初中数学二次函数的应用(一)

合集下载

二次函数应用题(一)(含答案)

二次函数应用题(一)(含答案)

学生做题前请先回答以下问题问题1:二次函数应用题的解题思路是什么?问题2:应用题结果的验证需要考虑哪些方面?问题3:题中出现哪些关键字时,考虑用函数求解?二次函数应用题(一)一、单选题(共4道,每道25分)1.有一座抛物线型拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米,建立如图所示的平面直角坐标系,若正常水位时,桥下水深6米.为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过( )米时,就会影响过往船只的顺利航行.A.2.76米B.6.76米C.6米D.7米答案:B解题思路:1.解题要点①理解题意,建立数学模型将题目中的数据转化为图中对应的线段长,确定关键点坐标,求出抛物线解析式.观察图形,抛物线的顶点为(0,0),由题意,抛物线过点(10,-4),故可求出抛物线的解析式.②明确目标及判断标准,利用二次函数图象性质求解要求影响过往船只顺利航行的水深,可先分析临界状态,分析当水面宽度为18米时的水深.由二次函数的对称性,可转化为分析当x=9时的水深.首先可得对应的y值,结合拱顶到水底的总的距离为6+4=10,可求出保证过往船只顺利航行临界水深.③回归目标,判断验证,结果总结2.解题过程设该抛物线的解析式为,由题意得,抛物线过点(10,-4),代入解析式得,∴,∴该抛物线的解析式为.令x=9,可得y=-3.24,此时水深为6+4-3.24=6.76米,即桥下水深6.76米时正好可以保证过往船只顺利航行,所以当水深超过6.76米时就会影响过往船只的顺利航行.故选B.试题难度:三颗星知识点:二次函数的应用2.如图,隧道的截面是抛物线,可以表示为,该隧道内设双行道,限高为3m,那么每条行道宽是( )A.不大于4mB.恰好4mC.不小于4mD.大于4m,小于8m答案:A解题思路:由题意,把代入中得:(舍去).由于设计的是双行道,所以每条行道宽应不大于4m.故选A.试题难度:三颗星知识点:二次函数的应用3.你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图,正在甩绳的甲,乙两名学生拿绳的手间距为4m,距地面均为1m,学生丙,丁分别站在距甲拿绳的手水平距离1m,2.5m处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5m,则学生丁的身高为(建立的平面直角坐标系如图所示)( )A.1.5mB.1.625mC.1.66mD.1.67m答案:B解题思路:设抛物线的解析式为,由题意,抛物线过点(-1,1),(3,1),(0,1.5),代入解得,,,∴.当时,.即学生丁的身高是1.625m.故选B.试题难度:三颗星知识点:二次函数的应用4.如图,排球运动员甲站在点O处练习发球,将球从O点正上方的A处发出,把球看成点,其运行路线是抛物线的一部分,点D为球运动的最高点.球网BC 离O点的水平距离为9m,以O为坐标原点建立如图所示的坐标系,乙站立地点M的坐标为(m,0).乙原地起跳可接球的最大高度为2.4米,若乙因为接球高度不够而失球,则m的取值范围为( )A. B.C. D.答案:B解题思路:由题意,将y=2.4代入中得:,解得,若乙因为接球高度不够而失球,则结合图象有.∵,∴.故选B.试题难度:三颗星知识点:函数类应用题。

第61课时:二次函数应用(1)

第61课时:二次函数应用(1)

252012h t t =-++第61课时:二次函数应用(1)主备:王静 雍亚波 班级 姓名 学号一、 中考考点:与实际生活有关的二次函数的应用,例如呈抛物线形的物体或轨迹,会建立适当的坐标系,寻找条件求解析式,并会运用解析式解决系列问题 二、问题探索:(一)基础问题探索:1、军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度(m )y 与飞行时间(s)x 的关系满足21105y x x =-+.经过 秒时间炮弹到达它的最高点,最高点的高度是 米,经过 秒时间,炮弹落到地上爆炸了.2、巴人广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米 的喷水管最大高度为3米,此时喷水水平距离为1/2米,在如图所示的坐标 系中,这支喷泉的函数关系式是 .3、烟花厂为扬州4.18烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h 与飞行时间(s)t 的关系式是 ,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为 . (二)典型例题: 问题一、某超市销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱的售价在40元~70元之间.市场调查发现:若每箱50元销售,平均每天可销售90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.(1)写出平均每天的销售量y (箱)与每箱售价x (元)之间的函数关系式(注明自变量x 的取值范围);(2)求出超市平均每天销售这种牛奶的利润W (元)与每箱牛奶的售价x (元)之间的二次函数关系式(每箱的利润=售价-进价);(3)当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?问题二、廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知水面AB 宽40米,最高点到AB 的距离是10米,为了保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E 、F 处要安装两盏警示灯,求这两盏灯的水平距离EF 是多少米?(精确到1米)问题三、某农场为防风治沙在一山坡上种树,如图所示.建立直角坐标系,已知喷水头B 高出地面1.5米,高点C 的坐标为(2,3.5),(1)求此水流抛物线的解析式;(2)计算水喷出后落在山坡上的最远距离OA 。

