2012高中数学 2.4.2第1课时课时同步练习 新人教A版选修2-1

合集下载

11-12学年高中数学 2.1.1.2 类比推理同步练习 新人教A版选修2-2

11-12学年高中数学 2.1.1.2 类比推理同步练习 新人教A版选修2-2

类比推理一、选择题1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论无法判定正误 [答案] B[解析] 由合情推理得出的结论不一定正确,A 不正确;B 正确;合情推理的结论本身就是一个猜想,C 不正确;合情推理结论可以通过证明来判定正误,D 也不正确,故应选B.2.下面几种推理是合情推理的是( ) ①由圆的性质类比出球的有关性质②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180° ③教室内有一把椅子坏了,则该教室内的所有椅子都坏了④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸多边形的内角和是(n -2)·180°A .①②B .①③④C .①②④D .②④ [答案] C[解析] ①是类比推理;②④都是归纳推理,都是合情推理.3.三角形的面积为S =12(a +b +c )·r ,a 、b 、c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理,可以得到四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r ,(S 1、S 2、S 3、S 4分别为四面体四个面的面积,r 为四面体内切球的半径)D .V =13(ab +bc +ac )h (h 为四面体的高)[答案] C[解析] 边长对应表面积,内切圆半径应对应内切球半径.故应选C.4.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列哪些性质,你认为比较恰当的是( )①各棱长相等,同一顶点上的任两条棱的夹角都相等②各个面都是全等的正三角形,相邻两个面所成的二面角都相等 ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等 A .① B .①② C .①②③ D .③ [答案] C[解析] 正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.5.类比三角形中的性质: (1)两边之和大于第三边 (2)中位线长等于底边的一半 (3)三内角平分线交于一点 可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的14(3)四面体的六个二面角的平分面交于一点 其中类比推理方法正确的有( ) A .(1) B .(1)(2) C .(1)(2)(3) D .都不对 [答案] C[解析] 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.6.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”;⑥“ac bc =a b ”类比得到“a ·cb ·c =ab”. 以上式子中,类比得到的结论正确的个数是( ) A .1 B .2 C .3 D .4 [答案] B[解析] 由向量的有关运算法则知①②正确,③④⑤⑥都不正确,故应选B. 7.(2010·浙江温州)如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( )A.5+12 B.5-12C.5-1D.5+1 [答案] A[解析] 如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则F (-c,0),B (0,b ),A (a,0) ∴FB →=(c ,b ),AB →=(-a ,b ) 又∵FB →⊥AB →,∴FB →·AB →=b 2-ac =0 ∴c 2-a 2-ac =0 ∴e 2-e -1=0∴e =1+52或e =1-52(舍去),故应选A.8.六个面都是平行四边形的四棱柱称为平行六面体.如图甲,在平行四边形ABD 中,有AC 2+BD 2=2(AB 2+AD 2),那么在图乙中所示的平行六面体ABCD -A 1B 1C 1D 1中,AC 21+BD 21+CA 21+DB 21等于( )A .2(AB 2+AD 2+AA 21) B .3(AB 2+AD 2+AA 21) C .4(AB 2+AD 2+AA 21) D .4(AB 2+AD 2) [答案] C[解析] AC 21+BD 21+CA 21+DB 21 =(AC 21+CA 21)+(BD 21+DB 21) =2(AA 21+AC 2)+2(BB 21+BD 2) =4AA 21+2(AC 2+BD 2)=4AA 21+4AB 2+4AD 2,故应选C. 9.下列说法正确的是( )A .类比推理一定是从一般到一般的推理B .类比推理一定是从个别到个别的推理C .类比推理是从个别到个别或一般到一般的推理D .类比推理是从个别到一般的推理 [答案] C[解析] 由类比推理的定义可知:类比推理是从个别到个别或一般到一般的推理,故应选C. 10.下面类比推理中恰当的是( )A .若“a ·3=b ·3,则a =b ”类比推出“若a ·0=b ·0,则a =b ”B .“(a +b )c =ac +bc ”类比推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类比推出“a +bc =a c +bc(c ≠0)” D .“(ab )n=a n b n”类比推出“(a +b )n=a n+b n” [答案] C[解析] 结合实数的运算知C 是正确的. 二、填空题11.设f (x )=12x +2,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为________.[答案] 3 2[解析] 本题是“方法类比”.因等比数列前n 项和公式的推导方法是倒序相加,亦即首尾相加,那么经类比不难想到f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=[f (-5)+f (6)]+[f (-4)+f (5)]+…+[f (0)+f (1)],而当x 1+x 2=1时,有f (x 1)+f (x 2)==12=22,故所求答案为6×22=3 2.12.(2010·广州高二检测)若数列{a n }是等差数列,对于b n =1n(a 1+a 2+…+a n ),则数列{b n }也是等差数列.类比上述性质,若数列{c n }是各项都为正数的等比数列,对于d n >0,则d n =________时,数列{d n }也是等比数列.[答案]nc 1·c 2·…·c n13.在以原点为圆心,半径为r 的圆上有一点P (x 0,y 0),则过此点的圆的切线方程为x 0x +y 0y =r 2,而在椭圆x 2a 2+y 2b 2=1(a >b >0)中,当离心率e 趋近于0时,短半轴b 就趋近于长半轴a ,此时椭圆就趋近于圆.类比圆的面积公式,在椭圆中,S 椭=________.类比过圆上一点P (x 0,y 0)的圆的切线方程,则过椭圆x 2a 2+y 2b2=1(a >b >0)上一点P (x 1,y 1)的椭圆的切线方程为________.[答案] π·a ·b ;x 1a 2·x +y 1b2·y =1[解析] 当椭圆的离心率e 趋近于0时,椭圆趋近于圆,此时a ,b 都趋近于圆的半径r ,故由圆的面积S =πr 2=π·r ·r ,猜想椭圆面积S 椭=π·a ·b ,其严格证明可用定积分处理.而由切线方程x 0·x +y 0·y =r 2变形得x 0r 2·x +y 0r 2·y =1,则过椭圆上一点P (x 1,y 1)的椭圆的切线方程为x 1a 2·x +y 1b2·y =1,其严格证明可用导数求切线处理.14.在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,类比上述性质,相应地:在等比数列{b n }中,若b 9=1,则有等式__________成立.[答案] b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)[解析] 解法1:从分析所提供的性质入手:由a 10=0,可得a k +a 20-k =0,因而当n <19-n 时,有a 1+a 2+…+a 19-n =a 1+a 2+…+a n +a n +1+a n +2+…+a 19-n ,而a n +1+a n +2+…+a 19-n =(19-2n )(a n +1+a 19-n )2=0,∴等式成立.同理可得n >19-n 时的情形.由此可知:等差数列{a n }之所以有等式成立的性质,关键在于在等差数列中有性质:a n +1+a 19-n =2a 10=0,类似地,在等比数列{b n }中,也有性质:b n +1·b 17-n =b 29=1,因而得到答案:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).解法2:因为在等差数列中有“和”的性质a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,故在等比数列{b n }中,由b 9=1,可知应有“积”的性质b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)成立. (1)证明如下:当n <8时,等式(1)为b 1b 2…b n =b 1b 2…b n b n +1…b 17-n 即:b n +1·b n +2…b 17-n =1.(2) ∵b 9=1,∴b k +1·b 17-k =b 29=1. ∴b n +1b n +2…b 17-n =b 17-2n9=1.∴(2)式成立,即(1)式成立;当n =8时,(1)式即:b 9=1显然成立; 当8<n <17时,(1)式即:b 1b 2…b 17-n ·b 18-n ·…b n =b 1b 2…b 17-n即:b 18-n ·b 19-n …b n =1(3) ∵b 9=1,∴b 18-k ·b k =b 29=1 ∴b 18-n b 19-n ·…·b n =b 2n -179=1∴(3)式成立,即(1)式成立.综上可知,当等比数列{b n }满足b 9=1时,有:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)成立.三、解答题15.已知:等差数列{a n }的公差为d ,前n 项和为S n ,有如下的性质: (1)a n =a m +(n -m )·d .(2)若m +n =p +q ,其中,m 、n 、p 、q ∈N *,则a m +a n =a p +a q . (3)若m +n =2p ,m ,n ,p ∈N *,则a m +a n =2a p . (4)S n ,S 2n -S n ,S 3n -S 2n 构成等差数列. 类比上述性质,在等比数列{b n }中, 写出相类似的性质.[解析] 等比数列{b n }中,公比q ,前n 项和S n . (1)通项a n =a m ·qn -m.(2)若m +n =p +q ,其中m ,n ,p ,q ∈N *, 则a m ·a n =a p ·a q .(3)若m +n =2p ,其中,m ,n ,p ∈N *,则a 2p =a m ·a n .(4)S n ,S 2n -S n ,S 3n -S 2n 构成等比数列. 16.先解答(1),再根据结构类比解答(2).(1)已知a ,b 为实数,且|a |<1,|b |<1,求证:ab +1>a +b .(2)已知a ,b ,c 均为实数,且|a |<1,|b |<1,|c |<1,求证:abc +2>a +b +c . [解析] (1)ab +1-(a +b )=(a -1)(b -1)>0.(2)∵|a |<1,|b |<1,|c |<1,据(1)得(ab )·c +1>ab +c , ∴abc +2=[(ab )·c +1]+1>(ab +c )+1=(ab +1)+c >a +b +c . 你能再用归纳推理方法猜想出更一般地结论吗?[点评] (1)与(2)的条件与结论有着相同的结构,通过分析(1)的推证过程及结论的构成进行类比推广得出:(ab )·c +1>ab +c 是关键.用归纳推理可推出更一般的结论:a i 为实数,|a i |<1,i =1、2、…、n ,则有:a 1a 2…a n +(n -1)>a 1+a 2+…+a n .17.点P ⎝⎛⎭⎪⎫22,22在圆C :x 2+y 2=1上,经过点P 的圆的切线方程为22x +22y =1,又点Q (2,1)在圆C 外部,容易证明直线2x +y =1与圆相交,点R ⎝ ⎛⎭⎪⎫12,12在圆C 的内部.直线12x +12y =1与圆相离.类比上述结论,你能给出关于一点P (a ,b )与圆x 2+y 2=r 2的位置关系与相应直线与圆的位置关系的结论吗?[解析] 点P (a ,b )在⊙C :x 2+y 2=r 2上时,直线ax +by =r 2与⊙C 相切;点P 在⊙C 内时,直线ax +by =r 2与⊙C 相离;点P 在⊙C 外部时,直线ax +by =r 2与⊙C 相交.容易证明此结论是正确的.18.我们知道:12= 1, 22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, ……n 2=(n -1)2+2(n -1)+1,左右两边分别相加,得n 2=2×[1+2+3+…+(n -1)]+n∴1+2+3+…+n =n (n +1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解析] 我们记S 1(n )=1+2+3+…+n ,S 2(n )=12+22+32+…+n 2,…S k (n )=1k +2k +3k +…+n k (k ∈N *).已知13= 1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, ……n 3=(n -1)3+3(n -1)2+3(n -1)+1.将左右两边分别相加,得S 3(n )=[S 3(n )-n 3]+3[S 2(n )-n 2]+3[S 1(n )-n ]+n .由此知S 2(n )=n 3+3n 2+2n -3S 1(n )3=2n 3+3n 2+n6=n (n +1)(2n +1)6.。

2012新课标人教A版数学同步导学课件:1-1.2.2《组合与组合数公式》第1课时(选修2-3)

2012新课标人教A版数学同步导学课件:1-1.2.2《组合与组合数公式》第1课时(选修2-3)

4.(1)计算:C9996+C9997; (2)求C3n38-n+Cn+213n的值.
解析: (1)C9996+C9997=C993+C992 100×99×98 3 =C100 = 3×2×1 =161 700
19 21 ∴ ≤n≤ 2 2 ∵n∈N*,∴n=10 ∴C3n38-n+Cn+213n=C3028+C3130 30×29 1 =C30 +C31 = +31=466.
2.计算:(1)C85+C10098·C77; (2)C50+C51+C52+C53+C54+C55; (3)Cn+1n·Cnn-1.
解析: 8×7×6 100×99 2 (1)原式=C8 +C100 ×1= +
3
3×2×1
2×1
=56+4 950=5
006.
(2)原式=2(C50+C51+C52)=2(C61+C52)
[题后感悟] 判断一个问题是排列问题还是组合问题的关键 是正确区分事件有无顺序,区分有无顺序的方法是:把问题的 一个选择结果解出来,然后交换这个结果中任意两个元素的位 置,看是否产生新的变化.若有新变化,即说明有顺序,是排 列问题;若无新变化,即说明无顺序,是组合问题.
1.判断下列问题是排列问题,还是组合问题. (1)50个同学聚会,两两握手,共握手多少次? (2)从50个同学中选出正、副班长各一人,有多少种选法? (3)从50个人中选3个人去参加同一种劳动,有多少种不同的 选法? (4)从50个人中选3个人到三个学校参加毕业典礼,有多少种 选法?
解答本题主要是分清取出的这m个(2个或3个)是进行排列还 是组合,即确定是与顺序有关还是无关.
[解题过程]
(1)当取出3个数字后,如果改变三个数字的顺
序,会得到不同的三位数,此问题不但与取出元素有关,而且 与元素的安排顺序有关,是排列问题. (2)取出3个数字之后,无论怎样改变这三个数字之间的顺序, 其和均不变,此问题只与取出的元素有关,而与元素的安排顺 序无关,是组合问题. (3)2名学生完成的是同一件工作,没有顺序,是组合问题. (4)甲与乙通一次电话,也就是乙与甲通一次电话,无顺序 区别为组合问题. (5)发信人与收信人是有区别的,是排列问题.

【优化方案】2012高中数学 第2章2.4.2抛物线的简单几何性质课件 新人教A版选修2-1

【优化方案】2012高中数学 第2章2.4.2抛物线的简单几何性质课件 新人教A版选修2-1

直线OA和 斜率用 统一表示,利用k表示 斜率用k统一表示 表示A、 直线 和OB斜率用 统一表示,利用 表示 、 B两点坐标. 两点坐标. 两点坐标
【证明】 设 OA 所在直线的方程为 y=kx, 证明】 = , 1 则直线 OB 的方程为 y=-kx, =- ,
x= 22, = y=kx, x=0, = , = , k 由 2 解得 或 2 2x, y=0, y =2x, y=0, = y=k, 1 y=- x, =-k , 2 2 点的坐标为( 即 A 点的坐标为 2,k).同样由 . k 2 , y =2x,
课堂互动讲练
知能优化训练
课前自主学案
温故夯基
1.焦点为 .
p ,0的抛物线标准方程是 y2=2px F2 的抛物线标准方程是_______
p (p>0) , _____,准线方程为 y=- 的抛物线标准方程是 =- 2 x2=2py(p>0) . ____________. = - 2.抛物线定义的实质是 |MF|=dM-l ,其中点 F .抛物线定义的实质是___________, 是抛物线的_____, 是抛物线上的__________ d 是抛物线的 焦点 , M-l 是抛物线上的 点到准线的
已知抛物线的顶点在坐标原点, 变式训练 已知抛物线的顶点在坐标原点, 对称 B 轴为 x 轴, 且与圆 x2+y2=4 相交于 A、 两点, 、 两点, |AB|=2 3,求抛物线方程. = ,求抛物线方程.
解:由已知抛物线的焦点可能在x轴正半轴上, 由已知抛物线的焦点可能在 轴正半轴上, 轴正半轴上 也可能在负半轴上. 也可能在负半轴上. 故可设抛物线方程为y 故可设抛物线方程为 2=ax(a≠0). ≠ . 设抛物线与圆x 的交点为A(x 设抛物线与圆 2+y2=4的交点为 1,y1), 的交点为 , B(x2,y2). . 与圆x 都关于x轴 ∵抛物线y2=ax(a≠0)与圆 2+y2=4都关于 轴 抛物线 ≠ 与圆 都关于 对称, 关于x轴对称 对称,∴点A与B关于 轴对称, 与 关于 轴对称,

