2015年高考专题四 解三角形

合集下载

解三角形是高中数学重点和难点也是历年高考必考点和命题热点题型

解三角形是高中数学重点和难点也是历年高考必考点和命题热点题型

解三角形是高中数学重点和难点也是历年高考必考点和命题热点题型
高一到高三数学必刷基础题型全归纳解已更新完成解三角形专题,而三角形是高中数学教学中的重点和难点,也是历年高考的必考点和命题热点。

其中,正弦定理和余弦定理及解三角形更是重中之重,但面对利用正余弦定理或三角函数关系所产生的各类解,学生往往缺乏必要的甄别意识和区分技能,从而造成“会而不对,对而不全”的现象时有发生。

利用这些题型掌握可以轻松提高
1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题
2.本部分是高考中的重点考查内容,主要考查利用正、余弦定理解三角形、判断三角形的形状,求三角形的面积等
3.命题形式多种多样,解答题以综合题为主,常与三角恒等变换、平面向量相结合
Word文档资料,微信:1989450104,其实,学习一定是有捷径和方法的,不是一味的苦学到半夜,清华北大数名学霸耗精心总结《高分其实很简单》,学霸们晒方法、晒技巧、晒笔记、晒心得、晒智慧!更有高考“必考点”、易考点、分析,让你做题,解题学会举一反三!。

2015年福建省高考数学试题及答案(理科)【解析版】

2015年福建省高考数学试题及答案(理科)【解析版】
专题:
图表型;算法和程序框图.
分析:
模拟执行程序框图,依次写出每次循环得到的i,S的值,当i=6时满足条件
i>5,退出循环,输出S的值为0.
解答:
解:模拟执行程序框图,可得
i=1,S=0
c兀•c
S=cos,i=2
2
jr
不满足条件i>5,S=cos——+cosn,i=3
2
jr<?jr
不满足条件i>5,S=cos +cosn+cos,i=4
••• |PF2|=9.
故选:B.
点评:
本题考查双曲线的标准方程,考查双曲线的定义,属于基础题.
4.(5分)(2015?福建)为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社 区5户家庭,得到如下统计数据表:
收入x(万兀)
8.2
8.6
10.0
11.3
11.9
支出y(万兀)
6.2
7.5
8.0
2 2
不满足条件i>5,S=cos1+cosn+cos+cos2n,i=5
22
不满足条件i>5,S=cos1+cosn+cos ' +cos2n+cos ' =0-1+0+1+0=0,i=6
222
满足条件i>5,退出循环,输出S的值为0,
故选:C.
点评:本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的i,S的
偶函数.
B.f(-x)=|sin(-x)|=|sinx|=f(x),贝Uf(x)为偶函数.
C.y=cosx为偶函数.