2020年中考数学复习专题之二次函数的综合应用问题

2020年中考数学复习专题之二次函数的综合应用问题

二次函数的综合应用二次函数的实际应用(1)增长率问题一月a增长率为x 二月a(1+x)增长率为x三月a(1+x)2(2)利润问题在这个模型中,利润=(售价-成本)×销量(3)面积问题矩形面积=长×宽材料总长a 矩形长x矩形宽1(a-2x)2题型一二次函数的应用—销售问题例7.某公司投资销售一种进价为每件15元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-20x+800,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设该公司每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?【思路点拨】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;【答案与解析】解:(1)由题意,得:w=(x﹣15)•y=(x﹣15)•(﹣20x+800)=﹣20x2+1100x﹣12000,即w=﹣20x2+1100x﹣12000(15≤x≤24);(2)对于函数w=﹣20x2+1100x﹣12000(15≤x≤24)的图象的对称轴是直线x=27.5又∵a=﹣20<0,抛物线开口向下.∴当15≤x≤24时,W随着x的增大而增大,∴当x=24时,W=2880,答:当销售单价定为24元时,每月可获得最大利润,最大利润是2880元.变式训练1.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件,设衬衫的单价降x元,每天获利y元.(1)如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降多少元,才能使得这批衬衫一天内售完,且获利最大,最大利润是多少?(2)如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降多少元?【思路点拨】(1)列出y=44(40﹣x)=﹣44x+1760,根据一次函数的性质求解;(2)根据题意列出y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,结合二次函数的性质求解;【答案与解析】解:(1)y=44(40﹣x)=﹣44x+1760,∵20+2x≥44,∴x≥12,∵y随x的增大而减小,∴当x=12时,获利最大值1232;答:如果商场里这批衬衫的库存只有44件,那么衬衫的单价应12元,才能使得这批衬衫一天内售完,且获利最大1232元;(2)y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,当y=1200时,1200=﹣2(x﹣15)2+1250,∴x=10或x=20,∵当x<15时,y随x的增大而增大,当x>15时,y随x的增大而减小,当10≤x≤20时,y≥1200,答:如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降不少于10元且不超过20元.变式训练2.为建设美丽家园,某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y(元)与x(m2)的函1数关系图象如图所示,栽花所需费用y(元)与x(m2)的函数关系式为2xy=-0.01x2-20x+30000(0剟1000).2(1)求 y (元 ) 与 x(m 2) 的函数关系式;1(2)设这块1000m 2 空地的绿化总费用为W (元 ) ,请利用W 与 x 的函数关系式,求绿化总 费用 W 的最大值.【思路点拨】(1)根据函数图象利用待定系数法即可求得y 1(元)与 x (m 2)的函数关系式 (2)总费用为 W =y 1+y 2,列出函数关系式即可求解 【答案与解析】解:(1)依题意当 0≤x≤600 时,y 1=k 1x ,将点(600,18000)代入得 18000=600k 1,解得 k 1=30∴y 1=30x当 600<x≤1000 时,y 1=k 2x+b ,将点(600,18000),(1000,26000)代入得,解得∴y 1=20x+600综上,y 1(元)与 x (m 2)的函数关系式为:(2)总费用为:W =y 1+y 2∴W=整理得故绿化总费用 W 的最大值为 32500 元.变式训练 3.某公司生产的某种商品每件成本为 20 元,经过市场调研发现,这种商品在未来 40 天内的日销售量 m (件 ) 与时间 t (天 ) 的关系如下表:时间 t (天 ) 1 3 5 10 36日销售量 m94 90 86 76 24(件 )未来 40 天内,前 20 天每天的价格 y 1(元/件)与时间 t (天)的函数关系式为 y 1= t +25(1≤t ≤20 且 t 为整数),后20 天每天的价格 y 2(元/件)与时间 t (天)的函数关系式为y 2=﹣ t +40(21≤t ≤40 且 t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的 m (件 ) 与 t (天 ) 之间的表达式;(2)请预测未来 40 天中哪一天的日销售利润最大,最大日销售利润是多少?【思路点拨】(1)从表格可看出每天比前一天少销售 2 件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前 20 天和后 20 天的日利润,根据函数性质求最大值后比较得结论.【答案与解析】解:(1)经分析知:m 与 t 成一次函数关系.设 m =kt+b (k≠0),将 t =1,m =94,t =3,m =90代入,解得,∴m=﹣2t+96;(2)前 20 天日销售利润为 P 1 元,后 20 天日销售利润为 P 2 元,则 P 1=(﹣2t+96)( t+25﹣20)=﹣ (t ﹣14)2+578,∴当 t =14 时,P 1 有最大值,为 578 元.P 2=(﹣2t+96)•( t+40﹣20)=﹣t 2+8t+1920=(t ﹣44)2﹣16,∵当 21≤t≤40 时,P 2 随 t 的增大而减小,∴t=21 时,P 2 有最大值,为 513 元. ∵513<578,∴第 14 天日销售利润最大,最大利润为 578 元.题型二 二次函数的应用—面积问题例 8.如图,用 30m 长的篱笆沿墙建造一边靠墙的矩形菜园,已知墙长18m ,设矩形的宽 AB为xm.(1)用含x的代数式表示矩形的长BC;(2)设矩形的面积为y,用含x的代数式表示矩形的面积y,并求出自变量的取值范围;(3)这个矩形菜园的长和宽各为多少时,菜园的面积y最大?最大面积是多少?【思路点拨】(1)设菜园的宽AB为xm,于是得到BC为(30﹣2x)m;(2)由面积公式写出y与x的函数关系式,进而求出x的取值范围;(3)利用二次函数求最值的知识可得出菜园的最大面积.【答案与解析】解:(1)∵AB=CD=xm,∴BC=(30﹣2x)m;(2)由题意得y=x(30﹣2x)=﹣2x2+30x(6≤x<15);(3)∵S=﹣2x2+30x=﹣2(x﹣7.5)2+112.5,∴当x=7.5时,S有最大值,S=112.5,最大此时这个矩形的长为15m、宽为7.5m.答:这个矩形的长、宽各为15m、7.5m时,菜园的面积最大,最大面积是112.5m2.变式训练1.为了节省材料,小浪底水库养殖户小李利用水库的岸堤(足够长)为一边,用总长为120米的网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)请你帮养殖户小李计算一下BC边多长时,养殖区ABCD面积最大,最大面积为多少?【思路点拨】(1)三个矩形的面值相等,可知2FG=2GE=BC,可知:2BC+8FC=120,即FC=,即可求解;(2)y=﹣x2+45x=﹣(x﹣30)2+675即可求解.【答案与解析】解:(1)∵三个矩形的面值相等,可知2FG=2GE=BC,∴BC×DF=BC×FC,∴2FC=DC,2BC+8FC=120,∴FC=,∴y与x之间的函数关系式为y=3FC×BC=x(120﹣2x),即y=﹣x2+45x,(0<x<60);(2)y=﹣x2+45x=﹣(x﹣30)2+675可知:当BC为30米是,养殖区ABCD面积最大,最大面积为675平方米.变式训练 2.如图,ABCD是一块边长为8米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在A的延长线上,DG2BE,设BE的长为x米,改造后苗圃AEFG的面积为y平方米.(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)若改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,此时BE的长为米.(3)当x为何值时改造后的矩形苗圃AEFG的最大面积?并求出最大面积.【思路点拨】(1)根据题意可得DG=2x,再表示出AE和AG,然后利用面积可得y与x之间的函数关系式;(2)根据题意可得正方形苗圃ABCD的面积为64,进而可得矩形苗圃AEFG的面积为64,进而可得:﹣2x2+8x+64=64再解方程即可;(3)根据二次函数的性质即可得到结论.【答案与解析】解:(1)y=(8﹣x)(8+2x)=﹣2x2+8x+64,故答案为:y=﹣2x2+8x+64;(2)根据题意可得:﹣2x2+8x+64=64,解得:x1=4,x2=0(不合题意,舍去),答:BE的长为4米;故答案为:y=﹣2x2+8x+64(0<x<8);(3)解析式变形为:y=﹣2(x﹣2)2+72,所以当x=2时,y有最大值,∴当x为2时改造后的矩形苗圃AEFG的最大面积,最大面积为72平方米.变式训练3.如图,一面利用墙(墙的最大可用长度为10m),用长为24m的篱笆围成中间隔有一道篱笆的矩形花圃,设花圃的一边AB的长为x(m),面积为y(m2).(1)若y与x之间的函数表达式及自变量x的取值范围;(2)若要围成的花圃的面积为45m2,则AB的长应为多少?【思路点拨】(1)根据题意可以得到y与x的函数关系式以及x的取值范围;(2)令y=45代入(1)中的函数解析式,即可求得x的值,注意x的取值范围.【答案与解析】解:(1)由题意可得,y=x(24﹣3x)=﹣3x2+24x,∵24﹣3x≤10,3x<24,解得,x≥∴且x<8,,即y与x之间的函数表达式是y=﹣3x2+24x((2)当y=45时,45=﹣3x2+24x,解得,x1=3(舍去),x2=5,答:AB的长应为5m.