(人教A版)高中数学选修2-1(全册)同步练习汇总

(人教A版)高中数学选修2-1(全册)同步练习汇总

(人教A版)高中数学选修2-1(全册)同步练习汇总课堂效果落实1.下列语句中是命题的是()A.周期函数的和是周期函数吗B.sin45°=1C.x2+2x-1>0D.梯形是平面图形吗解析:A、D是疑问句, 不是命题, C不能判断真假, 故B为正确答案.答案:B2.[2014·大连高二检测]若M、N是两个集合, 则下列命题中真命题是()A.如果M⊆N, 那么M∩N=MB.如果M∩N=N, 那么M⊆NC.如果M⊆N, 那么M∪N=MD.如果M∪N=N, 那么N⊆M解析:用集合的定义理解.答案:A3.在下列4个命题中, 是真命题的序号为()①3≥3;②100或50是10的倍数;③有两个角是锐角的三角形是锐角三角形;④等腰三角形至少有两个内角相等.A.①B.①②C.①②③D.①②④解析:对于③, 举一反例, 若A=15°, B=15°, 则C为150°, 三角形为钝角三角形.答案:D4.[2014·辽宁高二检测]下列命题:①若xy=1, 则x、y互为倒数;②对角线垂直的平行四边形是正方形;③平行四边形是梯形;④若ac2>bc2, 则a>b.其中真命题的序号是________.解析:①④是真命题, ②四条边相等的四边形也可以是菱形, ③平行四边形不是梯形.答案:①④5.[2014·武汉高二测试]判断下列语句是不是命题, 如果是命题, 指出是真命题还是假命题.(1)任何负数都大于零;(2)△ABC与△A1B1C1是全等三角形;(3)x2+x>0;(4)∅A;(5)6是方程(x-5)(x-6)=0的解;(6)方程x2-2x+5=0无解.解:(1)负数都是小于零的, 因此“任何负数都大于零”是不正确的;它能构成命题, 而且这个命题是个假命题.(2)两个三角形为全等三角形是有条件的, 本题无法判定△ABC 与△A1B1C1是否为全等三角形, 所以它不是命题.(3)因为x是未知数, 无法判断x2+x是否大于零, 所以“x2+x>0”这一语句不是命题.(4)空集是任何非空集合的真子集, 集合A是不是非空集合我们无法判断, 所以无法判断“∅A”是否成立, 因此, 它不是命题.(5)6确实是所给方程的解, 所以它是命题, 且是真命题.(6)由于给定方程x2-2x+5=0, 我们就可以用其判别式来判断它是否有解.由Δ=4-4×5=-16<0知, 方程x2-2x+5=0无解, 是命题, 且是真命题.04课后课时精练一、选择题1.“红豆生南国, 春来发几枝?愿君多采撷, 此物最相思.”这是唐代诗人王维的《相思》诗, 在这4句诗中, 可作为命题的是()A. 红豆生南国B. 春来发几枝C. 愿君多采撷D. 此物最相思解析:“红豆生南国”是陈述句, 意思是“红豆生长在中国南方”, 这在唐代是事实, 故本语句是命题, 且是真命题;“春来发几枝”是疑问句, “愿君多采撷”是祈使句, “此物最相思”是感叹句, 都不是命题.答案:A2.[2013·安徽高考]在下列命题中, 不是..公理的是()A. 平行于同一个平面的两个平面相互平行B. 过不在同一条直线上的三点, 有且只有一个平面C. 如果一条直线上的两点在一个平面内, 那么这条直线上所有的点都在此平面内D. 如果两个不重合的平面有一个公共点, 那么它们有且只有一条过该点的公共直线解析:本题考查了立体几何中的公理与定理, 意在要考生注意回归课本, 明白最基本的公理与定理.注意公理是不用证明的, 定理是要求证明的.选项A是面面平行的性质定理, 是由公理推证出来的, 而公理是不需要证明的.答案:A3.下列命题中()①a·b=a·c且a≠0时, 必有b=c②如a∥b时, 必存在唯一实数λ使a=λb③a, b, c互不共线时, a-b必与c不共线④a与b共线且c与b也共线时, 则a与c必共线其中真命题的个数有()A. 0个B. 1个C. 2个D. 3个解析:对于①, 由a·b=a·c且a≠0, 得a·(b-c)=0, 未必有b=c;对于②, 若b=0时, 不成立;对于③, 如图△ABC中, E, F分别为AB, AC的中点,AB →=a , AC →=b , 则CB →=AB →-AC →.又因为EF →=12BC →.即c =-12(a -b ), 故③不正确.④若b =0时, a 与c 不一定共线, 故选A.答案:A4.[2014·辽宁高考]已知m , n 表示两条不同直线, α表示平面.下列说法正确的是( )A. 若m ∥α, n ∥α, 则m ∥nB. 若m ⊥α, n ⊂α, 则m ⊥nC. 若m ⊥α, m ⊥n , 则n ∥αD. 若m ∥α, m ⊥n , 则n ⊥α解析:本题主要考查空间线面位置关系的判断, 意在考查考生的逻辑推理能力.对于选项A, 若m ∥α, n ∥α, 则m 与n 可能相交、平行或异面, A 错误;显然选项B 正确;对于选项C, 若m ⊥α, m ⊥n , 则n ⊂α或n ∥α, C 错误;对于选项D, 若m ∥α, m ⊥n , 则n ∥α或n ⊂α或n 与α相交, D 错误.故选B.答案:B5.[2014·海南高二检测]设U为全集, 下列命题是真命题的有()①若A∩B=∅, 则(∁U A)∪(∁U B)=U;②若A∪B=U, 则(∁U A)∩(∁B)=∅;③若A∪B=∅, 则A=B=∅.UA.0个B.1个C.2个D.3个解析:由Venn图容易判断, ①②③均为真命题.答案:D6.设l1、l2表示两条直线, α表示平面.若有:①l1⊥l2;②l1⊥α;③l2⊂α, 则以其中两个为条件, 另一个为结论, 可以构造的所有命题中, 正确命题的个数为()A.0 B.1C.2 D.3解析:由题意得三个命题, 即②③⇒①、①③⇒②和①②⇒③.由②③⇒①正确, ①③⇒②错误, ①②⇒③错误, 故选B.答案:B二、填空题7.下列语句是命题的有________.①地球是太阳的一个行星;②数列是函数吗?③x, y都是无理数, 则x+y是无理数;④若直线l不在平面α内, 则直线l与平面α平行;⑤60x+9>4;⑥求证3是无理数.解析:根据命题的定义进行判断.因为②是疑问句, 所以②不是命题;因为⑤中自变量x的值不确定, 所以无法判断其真假;因为⑥是祈使句, 所以不是命题.故填①③④.答案:①③④8.命题“一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根”, 条件p:________________, 结论q:________________, 是________________(填“真”或“假”)命题.解析:根据命题的结构形式填空.答案:方程ax2+bx+c=0(a≠0)是一元二次方程此方程有两个不相等的实数根假9.把下列不完整的命题补充完整, 并使之成为真命题:若函数f(x)=log3x的图象与g(x)的图象关于原点对称, 则g(x)=________.解析:设g(x)上任意一点坐标为P(x, y), 则点P关于原点的对称点坐标为P1(-x, -y), 点P1在函数f(x)=log3x的图象上, 将对称点P1坐标直接代入f(x),即得:g(x)=-log3(-x).答案:-log3(-x)三、解答题10.判断下列语句是否为命题.(1)若a⊥b, 则a·b=0;(2)2是无限循环小数;(3)三角形的三条中线交于一点;(4)x2-4x+4≥0(x∈R);(5)非典型肺炎是怎样传染的?(6)2014年北京的高考题真难!答案:(1)是(2)是(3)是(4)是(5)不是(6)不是11.把下列命题写成“若p, 则q”的形式, 并判断其真假:(1)等腰三角形的两个底角相等.(2)当x=2或x=4时, x2-6x+8=0;(3)正方形是矩形又是菱形;(4)方程x 2-x +1=0有两个实数根.解:(1)若一个三角形是等腰三角形, 则两个底角相等, 真命题.(2)若x =2或x =4, 则x 2-6x +8=0, 真命题.(3)若一个四边形是正方形, 则它既是矩形, 又是菱形, 为真命题.(4)若一个方程为x 2-x +1=0, 则这个方程有两个实数根, 为假命题.12.[2014·南昌高二检测]已知命题p :|x 2-x |≥6, q :x ∈Z , 若p 假q 真, 求x 的值.解:因为p 假q 真, 所以可得⎩⎪⎨⎪⎧ |x 2-x |<6,x ∈Z , 所以⎩⎪⎨⎪⎧ x 2-x <6,x 2-x >-6,x ∈Z ,即⎩⎪⎨⎪⎧ -2<x <3,x ∈R ,x ∈Z ,故x 的值为-1,0,1,2.03课堂效果落实1.下列命题:①今天有人请假;②中国所有的江河都流入太平洋;③中国公民都有受教育的权力;④每一个中学生都要接受爱国主义教育;⑤有人既能写小说, 也能搞发明创造⑥任何一个数除0都等于0.其中是全称命题的有( )A.1个B.2个C.3个D.不少于4个解析:②、③、④、⑥都含有全称量词.答案:D2.下列全称命题中真命题的个数为()①末位是0的整数, 可以被2整除;②角平分线上的点到这个角的两边的距离相等;③正四面体中两侧面的夹角相等.A.1 B.2C.3 D.0解析:①②③均为全称命题且均为真命题, 故选C.答案:C3.[2014·温州高二检测]下列命题不是“存在x0∈R, x20>3”的表述方法的是()A.有一个x0∈R, 使得x20>3成立B.对有些x0∈R, 使得x20>3成立C.任选一个x∈R, 使得x2>3成立D.至少有一个x0∈R, 使得x20>3成立解析:C答案已经是全称命题了.答案:C4.命题“有些负数满足不等式(1+x)(1-9x2)>0”用“∃”写成特称命题为__________________.解析:“有些”即存在.答案:∃x0∈R, x0<0, (1+x0)(1-9x20)>05.判断下列命题是全称命题还是特称命题?并判断其真假.(1)存在一个实数, 使等式x2+x+8=0成立;(2)每个二次函数的图象都与x 轴相交;(3)若对所有的正实数, 不等式m ≤x +1x 都成立, 则m ≤2; (4)如果对任意的正整数n , 数列{a n }的前n 项和S n =an 2+bn (a , b 为常数), 那么数列{a n }为等差数列.解:(1)特称命题.∵x 2+x +8=(x +12)2+314>0,∴命题为假命题. (2)全称命题, 假命题.如存在y =x 2+x +1与x 轴不相交. (3)全称命题. ∵x 是正实数, ∴x +1x ≥2x ·1x =2(当且仅当x =1时“=”成立).即x +1x 的最小值是2, 而m ≤x +1x , 从而m ≤2. 所以这个全称命题是真命题. (4)全称命题.∵S n =an 2+bn , ∴a 1=a +b .当n ≥2时, a n =S n -S n -1=an 2+bn -a (n -1)2-b (n -1)=2na +b -a ,又n =1时, a 1=a +b 也满足上式, 所以a n =2an +b -a (n ∈N *).从而数列{a n }是等差数列, 即这个全称命题也是真命题.04课后课时精练一、选择题1.给出下列命题:①存在实数x0>1, 使x20>1;②全等的三角形必相似;③有些相似三角形全等;④至少有一个实数a, 使关于x的方程ax2-ax+1=0的根为负数.其中特称命题的个数是()A.1B.2C.3 D.4解析:只有②是全称命题.答案:C2.“存在集合A, 使∅A”, 对这个命题, 下面说法中正确的是()A.全称命题、真命题B.全称命题、假命题C.特称命题、真命题D.特称命题、假命题解析:当A≠∅时, ∅A, 是特称命题, 且为真命题.答案:C3.下列命题中是全称命题并且是真命题的是()A.每个二次函数的图象都开口向上B.对任意非正数c, 若a≤b+c, 则a≤bC.存在一条直线与两个相交平面都垂直D.存在一个实数x0使不等式x20-3x0+6<0成立解析:C、D是特称命题, A是假命题.答案:B4.特称命题“存在实数x0使x20+1<0”可写成()A.若x∈R, 则x2+1<0B.∀x∈R, x2+1<0C.∃x0∈R, x20+1<0D.以上都不正确解析:特称命题“存在一个x0∈R, 使p(x0)成立”简记为“∃x0∈R, 使p(x0)成立”.答案:C5.[2014·大连高二检测]下列命题中假命题的个数为()①∀x∈R,2x-1>0 ②∀x∈N*, (x-1)2>0③∃x0∈R, lg x0>1 ④∃x0∈R, tan x0=2⑤∃x0∈R, sin2x0+sin x0+1=0A.1 B.2C.3 D.4解析:本题考查全称命题和特称命题的真假判断.①中命题是全称命题, 易知2x-1>0恒成立, 故是真命题;②中命题是全称命题, 当x=1时, (x-1)2=0, 故是假命题;③中命题是特称命题, 当x=100时, lg x=2, 故是真命题;④中命题是特称命题, 依据正切函数定义, 可知是真命题.⑤(sin x0+12)2+34≥34>0成立, 可知为假命题.答案:B6.若对于∀x∈R, x2≥a+2|x|恒成立, 则实数a的取值范围是()A.a<-1 B.a≤-1C.a>-1 D.a≥-1解析:对于∀x∈R, x2≥a+2|x|恒成立,即a≤x2-2|x|恒成立.令f(x)=x2-2|x|, x∈R,则f(-x)=f(x).当x ≥0时, f (x )=x 2-2x =(x -1)2-1≥-1, 故a ≤-1. 答案:B 二、填空题7.“任意一个不大于0的数的立方不大于0”用“∃”或“∀”符号表示为__________________________.答案:∀x ≤0, x 3≤08.[2014·西安高二检测]若∃x ∈R , 使x +1x =m 成立, 则实数m 的取值范围是________.解析:依题意, 关于x 的方程x +1x =m 有实数解, 由基本不等式得x +1x ≥2或x +1x ≤-2, ∴m ≥2或m ≤-2. 答案:(-∞, -2]∪[2, +∞)9.下列命题中, 是全称命题或特称命题的是________. ①正方形的四条边相等;②所有有两个角是45°的三角形是等腰直角三角形;③正数的平方根不等于0;④至少有一个正整数是偶数;⑤所有正数都是实数吗?解析:④为特称命题, ①②③为全称命题, 而⑤不是命题. 答案:①②③④ 三、解答题10.判断下列命题是否是全称命题或特称命题, 若是, 用符号表示, 并判断其真假.(1)任何一个平行四边形的对边都平行; (2)存在一条直线, 其斜率不存在;(3)对所有的实数a , b , 方程ax +b =0都有唯一解;(4)存在实数x0, 使得1x20-x0+1=2.解:(1)是全称命题, 是真命题;(2)是特称命题, 用符号表示为“∃直线l, l的斜率不存在”, 是真命题;(3)是全称命题, 用符号表示为“∀a, b∈R, 方程ax+b=0都有唯一解”, 是假命题.(4)是特称命题, 用符号表示为“∃x0∈R,1x20-x0+1=2”, 是假命题.11. [2014·唐山高二检测]已知函数f(x)=x2-2x+5.(1)是否存在实数m, 使不等式m+f(x)>0对于任意x∈R恒成立?并说明理由;(2)若存在实数x, 使不等式m-f(x)>0成立, 求实数m的取值范围.解:(1)不等式m+f(x)>0可化为m>-f(x), 即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成立, 只需m>-4即可.故存在实数m使不等式m+f(x)>0对于任意x∈R恒成立, 此时m>-4.(2)不等式m-f(x)>0可化为m>f(x).若存在实数x使不等式m>f(x)成立, 只需m>f(x)min.又f(x)=(x-1)2+4, ∴f(x)min=4,∴m>4.故所求实数m的取值范围是(4, +∞).12.(1)若全称命题“任意x∈[-1, +∞), x2-2ax+2≥0恒成立”为真命题, 求a的取值范围;(2)若特称命题“存在x 0∈R , 使log 2(ax 20+x 0+2)<0”为真命题, 求a 的取值范围.解:(1)当x ∈[-1, +∞)时, x 2-2ax +2≥0恒成立, 等价于二次函数y =x 2-2ax +2的图象在x 轴的上方, 只需满足Δ<0或⎩⎪⎨⎪⎧Δ≥0,a ≤-1,f (-1)≥0,即4a 2-8<0或⎩⎪⎨⎪⎧4a 2-8≥0,a ≤-1,2a +3≥0,所以-2<a <2或-32≤a ≤-2,所以a 的取值范围是[-32, 2).(2)log 2(ax 20+x 0+2)<0⇔0<ax 20+x 0+2<1, 即存在x 0∈R , 使0<ax 2+x 0+2<1成立.当a =0时, -2<x 0<-1满足题意, 即存在实数x 0满足题意;当a ≠0时, ⎩⎪⎨⎪⎧ a >0,4a -1<0,或⎩⎪⎨⎪⎧a <0,8a -1<0,即0<a <14或a <0. 综上所述, a <14, 即所求a 的取值范围是(-∞, 14).03课堂效果落实1.命题“x =±1是方程|x |=1的解”中, 使用逻辑联结词的情况是( )A .没有使用逻辑联结词B .使用了逻辑联结词“或”C .使用了逻辑联结词“且”D .使用了逻辑联结词“或”与“且” 答案:B2.以下判断正确的是()A.命题p是真命题时, 命题“p∧q”一定是真命题B.命题“p∧q”为真命题时, 命题p一定是真命题C.命题“p∧q”为假命题时, 命题p一定是假命题D.命题p是假命题时, 命题“p∧q”不一定是假命题解析:若“p∧q”为真, 则p、q二者皆真, 若“p∧q”为假, 则p、q中至少有一个为假, 故选B.答案:B3.已知命题p:∅⊆{0}, q:{1}∈{1,2}.由它们构成的“p或q”“p 且q”形式的命题中真命题有________个.解析:p为真命题, q为假命题, “p或q”为真命题, “p且q”为假命题.答案:14.分别用“p∧q”“p∨q”填空.(1)命题“6是自然数且是偶数”是________形式.(2)命题“5小于或等于7”是________形式.(3)命题“正数或0的平方根是实数”是________形式.答案:(1)p∧q(2)p∨q(3)p∨q5.已知命题p:0不是自然数, q:π是无理数, 写出命题“p∨q”, “p∧q”, 并判断其真假.解:p∧q:0不是自然数且π是无理数.假命题;p∨q:0不是自然数或π是无理数.真命题.04课后课时精练一、选择题1.“xy ≠0”是指( )A .x ≠0且y ≠0B .x ≠0或y ≠0C .x , y 至少一个不为0D .x , y 不都是0解析:xy ≠0当且仅当x ≠0且y ≠0. 答案:A2.已知命题p :2+2=5, 命题q :3>2, 则下列判断正确的是( ) A .“p 或q ”为假 B .“p 或q ”为真C .“p 且q ”为真, “p 或q ”为假D .以上均不对解析:显然p 假q 真, 故“p 或q ”为真, “p 且q ”为假, 故选B.答案:B3.p :点P 在直线y =2x -3上, q :点P 在抛物线y =-x 2上, 则使“P ∧q ”为真命题的一个点P (x , y )是( )A .(0, -3)B .(1,2)C .(1, -1)D .(-1,1)解析:点P (x , y )满足⎩⎪⎨⎪⎧y =2x -3,y =-x 2.可验证各选项中, 只有C 正确. 答案:C4.下列命题中既是p ∧q 形式的命题, 又是真命题的是( ) A .10或15是5的倍数B .方程x 2-3x -4=0的两根是4和-1C .集合A 是A ∩B 的子集或是A ∪B 的子集D .有两个角为45°的三角形是等腰直角三角形解析:“有两个角是45°的三角形是等腰三角形, 而且是直角三角形”, 是“p且q”的形式且为真.答案:D5.若命题p:∃x∈R, x2+2x+5<0, 命题q;∀a, b∈R, a2+b2≥2ab, 则下列结论正确的是()A.“p∨q”为假B.“p∨q”为真C.“p∧q”为真D.以上都不对解析:p是假命题, q是真命题, 故p∨q为真.答案:B6.[2014·南宁高二检测]下列命题, 其中假命题的个数为()①5>4或4>5;②9≥3;③命题“若a>b, 则a+c>b+c”;④命题“菱形的两条对角线互相垂直”A.0个B.1个C.2个D.3个解析:①“5>4”为真, 故“5>4或4>5”为真命题;②“9≥3”表示为“9>3(真)或9=3”, 故“9≥3”为真命题;③若“a >b, 则a+c>b+c”也是真命题;④也是真命题.答案:A二、填空题7.若p:2是8的约数, q:2是12的约数.则“p∨q”为________;“p∧q”为________.(填具体的语句内容).答案:2是8的约数, 或者是12的约数'2既是8的约数, 又是12的约数8.[2014·郑州高二检测]已知p(x):x2+2x-m>0, 如果p(1)是假命题, p (2)是真命题, 则实数m 的取值范围是________.解析:∵p (1)是假命题, p (2)是真命题,∴⎩⎪⎨⎪⎧3-m ≤0,8-m >0,解得3≤m <8. 答案:[3,8)9.对于函数①f (x )=|x +2|;②f (x )=(x -2)2;③f (x )=cos(x -2).有命题p :f (x +2)是偶函数;命题q :f (x )在(-∞, 2)上是减函数, 在(2, +∞)上是增函数, 能使p ∧q 为真命题的所有函数的序号是________.解析:对于①, f (x +2)=|x +4|不是偶函数, 故p 为假命题.对于②, f (x +2)=x 2是偶函数, 则p 为真命题:f (x )=(x -2)2在(-∞, 2)上是减函数, 在(2, +∞)上是增函数, 则q 为真命题, 故“p ∧q ”为真命题.对于③, f (x )=cos(x -2)显然不是(2, +∞)上的增函数, 故q 为假命题.故填②.答案:② 三、解答题10.分别指出由下列各组命题构成的“p ∨q ”“p ∧q ”形式的复合命题的真假.(1)P :3>3 q :3=3; (2)p :∅{0} q :0∈∅;(3)p :A ⊆A q :A ∩A =A ;(4)p :函数y =x 2+3x +4的图象与x 轴有公共点; q :方程x 2+3x -4=0没有实根.解:(1)∵p 假q 真, ∴“p ∨q ”为真, “p ∧q ”为假; (2)∵p 真q 假, ∴“p ∨q ”为真, “p ∧q ”为假; (3)∵p 真q 真, ∴“p ∨q ”为真, “p ∧q ”为真;(4)∵p 假q 假, ∴“p ∨q ”为假, “p ∧q ”为假.11.[2014·沈阳高二检测]对命题p :“1是集合{x |x 2<a }中的元素”, q :“2是集合{x |x 2<a }中的元素”, 则a 为何值时, “p 或q ”是真命题?a 为何值时, “p 且q ”是真命题?解:由1是集合{x |x 2<a }中的元素, 可得a >1, 由2是集合{x |x 2<a }中的元素, 可得a >4, 即使得p , q 为真命题的a 的取值集合分别为P ={a |a >1}, T ={a |a >4}.当p , q 至少一个为真命题时, “p 或q ”为真命题, 则使“p 或q ”为真命题的a 的取值范围是P ∪T ={a |a >1};当p , q 都为真命题时, “p 且q ”才是真命题, 则使“p 且q ”为真命题的a 的取值范围是P ∩T ={a |a >4}.12.已知P :函数y =x 2+mx +1在(-1, +∞)上单调递增, q :函数y =4x 2+4(m -2)x +1大于零恒成立.若p 或q 为真, p 且q 为假, 求m 的取值范围.解:若函数y =x 2+mx +1在(-1, +∞)上单调递增, 则-m 2≤-1, ∴m ≥2, 即p :m ≥2;若函数y =4x 2+4(m -2)x +1恒大于零, 则Δ=16(m -2)2-16<0, 解得1<m <3, 即q :1<m <3.因为“p 或q ”为真, “p 且q ”为假, 所以p 、q 一真一假,当p 真q 假时, 由⎩⎪⎨⎪⎧m ≥2m ≥3或m ≤1, 得m ≥3,当p 假q 真时, 由⎩⎨⎧m <21<m <3, 得1<m <2.综上, m的取值范围是{m|m≥3或1<m<2}.03课堂效果落实1. [2014·福建高考]命题“∀x∈[0, +∞), x3+x≥0”的否定是()A. ∀x∈(-∞, 0), x3+x<0B. ∀x∈(-∞, 0), x3+x≥0C. ∃x0∈[0, +∞), x30+x0<0D. ∃x0∈[0, +∞), x30+x0≥0解析:本题考查含有量词的命题的否定, 意在考查考生的逻辑推理能力.把全称量词“∀”改为存在量词“∃”, 并把结论加以否定, 故选C.答案:C2.全称命题“所有能被5整除的整数都是奇数”的否定是() A.所有能被5整除的整数都不是奇数B.所有奇数都不能被5整除C.存在一个能被5整除的整数不是奇数D.存在一个奇数, 不能被5整除解析:全称命题的否定是特称命题, 而A, B是全称命题, 所以A, B错.因为“所有能被5整除的整数”的否定是“存在一个能被5整除的整数”, 所以D错, C正确, 故选C.答案:C3.如果命题“p或q”与命题“非p”都是真命题, 那么() A.命题p不一定是假命题B.命题q一定是真命题C .命题q 不一定是真命题D .p 与q 的真假相同解析:∵“非p ”为真命题, ∴p 为假命题.又∵p 或q 为真命题, ∴q 为真命题.故选B.答案:B4.若命题p :不等式ax +b >0的解集为{x |x >-b a }, 命题q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b }, 则“p ∧q ”“p ∨q ”“綈p ”形式的复合命题中的假命题的个数是________.解析:因命题p 、q 均为假命题, 所以“p ∨q ”“p ∧q ”为假命题, “綈p ”为真命题.答案:25.写出下列命题的否定, 并判断其真假:(1)三角形的内角和为180°;(2)∃x 0∈R , x 20+1=0;(3)∀x ∈R , x 2-3x +2=0.(4)至少有两个实数x 0, 使x 30+1=0.(5)∃x 0, y 0∈N , 如果x 0+|y 0|=0, 则x 0=0且y 0=0.解:(1)此命题为全称命题, 其否定为:存在一个三角形, 它的内角和不等于180°, 是假命题.(2)此命题为特称命题, 其否定为:∀x ∈R , x 2+1≠0, 是真命题.(3)此命题为全称命题, 其否定为:∃x 0∈R , x 20-3x 0+2≠0, 是真命题.(4)此命题为特称命题, 其否定为:至多有一个实数x 0, 使x 30+1≠0, 是假命题.(5)此命题为特称命题, 其否定为:∀x, y∈N, 如果x+|y|=0, 则x=0或y=0, 是假命题.04课后课时精练一、选择题1.“至多有三个”的否定为()A.至少有三个B.至少有四个C.有三个D.有四个解析:“至多有三个”包括“0个、1个、2个、3个”四种情况, 其反面为“4个、5个……”即至少四个.答案:B2.[2014·湖北高考]命题“∀x∈R, x2≠x”的否定是()A. ∀x∉R, x2≠xB. ∀x∈R, x2=xC. ∃x∉R, x2≠xD. ∃x∈R, x2=x解析:本题考查全称命题的否定, 意在考查考生对基本概念的掌握情况.全称命题的否定是特称命题:∃x∈R, x2=x, 选D.答案:D3.[2014·西安高二检测]如果命题“綈(p∨q)”为假命题, 则()A.p、q均为真命题B.p、q均为假命题C.p、q中至少有一个为真命题D.p、q中至多有一个为真命题解析:因为命题“綈(p∨q)”为假命题, 所以p∨q为真命题, 所以p、q一真一假或都是真命题.答案:C4.[2014·天津高考]已知命题p:∀x>0, 总有(x+1)e x>1, 则綈p 为()A. ∃x0≤0, 使得(x0+1)e x0≤1B. ∃x0>0, 使得(x0+1)e x0≤1C. ∀x>0, 总有(x+1)e x≤1D. ∀x≤0, 总有(x+1)e x≤1解析:命题p为全称命题, 所以綈p为∃x0>0, 使得(x0+1)e x0≤1.故选B.答案:B5.[2014·重庆高考]已知命题p:对任意x∈R, 总有|x|≥0;q:x =1是方程x+2=0的根.则下列命题为真命题的是()A. p∧綈qB. 綈p∧qC. 綈p∧綈qD. p∧q解析:由题意知, 命题p为真命题, 命题q为假命题, 故綈q为真命题, 所以p∧綈q为真命题.答案:A6.已知全集S=R, A⊆S, B⊆S, 若命题p:2∈(A∪B), 则命题“綈p”是()A. 2∉AB. 2∈∁S BC. 2∉A∩BD. 2∈(∁S A)∩(∁S B)解析:∵p=2∈(A∪B), ∴2∈A或2∈B,∴綈p:2∉A且2∉B, 即2∈∁S A∩∁S B.答案:D二、填空题7. 已知命题p:“∀x∈[1,2], x2-a≥0”, 命题q:“∃x0∈R, x20+2ax0+2-a=0”, 若命题“p且q”是真命题, 则实数a的取值范围是________.解析:命题p:“∀x∈[1,2], x2-a≥0”为真, 则a≤x2, x∈[1,2]恒成立, ∴a≤1;命题q:“∃x0∈R, x20+2ax0+2-a=0”为真, 则“4a2-4(2-a)≥0, 即a2+a-2≥0”, 解得a≤-2或a≥1.若命题“p且q”是真命题, 则实数a的取值范围是{a|a≤-2或a=1}.答案:{a|a≤-2或a=1}8. 已知命题p:∃x∈R, 使sin x=52;命题q:∀x∈R, 都有x2+x+1>0.给出下列结论:①命题“p∧q”是真命题;②命题“p∧綈q”是假命题;③命题“綈p∨q”是真命题;④命题“綈p∨綈q”是假命题, 其中正确的是________.解析:因为对任意实数x, |sin x|≤1, 而sin x=52>1, 所以p为假;因为x2+x+1=0的判别式Δ<0, 所以q为真.因而②③正确.答案:②③9.[2014·青岛高二检测]若命题“∃x0∈R, x20+(a-1)x0+1<0”是假命题, 则实数a的取值范围为________.解析:依题意可得“∀x∈R, x2+(a-1)x+1≥0”为真命题, 所以Δ=(a-1)2-4≤0, 所以-1≤a≤3.答案:[-1,3]三、解答题10.写出下列含有一个量词的命题p的否定綈p, 并判断它们的真假:(1)p:关于x的方程ax=b都有实数根;(2)p:有些正整数没有1和它本身以外的约数;(3)对任意实数x1, x2, 若x1<x2, 则tan x1<tan x2;(4)∃T0∈R, 使|sin(x+T0)|=|sin x|.解:(1)綈p:有些关于x的方程ax=b无实数根, 如0x=1, 所以p为假命题, 綈p为真命题.(2)綈p:任意正整数都有1和它本身以外的约数, 如2只有1和它本身这两个约数, 所以p为真命题, 綈p为假命题.(3)綈p:存在实数x1, x2, 若x1<x2, 则tan x1≥tan x2.原命题中若x1=0, x2=π, 有tan x1=tan x2, 故为假命题, 所以綈p 为真命题.(4)綈p:∀T∈R, 有|sin(x+T)|=|sin x|.原命题为真命题, 如T0=2kπ(k∈Z), 所以綈p为假命题.11.已知命题p:∀m∈[-1,1], 不等式a2-5a-3≥m2+8;命题q:∃x, 使不等式x2+ax+2<0.若p或q是真命题, 綈q是真命题, 求a的取值范围.解:根据p或q是真命题, 綈q是真命题, 得p是真命题, q是假命题.∵m ∈[-1,1], ∴m 2+8∈[22, 3].因为∀m ∈[-1,1], 不等式a 2-5a -3≥m 2+8,所以a 2-5a -3≥3, ∴a ≥6或a ≤-1.故命题p 为真命题时, a ≥6或a ≤-1.又命题q :∃x , 使不等式x 2+ax +2<0,∴Δ=a 2-8>0, ∴a >22或a <-22,从而命题q 为假命题时, -22≤a ≤22,所以命题p 为真命题, q 为假命题时, a 的取值范围为-22≤a ≤-1.12.[2014·衡水高二测试]已知命题p :“∀x ∈R , ∃m 0∈R 使4x +2x ·m 0+1=0”, 若命题綈p 是假命题, 求实数m 0的取值范围.解:该题可利用綈p 假, 则p 为真, 求原命题为真时m 0的取值范围.令t =2x >0, 则方程4x +2x ·m 0+1=0变为t 2+m 0·t +1=0有正解, 假设方程有两个正根t 1, t 2.∵t 1·t 2=1>0, t 1、t 2同号,∴t 1+t 2>0, 故有⎩⎪⎨⎪⎧Δ=m 20-4≥0,-m 0>0, 即⎩⎪⎨⎪⎧m 0≤-2或m 0≥2,m 0<0, ∴m 0≤-2, 即实数m 0的取值范围是(-∞, -2].03课堂效果落实1.[2014·长春高二检测]x >3的一个充分不必要条件是( )A. x >0B. x <0C. x>5D. x<5解析:x>5⇒x>3,x>3D⇒/x>5.答案:C2.“x2+(y-2)2=0”是“x(y-2)=0”的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件解析:x2+(y-2)2=0, 即x=0且y=2, ∴x(y-2)=0.反之, x(y-2)=0, 即x=0或y=2, x2+(y-2)2=0不一定成立.答案:B3.对任意实数a、b、c, 给出下列命题:①“x<-1”是“x2-1>0”的充分条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是()A.1B.2C.3 D.4解析:①中, x<-1⇒x2-1>0;x2-1>0D⇒/x<-1, 故①为真命题.②中, a与a+5同为无理数或同为有理数, 故②为真命题.③中, 显然a>bD⇒/a2>b2, 故③为假命题.④中, a<5D⇒/a<3, 而a<3⇒a<5, 故④为真命题.答案:C4.[2014·福州高二测试]若“x2-2x-8>0”是x<m的必要不充分条件, 则m的最大值为________.解析:不等式解集为(-∞, -2)∪(4, +∞), 题目等价于(-∞, m)是其真子集, 故有m≤-2, 即m的最大值为-2.答案:-25.设命题p:x>1或x<-3, q:5x-6>x2, 则綈p是綈q的什么条件?解:∵p:x>1或x<-3,∴綈p:-3≤x≤1.又∵q:5x-6>x2即2<x<3, ∴綈q:x≤2或x≥3,∴綈p⇒綈q, 但綈q⇒/綈p,∴綈p是綈q的充分不必要条件.04课后课时精练一、选择题1.[2013·福建高考]已知集合A={1, a}, B={1,2,3}, 则“a=3”是“A⊆B”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件解析:当a=3时, A={1,3}, A⊆B;反之, 当A⊆B时, a=2或3, 所以“a=3”是“A⊆B”的充分而不必要条件, 选A.答案:A2. [2014·湖北高考]设U为全集.A, B是集合, 则“存在集合C使得A⊆C, B⊆∁U C”是“A∩B=∅”的()A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件解析:由韦恩图易知充分性成立.反之, A ∩B =∅时, 不妨取C =∁U B , 此时A ⊆C .必要性成立.故选C.答案:C3. [2013·浙江高考]已知函数f (x )=A cos(ωx +φ)(A >0, ω>0, φ∈R ), 则“f (x )是奇函数”是“φ=π2”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件解析:f (x )是奇函数时, φ=π2+k π(k ∈Z );φ=π2时, f (x )=A cos(ωx +π2)=-A sin ωx , 为奇函数.所以“f (x )是奇函数”是“φ=π2”的必要不充分条件, 选B.答案:B4.已知不等式|x -m |<1成立的充分不必要条件是13<x <12, 则实数m 的取值范围是( )A. [-43, 12] B. [-12, 43] C. (-∞, -12)D. [43, +∞)解析:由题易知不等式|x -m |<1的解集为{m |m -1<x <m +1}, 从而有{m |m -1<x <m +1}(13, 12),∴⎩⎪⎨⎪⎧m +1≥12m -1<13或⎩⎪⎨⎪⎧m +1>12m -1≤13解得-12≤m ≤43, 故选B. 答案:B5.[2014·广东高考]在△ABC 中, 角A , B , C 所对应的边分别为a , b , c , 则“a ≤b ”是“sin A ≤sin B ”的( )A. 充分必要条件B. 充分非必要条件C. 必要非充分条件D. 非充分非必要条件解析:设R 为△ABC 外接圆的半径.由正弦定理可知, 若a ≤b , 则2R sin A ≤2R sin B ⇒sin A ≤sin B , 故“a ≤b ”是“sin A ≤sin B ”的充分条件;若sin A ≤sin B , 则a 2R ≤b 2R ⇒a ≤b , 故“a ≤b ”是“sin A ≤sin B ”的必要条件.综上所述, “a ≤b ”是“sin A ≤sin B ”的充要条件.故答案为A.答案:A6. [2014·唐山模拟]已知命题p :“a >b ”是“2a >2b ”的充要条件;q :∃x ∈R , |x +1|≤x , 则( )A .(綈p )∨q 为真命题B .p ∧(綈q )为假命题C .p ∧q 为真命题D .p ∨q 为真命题解析:由于函数y =2x 是单调递增函数, ∴a >b 时, 2a >2b , 反之2a >2b 时, a >b , 故p 是真命题, 而不存在实数x , 使|x +1|≤x , 故q 是假命题.∴p ∨q 为真命题.答案:D 二、填空题7. 下列不等式:①x<1;②0<x<1;③-1<x<0;④-2<x<1.其中, 可以为x2<1的一个充分条件的所有序号为________.解析:由于x2<1即-1<x<1, ①显然不能使-1<x<1一定成立, ②③满足题意.④中当x=-1.5时, x2显然大于1, ∴④不行.答案:②③8.设p、r都是q的充分条件, s是q的充分必要条件, t是s的必要条件, t是r的充分条件, 那么p是t的________条件, r是t的________条件.解析:由题意有:s⇔q⇐p⇓⇑t⇒r答案:充分不必要充要9.有以下四组命题:(1)p:(x-2)(x-3)=0, q:x-2=0;(2)p:同位角相等;q:两直线平行;(3)p:x<-3;q:x2>9;(4)p:0<a<1;q:y=a x为减函数.其中p是q的充分不必要条件的是_______, p是q的必要不充分条件是________, p是q的充要条件的是________.解析:(1)x-2=0⇒(x-2)(x-3)=0, 但(x-2)(x-3)=0D⇒/x-2=0, 所以p是q的必要不充分条件.(2)同位角相等⇔两直线平行, 所以p是q的充要条件,(3)x<-3⇒x2>9, 但x2>9D⇒/x<-3,所以p是q的充分不必要条件.(4)0<a<1⇔y=a x是减函数, 所以p是q的充要条件.答案:(3) (1) (2)(4) 三、解答题10.下列各题中, p 是q 的什么条件? (1)p :lg x 2=0, q :x =1;(2)p :b =c , q :a ·b =a ·c (a , b , c ≠0); (3)p :x ≥1且y ≥1, q :x +y ≥2; (4)p :x , y 不全为0, q :x +y ≠0.解:(1)当lg x 2=0时, x 2=1, 即x =±1, 则p ⇒/q , q ⇒p , 所以p 是q 的必要不充分条件.(2)易知p ⇒q .而a ·b =a ·c (a , b , c ≠0), 即a ·(b -c )=0, 可得b =c 或a ⊥(b -c ), 即q ⇒/p , 所以p 是q 的充分不必要条件.(3)∵p ⇒q , 而q ⇒/ p , ∴p 是q 的充分不必要条件.(4)綈p :x =0且y =0, 綈q :x +y =0, ∵綈p ⇒綈q , 而綈q ⇒/ 綈p , ∴p ⇐q 且p ⇒/ q , ∴p 是q 的必要不充分条件.11.[2014·江苏高二检测]已知集合A ={y |y =x 2-32x +1, x ∈[34, 2]}, B ={x |x +m 2≥1};命题p :x ∈A , 命题q :x ∈B , 并且命题p 是命题q 的充分条件, 求实数m 的取值范围.解:化简集合A ,由y =x 2-32x +1=(x -34)2+716,∵x ∈[34, 2], ∴y min =716, y max =2. ∴y ∈[716, 2], ∴A ={y |716≤y ≤2}. 化简集合B , 由x +m 2≥1, ∴x ≥1-m 2, B ={x |x ≥1-m 2}.∵命题p 是命题q 的充分条件, ∴A ⊆B . ∴1-m 2≤716, ∴m ≥34或m ≤-34.∴实数m 的取值范围是(-∞, -34]∪[34, +∞).12.证明:函数f (x )=a ·2x +a -22x +1(x ∈R )是奇函数的充要条件是a=1.证明:先证充分性:若a =1, 则函数化为f (x )=2x -12x +1.∵f (x )的定义域为R , 且f (-x )=2-x -12-x +1=12x -112x +1=1-2x 1+2x =-2x -12x+1=-f (x ).∴函数f (x )是奇函数.再证必要性:①若函数f (x )是奇函数, 则f (-x )=-f (x ). ∴a ·2-x +a -22-x +1=-a ·2x +a -22x +1,∴a +(a -2)·2x 2x +1=-a ·2x +a -22x +1,∴a +(a -2)·2x =-a ·2x -a +2, ∴2(a -1)(2x +1)=0, ∴a =1.综上所述:函数f (x )=a ·2x +a -22x +1(x ∈R )是奇函数的充要条件是a=1.03课堂效果落实。

