,而是互相转化的。
机械能守恒定律是对一个过程而言的,在只涉及重力及弹力作功的过程中,机械能守恒定律应用时,只考虑初始状态和终了状态的动能和势能,而不考虑运动的各个过程的详细情况。
因此,如果不要求了解过程的具体情况,用机械能守恒定律来分析某些力学过程,比用其他方法简便得多。
(4)一个不受外界作用的系统叫做封闭系统或孤立系统。
对于封闭系统,外力的功当然为零。
如果系统状态发生变化时,有非保守内力做功,它的机械能就不守恒。
但在这种情况下,对更广泛的物理现象,包括电磁、热、化学以及原子内部的变化等研究表明,如果扩大能量的范围,引入更多的能量概念,如电磁能、内能、化学能或原子核能,即能证明:一个封闭系统经历任何变化时,该系统的所有能量的总和是不改变的,它只是从一种形式的能量转化为另一种形式的能量,或从系统的此一物体传递给彼一物体。
机械能为什么就不守恒了
机械能为什么就不守恒了机械能守恒定律的内容是:在只有重力或弹力做功的物体系统内,动能和势能可以相互转化,而总的机械能保持不变。
这叫做机械能守恒定律。
有机械能守恒定律可知机械能守恒的条件是:只有重力或弹力做功。
请看下面的例子:小球在光滑的水平面上做匀速直线运动,碰到一端固定水平放置的轻弹簧,在小球和弹簧相互作用的过程中,小球做减速运动,动能不断的减少,而小球的重力势能保持不变,小球的机械能不断的减少,小球的机械能不守恒。
小球做减速运动过程中,受力情况如图所示:重力、支持力的方向与小球的运动的方向垂直,不做工,只有弹力做功,弹力对小球做负功。
既然只有弹力做功,小球的机械能为什么就不守恒了呢?仔细研究上述过程,我们会发现,弹力对小球做负功的过程中,弹簧也在客服弹力做功,小球的机械能在减少的过程中,弹簧的弹性势能却在增加。
小球减少的机械能和弹簧增加的机械能有什么关系呢?设弹簧在被压缩的过程中小球客服弹力做的功是W 弹,根据动能定理对小球有W 弹 =2122mv - 2121mv (1) 对于弹簧来说,弹簧克服弹力做功,更具弹力的功与弹性势能变化的关系有 W 弹 =Ep 1 - E P2 (2)由(1)(2)得2121mv + Ep 1 = 2122mv + E P2 (3) 此式表示在弹力做功的过程中小球的机械能和弹簧的机械能之和是保持不变的,或者说小球和弹簧组成的系统机械能守恒。
这说明机械能守恒定律的研究对象是物体组成的系统,而不是单一的某个物体,机械能具有系统性。
守恒定律中提到的弹力是系统内物体间的弹力,是内力。
中学阶段还有以下问题涉及到“系统”的问题一、电势能电势能是电荷和电场这个系统所共有的,电势能具有系统性。
二、重力势能重力势能是地面附近的物体与地球组成的系统所共有的,重力势能具有系统性。
三、动量守恒定律动量守恒定律的研究对象是发生相互作用的物体组成的力学系统四、弹性势能弹簧可以看成许多个质点组成的,质点之间有弹力的作用,弹簧的弹性势能是这些质点组成的系统所具有的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自学检测答案
• 1、机械能 3J • 2、变小 变大 变大 动能 弹性势 • 变小 变小 变大 变大 弹性势 动 • 相互转化 • 3、B
为什么滚摆在松手后能够不停的上下运动呢?
分析图15.5-2所示几个运动中,物体动能、势能
的转化。
想想做做
思考:
1.铁锁摆回时会碰到你的鼻子 吗?这其中是否有其他能量的 转化?
2.假设没有阻力,会怎么样呢?
机械能守恒定律:
只有动能和势能相互转化,机械 能的总和不变
人造地球卫星
思考:
1.当卫星从远地点向近地点运动时,它的势能,动能,速 度如何变化?当卫星从近地点向远地点运动时,它的势能, 动能,速度又如何变化?
2.卫星在近地点的动能最
,势能最
地点的动能最
,势能最
。
;Байду номын сангаас远
五 机械能及其转化
学习目标
• 1、知道机械能包括动能和势能 • 2、能用实例理解动能和势能的相
互转化
自学指导
• 请同学们认真默读课本117——118页内容, 要求边看边划边记,思考下列问题
• 1、什么是机械能? • 2、能结合实例分析动能和势能如何相互转
化? • 5分钟后比一比哪些同学在自学检测中获胜
思 考:
我们在初二的时候就已经学习过关于能量的转化, 请回答,电灯工作的时候,能量是怎么转化的?风 力发电机工作的时候,能量是怎么转化的?水力发 电机工作的时候,能量是怎么转化的?电动机工作 的时候,能量是怎么转化的?
电灯:电能—光能 风力发电机:风能—电能 水力发电机:机械能—电能
电动机:电能—动能