题型三二次函数的应用—抛物线问题);例9.如图,已知排球场的长度O D为18米,位于球场中线处球网的高度AB为2.4米,一队员站在点O处发球,排球从点O的正上方1.6米的C点向正前方飞出,当排球运行至离点O的水平距离OE为6米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.4米时,对方距离球网0.4m的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(2)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【思路点拨】(1)根据此时抛物线顶点坐标为(6,3.4),设解析式为y=a(x﹣6)2+3.4,再将点C坐标代入即可求得;由解析式求得x=9.4时y的值,与他起跳后的最大高度为3.1米比较即可得;(2)设抛物线解析式为y=a(x﹣6)2+h,将点C坐标代入得到用h表示a的式子,再根据球既要过球网,又不出边界即x=9时,y>2.4且x=18时,y≤0得出关于h的不等式组,解之即可得.【答案与解析】解:(1)根据题意知此时抛物线的顶点G的坐标为(6,3.4),设抛物线解析式为y=a(x﹣6)2+3.4,将点C(0,1.6)代入,得:36a+3.4=1.6,解得:a=﹣,∴排球飞行的高度y与水平距离x的函数关系式为y=﹣(x﹣6)2+;由题意当x=9.5时,y=﹣(9.4﹣6)2+≈2.8<3.1,故这次她可以拦网成功;(2)设抛物线解析式为y=a(x﹣6)2+h,将点C(0,1.6)代入,得:36a+h=1.6,即a=∴此时抛物线解析式为y=(x﹣6)2+h,,变式训练1.一位篮球运动员投篮,球沿抛物线y=-x2+运行,然后准确落入篮筐内,根据题意,得:,解得:h≥3.025,答:排球飞行的最大高度h的取值范围是h≥3.025.1752已知篮筐的中心距离底面的距离为3.05m.(1)求球在空中运行的最大高度为多少m?(2)如果该运动员跳投时,球出手离地面的高度为2.25m,要想投入篮筐,则问他距离蓝筐中心的水平距离是多少?【思路点拨】(1)由抛物线的顶点坐标即可得;(2)分别求出y=3.05和y=2.25时x的值即可得出答案.【答案与解析】解:(1)∵y=﹣x2+的顶点坐标为(0,),∴球在空中运行的最大高度为m;(2)当y=3.05时,﹣0.2x2+3.5=3.05,解得:x=±1.5,∵x>0,∴x=1.5;当y=2.25时,﹣0.2x2+3.5=2.25,解得:x=2.5或x=﹣2.5,由1.5+2.5=4(m),故他距离篮筐中心的水平距离是4米.变式训练2.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=-124时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点的O水平距离为7m,离地面的高度为处时,乙扣球成功,求a的值.125m的Q【思路点拨】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【答案与解析】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣解得:h=;×16+h=1,②把x=5代入y=﹣∵1.625>1.55,∴此球能过网;(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,(2)把(0,1)、(7,,)代入y=a(x﹣4)2+h,得:解得:,∴a=﹣.变式训练3.小明跳起投篮,球出手时离地面20m,球出手后在空中沿抛物线路径运动,并9在距出手点水平距离4m处达到最高4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?(3)在篮球比赛中,当进攻方球员要投篮时,防守方球员常借身高优势及较强的弹跳封杀对方,这就是平常说的盖帽.(注:盖帽应在球达到最高点前进行,否则就是“干扰球”,属犯规.)若此时,防守方球员乙前来盖帽,已知乙的最大摸球高度为3.19m,则乙在进攻方球员前多远才能盖帽成功?【思路点拨】(1)根据顶点坐标(4,4),设抛物线的解析式为:y=a(x﹣4)2+4,由球出手时离地面m,可知抛物线与y轴交点为(0,),代入可求出a的值,写出解析式;(2)先计算当x=8时,y的值是否等于3,把x=8代入得:y=,所以要想球经过(8,3),则抛物线得向上平移3﹣=个单位,即球出手时距离地面3米可使球直接命中篮筐中心;(3)将由y=3.19代入函数的解析式求得x值,进而得出答案.【答案与解析】(1)设抛物线为y=a(x﹣4)2+4,将(0,)代入,得a(0﹣4)2+4=,解得a=﹣,∴所求的解析式为y=﹣(x﹣4)2+4;(2)令x=8,得y=﹣(8﹣4)2+4=∴抛物线不过点(8,3),故不能正中篮筐中心;≠3,=∵抛物线过点(8,),∴要使抛物线过点(8,3),可将其向上平移 7/9 个单位长度,故小明需向上多跳 m 再投篮(即球出手时距离地面 3 米)方可使球正中篮筐中心.(3)由(1)求得的函数解析式,当 y =3.19 时,3.19=﹣19(x ﹣4)2+4解得:x 1=6.7(不符合实际,要想盖帽,必须在篮球下降前盖帽,否则无效),x 2=1.3∴球员乙距离甲球员距离小于 1.3 米时,即可盖帽成功.题型四 二次函数与图形面积的综合例 10.如图,抛物线 y = a(x + 1)2的顶点为 A ,与 y 轴的负半轴交于点 B ,且 OB = OA .(1)求抛物线的解析式;(2)若点 C (-3,b ) 在该抛物线上,求 S∆ABC 的值.【思路点拨】(1)由抛物线解析式确定出顶点 A 坐标,根据 OA =OB 确定出 B 坐标,将 B坐标代入解析式求出 a 的值,即可确定出解析式;(2)将 C 坐标代入抛物线解析式求出 b 的值,确定出 C 坐标,过 C 作 CD 垂直于 x 轴,三角形 ABC 面积=梯形 OBCD 面积﹣三角形 ACD 面积﹣三角形 AOB 面积,求出即可.【答案与解析】解:(1)由题意得:A (﹣1,0),B (0,﹣1),将 x =0,y =﹣1 代入抛物线解析式得:a =﹣1,则抛物线解析式为 y =﹣(x+1)2=﹣x 2﹣2x ﹣1;(2)过 C 作 CD⊥x 轴,将 C (﹣3,b )代入抛物线解析式得:b =﹣4,即 C (﹣3,﹣4),则 △S ABC =S 梯形 OBCD △﹣S ACD △﹣S A OB ×3×(4+1)﹣ ×4×2﹣ ×1×1=3.变式训练1.如图,已知二次函数图象的顶点为(1,-3),并经过点C(2,0).(1)求该二次函数的解析式;(2)直线y=3x与该二次函数的图象交于点B(非原点),求点B的坐标和∆AOB的面积;【思路点拨】(1)设抛物线的解析式为y=a(x﹣1)2﹣3,由待定系数法就可以求出结论;(2)由抛物线的解析式与一次函数的解析式构成方程组,求出其解即可求出B的坐标,进而可以求出直线AB的解析式,就可以求出AB与x轴的交点坐标,就可以求出△AOB的面积;【答案与解析】解:(1)抛物线的解析式为y=a(x﹣1)2﹣3,由题意,得0=a(2﹣1)2﹣3,解得:a=3,∴二次函数的解析式为:y=3(x﹣1)2﹣3;(2)由题意,得,解得:.∵交点不是原点,∴B(3,9).如图2,设直线AB的解析式为y=kx+b,由题意,得,△+S,△+S△+S解得:,∴y=6x﹣9.当y=0时,y=1.5.∴E(1.5,0),∴OE=1.5,△∴SAOB=SA OE BOE=+,=9.答:B(3,9),△AOB的面积为9;变式训练2.如图,抛物线y=x2+x-2与x轴交于A、B两点,与y轴交于点C.(1)求点A,点B和点C的坐标;(2)在抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标;(3)若点M是直线AC下方抛物线上一动点,求四边形ABCM面积的最大值.【思路点拨】(1)利用待定系数法即可解决问题.(2)连接AC与对称轴的交点即为点P.求出直线AC的解析式即可解决问题.(3)过点M作MN⊥x轴与点N,设点M(x,x2+x﹣2),则AN=x+2,0N=﹣x,0B=1,0C=2,MN=﹣(x2+x﹣2)=﹣x2﹣x+2,根据S四边形ABCM△=SAOM OCM BOC构建二次函数,利用二次函数的性质即可解决问题.【答案与解析】解:(1)由y=0,得x2+x﹣2=0解得x=﹣2x=l,∴A(﹣2,0),B(l,0),由x=0,得y=﹣2,∴C(0,﹣2).(2)连接AC与对称轴的交点即为点P.△+S + =设直线 AC 为 y =kx+b ,则﹣2k+b =0,b =﹣2:得 k =﹣l ,y =﹣x ﹣2.对称轴为 x =﹣ ,当 x =﹣ 时,y =_(﹣ )﹣2=﹣ ,∴P(﹣ ,﹣ ).(3)过点 M 作 MN⊥x 轴与点 N ,设点 M (x ,x 2+x ﹣2),则 AN =x+2,0N =﹣x ,0B =1,0C =2,MN =﹣(x 2+x ﹣2)=﹣x 2﹣x+2,S四边形 ABCM△=S AOM OCM △S BOC (x+2)(﹣x 2﹣x+2)+ (2﹣x 2﹣x+2)(﹣x )+ ×1× 2=﹣x 2﹣2x+3=﹣(x+1)2+4.∵﹣1<0,∴当 x =_l 时,S 四边形 ABCM 的最大值为 4.变式训练 3.如图,二次函数 y = ax 2 + b x 的图象经过点 A(2,4) 与 B(6,0) .(1)求 a , b 的值;(2)点 C 是该二次函数图象上 A , B 两点之间的一动点,横坐标为 x (2 < x < 6) ,写出四边形 OACB 的面积 S 关于点 C 的横坐标 x 的函数表达式,并求 S 的最大值.△=△=△=△+S△+S【思路点拨】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【答案与解析】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂线,垂足为D(2,0),连接CD、CB,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,SOADOD•AD=×2×4=4;SACDAD•CE=×4×(x﹣2)=2x﹣4;SBCDBD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=SOAD ACD BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.。