人教A版高中数学选修2-1习题:1.2充分条件与必要条件(含答案)

人教A版高中数学选修2-1习题:1.2充分条件与必要条件(含答案)

1.2充分条件与必要条件A组1.“四边形是平行四边形”是“四边形是正方形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由“四边形是平行四边形”不一定得出“四边形是正方形”,但当“四边形是正方形”时必有“四边形是平行四边形”,故“四边形是平行四边形”是“四边形是正方形”的必要不充分条件.答案:B2.“x≤2或x≥5”是“x2-7x+10>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:x2-7x+10>0,解得x>5或x<2.∴“x≤2或x≥5”是“x2-7x+10>0”的必要不充分条件.故选B.答案:B3.“a=2”是“直线ax+2y=0平行于直线x+y=1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:若a=2,则ax+2y=0即为x+y=0与直线x+y=1平行,反之若ax+2y=0与x+y=1平行,则-=-1,a=2,故选C.答案:C4.给出下列3个结论:①x2>4是x3<-8的必要不充分条件;②在△ABC中,AB2+AC2=BC2是△ABC 为直角三角形的充要条件;③若a,b∈R,则“a2+b2≠0”是“a,b不全为0”的充要条件.其中正确的是()A.①②B.②③C.①③D.①②③解析:由x2>4可得x>2或x<-2,而由x3<-8可得x<-2,所以x2>4是x3<-8的必要不充分条件,①正确;在△ABC中,若AB2+AC2=BC2,则△ABC一定为直角三角形,反之不成立,AB2+AC2=BC2是△ABC为直角三角形的充分不必要条件,故②不正确;容易判断③正确.答案:C5.“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:当φ=π时,y=sin(2x+π)=-sin 2x,此时曲线过原点;而当曲线过原点时,φ=kπ,k∈Z.答案:A6.指数函数f(x)=(3-a)x是单调递增函数的充要条件是.解析:由指数函数的性质可得,要使该函数为增函数,只要3-a>1,即a<2.答案:a<27.已知a,b是两个命题,如果a是b的充分条件,那么¬a是¬b的条件.解析:由已知条件可知a⇒b,∴¬b⇒¬a.∴¬a是¬b的必要条件.答案:必要8.下面两个命题中,p是q的什么条件?(1)p:在△ABC中,角A,B,C的对边分别为a,b,c,b2>a2+c2,q:△ABC为钝角三角形;(2)a,b∈R,p:x>a2+b2,q:x>2ab.解(1)在△ABC中,因为b2>a2+c2,所以cos B=<0,所以B为钝角,即△ABC为钝角三角形.反之,若△ABC为钝角三角形,B可能为锐角,这时b2<a2+c2.所以p⇒q,q p,故p是q的充分不必要条件.(2)因为当a,b∈R时,有a2+b2≥2ab,所以p⇒q.反之,若x>2ab,则不一定有x>a2+b2,即p⇒q,q p,故p是q的充分不必要条件. 9.指出下列各组命题中,p是q的什么条件(用“充分不必要条件”“必要不充分条件”“充要条件”作答).(1)向量a=(x1,y1),b=(x2,y2),p:,q:a∥b;(2)p:|x|=|y|,q:x=-y;(3)p:直线l与平面α内两条平行直线垂直,q:直线l与平面α垂直;(4)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),p:f(x),g(x)均为偶函数,q:h(x)为偶函数.解(1)由向量平行公式可知p⇒q,但当b=0时,a∥b不能推出,即q p,故p是q的充分不必要条件.(2)因为|x|=|y|⇒x=±y,所以p q,但q⇒p,故p是q的必要不充分条件.(3)由线面垂直的判定定理可知:p q,但由线面垂直的定义可知:q⇒p,故p是q的必要不充分条件.(4)若f(x),g(x)均为偶函数,则h(-x)=f(-x)+g(-x)=f(x)+g(x)=h(x),所以p⇒q,但q p,故p是q的充分不必要条件.10.已知实数p:x2-4x-12≤0,q:(x-m)(x-m-1)≤0.(1)若m=2,则p是q的什么条件;(1)若q是p的充分不必要条件,求实数m的取值范围.解实数p:x2-4x-12≤0,解得-2≤x≤6,q:(x-m)(x-m-1)≤0,解得m≤x≤m+1,令A=[-2,6],B=[m,m+1],(1)若m=2,则B=[2,3],所以p是q的必要不充分条件;(2)若q是p的充分不必要条件,即B⫋A,则解得-2≤m≤5,∴m∈[-2,5].B组1.m=是直线x-y+m=0与圆x2+y2-2x-2=0相切的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由圆心(1,0)到直线x-y+m=0距离d=,得m=或m=-3,故选A.答案:A2.若向量a=(x,3)(x∈R),则“x=4”是“|a|=5”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若x=4,则a=(4,3),所以|a|==5;若|a|=5,则=5,所以x=±4,故“x=4”是“|a|=5”的充分不必要条件.答案:A3.以q为公比的等比数列{a n}中,a1>0,则“a1<a3”是“q>1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:在等比数列中,若a1<a3,则a1<a1q2.∵a1>0,∴q2>1,即q>1或q<-1.若q>1,则a1q2>a1,即a1<a3成立.∴“a1<a3”是“q>1”成立的必要不充分条件,故选B.答案:B4.设l,m,n均为直线,其中m,n在平面α内,则“l⊥α”是“l⊥m且l⊥n”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:因为l⊥α,m⊂α,n⊂α,所以l⊥m且l⊥n,故充分性成立;当l⊥m且l⊥n时,m,n⊂α,不一定有m与n相交,所以l⊥α不一定成立,故必要性不成立.答案:A5.“0≤m≤1”是“函数f(x)=cos x+m-1有零点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:令f(x)=cos x+m-1=0,得cos x=-m+1,若函数有零点,则-1≤-m+1≤1,解得0≤m≤2,因此“0≤m≤1”是“函数f(x)=cos x+m-1有零点”的充分不必要条件.答案:A6.在△ABC中,设命题p:,命题q:△ABC是等边三角形,那么命题p是命题q的条件.解析:由,得,因此b2=ac,a2=bc,c2=ab,可得a=b=c,故△ABC是等边三角形;反之,若△ABC是等边三角形,则一定有.故命题p是命题q的充要条件.答案:充要7.给出下列命题:①“a>b”是“a2>b2”的充分不必要条件;②“lg a=lg b”是“a=b”的必要不充分条件;③若x,y∈R,则“|x|=|y|”是“x2=y2”的充要条件;④在△ABC中,“sin A>sin B”是“A>B”的充要条件.其中真命题是.(写出所有真命题的序号)解析:∵a=-2,b=-3时,a>b,而a2<b2,∴a>b对a2>b2不具备充分性,故①错误;∵lg a=lg b⇒a=b,∴具备充分性,故②错误;∵|x|=|y|⇒x2=y2,x2=y2⇒|x|=|y|,∴“|x|=|y|”是“x2=y2”的充要条件,③正确;∵在△ABC中,(1)当A,B均为锐角或一个为锐角一个为直角时,sin A>sin B⇔A>B.(2)当A,B有一个为钝角时,假设B为钝角,∵A+B<π⇒A<π-B⇒sin A<sin B,与sin A>sin B矛盾,∴只能A为钝角.∴sin A>sin B⇒A>B;反过来A>B,A为钝角时,π-A>B⇒sin A>sin B,∴④正确.答案:③④8.已知数列{a n}的前n项和S n=p n+q(p≠0且p≠1),求证:数列{a n}为等比数列的充要条件为q=-1.证明充分性:当q=-1时,a1=p-1,当n≥2时,a n=S n-S n-1=(p-1),当n=1时也成立.于是=p(p≠0且p≠1),即数列{a n}为等比数列.必要性:当n=1时,a1=S1=p+q.当n≥2时,a n=S n-S n-1=p n-1(p-1),因为p≠0且p≠1,所以=p.因为{a n}为等比数列,所以=p,即=p,即p-1=p+q,故q=-1.综上所述,q=-1是数列{a n}为等比数列的充要条件.。