中考重点二次函数的应用

中考重点二次函数的应用

中考重点二次函数的应用二次函数的应用在中考中是一个重点考察的内容。

二次函数是一种常见的数学模型,它可以描述抛物线的形状和变化规律。

掌握二次函数的应用,不仅可以帮助我们解决实际问题,还可以提高我们的数学思维和问题解决能力。

1. 图像的性质和变化规律:二次函数的标准形式为:$y=ax^2+bx+c$,其中$a$、$b$、$c$为实数且$a \neq 0$。

当$a>0$时,抛物线开口朝上;当$a<0$时,抛物线开口朝下。

抛物线的顶点坐标为$(-\frac{b}{2a},-\frac{\Delta}{4a})$,其中$\Delta=b^2-4ac$为判别式,用来确定抛物线与$x$轴的交点个数和位置。

当$\Delta>0$时,抛物线与$x$轴有两个交点;当$\Delta=0$时,抛物线与$x$轴有一个交点;当$\Delta<0$时,抛物线与$x$轴没有交点。

根据顶点坐标和开口方向,可以确定抛物线的图像。

2. 求解问题:二次函数的应用主要涉及到求解实际问题。

比如下面的例题:例题1:一辆汽车以每小时80千米的速度行驶,从起点开始,经过2小时后到达目的地,求汽车在2小时内行驶的距离。

解析:设汽车行驶的距离为$y$千米,行驶的时间为$x$小时。

根据已知条件,可以建立二次函数模型:$y=80x$。

代入$x=2$,可以得到汽车在2小时内行驶的距离为$y=80\times2=160$千米。

例题2:甲、乙两地的距离为100千米,两辆汽车同时从两地出发,甲地汽车的速度为每小时60千米,乙地汽车的速度为每小时80千米,问多长时间后两辆汽车相遇?解析:设两辆汽车相遇的时间为$x$小时,则甲地汽车行驶的距离为$60x$千米,乙地汽车行驶的距离为$80x$千米。

根据已知条件,可以建立二次函数模型:$60x+80x=100$。

化简得到$140x=100$。

解方程可得$x=\frac{10}{14}=\frac{5}{7}$小时,即两辆汽车在$\frac{5}{7}$小时后相遇。

二次函数的应用

二次函数的应用

二次函数的应用二次函数是一种常见的数学函数类型,它在许多实际问题的建模与解决中具有广泛的应用。

本文将介绍二次函数的基本概念,以及其在现实生活中的几个具体应用。

一、二次函数的基本概念二次函数是指一个变量的平方项与该变量的一次项的和再加上一个常数项所构成的函数。

一般表示为f(x) = ax^2 + bx + c,其中a、b、c为常数。

二次函数的图像通常是一个抛物线,其开口的方向取决于a的正负。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

二次函数还具有一个特殊的点,称为顶点,它是抛物线的最高点或最低点。

二、1. 几何应用二次函数在几何中广泛应用,如平面几何中的抛物线问题、曲线的拐点问题等。

例如,在研究体育运动的抛体运动过程中,可以通过二次函数来描述运动物体的轨迹,进而计算出最高点、最远距离等重要参数。

2. 物理应用二次函数在物理学中具有重要的应用。

例如,在自由落体运动中,物体的下落距离与时间的关系可用二次函数来表示。

这种关系可以帮助我们计算出物体的速度、加速度等重要物理参数。

3. 经济应用经济学中也广泛使用二次函数进行经济模型的建立与分析。

例如,在市场供求关系的研究中,需求函数和供给函数通常采用二次函数形式,通过求解二次函数的交点可以确定市场均衡价格和数量。

4. 工程应用二次函数在工程中有着广泛的应用。

例如,在桥梁设计中,通过研究桥梁的受力情况,可以建立相应的二次函数模型,以确定桥梁的最佳设计参数,确保桥梁的结构安全可靠。

5. 金融应用金融领域中也经常使用二次函数进行金融模型的建立与分析。

例如,在股票市场中,通过研究股票价格的变化规律,可以建立相应的二次函数模型,以预测未来价格的走势,为投资者提供参考。

综上所述,二次函数在几何、物理、经济、工程和金融等领域中都有着广泛的应用。

通过建立并分析二次函数模型,我们可以更好地理解和解决实际问题,为实际应用提供科学的依据和方法。

二次函数应用的研究还有很大的发展空间,可以进一步拓展其在不同领域中的应用范围,为社会进步与发展做出更大的贡献。

二次函数的应用

二次函数的应用

二次函数的应用二次函数是数学中的一种重要函数类型,其应用十分广泛。

本文将以实例的形式探讨二次函数在实际生活中的几个应用。

一、抛物线的模型二次函数的图像是抛物线,其常见模型有抛物线的顶点形式和描点形式。

以顶点形式为例,二次函数的一般形式为:f(x) = a(x-h)^2 + k其中a,h,k是常数,(h,k)表示抛物线的顶点。

我们以一道题目为例:某物体以初速度30m/s向上抛出,经过2s达到最高点,求其下落的高度。

解:设物体下落的高度为f(t),t为时间。

根据物理学的运动规律,物体自由落体的公式为:f(t) = -5t^2 + v0*t + h0其中v0为初速度,h0为初始高度。

题目中给出了初速度为30m/s,代入公式得:f(t) = -5t^2 + 30t + h0根据题目要求,物体经过2s达到最高点,即f(2)=0。

代入公式求解得:0 = -5*2^2 + 30*2 + h0= -20 + 60 + h0= 40 + h0可得h0 = -40,即物体的初始高度为-40m。

因此,物体下落的高度可以表示为:f(t) = -5t^2 + 30t - 40我们可以通过二次函数模型得出物体在任意时间t下的高度。

二、最值问题二次函数也常用于求解最值问题。

例如,我们考虑以下问题:用2根长为L的铁丝围成一个矩形,求该矩形的最大面积。

解:设矩形的长度为x,宽度为L-2x(由于必须用2根铁丝围成,所以长度和宽度之和为L)。

矩形的面积可以表示为:S = x(L-2x)= Lx - 2x^2显然,S是一个关于x的二次函数。

要求最大面积,即求函数的最大值。

通过求导的方法,我们可以得到该函数的极值点。

首先,将函数求导得:S' = L - 4x令导数等于0,求解可得极值点:L - 4x = 04x = Lx = L/4将x代入原函数得到最大面积:S = (L/4)(L-2(L/4))= (L/4)(L/2)= L^2/8因此,该矩形的最大面积为L^2/8。

二次函数的应用案例总结

二次函数的应用案例总结

二次函数的应用案例总结二次函数是一种常见的数学函数形式,它的形式为:y = ax^2 + bx + c。

在现实生活中,二次函数可以用于解决各种问题,包括物理、经济、工程等领域。

本文将总结几个常见的二次函数应用案例,以展示二次函数的实际应用。

案例一:物体自由落体的高度模型假设一个物体从高处自由落体,忽略空气阻力,我们可以用二次函数来表示物体的高度与时间之间的关系。

设物体初始高度为H,加速度为g,时间为t。

根据物理定律,物体的高度可以表示为:h(t) = -0.5gt^2 + H。

这个二次函数模型可以帮助我们计算物体在任意时间点的高度,并可以用于预测物体何时落地。

案例二:销售收入和定价策略假设一个公司生产和销售某种产品,销售价格为p(单位:元),销售量为q(单位:件)。

二次函数可以用于建立销售收入与定价策略之间的模型。

设定售价的二次函数为:R(p) = -ap^2 + bp + c,其中a、b、c为常数。

我们可以通过分析二次函数的图像、求解极值等方法,确定最佳售价,以使得销售收入最大化。

案例三:桥梁设计中的弧线形状在桥梁设计中,常常需要确定桥梁的弧线形状,以使得车辆在桥上行驶时感到平稳。

二次函数可以用来描述桥梁的曲线形状。

设桥梁的弧线形状为y = ax^2 + bx,其中x表示桥梁长度的一半,y表示桥梁的高度。

通过调整参数a和b,可以得到不同形状的弧线,以满足设计要求。

案例四:市场需求和价格关系分析在经济学中,二次函数可以用于建立市场需求与价格之间的关系模型。

设市场需求量为D,价格为p。

根据经济理论,市场需求可以表示为:D(p) = ap^2 + bp + c,其中a、b、c为常数。

通过分析二次函数的图像、求解极值等方法,可以研究市场需求和价格之间的关系,得出不同价格下的市场需求量。

综上所述,二次函数在物理、经济、工程等领域中具有广泛的应用。

通过建立二次函数模型,我们可以更好地理解和解决各种实际问题。

二次函数的应用

二次函数的应用

二次函数的应用二次函数是一类常见的数学函数,在数学和实际生活中有着广泛的应用。

它的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a 不等于0。

本文将探讨二次函数的应用,包括图像特征、最值问题、实际问题模拟等方面。

一、二次函数的图像特征二次函数的图像是一条抛物线,其开口的方向由a的正负决定。

当a大于0时,抛物线向上开口,形状类似于字母U;当a小于0时,抛物线向下开口,形状类似于字母n。

而二次函数的顶点则是抛物线的最高点(a小于0)或最低点(a大于0)。

据此,我们可以利用这些特征来解决一些实际问题。

例如,在建筑设计中,我们希望设计一座拱桥,使得桥面的最高点位于两边桥墩之间。

这时,我们可以建立一个二次函数模型来描述桥面的形状,并利用顶点的位置确定拱桥的设计参数。

二、二次函数的最值问题对于二次函数f(x) = ax^2 + bx + c,我们可以通过求导数的方法来确定其最值点。

当导数f'(x) = 0时,函数f(x)的最值点就存在于该点。

以一个具体的例子来说明,假设有一个猎人沿着一条小路寻找猎物。

猎人行走的距离与小路之间的距离可以由一个二次函数来表示。

现在猎人想要找到最短的路线,即猎人走的总距离最小。

通过建立二次函数模型,并求解导数为0的点,我们可以找到最短路线上猎人的位置。

三、实际问题的模拟二次函数的应用不仅仅局限于数学问题,它还可以用来模拟和解决实际生活中的一些问题。

例如,我们可以利用二次函数来模拟和预测物体的运动轨迹。

假设我们有一架火箭进行垂直发射,我们可以通过建立二次函数来描述火箭的高度随时间的变化规律。

在实际运算中,我们可以利用二次函数的图像特征来确定火箭达到最高点的时间和高度。

另外,二次函数还可以用来分析销售数据,预测销售量随时间的变化趋势。

例如,在一个销售季度中,我们可以利用二次函数来拟合销售量曲线,并通过求解极值点来确定最佳的销售策略。

四、总结二次函数的应用十分广泛,不仅存在于数学领域,还贯穿于日常生活的方方面面。

二次函数的应用举例

二次函数的应用举例

二次函数的应用举例一、圆的方程在数学中,圆的方程可以通过二次函数来表示。

假设圆的圆心坐标为(h, k),半径为r,那么圆的方程可以写为:(x - h)² + (y - k)² = r²其中,(x, y)表示圆上的任意一点。

通过这个方程,我们可以得到圆上的所有点的坐标。

举例:假设有一个圆,圆心坐标为(2, 3),半径为4。

那么圆的方程可以写为:(x - 2)² + (y - 3)² = 16通过这个方程,我们可以求解出圆上的任意点的坐标。

二、抛物线抛物线是二次函数的一种特殊形式。

它可以用来模拟抛体在重力作用下的运动轨迹。

抛物线的方程可以写为:y = ax² + bx + c其中,a、b、c都是实数,而a不等于0。

抛物线的开口方向由a的正负号决定。

举例:假设有一个抛物线,方程为y = 2x² - 3x + 1。

我们可以通过这个方程来分析抛物线的特性。

1. 开口方向:由于a的值为正,所以该抛物线开口向上。

2. 顶点坐标:抛物线的顶点坐标可以通过公式计算得到。

公式为:x = -b / (2a)y = f(x) = a(x - h)² + k将a、b、c代入公式,可以计算出该抛物线的顶点坐标为:x = -(-3) / (2 * 2) = 3/4y = 2 * (3/4)² - 3 * (3/4) + 1 = 7/8所以该抛物线的顶点坐标为(3/4, 7/8)。

3. 对称轴:抛物线的对称轴垂直于x轴,并通过顶点。

所以这个抛物线的对称轴方程为x = 3/4。

通过这个抛物线的方程,我们可以确定它的基本特性,并进行更进一步的分析。

三、最优化问题二次函数还可以用来解决最优化问题,即在一定条件下寻找使某个函数值达到最大或最小的变量取值。

举例:假设有一个二次函数f(x) = 2x² + 3x - 5。

我们要找到使得函数f(x)取得最小值的x的取值。

2.4.1北师大版九年级数学下册课件第二章第四节二次函数的应用第一课时最大面积

2.4.1北师大版九年级数学下册课件第二章第四节二次函数的应用第一课时最大面积

+300
(或用公式:当 x=
-
b 2a=25
时,y
最大值=300)
∵- 2152<0 ∴ 当 x = 25m 时,y 的值最大,最大面积为 300m2
如果设AB=xm,BC如何表示,最大面积是多少? (随堂练习)
第11页,共26页。
变式练习4: 如图,已知△ABC是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm.若在△ABC上截出一矩形零件DEFG,使得EF在BC上,点D、 G分别在边AB、AC上.问矩形DEFG的最大面积是多少?
((12))求当Sx取与何x的值函时数所关围系成式的及花自圃变面量积的最取大值,范最围大;值是多S少=-?4x2+24x (3)若墙的最大可用长度为8米,求围成花圃的最大面积 .
24-4x≤8 (3)由题知24-4x>0 解得 4≤x<6
A
D
x>0
∵-4<0 且对称轴是直线 x=3
B
C
∴当 4≤x<6 时,y 随 x 增大而减少
(2)设五边形APQCD的面积为Scm2 ,写出S与t的函数关系式,t为何 值时S最小?求出S的最小值。
(2)由题意得
S=12×6 -
1 2
×2t(6-t)
=t2-6t+72=(t-3)2+63
∵1>0 ∴当 t=3 时 S 最小值=63
即 t=3cm 时 S 有最小值 63cm2
D
C
Q
2t cm
A t cm
解:(1)S=x(80-2x)= -2x2+80x
A
D
80-2x≤50
xm
xm
由题知80-2x≥40 解得 15≤x<40