(人教A版)高中数学选修1-2(全册)课时同步练习汇总

(人教A版)高中数学选修1-2(全册)课时同步练习汇总

(人教A版)高中数学选修1-2(全册)课时同步练习汇总[课时作业][A组基础巩固]1.观察下列各式:72=49,73=343,74=2401,…,则72 015的末两位数字为()A.01B.43C.07 D.49解析:因为71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,所以这些数的末两位数字呈周期性出现,且周期T=4.又2 015=4×503+3,所以72 015的末两位数字与73的末两位数字相同,为43.答案:B2.下面几种推理是合情推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)·180°.A.①②B.①③C.①②④D.②④解析:①是类比推理;②是归纳推理;④是归纳推理.所以①、②、④是合情推理.答案:C3.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( ) A .a 1a 2a 3…a 9=29 B .a 1+a 2+…+a 9=29 C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:等比数列中积――→类比等差数列中的和 ∴a 1+a 2+…+a 9=2×9. 答案:D4.定义A *B ,B *C ,C *D ,D *B 依次对应4个图形:那么4个图表中,可以表示A *D ,A *C 的分别是( ) A .(1),(2)B .(1),(3)C .(2),(4)D .(1),(4)解析:由①②③④可归纳得出:符号“*”表示图形的叠加,字母A 代表竖线,字母B 代表大矩形,字母C 代表横线,字母D 代表小矩形,∴A *D 是(2),A *C 是(4). 答案:C5.n 个连续自然数按规律排列下表:根据规律,从2 015到2 017箭头的方向依次为( ) A .↓→ B .→↑ C .↑→D .→↓解析:观察特例的规律知:位置相同的数字都是以4为公差的等差数列,由可知从2015到2 017为→↓,故应选D. 答案:D6.把1,3,6,10,15,21,…这些数叫作三角形数,这是因为个数等于这些数目的点可以分别排成一个正三角形(如图),试求第七个三角形数是________.解析:观察知第n 个三角形数为1+2+3+…+n =n (n +1)2,∴第7个三角形数为7×(7+1)2=28.答案:287.在平面上,若两个正三角形的边长比为1∶2.则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18.答案:1∶88.设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=x x +2, f 2(x )=f (f 1(x ))=x3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________. 解析:根据题意知,分子都是x ,分母中的常数项依次是2,4,8,16,…可知f n (x )的分母中常数项为2n ,分母中x 的系数为2n -1,故f n (x )=x(2n -1)x +2n .答案:x(2n -1)x +2n9.在平面几何里,有勾股定理:“设△ABC 的两边AB ,AC 互相垂直,则AB 2+AC 2=BC 2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系, 给出正确结论.解析:由平面直角三角形类比空间三棱锥由边垂直――→类比侧面垂直.直角三角形的“直角边长、斜边长”类比“三棱锥的侧面积、底面积”,因此类比的结论是:“设三棱锥A -BCD 的三个侧面ABC 、ACD 、ABD 两两相互垂直,则S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD ”.10.已知数列{a n }的第1项a 1=1,且a n +1=a n1+a n (n =1,2,…),试归纳出这个数列的通项公式.解析:当n =1时,a 1=1 当n =2时,a 2=11+1=12; 当n =3时,a 3=121+12=13;当n =4时,a 4=131+13=14. 观察可得,数列的前4项都等于相应序号的倒数,由此猜想,这个数列的通项公式为:a n =1n(n =1,2,…). [B 组 能力提升]1.已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=a ,a 2=b ,设S n =a 1+a 2+…+a n ,则下列结论正确的是( ) A .a 100=-a ,S 100=2b -a B .a 100=-b ,S 100=2b -a C . a 100=-b ,S 100=b -a D .a 100=-a ,S 100=b -a解析:∵a 1=a ,a 2=b ,a 3=b -a ,a 4=-a ,a 5=-b ,a 6=a -b . 且a 7=a 6-a 5=a ,a 8=b ,…,∴数列{a n }具有周期性,周期为6,且S 6=0 则a 100=a 4=-a ,S 100=S 4=2b -a . 答案:A2.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是( )①各棱长相等,同一顶点上的任意两条棱的夹角相等; ②各个面是全等的正三角形,相邻的两个面所成的二面角相等; ③各个面是全等的正三角形,同一顶点上的任意两条棱的夹角相等; ④各棱长相等,相邻的两个面所成的二面角相等. A .①④ B .①② C .①③D .③④解析:类比推理的原则是:类比前后保持类比规则的一致性,而③④违背了这一原则,只有①②符合. 答案:B3.已知x >0,由不等式x +1x≥2x ·1x =2,x +4x 2=x 2+x 2+4x 2≥33x 2·x 2·4x 2=3,…我们可以得出推广结论:x +axn ≥n +1(n ∈N *),则a =________.解析:由观察可得:x +a x n =n x xx n n n ++个式子+axn ≥(n +1)·n +1x n ·x n ·…x n ·a x n =(n +1)·n +1a n n =n +1,则a =n n . 答案:n n4.已知经过计算和验证有下列正确的不等式:3+17<210,7.5+12.5<210,8+2+12-2<210,根据以上不等式的规律,请写出一个对正实数m ,n 都成立的条件不等式________.解析:观察所给不等式可以发现:不等式左边两个根式的被开方数的和等于20,不等式的右边都是210,因此对正实数m ,n 都成立的条件不等式是:若m ,n ∈R +,则当m +n =20时,有m +n <210.答案:若m ,n ∈R +,则当m +n =20时,有m +n <210 5.观察下列等式:①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两题的结构规律,你能否提出一个猜想? 并证明你的猜想.解析:由①②知,两角相差30°,运算结果为34,猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+sin α⎝⎛⎭⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.6.已知椭圆具有以下性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,若直线PM 、PN 的斜率都存在,并记为k PM 、k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出具有类似的性质,并加以证明.解析:类似的性质为:若M 、N 是双曲线x 2a 2-y 2b 2=1上关于原点对称的两个点,点P 是双曲线上任意一点,若直线PM 、PN 的斜率都存在,并记为k PM 、k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M 、P 的坐标为(m ,n )、(x ,y ),则 N (-m ,-n ).∵点M (m ,n )在已知双曲线上, ∴n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2. 则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).[课时作业] [A 组 基础巩固]1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数.以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:函数f (x )=sin(x 2+1)不是正弦函数,故小前提不正确. 答案:C2.已知△ABC 中,∠A =30°,∠B =60°,求证a <b .证明:∵∠A =30°,∠B =60°,∴∠A <∠B ,∴a <b ,画线部分是演绎推理的( ) A .大前提 B .小前提 C .结论D .三段论解析:结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提. 答案:B3.“因为四边形ABCD 是矩形,所以四边形ABCD 的对角线相等”,补充以上推理的大前提是( )A .正方形都是对角线相等的四边形B .矩形都是对角线相等的四边形C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形 答案:B4.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°B .某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人C .由三角形的性质,推测四面体的性质D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ≥2),由此归纳出a n 的通项公式 解析:B 、C 、D 是合情推理,A 为演绎推理. 答案:A5.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是( ) A .类比推理 B .归纳推理 C .演绎推理D .一次三段论解析:这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式. 答案:C6.下面几种推理:①两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°;②某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数超过50人; ③由平面三角形的性质,推测空间四面体的性质;④在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳出{a n }的通项公式其中是演绎推理的是________.解析:①是三段论,②④是归纳推理,③是类比推理. 答案:①7.若不等式ax 2+2ax +2<0的解集为空集,则实数a 的取值范围为________. 解析:①a =0时,有2<0,显然此不等式解集为∅.②a ≠0时需有⎩⎪⎨⎪⎧ a >0,Δ≤0,⇒⎩⎪⎨⎪⎧ a >0,4a 2-8a ≤0,⇒⎩⎪⎨⎪⎧a >0,0≤a ≤2,所以0<a ≤2.综上可知实数a 的取值范围是[0,2]. 答案:[0,2]8.求函数y =log 2x -2的定义域时,第一步推理中大前提是a 有意义时,a ≥0,小前提是log 2x -2有意义,结论是________.解析:由三段论方法知应为log2x-2≥0.答案:log2x-2≥09.如图所示,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,DE∥F A,求证:ED =AF.证明:同位角相等,两条直线平行,大前提∠BFD与∠A是同位角,且∠BFD=∠A,小前提所以DF∥EA.结论两组对边分别平行的四边形是平行四边形,大前提DE∥F A,且DF∥EA,小前提所以四边形AFDE为平行四边形.结论平行四边形的对边相等,大前提ED和AF为平行四边形的一组对边,小前提所以ED=AF.结论10.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)<0.对任意正数a,b,若a<b,求证:af(b)<bf(a).证明:构造函数F(x)=xf(x),则F′(x)=xf′(x)+f(x).由题设条件知F (x)=xf(x)在(0,+∞)上单调递减.若0<a<b,则F(a)>F(b),即af(a)>bf(b).又f(x)是定义在(0,+∞)上的非负可导函数,∴af(a)<bf(a),且bf(b)>af(b).所以bf(a)>af(b).[B组能力提升]1.设a >0,b >0,a +b ≥2ab ,大前提 x +1x≥2x ·1x,小前提 所以x +1x≥2.结论以上推理过程中的错误为( ) A .大前提 B .小前提 C .结论D .无错误解析:小前提中“x >0”条件不一定成立,不满足利用基本不等式的条件. 答案:B2.已知函数f (x )=|sin x |的图象与直线y =kx (k >0)有且仅有三个交点,交点的横坐标的最大值为α,令A =12sin2α,B =1+α24α,则( )A .A >B B .A <BC .A =BD .A 与B 的大小不确定解析:作y =kx 及f (x )=|sin x |的图象依题意,设y =kx 与y =f (x )相切于点M 设M (α,|sin α|),α∈(π,32π).由导数的几何意义,f ′(α)=|sin α|α,则-cos α=-sin αα,∴α=tan α. 由A =12sin 2α=sin 2α+cos 2α4sin αcos α=tan 2α+14tan α∴A =1+α24α=B .答案:C3.由“(a 2+a +1)x >3,得x >3a 2+a +1”的推理过程中,其大前提是________.解析:写成三段论的形式:不等式两边同除以一个正数,不等号方向不变大前提 (a 2+a +1)x >3,a 2+a +1>0小前提 x >3a 2+a +1结论 答案:不等式两边同除以一个正数,不等号方向不变.4.已知函数f (x )满足:f (1)=14,4f (x )f (y )=f (x +y )+f (x -y )(x ,y ∈R),则f (2 016)=________.解析:令y =1得4f (x )·f (1)=f (x +1)+f (x -1),即f (x )=f (x +1)+f (x -1)① 令x 取x +1则f (x +1)=f (x +2)+f (x )②由①②得f (x )=f (x +2)+f (x )+f (x -1),即f (x -1)=-f (x +2) ∴f (x )=-f (x +3), ∴f (x +3)=-f (x +6),∴f (x )=f (x +6),即f (x )周期为6, ∴f (2 016)=f (6×336+0)=f (0)对4f (x )f (y )=f (x +y )+f (x -y ),令x =1,y =0,得4f (1)f (0)=2f (1), ∴f (0)=12,即f (2 016)=12.答案:125.已知y =f (x )在(0,+∞)上有意义,单调递增,且满足f (2)=1,f (xy )=f (x )+f (y ), (1)求证:f (x 2)=2f (x ). (2)求f (1)的值.(3)若f (x )+f (x +3)≤2,求x 的取值范围. 证明:(1)∵f (xy )=f (x )+f (y ),x 、y ∈(0,+∞). ∴f (x 2)=f (x ·x )=f (x )+f (x )=2f (x ). (2)令x =1,则f (1)=2f (1)∴f (1)=0. (3)∵f (x )+f (x +3)=f [x (x +3)],且f (4)=2. 又f (x )在(0,+∞)上单调递增.所以⎩⎪⎨⎪⎧x >0,x +3>0,x (x +3)≤4,解得0<x ≤1.6.在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)证明数列{a n -n }是等比数列.(2)求数列{a n }的前n 项和S n .(3)证明不等式S n +1≤4S n ,对任意n ∈N *皆成立. 证明:(1)∵a n +1=4a n -3n +1 ∴a n +1-(n +1)=4a n -4n ,n ∈N *. 又a 1-1=1所以数列{a n -n }是首项为1,公比为4的等比数列. (2)由(1)可知,a n -n =4n -1,于是a n =4n -1+n 故S n =4n -13+n (n +1)2.(3)S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎡⎦⎤4n -13+n (n +1)2. =-12(3n 2+n -4)=-12(3n +4)(n -1)≤0,故S n +1≤4S n 对任意n ∈N *恒成立.[课时作业] [A 组 基础巩固]1.在证明命题“对于任意角θ,cos 4θ-sin 4θ=cos2θ”的过程:“cos 4θ-sin 4θ=(cos 2θ+sin 2θ)(cos 2θ-sin 2θ)=cos 2θ-sin 2θ=cos 2θ”中应用了( ) A .分析法 B .综合法C .分析法和综合法综合使用D .间接证法 答案:B2.已知函数f (x )=lg 1-x 1+x ,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1bD .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg(1-a 1+a )-1=-lg 1-a1+a =-f (a )=-b .答案:B3.分析法又叫执果索因法,若使用分析法证明:设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ,则证明的依据应是( ) A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0解析:b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔(a -c )·(2a +c )>0⇔(a -c )(a -b )>0. 答案:C4.在不等边△ABC 中,a 为最大边,要想得到 A 为钝角的结论,对三边a ,b ,c 应满足的条件,判断正确的是( ) A .a 2<b 2+c 2 B .a 2=b 2+c 2 C .a 2>b 2+c 2D .a 2≤b 2+c 2解析:要想得到A 为钝角,只需cos A <0,因为cos A =b 2+c 2-a 22bc ,所以只需b 2+c 2-a 2<0,即b 2+c 2<a 2. 答案:C5.设a =lg 2+lg 5,b =e x (x <0),则a 与b 大小关系为( ) A .a >b B .a <b C .a =bD .a ≤b解析:a =lg 2+lg 5=1,b =e x ,当x <0时,0<b <1. ∴a >b . 答案:A 6.已知sin x =55,x ∈(π2,3π2),则tan(x -π4)=________. 解析:∵sin x =55,x ∈(π2,3π2),∴cos x =- 45, ∴tan x =-12,∴tan(x -π4)=tan x -11+tan x =-3.答案:-37.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________. 解析:a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可. 答案:a ≥0,b ≥0且a ≠b8.设a >0,b >0,则下面两式的大小关系为lg(1+ab )________12[lg(1+a )+lg(1+b )].解析:∵(1+ab )2-(1+a )(1+b )=1+2ab +ab -1-a -b -ab =2ab -(a +b )=-(a -b )2≤0,∴(1+ab )2≤(1+a )(1+b ),∴lg(1+ab )≤12[lg(1+a )+lg(1+b )].答案:≤9.设a ,b 大于0,且a ≠b ,求证:a 3+b 3>a 2b +ab 2. 证明:要证a 3+b 3>a 2b +ab 2成立, 即需证(a +b )(a 2-ab +b 2)>ab (a +b )成立. 又因a +b >0,故只需证a 2-ab +b 2>ab 成立, 即需证a 2-2ab +b 2>0成立, 即需证(a -b )2>0成立.而依题设a ≠b ,则(a -b )2>0显然成立. 故原不等式a 3+b 3>a 2b +ab 2成立.10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f (x +12)为偶函数.证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称. ∴f (x +1)=f (-x ) ,则y =f (x )的图象关于x =12对称,∴-b 2a =12,∴a =-b .则f (x )=ax 2-ax +c =a (x -12)2+c -a4,∴f (x +12)=ax 2+c -a4为偶函数.[B 组 能力提升]1.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A .8B .4C .1D.14解析:3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1,因为a >0,b >0,所以ab ≤a +b 2=12⇒ab ≤14, 所以1a +1b =a +b ab =1ab ≥114=4.答案:B2.已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ⊥m ;④若l ∥m ,则α⊥β. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:若l ⊥α,m ⊂β,α∥β,则l ⊥β,所以l ⊥m ,①正确; 若l ⊥α,m ⊂β,l ⊥m ,α与β可能相交,②不正确; 若l ⊥α,m ⊂β,α⊥β,l 与m 可能平行或异面,③不正确; 若l ⊥α,m ⊂β,l ∥m ,则m ⊥α,所以α⊥β,④正确. 答案:B3.如图,在直四棱柱A 1B 1C 1D 1-ABCD (侧棱与底面垂直)中,当底面四边形ABCD 满足条件________时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 解析:要证明A 1C ⊥B 1D 1, 只需证明B 1D 1⊥平面A 1C 1C , 因为CC 1⊥B 1D 1,只要再有条件B 1D 1⊥A 1C 1,就可证明B 1D 1⊥平面A 1CC 1, 从而得B 1D 1⊥A 1C 1.答案:B 1D 1⊥A 1C 1(答案不唯一)4.如果不等式|x -a |<1成立的充分非必要条件是12<x <32,则实数a 的取值范围是________.解析:|x -a |<1⇔a -1<x <a +1,由题意知(12,32)⊆(a -1,a +1),则有⎩⎨⎧a -1≤12a +1≥32(且等号不同时成立),解得12≤a ≤32.答案:12≤a ≤325.在△ABC 中,三个内角A ,B ,C 对应的边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,求证:△ABC 为等边三角形. 证明:由A ,B ,C 成等差数列,有2B =A +C . ① 因为A ,B ,C 为△ABC 的内角,所以A +B +C =π. ② 由①②,得B =π3. ③由a ,b ,c 成等比数列,有b 2=ac . ④ 由余弦定理及③,可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac . 再由④,得a 2+c 2-ac =ac , 即(a -c )2=0,因此a =c , 从而有A =C . ⑤由②③⑤,得A =B =C =π3,所以△ABC 为等边三角形.6.设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.解析:(1)依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4.(2)当n ≥2时,2S n =na n +1-13n 3-n 2-23n ,2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),两式相减得2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23,整理得(n +1)a n =na n +1-n (n +1),即a n +1n +1-a n n=1,又a 22-a 11=1,故数列⎩⎨⎧⎭⎬⎫a n n 是首项为1,公差为1的等差数列,所以a nn =1+(n -1)×1=n ,所以a n =n 2.(3)证明:当n =1时,1a 1=1<74;当n =2时,1a 1+1a 2=1+14=54<74;当n ≥3时,1a n =1n 2<1(n -1)n =1n -1-1n,此时1a 1+1a 2+…+1a n =1+122+132+142+…+1n 2<1+14+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n =1+14+12-1n =74-1n <74. 综上,对一切正整数n ,有1a 1+1a 2+…+1a n <74.[课时作业] [A 组 基础巩固]1.用反证法证明:“自然数a ,b ,c 中恰有一个偶数”时正确的反设为( ) A .a ,b ,c 都是偶数 B .a ,b ,c 都是奇数 C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中都是奇数或至少有两个偶数解析:自然数a ,b ,c 的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a ,b ,c 中恰有一个偶数”时正确的反设为“a ,b ,c 中都是奇数或至少有两个偶数.” 答案:D2.实数a ,b ,c 满足a +2b +c =2,则( ) A .a ,b ,c 都是正数 B .a ,b ,c 都大于1 C .a ,b ,c 都小于2D .a ,b ,c 中至少有一个不小于12解析:假设a ,b ,c 中都小于12,则a +2b +c <12+2×12+12=2,与a +2b +c =2矛盾∴a ,b ,c 中至少有一个不小于12.答案:D3.(1)已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2,(2)已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1,以下结论正确的是( ) A .(1)与(2)的假设都错误 B .(1)与(2)的假设都正确 C .(1)的假设正确;(2)的假设错误 D .(1)的假设错误;(2)的假设正确解析:(1)的假设应为p +q >2;(2)的假设正确. 答案:D4.设a ,b ,c 大于0,则3个数:a +1b ,b +1c ,c +1a 的值( )A .都大于2B .至少有一个不大于2C .都小于2D .至少有一个不小于2解析:假设a +1b ,b +1c ,c +1a都小于2则a +1b <2,b +1c <2,c +1a <2∴a +1b +b +1c +c +1a <6,①又a ,b ,c 大于0所以a +1a ≥2,b +1b ≥2,c +1c ≥2.∴a +1b +b +1c +c +1a ≥6.②故①与②式矛盾,假设不成立所以a +1b ,b +1c ,c +1a 至少有一个不小于2.答案:D5.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,假设正确的是( ) A .假设三内角都不大于60° B .假设三内角都大于60° C .假设三内角至少有一个大于60° D .假设三内角至多有两个大于60°解析:三个内角至少有一个不大于60°,即有一个、两个或三个不大于60°,其反设为都大于60°. 答案:B6.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.解析:“至少有一个”的否定是“没有一个”. 答案:没有一个是三角形或四边形或五边形7.设a ,b 是两个实数,给出下列条件:①a +b =1;②a +b =2;③a +b >2;④a 2+b 2>2. 其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).解析:显然①、②不能推出,③中a +b >2能推出“a ,b 中至少有一个大于1”否则a ≤1,且b ≤1,则a +b ≤2与a +b >2矛盾.④中取a =-2,b =0,推不出. 答案:③8.用反证法证明质数有无限多个的过程如下:假设________.设全体质数为p 1,p 2,…,p n ,令p =p 1p 2…p n +1.显然,p 不含因数p 1,p 2,…,p n .故p 要么是质数,要么含有________的质因数.这表明,除质数p 1,p 2,…,p n 之外,还有质数,因此原假设不成立.于是,质数有无限多个. 解析:由反证法的步骤可得.答案:质数只有有限多个 除p 1,p 2,…,p n 之外9.用反证法证明:过已知直线a 外一点A 有且只有一条直线b 与已知直线a 平行. 证明:由两条直线平行的定义可知,过点A 至少有一条直线与直线a 平行. 假设过点A 还有一条直线b ′与已知直线a 平行,即b ∩b ′=A ,b ′∥a .因为b ∥a ,由平行公理知b ′∥b .这与假设b ∩b ′=A 矛盾,所以假设错误,原命题成立. 10.已知f (x )=a x +x -2x +1(a >1),证明方程f (x )=0没有负数根.证明:假设x 0是f (x )=0的负数根, 则x 0<0且x 0≠-1且ax 0=-x 0-2x 0+1,由0<ax 0<1⇒0<-x 0-2x 0+1<1,解之得12<x 0<2,这与x 0<0矛盾,所以假设不成立.故方程f (x )=0没有负实根.[B 组 能力提升]1.已知直线a ,b 为异面直线,直线c 平行于直线a ,那么c 与b 的位置关系为( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线D .不可能是相交直线解析:假设c ∥b ,而由c ∥a ,可得a ∥b ,这与a ,b 异面矛盾,故c 与b 不可能是平行直线. 答案:C2.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为________. 解析:“a 、b 全为0”即是“a =0且b =0”,因此它的反设为“a ≠0或b ≠0”. 答案:a ,b 不全为03.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数),且a >b ,那么两个数列中序号与数值均相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,∴不存在n 使a n =b n . 答案:04.已知a ,b ,c ∈(0,1).求证:(1-a )b ,(1-b )c ,(1-c )a 不能都大于14,证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14.因为0<a <1,0<b <1,所以1-a >0.由基本不等式(1-a )+b 2≥(1-a )b >12同理(1-b )+c 2>12,(1-c )+a 2>12以上三个不等式相加(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32,即32>32. 这是不可能的.故(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.5.设{a n },{b n }是公比不相等的两个等比数列,c n =a n +b n .证明数列{c n }不是等比数列. 证明:假设数列{c n }是等比数列,则 (a n +b n )2=(a n -1+b n -1)(a n +1+b n +1).①因为{a n },{b n }是公比不相等的两个等比数列,设公比分别为p ,q ,所以a 2n =a n -1a n +1,b 2n =b n -1b n +1.代入①并整理,得 2a n b n =a n +1b n -1+a n -1b n +1 =a n b n ⎝⎛⎭⎫p q +q p , 即2=p q +q p.②当p ,q 异号时,p q +qp <0,与②相矛盾;当p ,q 同号时,由于p ≠q , 所以p q +qp >2,与②相矛盾.故数列{c n }不是等比数列.章末检测时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三句话按“三段论”模式排列顺序正确的是( ) ①y =cos x (x ∈R)是三角函数; ②三角函数是周期函数; ③y =cos x (x ∈R)是周期函数. A .①②③B .③②①C.②③①D.②①③解析:显然②是大前提,①是小前提,③是结论.答案:D2.用反证法证明命题“2+3是无理数”时,假设正确的是()A.假设2是有理数B.假设3是有理数C.假设2或3是有理数D.假设2+3是有理数解析:假设应为“2+3不是无理数”,即“2+3是有理数”.答案:D3.下列推理过程属于演绎推理的为()A.老鼠、猴子与人在身体结构上有相似之处,某医药先在猴子身上试验,试验成功后再用于人体试验B.由1=12,1+3=22,1+3+5=32……得出1+3+5+…+(2n-1)=n2C.由三角形的三条中线交于一点联想到四面体四条中线(四面体每一个顶点与对面重心的连线)交于一点D.通项公式形如a n=cq n(cq≠0)的数列{a n}为等比数列,则数列{-2n}为等比数列解析:A是类比推理,B是归纳推理,C是类比推理,D为演绎推理.答案:D4.求证:3+7<2 5.证明:因为3+7和25都是正数,所以为了证明3+7<25,只需证明(3+7)2<(25)2,展开得10+221<20,即21<5,只需证明21<25.因为21<25成立,所以不等式3+7<25成立.上述证明过程应用了()A.综合法B.分析法C.综合法、分析法配合使用D.间接证法解析:结合证明特征可知,上述证明过程用了分析法,其属于直接证明法.答案:B5.四个小动物换座位,开始是猴、兔、猫、鼠分别坐在1,2,3,4号位置上,第1次前后排动物互换位置,第2次左右列互换座位,…,这样交替进行下去,那么第2 014次互换座位后,小兔的位置对应的是()开始第1次第2次第3次A.编号1 B.编号2C.编号3 D.编号4解析:由题意得第4次互换座位后,4个小动物又回到了原座位,即每经过4次互换座位后,小动物回到原座位,所以第2 012次互换座位后的结果与最初的位置相同,故小兔坐在第3号座位上.答案:C6.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为n=(1,-2)的直线(点法式)方程为:1×(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比以上方法,在空间直角坐标系中,经过点A(1,2,3),且法向量为m=(-1,-2,1)的平面的方程为()A.x+2y-z-2=0 B.x-2y-z-2=0C.x+2y+z-2=0 D.x+2y+z+2=0解析:所求的平面方程为-1×(x-1)+(-2)×(y-2)+1×(z-3)=0.化简得x+2y-z-2=0.答案:A7.用反证法证明命题“若a2+b2=0,则a,b全为0(a,b∈R)”,其反设正确的是() A.a,b至少有一个不为0B .a ,b 至少有一个为0C .a ,b 全不为0D .a ,b 中只有一个为0解析:“a ,b 全为0”的反设应为“a ,b 不全为0”,即“a ,b 至少有一个不为0”. 答案:A8.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +2解析:归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差是6的等差数列,通项公式为a n =6n +2. 答案:C9.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=( )A .2B .4 C.152D.172解析:在等比数列{a n }中,q =2≠1, 设首项为a 1≠0,则S 4=a 1(1-q 4)1-q =15a 1,又a 2=a 1q =2a 1, 故S 4a 2=15a 12a 1=152. 答案:C10.下列不等式中一定成立的是( ) A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0) B .sin x +1sin x ≥2(x ≠k π,k ∈Z)C .x 2+1≥2|x |(x ∈R) D.1x 2+1>1(x ∈R) 解析:A 项中,因为x 2+14≥x ,所以lg ⎝⎛⎭⎫x 2+14≥lg x ; B 项中sin x +1sin x≥2只有在sin x >0时才成立;C 项中由不等式a 2+b 2≥2ab 可知成立;D 项中因为x 2+1≥1,所以0<1x 2+1≤1.答案:C二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中的横线上)11.△ABC 中,若AB =AC ,P 是△ABC 内的一点,∠APB >∠APC ,求证:∠BAP <∠CAP ,用反证法证明时的假设为________.解析:反证法对结论的否定是全面否定,∠BAP <∠CAP 的对立面是∠BAP =∠CAP 或∠BAP >∠CAP .答案:∠BAP =∠CAP 或∠BAP >∠CAP 12.2+23=2 23, 3+38=3 38, 4+415=4 415……若 6+a b=6 a b(a ,b 均为实数),猜想,a =________,b =________.解析:由前面三个等式,推测归纳被平方数的整数与分数的关系,发现规律,由三个等式知,整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推测 6+ab中:a =6,b =62-1=35,即a =6,b =35. 答案:6 35 13.观察下列等式 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, ……照此规律,第n 个等式可为____________.解析:观察等号左边可知,左边的项数依次加1,故第n 个等式左边有n 项,每项所含的底数也增加1,依次为1,2,3,…,n ,指数都是2,符号正负交替出现,可以用(-1)n+1表示;等号的右边数的绝对值是左边项的底数的和,故等式的右边可以表示为(-1)n +1·n (n +1)2,所以第n 个式子可为:12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)214. 已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为________.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=1.答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=115.若定义在区间D 上的函数f (x )对于 D 上的n 个值x 1,x 2,…,x n ,总满足1n [f (x 1)+f (x 2)+…+f (x n )]≤f ⎝⎛⎭⎫x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数;现已知f (x )=sin x 在(0,π)上是凸函数,则△ABC 中,sin A +sin B +sin C 的最大值是________. 解析:因为f (x )=sin x 在(0,π)上是凸函数(小前提), 所以13(sin A +sin B +sin C )≤sin A +B +C 3(结论),即sin A +sin B +sin C ≤3sin π3=332.因此,sin A +sin B +sin C 的最大值是332.答案:332三、解答题(本大题共有6小题,共75分.解答时应写出文字说明、证明过程或运算步骤) 16.(12分)(2016·高考全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n . 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)解:由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132. 解得λ=-1.17.(12分)已知函数f (x )=xx +2(x >0).如下定义一列函数:f 1(x )=f (x ),f 2(x )=f (f 1(x )),f 3(x )=f (f 2(x )),…,f n (x )=f (f n -1(x )),…,n ∈N *,那么由归纳推理求函数f n (x )的解析式. 解析:依题意得,f 1(x )=xx +2,f 2(x )=x x +2x x +2+2=x 3x +4=x(22-1)x +22,f 3(x )=x 3x +4x 3x +4+2=x 7x +8=x (23-1)x +23,…,由此归纳可得f n(x )=x(2n -1)x +2n(x >0). 18.(12分)设函数f (x )=lg |x |,若0<a <b ,且f (a )>f (b ). 证明:0<ab <1. 证明:f (x )=lg |x |=⎩⎪⎨⎪⎧lg x ,(x ≥1),-lg x ,(0<x <1). ∵0<a <b ,f (a )>f (b ).∴a 、b 不能同时在区间[1,+∞)上, 又由于0<a <b ,故必有a ∈(0,1). 若b ∈(0,1),显然有0<ab <1; 若b ∈(1,+∞),由f (a )-f (b )>0, 有-lg a -lg b >0, ∴lg(ab )<0,∴0<ab <1.19.(12分)已知△ABC 的三边长分别为a ,b ,c ,且其中任意两边长均不相等,若1a ,1b ,1c 成等差数列. (1)比较b a与 cb的大小,并证明你的结论; (2)求证:角B 不可能是钝角. 解析:(1) b a< cb.证明如下: 要证b a< c b ,只需证b a <c b. ∵a ,b ,c >0,∴只需证b 2<ac . ∵1a ,1b ,1c 成等差数列, ∴2b =1a +1c≥2 1ac,∴b 2≤ac . 又a ,b ,c 均不相等,∴b 2<ac . 故所得大小关系正确.(2)证明:解法一:假设角B 是钝角,则cos B <0. 由余弦定理得,cos B =a 2+c 2-b 22ac ≥2ac -b 22ac >ac -b 22ac >0,这与cos B <0矛盾,故假设不成立. 所以角B 不可能是钝角.解法二:假设角B 是钝角,则角B 的对边b 为最大边,即b >a ,b >c ,所以1a >1b >0,1c >1b >0,则1a +1c >1b +1b =2b ,这与1a +1c =2b 矛盾,故假设不成立. 所以角B 不可能是钝角.20.(13分)(2016·高考全国卷Ⅲ)设函数f (x )=αcos 2x +(α-1)·(cos x +1),其中α>0,记|f (x )|的最大值为A . (1)求f ′(x ); (2)求A ;(3)证明|f ′(x )|≤2A .解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)解:当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0).故A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1. 令g (t )=2αt 2+(α-1)t -1, 则A 是|g (t )|在[-1,1]上的最大值, g (-1)=α,g (1)=3α-2, 且当t =1-α4α时,g (t )取得极小值,极小值为g ⎝⎛⎭⎫1-α4a =-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α>15.①当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|, 所以A =2-3α.②当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)>g ⎝⎛⎭⎫1-α4α.又⎪⎪⎪⎪g ⎝⎛⎭⎫1-α4α-|g (-1)|=(1-α)(1+7α)8α>0.所以A =⎪⎪⎪⎪g ⎝⎛⎭⎫1-α4α=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|. 当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1, 所以|f ′(x )|≤1+α<2A .当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A . 所以|f ′(x )|≤2A .21.(14分)设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列. (1)证明:a 2=4a 1+5;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12.解析:(1)证明:当n =1时,4a 1=a 22-5,a 22=4a 1+5,又a n >0,∴a 2=4a 1+5.(2)当n ≥2时,4S n -1=a 2n -4(n -1)-1,∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, 即a 2n +1=a 2n +4a n +4=(a n +2)2,又a n >0,∴a n +1=a n +2,∴当n ≥2时,{a n }是公差为2的等差数列. 又a 2,a 5,a 14成等比数列.∴a 25=a 2·a 14,即(a 2+6)2=a 2·(a 2+24),解得a 2=3. 由(1)知a 1=1.又a 2-a 1=3-1=2,∴数列{a n }是首项a 1=1,公差d =2的等差数列. ∴a n =2n -1.(3)证明:1a 1a 2+1a 2a 3+…+1a n a n +1=11×3+13×5+15×7+…+1(2n -1)(2n +1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1<12.[课时作业] [A 组 基础巩固]1.若复数2-b i(b ∈R)的实部与虚部互为相反数,则b 的值为( ) A .-2 B.23 C .-23D .2解析:2-b i 的实部为2,虚部为-b ,由题意知2=-(-b ),∴b =2. 答案:D2.设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:直接法.∵a +bi =a -b i 为纯虚数,∴必有a =0,b ≠0,而ab =0时有a =0或b =0,∴由a =0, b ≠0⇒ab =0,反之不成立.∴“ab =0”是“复数a +bi 为纯虚数”的必要不充分条件.答案:B3.已知复数z =1a -1+(a 2-1)i 是实数,则实数a 的值为( )A .1或-1B .1C .-1D .0或-1解析:因为复数z =1a -1+(a 2-1)i 是实数,且a 为实数,则⎩⎪⎨⎪⎧a 2-1=0,a -1≠0,解得a =-1.答案:C4.设a ,b 为实数,若复数1+2i =(a -b )+(a +b )i ,则( ) A .a =32,b =12B .a =3,b =1C .a =12,b =32D .a =1,b =3解析:由1+2i =(a -b )+(a +b )i 可得⎩⎪⎨⎪⎧a -b =1,a +b =2,解得a =32,b =12.答案:A5.已知集合M ={1,(m 2-3m -1)+(m 2-5m -6)i},N ={1,3},M ∩N ={1,3},则实数m 的为( ) A .4 B .-1 C .4或-1D .1或6解析:由题意⎩⎪⎨⎪⎧m 2-3m -1=3,m 2-5m -6=0,解得m =-1. 答案:B6.已知x 2-x -6x +1=(x 2-2x -3) i(x ∈R),则x =________.解析:∵x ∈R ,∴x 2-x -6x +1∈R ,。

高中数学 2.4.2第2课时课时同步练习 新人教A版选修2-1

高中数学 2.4.2第2课时课时同步练习 新人教A版选修2-1

第2章 2.4.2 第2课时一、选择题(每小题5分,共20分)1.过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线( )A.有且仅有一条B.有且仅有两条C.有无穷多条D.不存在解析:由定义|AB|=5+2=7,∵|AB|min=4,∴这样的直线有且仅有两条.答案: B2.在同一坐标系中,方程a2x2+b2y2=1与ax+by2=0(a>b>0)的曲线大致为( )解析:方法一:将方程a2x2+b2y2=1与ax+by2=0转化为x2 1 a2+y21b2=1,y2=-abx.因为a>b>0,所以1b>1a>0.所以椭圆的焦点在y轴上;抛物线的焦点在x轴上,且开口向左.故选D.方法二:方程ax+by2=0中,将y换成-y,其结果不变,即ax+by2=0的图形关于x轴对称,排除B、C,又椭圆的焦点在y轴上,排除A.故选D.答案: D3.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=( )A.13B.223C.23D.23解析:过A、B作抛物线准线l的垂线,垂足分别为A1、B1,由抛物线定义可知,AA 1=AF ,BB 1=BF ,又∵2|BF |=|AF |,∴|AA 1|=2|BB 1|,即B 为AC 的中点.从而y A =2y B ,联立方程组⎩⎪⎨⎪⎧ y =k x +2,y 2=8x⇒消去x 得y 2-8ky +16=0, ∴⎩⎪⎨⎪⎧ y A +y B =8k ,y A ·y B =16⇒⎩⎪⎨⎪⎧ 3y B =8k ,2y 2B =16,,消去y B 得k =223.故选B. 答案: B 4.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.3716 解析: ∵直线l 2:x =-1恰为抛物线y 2=4x 准线,∴P 到l 2的距离d 2=|PF |(F (1,0)为抛物线焦点),所以P 到l 1、l 2距离之和最小值为F 到l 1距离 |4×1-3×0+6|32+42=2,故选A. 答案: A二、填空题(每小题5分,共10分)5.已知直线x -y -1=0与抛物线y =ax 2相切,则a =________.解析: 由⎩⎪⎨⎪⎧ x -y -1=0y =ax 2,得ax 2-x +1=0, Δ=1-4a =0,得a =14.答案: 146.直线y =x +b 交抛物线y =12x 2于A 、B 两点,O 为抛物线的顶点,且OA ⊥OB ,则b 的值为________.解析: 由⎩⎪⎨⎪⎧ y =x +b y =12x 2,得x 2-2x -2b =0, Δ=(-2)2+8b >0,设直线与抛物线的两交点为A (x 1,y 1),B (x 2,y 2).由根与系数的关系,得x 1+x 2=2,x 1x 2=-2b ,于是y 1y 2=14(x 1x 2)2=b 2, 由OA ⊥OB 知x 1x 2+y 1y 2=0,故b 2-2b =0,解得b =2或b =0(不合题意,舍去). b =2适合Δ>0.答案: 2三、解答题(每小题10分,共20分)7.设过抛物线y 2=2px 的焦点且倾斜角为π4的直线交抛物线于A 、B 两点,若弦AB 的中垂线恰好过点Q (5,0),求抛物线的方程.解析: 弦AB 中点为M ,MQ 为AB 的中垂线,AB 的斜率为1,则l MQ :y =-x +5.设l AB :y =x -p2. 联立方程组⎩⎪⎨⎪⎧y =x -p 2,y 2=2px .得x 2-3px +p 24=0, ∴x 1+x 2=3p .① 联立方程组⎩⎪⎨⎪⎧ y =-x +5y =x -p 2, 得2x =5+p 2,则x 1+x 2=5+p2② 联立①②,解得p =2,∴抛物线方程为y 2=4x .8.已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由. 解析: (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1,∴p =2,故所求的抛物线方程为y 2=4x ,其准线方程为x =-1; (2)假设存在符合题意的直线l ,其方程为y =-2x +t ,由⎩⎪⎨⎪⎧ y 2=4x y =-2x +t 得y 2+2y -2t =0, 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0,解得t ≥-12. 另一方面,由直线OA 与直线l 的距离等于55可得|t |5=55, ∴t =±1, 由于-1∉⎣⎢⎡⎭⎪⎫-12,+∞,1∈⎣⎢⎡⎭⎪⎫-12,+∞, 所以符合题意的直线l 存在,其方程为y =-2x +1.尖子生题库☆☆☆9.(10分)已知抛物线C 1:y 2=4px (p >0),焦点为F 2,其准线与x 轴交于点F 1;椭圆C 2:分别以F 1、F 2为左、右焦点,其离心率e =12;且抛物线C 1和椭圆C 2的一个交点记为M .(1)当p =1时,求椭圆C 2的标准方程;(2)在(1)的条件下,若直线l 经过椭圆C 2的右焦点F 2,且与抛物线C 1相交于A ,B 两点,若弦长|AB |等于△MF 1F 2的周长,求直线l 的方程.解析: (1)x 24+y 23=1; (2)①若直线l 的斜率不存在,则l :x =1,且A (1,2),B (1,-2),∴|AB |=4又∵△MF 1F 2的周长等于|MF 1|+|MF 2|+|F 1F 2|=2a +2c =6≠|AB |.∴直线l 的斜率必存在.②设直线l 的斜率为k ,则l :y =k (x -1), 由⎩⎪⎨⎪⎧y 2=4x y =k x -1,得k 2x 2-(2k 2+4)x +k 2=0, ∵直线l 与抛物线C 1有两个交点A ,B , ∴Δ=[-(2k 2+4)]2-4k 4=16k 2+16>0,且k ≠0 设A (x 1,y 1),B (x 2,y 2), 则可得x 1+x 2=2k 2+4k2,x 1x 2=1 于是|AB |=1+k 2|x 1-x 2|=1+k 2[x 1+x 22-4x 1x 2] =1+k 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2+4k 22-4 =1+k 2⎝ ⎛⎭⎪⎫16k 2+16k 4=41+k 2k 2, ∵△MF 1F 2的周长等于|MF 1|+|MF 2|+|F 1F 2|=2a +2c =6,∴由41+k 2k 2=6,解得k =± 2.故所求直线l 的方程y =±2(x -1).。