二次函数的应用ppt课件

二次函数的应用ppt课件

∴Q的坐标为(4,0);∠GCF=90°不存在,
综上所述,点Q的坐标为(4,0)或(9,0).
2.4
二次函数的应用(2)
北师大版 九年级数学下册


00 名师导学
01 基础巩固
02 能力提升
C O N TA N T S
数学
返回目录
◆ 名师导学 ◆
知识点 最大利润问题
(一)这类问题反映的是销售额与单价、销售量以及利润与每
(3)存在.∵y= x +2x+1= (x+3) -2,∴P(-3,-2),
3
3
∴PF=yF-yP=3,CF=xF-xC=3,
∴PF=CF,∴∠PCF=45°.
同理,可得∠EAF=45°,∴∠PCF=∠EAF,
∴在直线AC上存在满足条件的点Q.
设Q(t,1)且AB=9 2,AC=6,CP=3 2.
∵以C,P,Q为顶点的三角形与△ABC相似,
数学
返回目录
①当△CPQ∽△ABC时,
+6 3 2
∴ = ,∴ = ,∴t=-4,∴Q(-4,1);

6
9 2
②当△CQP∽△ABC时,
+6 3 2
∴ = ,∴ = ,∴t=3,∴Q(3,1).
9 2
6
综上所述,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形
数学
返回目录
◆ 基础巩固◆
一、选择题
1.在一个边长为1的正方形中挖去一个边长为 x(0<x<1)的小
正方形,如果设剩余部分的面积为y,那么y关于x的函数表达式
B

(
)
2
2

二次函数的应用举例

二次函数的应用举例

二次函数的应用举例在数学中,二次函数是一类常见的函数形式,其表达式一般为y =ax^2 + bx + c,其中a、b、c为常数,且a不为零。

二次函数在实际应用中具有广泛的应用,本文将介绍二次函数的几个常见应用举例。

1. 物体的抛射运动物体的抛射运动是二次函数的典型应用之一。

当一个物体被斜抛时,其运动轨迹可以用二次函数表示。

例如,当某个物体以一定的初速度水平抛出时,其高度与飞行时间之间的关系可以用二次函数模型来描述。

具体而言,该模型为y = -16t^2 + vt + h,其中t为时间(单位为秒),v为初速度(单位为米/秒),h为抛出高度(单位为米)。

2. 曲线的绘制二次函数可以绘制出各种曲线形状,从而在绘画、设计等领域中被广泛应用。

例如,在建筑设计中,二次函数常被用于绘制圆顶建筑、拱桥等曲线形状。

在绘画中,二次函数可以绘制出各种曲线,如抛物线、椭圆等,用于美化作品或表达特定的艺术效果。

3. 利润的最大化在经济学中,二次函数常被用于研究企业的利润最大化问题。

根据经济学原理,企业在销售产品时,需考虑生产成本和销售价格之间的关系,以实现最大利润。

假设某企业的成本函数为C(x) = ax^2 + bx + c,其中x为生产数量,a、b、c为常数。

则该企业的利润函数为P(x) =R(x) - C(x),其中R(x)为销售收入函数。

通过求解利润函数的极大值,可以确定最佳的生产数量,从而实现利润的最大化。

4. 投射物体的落地点计算二次函数还可以用于计算投射物体的落地点。

例如,当一个物体从一定高度自由落体时,它的落地点(水平方向的距离)可以用二次函数模型来计算。

具体而言,该模型为d = v0t + 1/2at^2,其中d为落地点距离(单位为米),v0为初速度(水平方向,单位为米/秒),t为时间(单位为秒),a为重力加速度(单位为米/秒^2)。

总结起来,二次函数在物理学、数学、经济学等领域具有广泛的应用。

通过物体的抛射运动、曲线的绘制、利润的最大化以及落地点的计算等实例,我们可以看到二次函数在实际问题中的重要性。

二次函数的应用

二次函数的应用

二次函数的应用二次函数是一种常见的数学函数,它的一般形式为 y = ax^2 + bx + c,其中 a、b、c 是实数且a ≠ 0。

二次函数在各个领域都有广泛的应用,下面将介绍几个常见的二次函数应用场景。

1. 物理学中的自由落体运动自由落体是物理学中常见的运动形式,它的运动规律可以用二次函数来描述。

当一个物体在重力作用下自由下落时,其位移和时间的关系可以通过二次函数来表示。

假设物体的下落轨迹为 y = -4.9t^2 + v0t + h0,其中 t 表示时间,v0 表示初始速度,h0 表示初始高度。

通过二次函数的图像,我们可以计算物体的落地时间、最大高度等物理量,进一步分析自由落体运动的特性。

2. 金融学中的收益率曲线在金融学中,收益率曲线常用来描述不同期限的债券收益率之间的关系。

假设某个债券的收益率与到期期限的关系可以用二次函数表示,那么我们可以通过该二次函数的图像来预测不同期限的债券的收益率。

另外,通过对收益率曲线进行分析,可以评估利率的变动趋势、市场风险等重要的金融指标。

3. 经济学中的成本函数在经济学中,成本函数是描述企业生产成本与产量之间关系的数学函数。

对于某些生产过程,成本函数常常具有二次函数的形式。

例如,某企业的总成本可以表示为 C(q) = aq^2 + bq + c,其中 q 表示产量,a、b、c 是常数。

通过分析该二次函数,可以找到最小成本对应的产量,从而在生产决策中进行合理的成本控制。

4. 工程学中的抛物线天桥设计在工程设计中,抛物线天桥是一种常见的设计形式。

抛物线为二次函数的图像,因此可以通过二次函数来描述天桥的形状和结构。

工程师可以利用二次函数的性质来计算天桥的高度、跨度等参数,确保天桥的结构稳定性和安全性。

总结起来,二次函数的应用十分广泛,涵盖了物理学、金融学、经济学、工程学等多个领域。

通过对二次函数图像的分析和计算,我们可以探索和解决实际问题,提高问题的解决效率和准确性。

《二次函数》的应用(附例题分析)

《二次函数》的应用(附例题分析)

《二次函数》的应用(附例题分析)典型例题分析1:某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每件文具的利润不低于为25元且不高于29元.请比较哪种方案的最大利润更高,并说明理由.解:(1)由题意得,销售量=250﹣10(x﹣25)=﹣10x+500,则w=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000;(2)w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=2250,故当单价为35元时,该文具每天的利润最大;(3)A方案利润高.理由如下:A方案中:20<x≤30,故当x=30时,w有最大值,此时wA=2000;B方案中:故x的取值范围为:45≤x≤49,∵函数w=﹣10(x﹣35)2+2250,对称轴为直线x=35,∴当x=35时,w有最大值,此时wB=1250,∵wA>wB,∴A方案利润更高.考点分析:二次函数的应用;一元二次方程的应用.题干分析:(1)根据利润=(销售单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值范围,然后分别求出A、B 方案的最大利润,然后进行比较。