人教a版高中数学选修2-1全册同步练习及单元检测含答案

人教a版高中数学选修2-1全册同步练习及单元检测含答案

⼈教a版⾼中数学选修2-1全册同步练习及单元检测含答案⼈教版⾼中数学选修2~1 全册章节同步检测试题⽬录1.1.1课时同步练习1.2课时同步练习1.3课时同步练习1.4.1、2课时同步练习1.4.3课时同步练习第1章单元过关试卷同步练习2.1.1课时同步练习2.1.2课时同步练习2.2.1课时同步练习2.2.2(第1课时)同步练习2.2.2(第2课时)同步练习2.3.1课时同步练习2.3.2(第1课时)同步练习2.3.2(第2课时)同步练习2.4.1课时同步练习2.4.2(第1课时)同步练习2.4.2(第2课时)同步练习第2章单元过关试卷同步练习3.1.1课时同步练习3.1.2课时同步练习3.1.3课时同步练习3.1.4课时同步练习3.1.5课时同步练习3.2第3课时同步练习3.2第4课时同步练习3.2(第1课时)同步练习3.2(第2课时)同步练习第3章单元过关试卷同步练习模块质量检测A卷同步练习模块质量检测B卷同步练习第1章 1.1.1⼀、选择题(每⼩题5分,共20分)1.下列语句中命题的个数是( )①-5∈Z;②π不是实数;③⼤边所对的⾓⼤于⼩边所对的⾓;④2是⽆理数.A.1 B.2C.3 D.4解析:①②③④都是命题.答案: D2.下列说法正确的是( )A.命题“直⾓相等”的条件和结论分别是“直⾓”和“相等”B.语句“最⾼⽓温30 ℃时我就开空调”不是命题C.命题“对⾓线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,⽅程x2-4x+a=0有实根”是假命题解析:对于A,改写成“若p,则q”的形式应为“若有两个⾓是直⾓,则这两个⾓相等”;B所给语句是命题;C的反例可以是“⽤边长为3的等边三⾓形与底边为3,腰为2的等腰三⾓形拼成的四边形不是菱形”来说明.故选D.答案: D3.下列语句中假命题的个数是( )①3是15的约数;②15能被5整除吗?③{x|x是正⽅形}是{x|x是平⾏四边形}的⼦集吗?④3⼩于2;⑤矩形的对⾓线相等;⑥9的平⽅根是3或-3;⑦2不是质数;⑧2既是⾃然数,也是偶数.A.2 B.3C.4 D.5解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.答案: A4.设m,n是两条不同的直线,α,β,γ是三个不同的平⾯,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中为真命题的是( )A.①②B.①③C.③④D.②④解析:显然①是正确的,结论选项可以排除C,D,然后在剩余的②③中选⼀个来判断,即可得出结果,①③为真命题.故选B.答案: B⼆、填空题(每⼩题5分,共10分)5.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ;②函数y =x 3在R 上既是奇函数⼜是增函数;③函数y =f (x )的图象与直线x =a ⾄多有⼀个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ?2x +π4的图象.其中正确命题的序号是________.解析:①∠A >∠B ?a >b ?sin A >sin B .②③易知正确.④将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin ?2x +π2的图象.答案:①②③6.命题“⼀元⼆次⽅程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.答案:⼀元⼆次⽅程ax 2+bx +c =0(a ≠0) 此⽅程有两个不相等的实数根假三、解答题(每⼩题10分,共20分)7.指出下列命题的条件p 和结论q :(1)若x +y 是有理数,则x ,y 都是有理数;(2)如果⼀个函数的图象是⼀条直线,那么这个函数为⼀次函数.解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数.(2)条件p :⼀个函数的图象是⼀条直线,结论q :这个函数为⼀次函数.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0解析:命题p 是真命题,则x 2-2x -2≥1,∴x ≥3或x ≤-1,命题q 是假命题,则x ≤0或x ≥4.∴x ≥4或x ≤-1.尖⼦⽣题库☆☆☆9.(10分)(1)已知下列命题是真命题,求a 、b 满⾜的条件.⽅程ax 2+bx +1=0有解.(2)已知下列命题是假命题,若x 1ax 2,求a 满⾜的条件.解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时,⽅程有解x =-1b . 当a ≠0时,⽅程为⼀元⼆次⽅程,有解的条件为Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,⽅程ax 2+bx +1=0有解.(2)∵命题当x 1a x 2为假命题,∴应有当x 1即a x 2-x 1x 1x 2≤0. ∵x 1∴x 2-x 1>0,x 1x 2>0,∴a ≤0.第1章 1.2⼀、选择题(每⼩题5分,共20分)1.“|x |=|y |”是“x =y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: |x |=|y |?x =y 或x =-y ,但x =y ?|x |=|y |.故|x |=|y |是x =y 的必要不充分条件.答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成⽴的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当x =2k π+π4时,tan x =1,⽽tan x =1得x =k π+π4,所以“x =2k π+π4”是“tan x =1”成⽴的充分不必要条件.故选A. 答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分⽽不必要条件B .必要⽽不充分条件C .充分必要条件D .既不充分也不必要条件解析:∵x ≥2且y ≥2,∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;⽽x 2+y 2≥4不⼀定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成⽴,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分⼜不必要条件解析:由题意得:故D 是A 的必要不充分条件答案: B⼆、填空题(每⼩题5分,共10分)5.下列命题中是假命题的是________.(填序号)(1)x >2且y >3是x +y >5的充要条件(2)A ∩B ≠?是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形解析: (1)因x >2且y >3?x +y >5, x +y >5?/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件.(2)因A ∩B ≠??/ A B, A B ?A ∩B ≠?.故A ∩B ≠?是A B 的必要不充分条件.(3)因b 2-4ac <0?/ ax 2+bx +c <0的解集为R , ax 2+bx +c <0的解集为R ?a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件.(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形.答案: (1)(2)(3)6.设集合A =x |x x -1<0,B ={x |0x |x x -1<0={x |0∴“m ∈A ”是“m ∈B ”的充分不必要条件.答案:充分不必要三、解答题(每⼩题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围.解析: q 是p 的必要不充分条件,则p ?q 但q ?/p .∵p :12≤x ≤1,q :a ≤x ≤a +1. ∴a +1≥1且a ≤12,即0≤a ≤12.∴满⾜条件的a 的取值范围为0,12. 8.求证:0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.证明:充分性:∵0,∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0,则ax 2-ax +1-a >0对⼀切实数x 都成⽴.⽽当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴.必要性:∵ax 2-ax +1-a >0对⼀切实数x 都成⽴,∴a =0或 a >0,Δ=a 2-4a 1-a <0.解得0≤a <45. 故0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.尖⼦⽣题库☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析:先化简B ,B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件,所以A ?B ,从⽽有 a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3.或 a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.第1章 1.3⼀、选择题(每⼩题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( )A .p 为真命题,p 且q 为假命题B .p 为假命题,q 为假命题C .q 为假命题,p 或q 为真命题D .p 且q 为假命题,p 或q 为真命题解析:∵p 为真命题,q 为假命题,∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题;③命题“p ∨q ”是真命题;④命题“p ∨q ”是假命题.A .①③B .②④C .②③D .①④解析:∵綈p ∨綈q 是假命题∴綈(綈p ∨綈q )是真命题即p ∧q 是真命题答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题.若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件.答案: A4.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是() A .q 1,q 3 B .q 2,q 3C .q 1,q 4D .q 2,q 4解析:∵y =2x 在R 上为增函数,y =2-x =? ????12x在R 上为减函数,∴y =-2-x =-? ????12x在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q1:p1∨p2是真命题,因此排除B和D,q2:p1∧p2是假命题,q3:綈p1是假命题,(綈p1)∨p2是假命题,故q3是假命题,排除A.故选C.答案: C⼆、填空题(每⼩题5分,共10分)5.“a≥5且b≥3”的否定是____________;“a≥5或b≤3”的否定是____________.答案:a<5或b<3 a<5且b>36.在下列命题中:①不等式|x+2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A?A∪B.其中,真命题为________.解析:①此命题为“⾮p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的⼀个解,所以p是真命题,所以⾮p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“⾮p”的形式,其中p:A?A∪B.因为p为真命题,所以“⾮p”为假命题,故是假命题.所以填②.答案:②三、解答题(每⼩题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8?{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:⽅程x2-x+1=0有实根;(2)p :函数y =tan x 是周期函数;(3)p :??A ;(4)p :不等式x 2+3x +5<0的解集是?.解析:题号判断p 的真假綈p 的形式判断綈p 的真假 (1)假⽅程x 2-x +1=0⽆实数根真 (2)真函数y =tan x 不是周期函数假 (3)真 ? A 假 (4)真不等式x 2+3x +5<0的解集不是? 假尖⼦⽣题库☆☆☆9.(10分)设命题p :实数x 满⾜x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满⾜ x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0.⼜a >0,所以a当a =1时,1即p 为真命题时实数x 的取值范围是1由 x 2-x -6≤0,x 2+2x -8>0. 解得-2≤x ≤3,x <-4或x >2.即2所以q 为真时实数x 的取值范围是2若p ∧q 为真,则 1所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ?綈q 且綈q ?/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B .所以03,即1所以实数a 的取值范围是(1,2].第1章 1.4.1、2⼀、选择题(每⼩题5分,共20分)1.下列命题中的假命题是( )A .?x ∈R ,lg x =0B .?x ∈R ,tan x =1C .?x ∈R ,x 2>0D .?x ∈R,2x>0 解析: A 中当x =1时,lg x =0,是真命题.B 中当x =π4+k π时,tan x =1,是真命题. C 中当x =0时,x 2=0不⼤于0,是假命题.D 中?x ∈R,2x>0是真命题.答案: C2.下列命题中,真命题是( )A .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数D .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数解析:∵当m =0时,f (x )=x 2(x ∈R ).∴f (x )是偶函数⼜∵当m =1时,f (x )=x 2+x (x ∈R )∴f (x )既不是奇函数也不是偶函数.∴A 对,B 、C 、D 错.故选A.答案: A3.下列4个命题: p 1:?x ∈(0,+∞),? ????12xx ; p 2:?x ∈(0,1),log 12x >log 13x ;p 3:?x ∈(0,+∞),? ????12x >log 12x ; p 4:?x ∈? ????0,13,? ????12xx . 其中的真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4解析:对于命题p 1,当x ∈(0,+∞)时,总有? ????12x >? ??13x 成⽴.所以p 1是假命题,排除A 、B ;对于命题p 3,在平⾯直⾓坐标系中作出函数y =? ??12x 与函数 y =log 12x 的图象,可知在(0,+∞)上,函数y =? ????12x 的图象并不是始终在函数y =log 12x 图象的上⽅,所以p 3是假命题,排除C.故选D.答案: D4.若命题p :?x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( )A .a ≤-3或a >2B .a ≥2C .a >-2D .-2即(a +2)x 2+4x +a -1≥0恒成⽴,所以有: a +2>0,16-4a +2a -1≤0 a >-2,a 2+a -6≥0?a ≥2.答案: B⼆、填空题(每⼩题5分,共10分)5.命题“有些负数满⾜不等式(1+x )(1-9x )>0”⽤“?”或“?”可表述为________.答案: ?x 0<0,使(1+x 0)(1-9x 0)>06.已知命题p :?x 0∈R ,tan x 0=3;命题q :?x ∈R ,x 2-x +1>0,则命题“p 且q ”是________命题.(填“真”或“假”)解析:当x 0=π3时,tan x 0=3,∴命题p 为真命题; x 2-x +1=? ????x -122+34>0恒成⽴,∴命题q 为真命题,∴“p 且q ”为真命题.答案:真三、解答题(每⼩题10分,共20分)7.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假:(1)若a >0,且a ≠1,则对任意实数x ,a x>0.(2)对任意实数x 1,x 2,若x 1(3)?T0∈R,使|sin(x+T0)|=|sin x|.(4)?x0∈R,使x20+1<0.解析:(1)(2)是全称命题,(3)(4)是特称命题.(1)∵a x>0(a>0且a≠1)恒成⽴,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1但tan 0=tan π,∴命题(2)是假命题.(3)y=|sin x|是周期函数,π就是它的⼀个周期,∴命题(3)是真命题.(4)对任意x0∈R,x20+1>0.∴命题(4)是假命题.8.选择合适的量词(?、?),加在p(x)的前⾯,使其成为⼀个真命题:(1)x>2;(2)x2≥0;(3)x是偶数;(4)若x是⽆理数,则x2是⽆理数;(5)a2+b2=c2(这是含有三个变量的语句,则p(a,b,c)表⽰)解析:(1)?x∈R,x>2.(2)?x∈R,x2≥0;?x∈R,x2≥0都是真命题.(3)?x∈Z,x是偶数.(4)存在实数x,若x是⽆理数,则x2是⽆理数.(如42)(5)?a,b,c∈R,有a2+b2=c2.尖⼦⽣题库☆☆☆9.(10分)若?x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a 的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,⼆次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成⽴,即4m2+4am+1≥0恒成⽴.⼜4m2+4am+1≥0是⼀个关于m的⼆次不等式,恒成⽴的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].第1章 1.4.3⼀、选择题(每⼩题5分,共20分)1.命题:对任意x ∈R ,x 3-x 2+1≤0的否定是( )A .不存在x 0∈R ,x 30-x 20+1≤0B .存在x 0∈R ,x 30-x 20+1≥0C .存在x 0∈R ,x 30-x 20+1>0D .对任意x ∈R ,x 3-x 2+1>0解析:由全称命题的否定可知,命题的否定为“存在x 0∈R ,x 30-x 20+1>0”.故选C.答案: C2.命题p :?m 0∈R ,使⽅程x 2+m 0x +1=0有实数根,则“綈p ”形式的命题是( )A .?m 0∈R ,使得⽅程x 2+m 0x +1=0⽆实根B .对?m ∈R ,⽅程x 2+mx +1=0⽆实根C .对?m ∈R ,⽅程x 2+mx +1=0有实根D .⾄多有⼀个实数m ,使得⽅程x 2+mx +1=0有实根解析:由特称命题的否定可知,命题的否定为“对?m ∈R ,⽅程x 2+mx +1=0⽆实根”.故选B.答案: B3.“?x 0?M ,p (x 0)”的否定是( )A .?x ∈M ,綈p (x )B .?x ?M ,p (x )C .?x ?M ,綈p (x )D .?x ∈M ,p (x )答案: C 4.已知命题p :?x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1列结论:①命题“p ∧q ”是真命题;②命题“p ∧?q ”是假命题;③命题“?p ∨q ”是真命题;④命题“?p ∨?q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④解析:当x =π4时,tan x =1,∴命题p 为真命题.由x 2-3x +2<0得1∴p ∧q 为真,p ∧?q 为假,?p ∨q 为真,?p ∨?q 为假.答案: D⼆、填空题(每⼩题5分,共10分)5.命题p :?x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题綈p :________,它是________命题(填“真”或“假”).解析:∵x2+2x+5=(x+1)2+4≥0恒成⽴,所以命题p是假命题.答案:特称命题假?x∈R,x2+2x+5≥0真6.(1)命题“对任何x∈R,|x-2|+|x-4|>3”的否定是________.(2)命题“存在x∈R,使得x2+2x+5=0”的否定是________.答案:(1)?x0∈R,|x0-2|+|x0-4|≤3(2)?x∈R,x2+2x+5≠0三、解答题(每⼩题10分)7.写出下列命题的否定并判断其真假.(1)所有正⽅形都是矩形;(2)?α,β∈R,sin(α+β)≠sin α+sin β;(3)?θ0∈R,函数y=sin(2x+θ0)为偶函数;(4)正数的对数都是正数.解析:(1)命题的否定:有的正⽅形不是矩形,假命题.(2)命题的否定:?α,β∈R,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:?θ∈R,函数y=sin(2x+θ)不是偶函数,假命题.(4)命题的否定:存在⼀个正数,它的对数不是正数,真命题.8.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,并说明理由.(2)若存在⼀个实数x0,使不等式m-f(x0)>0成⽴,求实数m的取值范围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成⽴,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.尖⼦⽣题库☆☆☆9.(10分)写出下列各命题的否命题和命题的否定,并判断真假.(1)?a,b∈R,若a=b,则a2=ab;(2)若a·c=b·c,则a=b;(3)若b2=ac,则a,b,c是等⽐数列.。

【优化方案】2012高中数学 第2章2.2.2第一课时椭圆的简单几何性质课件 新人教A版选修2-1

【优化方案】2012高中数学 第2章2.2.2第一课时椭圆的简单几何性质课件 新人教A版选修2-1
2 2 2 2
求椭圆的离心率 求椭圆的离心率的常见思路:一是先求 , , 求椭圆的离心率的常见思路:一是先求a,c, 再计算e;二是依据条件中的关系,结合有关 再计算 ;二是依据条件中的关系, 知识和a、 、 的关系 构造关于e的方程 的关系, 的方程, 知识和 、b、c的关系,构造关于 的方程,再 求解.注意 的范围 的范围: 求解.注意e的范围:0<e<1.
互动探究1 互动探究
若本例中椭圆方程变为: 若本例中椭圆方程变为:“4x2+y2
=1”,试求解. ” 试求解.
y 2 x2 1 解:已知方程为 + =1,所以 a=1,b= ,c , = , = 1 1 2 4 = 3 1 1- = ,因此,椭圆的长轴的长和短轴的 因此, - 4 2
c 3 长分别为 = 长分别为 2a=2,2b=1,离心率 e=a= ,两个 = , = 2 焦点分别为 个顶点是
x2 . 2=1(a>b>0). b c 2 由已知得 e=a= ,2b=8 5, = = , 3 a 2- b 2 4 c ∴ 2= 2 = ,b2=80. 9 a a
2
∴a2=144. y y x x ∴所求椭圆的标准方程为 + =1 或 + 144 80 144 80 =1. y2 x2 (2) 设 椭 圆 方 程 为 2 + 2 = a b 1(a>b>0).如图所示,△A1FA2 为 .如图所示, 等腰直角三角形, OF 等腰直角三角形, 为斜边 A1A2 的中线(高 , 的中线 高),且|OF|=c,|A1A2|= = , = 2 2 2 2b,∴c=b=4,∴a =b +c =32,故所求椭圆 , , = = , x2 y 2 的方程为 + =1. 32 16
为直角三角形, 由 AF1 ⊥ AF2 知 △ AF1F2 为直角三角形 , 且 ∠ AF2F1=60°. 由椭圆定义, 由椭圆定义,知|AF1|+|AF2|=2a,|F1F2|=2c.则 + = , = 则 在 Rt△AF1F2 中,由∠AF2F1=60°得|AF2|=c, △ 得 = , |AF1|= 3c,所以|AF1|+|AF2|=2a=( 3+1)·c, ,所以 = + = = + , c 所以离心率 e=a= 3-1. = -

人教版A版高中数学选修2-1课后习题解答

人教版A版高中数学选修2-1课后习题解答

高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。

【优化方案】2012高中数学 第2章2.1.2求曲线的方程课件 新人教A版选修2-1

【优化方案】2012高中数学 第2章2.1.2求曲线的方程课件 新人教A版选修2-1

互动探究 1 → → OP·QF, 其他条件不变, 的方程. 其他条件不变, 求动点 P 的轨迹 C 的方程.
→ → 若本例中的等式关系改为QP 若本例中的等式关系改为 ·FP =
解:设点 P(x,y),则 Q(-1,y). , , - , . → → → → 由QP·FP=OP·QF, ,-y), 得(x+1,0)·(x-1,y)=(x,y)·(2,- , + - , = , ,- 2 2 2 2 ∴x -1=2x-y ,∴x +y -2x-1=0. = - - = 2 2 即轨迹 C 的方程为 x +y -2x-1=0. - =
定义法求曲线方程 如果所给几何条件正好符合所学过的已知曲 线的定义, 线的定义 , 则可直接利用这些已知曲线的方 程写出动点的轨迹方程. 程写出动点的轨迹方程. 例2 长为 的线段的两个端点分别在 轴 、 y 长为4的线段的两个端点分别在 的线段的两个端点分别在x轴 轴上滑动,求此线段的中点的轨迹方程. 轴上滑动,求此线段的中点的轨迹方程. 思路点拨】 【 思路点拨 】 利用直角三角形斜边的中线 等于斜边的一半, 求出中线长, 等于斜边的一半 , 求出中线长 , 再利用圆的 定义求中点的轨迹方程. 定义求中点的轨迹方程.
动点M在曲线 上移动, 和定 动点 在曲线x2+y2=1上移动,M和定 在曲线 上移动 连线的中点为P, 点的轨迹方程. 点B(3,0)连线的中点为 ,求P点的轨迹方程. 连线的中点为 点的轨迹方程
设M,P点坐标 → 由中点坐标公式列方程 , 点坐标
例3
【思路点拨】 思路点拨】
点坐标表示M点坐标 点坐标代入曲线x → 用P点坐标表示 点坐标 → 把M点坐标代入曲线 2+y2=1 点坐标表示 点坐标代入曲线 → 得P点的轨迹方程 点的轨迹方程

人教A版高中数学选修2-1课时练习-曲线与方程

人教A版高中数学选修2-1课时练习-曲线与方程

课时练习(六) 曲线与方程(建议用时:60分钟)一、选择题1.“曲线C 上的点的坐标都是方程f (x ,y )=0的解”是“曲线C 的方程是f (x ,y )=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件B [“曲线C 的方程是f (x ,y )=0”包括“曲线C 上的点的坐标都是方程f (x ,y )=0的解”和“以方程f (x ,y )=0的解为坐标的点都在曲线C 上”两个方面,所以“曲线C 上的点的坐标都是方程f (x ,y )=0的解”是“曲线C 的方程是f (x ,y )=0”的必要不充分条件,故选B .]2.如图所示,方程y =|x |x2表示的曲线是( )A B C DB[因为y =|x |x 2=⎩⎪⎨⎪⎧1x,x >0,-1x ,x <0,所以函数值恒为正,且在(-∞,0)上单调递增,在(0,+∞)上单调递减.故选B .]3.到坐标原点的距离是到x 轴距离2倍的点的轨迹方程是( ) A .y =±3x B .y =33x C .x 2-3y 2=1D .x 2-3y 2=0D [设点的坐标为(x ,y ),则x 2+y 2=2|y |,整理得x 2-3y 2=0.]4.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点M 的轨迹方程是( )A .y =2x 2B .y =8x 2C .2y =8x 2-1D .2y =8x 2+1C [设M (x ,y ),则P (2x,2y +1). ∵P 在曲线2x 2-y =0上, ∴2×(2x )2-(2y +1)=0, 即8x 2-2y -1=0, 即2y =8x 2-1,故选C .]5.设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A |=1,则P 点的轨迹方程为( )A .y 2=2xB .(x -1)2+y 2=4C .y 2=-2xD .(x -1)2+y 2=2D [如图,设P (x ,y ),圆心为M (1,0).连接MA ,则MA ⊥P A ,且|MA |=1,又∵|P A |=1, ∴|PM |=|MA |2+|P A |2 =2. 即|PM |2=2, ∴(x -1)2+y 2=2.] 二、填空题6.方程(x -1)2+y -2=0表示的是________. 点(1,2) [由题意知,⎩⎨⎧ x -1=0,y -2=0,即⎩⎨⎧x =1,y =2.所以方程(x -1)2+y -2=0表示点(1,2).]7.设命题甲:点P 的坐标适合方程f (x ,y )=0,命题乙:点P 在曲线C 上,命题丙:点Q 坐标不适合f (x ,y )=0,命题丁:点Q 不在曲线C 上,已知甲是乙的必要条件,但不是充分条件,那么丙是丁的________条件.充分不必要 [由甲是乙的必要不充分条件知,曲线C 是方程f (x ,y )=0的曲线的一部分,则丙⇒丁,但丁丙,因此丙是丁的充分不必要条件.]8.已知定点F (1,0),动点P 在y 轴上运动,点M 在x 轴上,且PM →·PF →=0,延长MP 到点N ,使得|PM →|=|PN →|,则点N 的轨迹方程是________.y 2=4x [由于|PM →|=|PN →|,则P 为MN 的中点.设N (x ,y ),则M (-x,0),P ⎝ ⎛⎭⎪⎫0,y 2,由PM →·PF →=0,得⎝ ⎛⎭⎪⎫-x ,-y 2·⎝ ⎛⎭⎪⎫1,-y 2=0,所以(-x )·1+⎝ ⎛⎭⎪⎫-y 2·⎝ ⎛⎭⎪⎫-y 2=0,则y 2=4x ,即点N 的轨迹方程是y 2=4x .]三、解答题9.已知方程x 2+4x -1=y .(1)判断点P (-1,-4),Q (-3,2)是否在此方程表示的曲线上; (2)若点M ⎝ ⎛⎭⎪⎫m 2,m -1在此方程表示的曲线上,求实数m 的值;(3)求该方程表示的曲线与曲线y =2x +7的交点的坐标.[解] (1)因为(-1)2+4×(-1)-1=-4,(-3)2+4×(-3)-1≠2,所以点P 坐标适合方程,点Q 坐标不适合方程,即点P 在曲线上,点Q 不在曲线上.(2)因为点M ⎝ ⎛⎭⎪⎫m 2,m -1在此方程表示的曲线上,所以⎝ ⎛⎭⎪⎫m 22+4×m 2-1=m -1,即m 2+4m =0,解得m =0或m =-4.(3)联立⎩⎨⎧x 2+4x -1=y ,y =2x +7,消去y ,得x 2+4x -1=2x +7,即x 2+2x -8=0,解得x 1=2,x 2=-4,于是y 1=11,y 2=-1,故两曲线的交点坐标为(2,11)和(-4,-1).10.设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程.[解] 法一:设弦的中点为P (x ,y ), 则另一端点为(2x,2y )在圆(x -1)2+y 2=1上,故(2x -1)2+4y 2=1, 即⎝ ⎛⎭⎪⎫x -122+y 2=14(0<x ≤1). 法二:如图所示,设所作弦的中点为P (x ,y ),连接CP ,则CP ⊥OP ,|OC |=1,OC 的中点M ⎝ ⎛⎭⎪⎫12,0,所以动点P 的轨迹是以点M 为圆心,以OC 为直径的圆, 故轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14.又因为点P 不能与点O 重合,所以0<x ≤1. 故所作弦的中点的轨迹方程为 ⎝ ⎛⎭⎪⎫x -122+y 2=14(0<x ≤1).1.方程x (x 2+y 2-1)=0和x 2+(x 2+y 2-1)2=0所表示的图形是( ) A .前后两者都是一条直线和一个圆 B .前后两者都是两个点C .前者是一条直线和一个圆,后者是两个点D .前者是两点,后者是一条直线和一个圆C [x (x 2+y 2-1)=0⇔x =0或x 2+y 2=1,表示直线x =0和圆x 2+y 2=1.x 2+(x 2+y 2-1)2=0⇔⎩⎨⎧ x =0x 2+y 2-1=0⇔⎩⎨⎧x =0y =±1,表示点(0,1),(0,-1).]2.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP →=2P A →,且OQ →·AB →=1,则点P 的轨迹方程是( )A .32x 2+3y 2=1(x >0,y >0)B .32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0) D .3x 2+32y 2=1(x >0,y >0)A [设A (a,0),B (0,b ),a >0,b >0.由BP →=2P A →,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q (-x ,y ),故由OQ →·AB →=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a ,b 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).]3.已知定长为6的线段,其端点A 、B 分别在x 轴、y 轴上移动,线段AB 的中点为M ,则点M 的轨迹方程为________.x 2+y 2=9 [作出图象如图所示,根据直角三角形的性质可知 |OM |=12|AB |=3.所以M 的轨迹是以原点O 为圆心,以3为半径的圆, 故点M 的轨迹方程为x 2+y 2=9.]4.一动点到y 轴距离比到点(2,0)的距离小2,则此动点的轨迹方程为________. y 2=8x (x ≥0)或y =0(x <0) [设动点P (x ,y ),则由条件,得(x -2)2+y 2=|x |+2,两边同时平方,得y 2=4x +4|x |,当x ≥0时,y 2=8x ;当x <0时,y =0,所以动点的轨迹方程为y 2=8x (x ≥0)或y =0(x <0).]5.过点P (2,4)作两条互相垂直的直线l 1、l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.[解]法一:如图,设点M的坐标为(x,y),∵M为线段AB的中点,∴A点的坐标为(2x,0),B点的坐标为(0,2y).∵l1⊥l2,且l1,l2过点P(2,4),∴P A⊥PB,即k P A·k PB=-1,而k P A=4-02-2x=21-x(x≠1),k PB=4-2y2-0=2-y1,∴21-x·2-y1=-1(x≠1),整理得x+2y-5=0(x≠1).∵当x=1时,A,B的坐标分别为(2,0),(0,4),∴线段AB的中点坐标是(1,2),它满足方程x+2y-5=0.综上所述,点M的轨迹方程是x+2y-5=0.法二:设点M的坐标为(x,y),则A,B两点的坐标分别是(2x,0),(0,2y),连接PM(如图).∵l1⊥l2,∴2|PM|=|AB|.而|PM|=(x-2)2+(y-4)2,|AB|=(2x)2+(2y)2,∴2(x-2)2+(y-4)2=4x2+4y2,化简得x+2y-5=0,即为所求的点M的轨迹方程.。

【同步测控 优化设计】高二人教A版数学选修2-1练习:2.4.1抛物线及其标准方程 Word版含答案[ 高考]

【同步测控 优化设计】高二人教A版数学选修2-1练习:2.4.1抛物线及其标准方程 Word版含答案[ 高考]

2.4.1抛物线及其标准方程A组1.抛物线y=-x2的焦点坐标为()A. B.C. D.解析:把y=-x2化为标准方程x2=-y,可知抛物线开口向下,且2p=1,故焦点坐标为.答案:D2.一个动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过定点()A.(0,2)B.(0,-2)C.(2,0)D.(4,0)解析:∵抛物线为y2=8x,∴准线方程为x=-2.由题意得,圆心到定点的距离与圆心到直线x+2=0的距离相等,∴根据抛物线定义得圆必过抛物线y2=8x的焦点(2,0).答案:C3.已知抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,则p的值为()A. B.1 C.2 D.4解析:由抛物线的标准方程,得准线方程为x=-.由x2+y2-6x-7=0,得(x-3)2+y2=16.∵准线与圆相切,∴3+=4,即p=2.答案:C4.点P为抛物线y2=2px上任一点,F为焦点,则以P为圆心,以|PF|为半径的圆与准线l()A.相交B.相切C.相离D.位置由F确定解析:由抛物线的定义可知点P到焦点F的距离等于到准线的距离,即圆心到准线的距离等于半径,故圆与准线相切.答案:B5.若抛物线y2=8x上一点P到其焦点F的距离为9,则点P的坐标为()A.(7,±)B.(14,±)C.(7,±2)D.(-7,±2)解析:设P(x0,y0),∵点P到其焦点的距离等于点P到其准线x=-2的距离,∴由|PF|=9,得x0+=9,即x0=9-2=7.∴y0=±2.故选C.答案:C6.抛物线y=ax2的准线方程是y=2,则a的值为.解析:将y=ax2化为x2=y.因为准线方程为y=2,所以抛物线开口向下,<0,且=2,所以a=-.答案:-7.若抛物线y2=-4x上一点A到焦点的距离等于5,则它到坐标原点的距离等于.解析:抛物线准线方程为x=1,点A到焦点的距离等于5,所以点A到准线距离也等于5,故点A 的横坐标为-4,从而纵坐标为±4,即A(-4,±4),所以点A到原点距离为4.答案:48.已知F为抛物线y2=ax(a>0)的焦点,点P在抛物线上,且其到y轴的距离与到点F的距离之比为1∶2,则||=.解析:由抛物线的定义,知点P到y轴的距离与其到准线的距离之比为1∶2,设点P(x,y).因为抛物线的准线为x=-,则x+=2x,x=,所以P.又F,所以||=.答案:9.已知抛物线的焦点在x轴上,抛物线上的点M(-3,m)到焦点的距离是5.(1)求抛物线方程和m的值;(2)求抛物线的焦点和准线方程.解:(1)∵点(-3,m)在y轴左侧,抛物线焦点在x轴上,∴抛物线开口向左.设方程为y2=-2px(p>0).∵点M到焦点的距离为5,∴3+=5,∴p=4.∴抛物线的方程为y2=-8x.把点M(-3,m)代入抛物线方程,得m2=24,∴m=±2.(2)抛物线的焦点为(-2,0),准线方程为x=2.10.已知抛物线的顶点在原点,它的准线过双曲线=1的一个焦点,且这条准线与双曲线的两个焦点的连线互相垂直,又抛物线与双曲线交于点,求抛物线和双曲线的方程.解:设抛物线的方程为y2=2px(p>0),根据点在抛物线上可得=2p·,解得p=2.故所求抛物线方程为y2=4x,抛物线的准线方程为x=-1.∵抛物线的准线过双曲线的一个焦点,∴c=1,即a2+b2=1.故双曲线方程为=1.∵点在双曲线上,∴=1,解得a2=或a2=9(舍去).同时b2=,故所求双曲线的方程为=1.B组1.已知动点M的坐标满足方程5=|3x+4y-12|,则动点M的轨迹是()A.椭圆B.双曲线C.抛物线D.以上都不对解析:方程5=|3x+4y-12|可化为,∴动点M到原点的距离与到直线3x+4y-12=0的距离相等.∴点M的轨迹是以原点为焦点,直线3x+4y-12=0为准线的抛物线.答案:C2.设O为坐标原点,F为抛物线y2=4x的焦点,A为抛物线上一点.若=-4,则点A的坐标为()A.(2,±2)B.(1,±2)C.(1,2)D.(2,2)解析:设点A,则.由=-4,得=-4,解得=4.此时点A的坐标为(1,2)或(1,-2).答案:B3.设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段F A的中点B在抛物线上,则点B到该抛物线准线的距离为.解析:如图,由已知,得点B的纵坐标为1,横坐标为,即B.将其代入y2=2px,得1=2p×,解得p=,故点B到准线的距离为p=.答案:4.已知平面上动点P到定点F(1,0)的距离比点P到y轴的距离大1,求动点P的轨迹方程.解:方法一:设点P的坐标为(x,y),则有=|x|+1.两边平方并化简,得y2=2x+2|x|.故y2=即点P的轨迹方程为y2=4x(x≥0)或y=0(x<0).方法二:由题意,动点P到定点F(1,0)的距离比到y轴的距离大1,由于点F(1,0)到y轴的距离为1,故当x<0时,直线y=0上的点符合条件;当x≥0时,原命题等价于点P到点F(1,0)与到直线x=-1的距离相等,故点P的轨迹是以F为焦点,x=-1为准线的抛物线,方程为y2=4x.故所求动点P的轨迹方程为y2=4x(x≥0)或y=0(x<0).5.一辆卡车高3 m,宽1.6 m,欲通过断面为抛物线形的隧道,如图.已知拱口AB的宽恰好是拱高CD的4倍,求能使卡车通过的拱宽a(m)的最小整数值.解:以拱顶为原点,拱高所在直线为y轴,建立直角坐标系,如图,设抛物线方程为x2=-2py(p>0),则点B的坐标为.因为点B在抛物线上,所以=-2p·,p=,所以抛物线方程为x2=-ay.将点E(0.8,y)代入抛物线方程,得y=-.所以点E到拱底AB的距离为-|y|=>3.解得a>12.21.因为a取整数,所以a的最小值为13.6.定长为3的线段AB的端点A,B在抛物线y2=x上移动,求AB中点到y轴距离的最小值,并求出此时AB中点的坐标.解:如图,F是抛物线y2=x的焦点,A,B两点到准线的垂线分别是AC,BD,过AB的中点M作准线的垂线MN,C,D,N为垂足,则|MN|=(|AC|+|BD|),由抛物线定义知|AC|=|AF|,|BD|=|BF|.∴|MN|=(|AF|+|BF|)≥|AB|=.设点M的横坐标为x,|MN|=x+,则x≥.当弦AB过点F时等号成立,此时,点M到y轴的最短距离为.设A(x1,y1),B(x2,y2),则x1+x2=2x.当x=时,y1·y2=-p2=-,∴(y1+y2)2=+2y1·y2=2x-=2.∴y1+y2=±,得y=±,即M.。

高中数学新人教A版选修2-1课件:第二章圆锥曲线与方程2.4.2抛物线的简单几何性质

高中数学新人教A版选修2-1课件:第二章圆锥曲线与方程2.4.2抛物线的简单几何性质
②有一个交点,
> 0.
即 A=0(直线与抛物线的对称轴平行,即相交);
≠ 0,
(2)直线与抛物线相切⇔有一个公共点,即
= 0.
≠ 0,
(3)直线与抛物线相离⇔没有公共点,即
< 0.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
变式训练2设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l
③当Δ<0时,即k>1时,l与C没有公共点,此时直线l与C相离.
综上所述,(1)当k=1或k=0时,直线l与C有一个公共点;
(2)当k<1,且k≠0时,直线l与C有两个公共点;
(3)当k>1时,直线l与C没有公共点.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
反思感悟方程思想解决直线与抛物线的位置关系
题,通过我们学过的数学知识进行求解.利用抛物线模型解决问题
时,关键是建立坐标系得到抛物线的标准方程,一般都是将抛物线
的顶点作为坐标原点,将对称轴作为x轴或y轴建立坐标系,其次要注
意抛物线上关键点的坐标,并善于运用抛物线的对称性进行求解.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
变式训练3如图是抛物线形拱桥,当水面到直线l时,拱顶离水面2
图形
对称轴
x轴
焦点
F
顶点
原点(0,0)
准线
x=-2
离心率
e=1
p
2
x轴
,0
p
开口方向 向右
p
F - ,0
2
p
y轴
F 0,
p
y轴

人教版A数学选修2-1:第二章2.4.2知能演练轻松闯关

人教版A数学选修2-1:第二章2.4.2知能演练轻松闯关

1.顶点在原点,对称轴为y 轴,顶点到准线的距离为4的抛物线方程是( )A .x 2=16yB .x 2=8yC .x 2=±8yD .x 2=±16y解析:选D.顶点在原点,对称轴为y 轴的抛物线方程有两个:x 2=-2py ,x 2=2py (p >0).由顶点到准线的距离为4知p =8,故所求抛物线方程为x 2=16y ,x 2=-16y .2.过抛物线y 2=8x 的焦点作倾斜角为45°的直线,则被抛物线截得的弦长为( )A .8B .16C .32D .64 解析:选B.由抛物线y 2=8x 的焦点为(2,0),得直线的方程为y =x -2,代入y 2=8x ,得(x-2)2=8x ,即x 2-12x +4=0,∴x 1+x 2=12,弦长=x 1+x 2+p =12+4=16.3.抛物线y 2=4x 的弦AB 垂直于x 轴,若|AB |=43,则焦点到弦AB 的距离为__________. 解析:不妨设A (x ,23),则(23)2=4x ,∴x =3,∴AB 的方程为x =3,抛物线的焦点为(1,0),∴焦点到弦AB 的距离为2.答案:24.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,则这样的直线有__________条. 解析:可知点(2,4)在抛物线y 2=8x 上,∴过点(2,4)与抛物线y 2=8x 只有一个公共点的直线有两条,一条是抛物线的切线,另一条与抛物线的对称轴平行.答案:2[A 级 基础达标]1.(2012·奉节调研)与直线2x -y +4=0平行的抛物线y =x 2的切线方程为( )A .2x -y +3=0B .2x -y -3=0C .2x -y +1=0D .2x -y -1=0解析:选D.设切线方程为2x -y +m =0,与y =x 2联立得x 2-2x -m =0,Δ=4+4m =0,m =-1,即切线方程为2x -y -1=0.2.设抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离的取值范围是( )A .(6,+∞)B .[6,+∞)C .(3,+∞)D .[3,+∞) 解析:选D.∵抛物线的焦点到顶点的距离为3,∴p 2=3,即p =6. 又抛物线上的点到准线的距离的最小值为p 2,∴抛物线上的点到准线的距离的取值范围为[3,+∞).3.抛物线y 2=12x 截直线y =2x +1所得弦长等于( ) A.15B .215 C.152D .15 解析:选A.令直线与抛物线交于点A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =2x +1 y 2=12x 得4x 2-8x +1=0, ∴x 1+x 2=2,x 1x 2=14, ∴|AB |=(1+22)(x 1-x 2)2=5[(x 1+x 2)2-4x 1x 2]=15.4.抛物线y 2=4x 上的点P 到焦点F 的距离是5,则P 点的坐标是________.解析:设P (x 0,y 0),则|PF |=x 0+1=5,∴x 0=4,∴y 20=16,∴y 0=±4.答案:(4,±4)5.已知抛物线C 的顶点为坐标原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P (2,2)为AB 的中点,则抛物线C 的方程为__________.解析:设抛物线C 的方程为y 2=ax (a ≠0),由方程组⎩⎪⎨⎪⎧y 2=ax y =x 得交点坐标为A (0,0),B (a ,a ),而点P (2,2)是AB 的中点,从而有a =4,故所求抛物线C 的方程为y 2=4x .答案:y 2=4x6.若抛物线y 2=2px (p >0)上一点P 到准线及对称轴的距离分别为10和6,求P 点横坐标及抛物线方程.解:设P (x ,y ),则∴⎩⎪⎨⎪⎧x =9 p =2或⎩⎪⎨⎪⎧x =1 p =18∴P 点横坐标为9或1, ∴抛物线方程为y 2=4x 或y 2=36x .[B 级 能力提升]7.以抛物线y 2=2px (p >0)的焦半径|PF |为直径的圆与y 轴的位置关系为( )A .相交B .相离C .相切D .不确定解析:选C.|PF |=x P +p 2,∴|PF |2=x P 2+p 4,即为PF 的中点到y 轴的距离.故该圆与y 轴相切. 8.等腰Rt △AOB 内接于抛物线y 2=2px (p >0).O 为抛物线的顶点,OA ⊥OB ,则△AOB 的面积是( )A .8p 2B .4p 2C .2p 2D .p 2解析:选B.∵抛物线的对称轴为x 轴,内接△AOB 是等腰直角三角形,∴由反射线的对称性知,直线AB 与抛物线的对称轴垂直,从而直线OA 与x 轴的夹角为45°.由方程组⎩⎪⎨⎪⎧y =x , y 2=2px ,得⎩⎪⎨⎪⎧x =0 y =0或⎩⎪⎨⎪⎧x =2p , y =2p . ∴A 、B 两点的坐标分别为(2p ,2p )和(2p ,-2p ),∴|AB |=4p ,S △AOB =12×4p ×2p =4p 2. 9.已知直线x -y -1=0与抛物线y =ax 2相切,则a =________.解析:由⎩⎪⎨⎪⎧x -y -1=0 y =ax 2,得ax 2-x +1=0, 由Δ=1-4a =0,得a =14. 答案:1410.已知抛物线的顶点在坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交于A 、B 两点,|AB |=23,求抛物线方程.解:由已知,抛物线的焦点可能在x 轴正半轴上,也可能在负半轴上.故可设抛物线方程为:y 2=ax (a ≠0).设抛物线与圆x 2+y 2=4的交点A (x 1,y 1),B (x 2,y 2).∵抛物线y 2=ax (a ≠0)与圆x 2+y 2=4都关于x 轴对称,所以点A 与B 关于x 轴对称,∴|y 1|=|y 2|且|y 1|+|y 2|=23,∴|y 1|=|y 2|=3,代入圆x 2+y 2=4得x 2+3=4,∴x =±1,∴A (±1,3)或A (±1,-3),代入抛物线方程,得:(3)2=±a ,∴a =±3.∴所求抛物线方程是:y 2=3x 或y 2=-3x .11.(创新题)某隧道横断面由抛物线拱顶与矩形三边组成,尺寸如图.某卡车在空车时能过此隧道,现载一集装箱,箱宽3米,车与箱共高4.5米,此车能否通过此隧道,说明理由.解:如图建立直角坐标系.设抛物线标准方程为x 2=-2py (p >0),则点(3,-3)在抛物线上,求得p =32,上拱抛物线方程为x 2=-3y ,箱宽3(米),故当x =1.5(米)时,y =-0.75(米),即B (1.5,-0.75),那么B 点到底的距离为5-0.75=4.25(米),而车与箱的高为4.5(米),故不能通过.。