这是一道与二次函数有关的实际应用问题,贴近生活,考生能学习生活知识,同时更帮助学生理解数学知识和生活之间的关系。

研究题目,吃透题型是数学学习最有效,最实际的学习探究行为。

初三二次函数的应用

初三二次函数的应用

初三二次函数的应用二次函数是数学中的一个重要概念,具有广泛的应用。

在初三学习二次函数的过程中,我们不仅要学会掌握二次函数的基本性质和图像特点,更要学会应用二次函数解决实际问题。

本文将从数学和实际问题两个方面介绍初三二次函数的应用。

数学应用1. 求解二次方程二次函数的性质之一是关于 x 的二次方程。

利用二次函数图像和性质,我们可以通过求解二次方程来解决一些问题。

例如,已知二次函数 y = ax^2 + bx + c 的图像与 x 轴交于 A、B 两点,我们可以通过求解方程 ax^2 + bx + c = 0 来确定函数与 x 轴的交点坐标。

2. 确定二次函数的开口方向和顶点坐标对于一般形式的二次函数 y = ax^2 + bx + c,通过观察二次函数的系数 a 的正负可以判断其开口方向,即向上或向下开口;同时可以利用一些关系式来确定二次函数的顶点坐标。

这些知识点的掌握对于正确绘制二次函数图像至关重要。

实际问题的应用初三阶段,我们学习数学的过程中,二次函数的实际应用也是重要的内容之一。

下面将介绍一些常见的二次函数实际问题应用。

1. 抛物线运动在物理学中,抛物线运动是一个常见的问题。

例如,当我们抛出一个物体时,它的轨迹可以用二次函数来描述。

二次函数的顶点就是物体的最高点,通过解析解或图像分析可以得到物体的最大高度、最大飞行距离等信息。

2. 路程问题在解决路程问题时,二次函数也有所应用。

例如,已知某辆汽车的加速度为 a,初始速度为 v0,我们可以通过二次函数模型来描述汽车在 t 秒内的行驶距离 S。

通过求解二次方程可以计算出汽车行驶到某个特定位置的时间 t。

3. 面积问题二次函数的图像与x 轴所围成的图形面积是一个常见的问题。

例如,已知一块矩形底部宽度为 l,上方通过二次函数 y = ax^2 + bx + c 描述,我们可以通过求解二次方程来计算矩形与二次函数曲线所围成的面积。

这种类型的问题在应用数学中经常出现。

第13讲二次函数的应用

第13讲二次函数的应用

第13讲二次函数的应用二次函数是一种常见的数学函数,它的一般形式为:y = ax^2 + bx+ c,其中a、b、c为常数。

在现实生活中,二次函数有着广泛的应用,涵盖了很多领域。

一、高空抛物线抛物线的运动是一种经典的二次函数应用。

当一个物体在空中受到重力的作用时,它的运动轨迹形状和二次函数类似。

在假设空气阻力忽略不计的情况下,物体的抛射轨迹可以用二次函数来描述。

通过求解二次函数的根,可以得到物体落地的位置和飞行的最远距离等信息。

二、汽车行驶汽车的行驶过程中,行驶里程和燃油消耗之间存在着一种二次函数关系。

假设行驶里程为x,燃油消耗为y,我们可以用二次函数来拟合这一关系。

通过求解二次函数的顶点,可以得到行驶里程与燃油消耗的最优值,帮助人们节约燃料。

三、投射口和落地点在射击、炮击等领域,求解投射物的飞行路径也是一个常见的二次函数应用。

通过给定的发射角度、初速度和重力加速度等参数,可以求解二次函数的顶点,从而确定投射物的最远射程和落地点。

四、电力消耗在电力行业,二次函数也有着广泛的应用。

以家庭用电为例,当电器设备使用时间增加时,电力消耗的变化可以用二次函数来描述。

通过求解二次函数的顶点,可以确定使用时间和电力消耗的最佳组合,以实现节能降耗的目的。

五、建筑设计在建筑设计中,二次函数可以用来描述建筑物的空间形状和结构。

例如,拱门的形状可以用二次函数来描述。

通过求解二次函数的参数,可以得到拱门的最大宽度和高度,帮助设计师合理规划建筑结构。

六、自然界现象自然界中也有很多可以用二次函数来描述的现象。

例如,花朵的开放过程可以用二次函数来描述开放程度随时间的变化。

通过求解二次函数的顶点,可以确定花朵开放的最佳时间点。

总结起来,二次函数在现实生活中的应用广泛。

它可以用来描述运动、行驶、电力消耗、建筑设计等各种现象和过程。

通过求解二次函数的顶点、根等,我们可以得到很多有用的信息,帮助人们做出最佳决策,提高效率、节约资源。

二次函数的应用一(最值问题)

二次函数的应用一(最值问题)

(2)一个商品所获利润可以表示为 (50+x-40)元 (3)销售量可以表示为 (500-10x) 个
(4)共获利润可以表示为 (50+x-40)(500-10x)元
解: 设每个商品涨价x元, 那么 y=(50+x-40)(500-10x) =-10 x2 +400x+5000
=-10[ (x-20)2 -900]
=- 10(x-20)2 +9000
(0 ≤ x≤50 ,且为整数 )
答:定价为70元/个,利润最高为9000元.
创新学习
某果园有100棵橙子树,每一棵树平 均结600个橙子.现准备多种一些橙子树 以提高产量,但是如果多种树,那么树之 间的距离和每一棵树所接受的阳光就会 减少.根据经验估计,每多种一棵树,平均 每棵树就会少结5个橙子.若每个橙子市 场售价约2元,问增种多少棵橙子树, 果园的总产值最高,果园的总产值最高 约为多少?
检验
“二次函数应用” 的思路
1.理解问题;
2.分析问题中的变量和常量,以及它们之间的关系;
3.用数学的方式表示出它们之间的关系;
4.做数学求解; 5.检验结果的合理性,拓展等.
例 心理学家研究发现,一般情况下,学生的注意力随着教 师讲课时间的变化而变化,讲课开始时,学生的注意力初 步增强,中间有一段时间学生的注意力保持较为理想的状 态,随后学生的注意力开始分散,经过实验分析可知,学 生的注意力y随时间t的变化规律有如下关系(04黄冈)
例1、如图,一边靠学校院墙,其他三边用12 m长 的篱笆围成一个矩形花圃,设矩形ABCD的边 AB=x m,面积为S㎡。 (1)写出S与x之间的函数关系式; (2)当x取何值时,面积S最大,最大值是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4 二次函数的应用(一)
◆目标指引
1.理解和体会建立二次函数这一数学模型解决简单的实际问题.
2.经历探索具体问题中数量关系和变化规律的过程,•体会二次函数是刻画现实世界的一个有效的数学模型. ◆要点讲解
1.如果自变量的取值范围是全体实数,则二次函数y=ax 2+bx+c 在顶点处取得最大(或最小)
值,即当x=-2b a 时,y 最值=2
44ac b a
-.
如果自变量的取值范围是x 1≤x≤x 2,那么首先要看-
2b
a
是否在自变量的取值范围x 1≤x≤x 2内,若在此范围内,则当x=-2b a 时,y 最值=2
44ac b a
-;若不在此范围内,则需考虑函数在x 1≤x≤x 2范
围内的增减性,再求得最值.
2.学会把实际问题转化为数学问题来解决,并注意实际问题的实际意义. ◆学习互动
1.解决实际问题时,列二次函数解析式要根据自变量的实际意义,•确定自变量的取值范围. 2.在自变量的取值范围内,利用二次函数求最值,•关键是找出应变量与自变量之间的数量关系.解这类问题还要注意:函数达到最大值或最小值时的相应自变量的值是否在自变量的取值范围内. ◆例题分析
【例1】如图,PQ ⊥MQ ,NM ⊥MQ ,Q ,M 分别为垂足,点A 是线段MQ 上(•不包括端点)的动点,连结PA ,过点A 作直线BA ,使BA ⊥PA ,交射线MN 于点B ,连结PB .•已知PQ=•1,MQ=2,并设AQ=x ,用S 表示四边形MQPB 的面积. (1)求S 关于x 的函数表达式与自变量x 的取值范围;
(2)x 为何值时S 的值最大?此时四边形MQPB 是哪一种特殊四边形?S 的最大值是多少? 【分析】当点A 在线段MQ 上运动时,线段AQ=x 是一个变量,四边形MQPB •的面积也是
一个变量.因而必须建立四边形MQPB 的面积关于x 的函数关系式.
【解】(1)∵BA⊥PA,
∴∠PAQ+∠BAM=90°.
又∵∠ABM+∠BAM=90°,∴∠PAQ=∠ABM.
又∵∠BMA=∠PQA=90°,∴Rt△ABM∽Rt△PAQ,
∴BM AM AQ PQ
=.
∵PQ=1,AQ=x,MQ=2,AM=2-x.