【优化方案】2012高中数学 第2章2.1.1圆锥曲线与方程课件 新人教A版选修2-1

【优化方案】2012高中数学 第2章2.1.1圆锥曲线与方程课件 新人教A版选修2-1
理解曲线与方程的定义应注意 (1)定义中的第一条“曲线上点的坐标都是这个 方程的解”,阐明曲线上点的坐标没有不满足方 程的解的,也就是说曲线上所有的点都符合这个 条件而毫无例外(纯粹性). (2)定义中的第二条“以这个方程的解为坐标的 点都是曲线上的点”,阐明符合条件的所有点都 在曲线上而毫无遗漏(完备性).
(3)定义的实质是平面曲线上的点集和方程f(x, y)=0的解集{(x,y)|f(x,y)=0}之间的一一对 应关系.曲线和方程的这一对应关系,既可 以通过方程研究曲线的性质,又可以求出曲 线的方程.
例2 (1)方程(x+y-1) x-1=0 表示什么 曲线? (2)方程 2x2+y2-4x+2y+3=0 表示什么曲
线?Байду номын сангаас
【思路点拨】 判断方程表示什么曲线问题, 若给出的方程不易看出是什么曲线时,可对原 方程变形.
【解】 (1)由方程(x+y-1) x-1=0 可得
x-1≥0 x+y-1=0
知新益能
曲线的方程、方程的曲线
在直角坐标系中,如果某曲线C(看作点的集 合或适合某种条件的点的轨迹)上的点与一个 二元方程f(x,y)=0的实数解建立了如下的关 系: (1)曲线上点的坐标都___这__个__方__程__的__解______;
(2)以这个方程的解为坐标的点都是 __曲__线__上__的__点__._____ 那么,这个方程叫做___曲__线__的__方__程_____;这条 曲线叫做__方__程__的__曲__线__.___
(1)求第一、三象限两轴夹角平分线l上点的坐 标满足的关系;
(2)作出函数y=x2的图象,指出图象上的点与 方程y=x2的关系;
(3)说明过点A(2,0)平行于y轴的直线l与方程|x| =2之间的关系.

高中数学(人教版A版选修2-1)配套课时作业:第一章 常用逻辑用语 1.1.1 Word版含答案

高中数学(人教版A版选修2-1)配套课时作业:第一章 常用逻辑用语 1.1.1 Word版含答案

第一章常用逻辑用语§ 1.1命题及其关系1.1.1命题【课时目标】 1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 45°=1C.x2+2x-1>0D.梯形是不是平面图形呢?2.下列语句是命题的是()①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤3.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:①M的元素都不是P的元素;②M中有不属于P的元素;③M中有P的元素;④M中元素不都是P的元素.其中真命题的个数为()A.1 B.2 C.3 D.45.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数6.在空间中,下列命题正确的是()A.平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .二、填空题7.下列命题:①若xy =1,则x ,y 互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题的序号是________.8.命题“奇函数的图象关于原点对称”的条件p 是____________________,结论q 是_ _______________________________________________________________________.9.下列语句是命题的是________.①求证3是无理数;②x 2+4x +4≥0;③你是高一的学生吗?④一个正数不是素数就是合数;⑤若x ∈R ,则x 2+4x +7>0.三、解答题10.判断下列命题的真假:(1)已知a ,b ,c ,d ∈R ,若a ≠c ,b ≠d ,则a +b ≠c +d ;(2)对任意的x ∈N ,都有x 3>x 2成立;(3)若m >1,则方程x 2-2x +m =0无实数根;(4)存在一个三角形没有外接圆.11.把下列命题改写成“若p ,则q ”的形式,并判断真假.(1)偶数能被2整除.(2)当m >14时,mx 2-x +1=0无实根.12.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.【能力提升】13.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1; ③若l =12,则-22≤m ≤0. 其中正确命题的个数是( )A .0B .1C .2D .314.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数是( )A .1B .2C .3D .41.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题.2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.3.在判断命题的条件和结论时,可以先将命题改写成“若p 则q ”的形式,改法不一定唯一.课时作业答案解析第一章 常用逻辑用语§1.1 命题及其关系1.1.1 命题知识梳理1.真假 陈述句 真 假2.条件 结论作业设计1.B [A 、D 是疑问句,不是命题,C 中语句不能判断真假.]2.A [④中语句不能判断真假,⑤中语句为感叹句,不能作为命题.]3.D [A 中方程在实数范围内无解,故是假命题;B 中若x 2=1,则x =±1,故B 是假命题;因空集是任何非空集合的真子集,故C 是假命题;所以选D.]4.B [命题②④为真命题.]5.C [命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.]6.D7.①④解析 ①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形.8.若一个函数是奇函数 这个函数的图象关于原点对称9.②④⑤解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数12既不是素数也不是合数,②⑤是真命题,x 2+4x +4=(x +2)2≥0恒成立,x 2+4x +7=(x +2)2+3>0恒成立.10.解 (1)假命题.反例:1≠4,5≠2,而1+5=4+2.(2)假命题.反例:当x =0时,x 3>x 2不成立.(3)真命题.∵m >1⇒Δ=4-4m <0,∴方程x 2-2x +m =0无实数根.(4)假命题.因为不共线的三点确定一个圆. 11.解 (1)若一个数是偶数,则这个数能被2整除,真命题.(2)若m >14,则mx 2-x +1=0无实数根,真命题. 12.解 若命题p 为真命题,则根据绝对值的几何意义可知m ≤1;若命题q 为真命题,则7-3m >1,即m <2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真,即⎩⎪⎨⎪⎧ m ≤1,m ≥2或⎩⎪⎨⎪⎧m >1,m <2. 故m 的取值范围是1<m <2.13.D [①m =1时,l ≥m =1且x 2≥1,∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确. ③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确.] 14.B [①由面面垂直知,不正确;②由线面平行判定定理知,缺少m、n相交于一点这一条件,故不正确;③由线面平行判定定理知,正确;④由线面相交、及线面、线线平行分析知,正确.综上所述知,③,④正确.]高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。

高中数学 第三章《空间向量与立体几何》同步练习二 新人教A版选修2-1

高中数学 第三章《空间向量与立体几何》同步练习二 新人教A版选修2-1

空间向量与立体几何一选择题:1. 下列说法中正确的是(B )A. 若∣a ∣=∣b ∣,则a ,b 的长度相同,方向相反或相同;B. 若a 与b 是相反向量,则∣a ∣=∣b ∣;C. 空间向量的减法满足结合律;D. 在四边形ABCD 中,一定有AB AD AC +=.2. 已知向量a ,b 是两个非零向量,00,a b 是与a ,b 同方向的单位向量,那么下列各式正确的是( D )A. 00a b =B. 00a b =或00a b =-C. 01a =D. ∣0a ∣=∣0b ∣3. 在四边形ABCD 中,若AC AB AD =+,则四边形是( D ) A. 矩形 B. 菱形 C. 正方形 D. 平行四边形4. 下列说法正确的是( D ) A. 零向量没有方向B. 空间向量不可以平行移动C. 如果两个向量不相同,那么它们的长度不相等D. 同向且等长的有向线段表示同一向量 5.以下四个命题中正确的是( C )A.空间的任何一个向量都可用其他三个向量表示B.若{→a ,→b ,→c }为空间向量的一组基底,则{→a +→b ,→b +→c ,→c -→a }构成空间向量的另一组基底C.△ABC 为直角三角形的充要条件为→AB ·→AC =0D.任何三个不共线的向量都可构成空间向量的一组基底6. 在平行六面体ABCD -A 1B 1C 1D 1中,与向量→A 1B 1模相等的向量有(C ) A .7个 B .3个C .5个D .6个7.如图所示,在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1→的是( D )①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→. A .①③ B .②④ C .③④D .①②③④8. 对于向量a 、b 、c 和实数λ,下列命题中的真命题是( B ) A 若a ·b =0,则a =0或b =0 B 若λa =0,则λ=0或a =0 C 若a 2=b 2,则a =b 或a =-b D 若a ·b =a ·c ,则b =c9.P 为正六边形ABCDEF 外一点,O 为ABCDEF 的中心则→PA +→PB +→PC +→PD +→PE +→PF 等于( C ) A.→PO B.3→PO C.6→PO D.→0 10. 下列说法正确的是( A )A.a 与非零向量b 共线,b 与c 共线,则a 与c 共线B. 任意两个相等向量不一定共线C. 任意两个共线向量相等D. 若向量a 与b 共线,则a b λ=11. 将边长为1的正方形ABCD 沿角线BD 折成直二面角,若点P 满足→BP =12→BA -12→BC +→BD ,则|→BP|的值为( D )A.32B.2C.10-24D.9412.已知平行六面体''''ABCD A B C D -,M 是AC 与BD 交点,若',,AB a AD b AA c ===,则与'B M 相等的向量是( A )A. 11-22a b c -+;B. 11-22a b c +;C. 1122a b c -+;D. 1122a b c --+.13. 下列等式中,使M,A,B,C 四点共面的个数是( B )①;OM OA OB OC =--②111;532OM OA OB OC =++③0;MA MB MC ++=④0OM OA OB OC +++=.A. 1B. 2C. 3D. 414. 在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( A ). A .0 B.1 C. 2 D. 3 15. 下列命题中:①若0a b •=,则a ,b 中至少一个为0 ②若a 0≠且a b a c •=•,则b c = ③()()a b c a b c ••=••④22(32)(32)94a b a b a b +•-=-正确有个数为( B )A. 0个B. 1个C. 2个D. 3个 16. 已知1e 和2e 是两个单位向量,夹角为3π,则下面向量中与212e e -垂直的是( C ) A. 12e e + B. 12e e - C. 1e D. 2e17.若a =123(,,)a a a ,b =123(,,)b b b ,则312123a a ab b b ==是//a b 的( A )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不不要条件18已知()()1,0,0,0,1,1A B -,OA OB λ+与OB 的夹角为120°,则λ的值为( C )A. D. 19.若()()2,2,0,3,2,a x b x x ==-,且,a b 的夹角为钝角,则x 的取值范围是( A )A. 4x <-B. 40x -<<C. 04x <<D. 4x >20.已知 ()()1,2,,,1,2a y b x =-=, 且(2)//(2)a b a b +-,则( B )A. 1,13x y ==B. 1,42x y ==-C. 12,4x y ==- D. 1,1x y ==-21. 已知两非零向量e 1,e 2不共线,设a =λe 1+μe 2(λ、μ∈R 且λ2+μ2≠0),则( D ) A .a ∥e 1 B .a ∥e 2 C .a 与e 1,e 2共面D .以上三种情况均有可能22正方体ABCD -A ′B ′C ′D ′中,向量AB ′→与BC ′→的夹角是( C )A .30° B .45° C .60°D .90°23设A ,B ,C ,D 是空间不共面的四点,且满足A B →·A C →=0,A C →·A D →=0,A B →·A D →=0,则△BCD 是( B )A .钝角三角形B .锐角三角形C .直角三角形D .不确定24.平行六面体ABCD -A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,则AC 1的长为 ( D )A.13B.43C.33D.2325. 已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ=( D ) A. 627 B. 637 C. 647 D. 65726 若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的( A ) A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分又不必要条件 27.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( B )A .2B .3C .4D .528 已知a +b +c =0,|a |=2,|b |=3,|c |=a 与b 之间的夹角,a b <>为( C )A .30°B .45°C .60°D .以上都不对29 .已知()()1,1,0,1,0,2,a b ==-且ka b +与2a b -互相垂直,则k 的值是(D )A. .1B. 15C. 35D. 7530.若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A取最小值时,x 的值等于( C )A .19B .78-C .78D .141931.空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC >的值是(D )A .21 B .22 C .-21D .032.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为 ( C ) (A).131(,,)243(B)123(,,)234(C)448(,,)333(D)447(,,)333二填空题:33.已知ABCD ,顶点A(1,0,0),B(0,1,0),C(0,0,2)则顶点D 的坐标为_____.(1,-1,2) 34.Rt ABC 中,,∠BAC=90°, A(2,1,1),B(1,1,2), C(x,0,1)则x=______2 35已知A(3,5,-7),B(-2,4,3),则AB 在坐标平面yoz 上的射影的长度为_____101 36已知正方形ABCD 的边长为1,AB →=a ,BC →=b ,AC →=c ,则|a +b +c|等于________. 3 37已知O 是空间任一点,A 、B 、C 、D 四点满足任三点均不共线,但四点共面,且OA →=2xBO →+3yCO →+4zDO →, 则2x +3y +4z =____138.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________. 139.已知矩形ABCD ,P 为平面ABCD 外一点,M 、N 分别为BC 、PD 的中点,且满足M N →=xAB →+yAD →+zAP →则实数x ,y ,z 的值分别为________.-1,0,1240.在空间四边形ABCD 中,A B →·C D →+B C →·A D →+C A →·B D →=________→0.41.已知|a|=32,|b|=4,a 与b 的夹角为135°,m =a +b ,n =a +λb ,则m ⊥n ,则λ=________.11642.若向量)2,3,6(),4,2,4(-=-=b a,则(23)(2)a b a b -+=__________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 2.4.2 第1课时
一、选择题(每小题5分,共20分)
1.已知抛物线y 2
=2px (p >0)的准线与圆x 2
+y 2
-6x -7=0相切,则p 的值为( ) A.1
2 B .1 C .2
D .4
解析: 圆的标准方程为(x -3)2
+y 2
=16,圆心(3,0)到抛物线准线x =-p
2的距离为4,
∴p
2=1,∴p =2,故选C. 答案: C
2.边长为1的等边三角形AOB ,O 为原点,AB ⊥x 轴,以O 为顶点且过A 、B 的抛物线方程是( )
A .y 2

3
6x B .y 2
=±36x C .y 2=-
3
6
x D .y 2
=±
33
x 解析: 当抛物线开口向右时,可设抛物线方程为y 2
=2px (p >0). ∵A ⎝
⎛⎭
⎪⎫32,12,∴14=3p ,即p =312.∴y 2
=36x .
同理,当抛物线开口向左时,抛物线标准方程为y 2
=-3
6
x . 答案: B
3.已知抛物线y 2
=2px (p >0),以抛物线上动点与焦点连线为直径的圆与y 轴的位置关系是( )
A .相交
B .相离
C .相切
D .不确定
解析:
如图,|PP 2|=|PP 1|-|P 1P 2|
=1
2
(|MM 1|+|FF 1|)-|P 1P 2| =1
2(|MM 2|+|M 1M 2|+|FO |+|OF 1|)-P 1P 2 =1
2(|MM 2|+|OF |) =12|MM 1|=1
2|MF |, ∴该圆与y 轴相切. 答案: C
4.设斜率为2的直线l 过抛物线y 2
=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )
A .y 2
=±4x B .y 2
=±8x C .y 2=4x
D .y 2
=8x
解析: y 2
=ax (a ≠0)的焦点坐标为⎝ ⎛⎭
⎪⎫a
4,0.
过焦点且斜率为2的直线方程为y =2⎝ ⎛

⎪⎫
x -a 4,
令x =0,得y =-a 2.∴12×|a |4·|a |
2
=4,
∴a 2
=64,
∴a =±8,所以抛物线方程为y 2
=±8x ,故选B. 答案: B
二、填空题(每小题5分,共10分)
5.抛物线的焦点与双曲线x 216-y 2
9=1的焦点重合,则抛物线的准线方程是________.
解析: 在双曲线x 216-y 2
9=1中,a 2=16,b 2
=9,
∴c =a 2
+b 2
=16+9=5, ∴焦点坐标是F 1(-5,0),F 2(5,0). 当抛物线焦点是F 1(-5,0)时,p
2=5,
准线方程是x =5;
当抛物线焦点是F 2(5,0)时,p
2=5,
准线方程是x =-5, 所以应填x =-5或x =5.
答案: x =±5
6.已知以F 为焦点的抛物线y 2
=4x 上的两点A 、B 满足AF →=3FB →,则弦AB 的中点到准线
的距离为________.
解析: 如图,设A (x A ,y A ),B (x B ,y B ),
由题意设AB 的方程为
y =k (x -1)(k ≠0),
由⎩
⎪⎨⎪⎧
y =k x -y 2
=4x ,
消去y 得k 2x 2
-(2k 2
+4)x +k 2
=0, ∴x A ·x B =1, 又∵AF →=3FB →
, ∴x A +3x B =4, 解得x A =3,x B =13

∴AB 的中点M 到准线的距离|MN |=x A +x B +22
=8
3
. 答案: 8
3
三、解答题(每小题10分,共20分)
7.设O 为坐标原点,F 为抛物线y 2
=4x 的焦点,A 为抛物线上一点,若O A →·A F →
=-4,求点A 的坐标.
解析: 由y 2
=4x ,知F (1,0). ∵点A 在y 2
=4x 上,
∴不妨设A ⎝ ⎛⎭
⎪⎫y 2
4,y , 则O A →=⎝ ⎛⎭⎪⎫y 24,y ,A F →=⎝
⎛⎭
⎪⎫1-y 2
4
,-y .
代入O A →·A F →
=-4中,
得y 24⎝ ⎛⎭⎪⎫
1-y 24+y (-y )=-4,
化简得y 4
+12y 2
-64=0. ∴y 2
=4或-16(舍去),y =±2. ∴点A 的坐标为(1,2)或(1,-2).
8.已知抛物线的顶点在原点,x 轴为对称轴,经过焦点且倾斜角为π
4的直线,被抛物线
所截得的弦长为6,求抛物线方程.
解析: 当抛物线焦点在x 轴正半轴上时,可设抛物线标准方程是y 2
=2px (p >0),则焦
点F ⎝ ⎛⎭
⎪⎫p 2,0,直线l 为y =x -p
2.
设直线l 与抛物线的交点A (x 1,y 1),B (x 2,y 2),过A 、B 分别向抛物线的准线作垂线AA 1、
BB 1,垂足分别为A 1、B 1.
则|AB |=|AF |+|BF |=|AA 1|+|BB 1| =⎝

⎭⎪⎫x 1+p 2+⎝ ⎛⎭⎪⎫
x 2+p 2=x 1+x 2+p =6,
∴x 1+x 2=6-p .①
由⎩⎪⎨
⎪⎧
y =x -p 2y 2=2px
消去y ,得⎝ ⎛

⎪⎫x -p 22
=2px ,
即x 2
-3px +p 2
4
=0.
∴x 1+x 2=3p ,代入①式得:3p =6-p ,∴p =3
2.
∴所求抛物线标准方程是y 2
=3x .
当抛物线焦点在x 轴负半轴上时,用同样的方法可求出抛物线的标准方程是:y 2
=-3x . 综上,抛物线方程为y 2
=±3x .
尖子生题库☆☆☆
9.(10分)已知直线l 经过抛物线y 2
=4x 的焦点F ,且与抛物线相交于A 、B 两点.
(1)若|AF |=4,求点A 的坐标;
(2)求线段AB 的长的最小值. 解析: 由y 2
=4x ,得p =2, 其准线方程为x =-1,焦点F (1,0). 设A (x 1,y 1),B (x 2,y 2). (1)由抛物线的定义可知.
|AF |=x 1+p
2,从而x 1=4-1=3.
代入y 2
=4x ,解得y 1=±2 3.
∴点A 的坐标为(3,23)或(3,-23). (2)当直线l 的斜率存在时, 设直线l 的方程为y =k (x -1).
与抛物线方程联立,得⎩⎪⎨
⎪⎧
y =k x -
y 2
=4x

消去y ,整理得k 2x 2
-(2k 2+4)x +k 2
=0, 因为直线与抛物线相交于A 、B 两点, 则k ≠0,并设其两根为x 1,x 2, 则x 1+x 2=2+4
k
2.
由抛物线的定义可知, |AB |=x 1+x 2+p =4+4
k
2>4,
当直线l 的斜率不存在时,直线l 的方程为x =1,与抛物线交于A (1,2),B (1,-2),此时|AB |=4.
所以|AB |≥4,即线段AB 的长的最小值为4.。

相关文档
最新文档