2
1
BM x
x
-
=.即BM=-x2+2x.
又∵四边形MQPB只可能是直角梯形或矩形.
∴S=
2
()(21)2
22
BM PQ MQ x x
+-++
=
=-x2+2x+1(0<x<2).
(2)∵S=-x2+2x+1=-(x-1)2+2(0<x<2).
∴当x=1时,S取得最大值.
此时BM=-x2+2x=-1+2=1=PQ,
∴四边形MQPB是矩形.
∴S最大值=-(1-1)2+2=2.
【注意】(1)在用含自变量的代数式表示相关的量时,•要注意运用几何图形的有关性质.如本例中用到三角形相似的判定和性质.
(2)在利用几何公式求面积时,要观察具体图形,得出相应的数量关系.
【例2】某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,•制造窗框的材料总长(图中所有实线的长度和)为10米.•若设窗户上半部的半圆半径为xm,则当x等于多少米时,窗户的透光面积最大?最大面积是多少?
【分析】本题要求窗户的透光面积,必须先分析整个窗户的结构,即由上半部的半圆和下半部的矩形组成,故只需求面积之和即可.
【解】设下半部矩形的另一边长为y(m),窗户面积为S(m2).
则4y+6x+x=10
y=
1064x x π--,0<x<10
6π+
∵S 半圆=1
2
πx 2,S 矩=2xy
∴S 窗=S 半圆+S 矩 =
2
2
x π+2x·
1064
x x
π--
=-3x 2+5x
=-3[x 2-
53x+(56)2-(56)2] =-3[(x -56)2-25
36]
=-3(x -56)2+25
12
∵-3<0,∴窗户面积有最大值
∵0<x=
56<106π+ ∴当x=56时,S 最大=25
12
答:当窗户的半圆半径为
56m 时,窗户的透光面积最大,最大面积为2512
m 2
. 【注意】这是典型的二次函数应用题,在计算下半部矩形时,必须考虑完整,不能遗漏. ◆练习提升 一、基础训练
1.某学生推铅球,“铅球”飞行的高度y (m )与水平距离x (m )•之间的函数关系式是y=-
115x 2+x+1
30
.则铅球落地的水平距离为_______m . 2.已知二次函数y=kx 2-2px+6的顶点坐标为(-2,10),则k=______,p=______. 3.如果抛物线y=x 2-6x+c 的顶点在x 轴上,则c 的值为( ) A .0 B .-9 C .6 D .9
4.当二次函数y=(x -1)2+(x -3)2的值最小时,x 的值为( ) A .0 B .2 C .3 D .4
5.正数26可以拆成正数之和,那么当这两个正数的乘积最大时,这两个正数应该是_____.
6.把一根长120cm的钢丝分为两部分,每一部分均弯曲成一个正方形,•当两个小正方形的边长分别为多少时,它们的面积和最小?最小面积和是多少?
7.如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE•⊥AC,DF⊥BC,垂足分别为点E,F,得四边形DECF,设DE=x,DF=y.
(1)用含y的代数式表示AE为:AE=______.
(2)求y关于x的函数关系式,并求出x的取值范围;
(3)设四边形DECF的面积为S,求S关于x的函数关系式,并求出S的最大值.
8.如图是截面为等腰梯形的拦水坝,两腰与上底的和为8米,底角为60°.
应如何设计拦水坝的截面,才能使截面面积最大?
二、提高训练
9.抛物线y=x2+bx+c与x轴的正半轴交于A,B两点,与y轴交于C点,且线段AB的长为1,△ABC的面积为1,则b的值是_____.
10.如图,已知正方形ABCD的边长为1,E,F,G,H•分别为各边上的点,•且AE=BF=CG=DH,设小正方形EFGH的面积为S,AE=x,则S关于x的函数图象大致是()
11.如图,在周长为400m且两端为半圆形的跑道上,要使矩形内部操场的面积最大,直线跑道的长应为多少米?
12.如图,有长为24m的篱笆,其中一面利用墙(墙的最大可用长度a为10m).围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x,面积为Sm2.
(1)求S关于x的函数关系式;
(2)如围成面积为45m2的花圃,AB的长是多少米?
(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.
13.有一个抛物线的立交桥拱,这个桥拱的最大高度为16m,跨度为40m,现把它的图形放在坐标系中(如图).若在离跨度中心M点5m处垂直竖立一铁柱支撑拱顶,这根铁柱应取多长?
14.已知抛物线的解析式为y=2x2+3mx+2m,
(1)求该抛物线的顶点坐标(x0,y0);
(2)以x0为自变量,写出自变量y0与x0之间的关系式;
(3)当m为何值时,抛物线的顶点位置最高?
三、拓展训练
15.某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间的函数关系式如图2-4-9所示.
(1)求y关于x的函数关系式;
(2)试写出该公司销售该种产品的年获利额Z(万元)关于销售单价x(元)•的函数关系式.当销售单价x为何值时,年获利额最大?并求出这个最大值;(注:年获利额=年销售额-年销售产
品总进价-年总开支)
(3)若公司希望该种产品一年的销售获利额不低于40万元,借助(2)•中的函数图象,请你帮助该公司确定销售单价的范围,在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?
答案:
1.5 2.-1,2 3.D 4.B 5.13,13 6.15cm,15cm,450cm2
7.(1)8-y (2)y=8-2x(0<x<4)(3)S=-2x2+8x,S最大值=8
8.上底、腰分别为8
3
米,
8
3
米时截面面积最大
9.-3 •10.B 11.100m
12.(1)S=-3x2+24x(14
3
≤x≤6)(2)AB=5m
(3)能,AB=14
3
m,BC=10m时,最大面积为46
2
3
m2
13.15m
14.(1)(-3
4
m

2
169
8
m m
)(2)y=-2x02-
8
3
x0(3)m=
8
9
m
15.(1)y=-1
20
x+8 (2)x=100 时,最大年获利额为60万元(3)80元。

相关文档
最新文档