2015年高考数学复习学案:解三角形

2015年高考数学复习学案:解三角形

【考点概述】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2、能运用正弦、余弦定理等知识和方法解决一些与几何计算和测量有关的实际问题. 【重点难点】三角形中的边角互化、一解两解问题以及动态最值问题.【命题趋势】1、 近几年高考命题加强了对知识综合性和应用性的考察,故三角形中三角问题常常与其他数学知识相联系,既考查解三角形的知识与方法,又考查运用三角公式进行恒等变形的技能及三角函数的应用意识.2、解三角形问题在高考中经常以填空题出现(2010年江苏卷第13题,2010年上海理科卷第18题,2010年全国理科卷第16题、2010年天津理科卷第15题、2010年北京理科卷第10题、2010年广东理科卷第11题、2010年山东理科卷第15题等),但近几年来以解答题形式出现的频率较高(2010年江苏卷第17题、2010年陕西理科卷第17题、2010年福建理科卷第19题、2009年海南理理科卷第17题、2009年天津理科卷第17题、2009年辽宁理科卷第17题、2009年安徽理科卷第16题、2009年浙江理科卷第18题等),因为与实际问题的联系密切,今后这部分仍然是高考命题的一个热点.【知识要点】:1、 正弦定理:CcB b A a sin sin sin ===2R 正弦定理的变形:sin :sin :sin ::A BC a b c =利用正弦定理,可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和一角.(2)已知两边和其中一边对角,求另一边的对角,进而求出其他的边和角. 2、余弦定理:=2a A bc cb cos 222-+; cos A =bca cb 2222-+=2b B ac c a cos 222-+; cos B =acb c a 2222-+=2c C ab b a cos 222-+; cos C =abc b a 2222-+利用余弦定理,可以解决以下三类有关三角形的问题: (1)已知三边,求三个角.(2)已知两边和它们的夹角,求第三边和其他两个角. (3)已知两边和其中一边对角,求第三边和其他两个角. 3、三角形的面积公式:C ab S ABC sin 21=∆=A bc B ac sin 21sin 21=.4、射影定理: a =c cos B +b cos C ,b =a cos C +c cos A ,c =a cos B +b cos A ,【基础训练】1、在ABC △中,已知2AC =,3BC =,4cos 5A =-,求sin B = . 2、在ABC ∆中,若sin A ︰sin B ︰sin C =5︰7︰8,则B = .3、在ABC ∆中,B A sin sin >是A >B 的 条件(填“充分不必要、必要不充分、既不充分也不必要、充要”).4、在ABC ∆中,已知a ,b ,c 分别是角A 、B 、C 的对边,若,cos cos ABb a =则ABC ∆的形状是 .【典例分析】:例1、(1)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若a =3,b =32,A =30°,则B = .变式1:在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =32,A =30°,则边c = .变式2:在A B C ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,已知a =33,b =32,A =30°,则B 有几解?例2:在ABC ∆中,c b a ,,分别是角C B A ,,的对边,且2sin2)2cos(12CB A +=++π. (Ⅰ)求角A 的大小;(Ⅱ)当a =6时,求其面积的最大值,并判断此时ABC ∆的形状.例3:如图:在ABC ∆中,若4,7b c ==,BC 的中点为D ,且72AD =,求cos A .【巩固练习】1、(2010年北京理10)在△ABC 中,若b = 1,c23C π∠=,则a = . 2、( 2010年上海理18) 某人要制作一个三角形,要求它的三条高的长度分别为111,,13115,则此人根据上述条件,下列说法正确的是 .(1)不能作出这样的三角形 (2)可作出一个锐角三角形 (3)可作出一个直角三角形 (4)可作出一个钝角三角形3、(2009年广东理6) 一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知1F ,2F 成060角,且1F ,2F 的大小分别为2和4,则3F 的大小为 . 4、(2010年广东理11)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,bA +C =2B ,则sinC = .5、 (2010年全国理16)在△ABC 中,D 为边BC 上一点,BD =12DC ,∠ADB =120°,AD =2,若△ADC的面积为3∠BAC =______ _ .【课外作业】1、(2010年山东理15)在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,若a =2b =,sin cos B B +=,则角A 的大小为 .2、(2007年山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的序号是 .(1)2AC AC AB =⋅ (2) 2BC BA BC =⋅ (3)2AB AC CD =⋅ (4) 22()()AC AB BA BC CD AB⋅⨯⋅=3、(2008年海南理3)如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为 .4、(08江苏高考13)满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值是 .5、(2010年天津理7)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -=, sin C =B ,则A = .6、(2010年天津理15)如图,在ABC ∆中,AD AB ⊥,1==BC ,则AC AD ⋅=7、(2010年江苏高考17)(14分)某兴趣小组测量电视塔AE 的高度H (单位m ),如示意图,垂直放置的标杆BC 高度h =4m ,仰角∠ABE =α,∠ADE =β (1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,,请据此算出H 的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位m ),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m ,问d 为多少时,α-β最大E【反思感悟】1、 解三角形常用方法:“化边为角”, “化角为边”.2、 已知两边和其中一边的对角,解三角形时,注意解的个数问题.3、 正、余弦两个定理的的灵活运用及内涵(余弦定理的向量本质).4、 应熟练掌握和运用内角和定理:A +B +C =兀,2222π=++C B A 中互补和互余的关系,结合诱导公式可以减少角的种数. 5、三角形中的动态最值问题的解法.课外探究:已知a ,b 及一边对角A ,则三角形解的情况.。

2015年高考数学(文)一轮课件:5-7解三角形应用举例

2015年高考数学(文)一轮课件:5-7解三角形应用举例

解析:如图所示,某人在C处,AB为塔高,他沿CD前进, CD=40,此时∠DBF=45° ,过点B作BE⊥CD于E,则∠AEB= 30° ,
在△BCD中,CD=40,∠BCD=30° ,∠DBC=135° ,由正 弦定理,得 CD BD = , sin∠DBC sin∠BCD 40sin30° ∴BD= sin135°=20 2(米). ∠BDE=180° -135° -30° =15° . 在Rt△BED中, 6- 2 BE=DBsin15° =20 2× 4 =10( 3-1)(米).
即∠CAB≈21.8° 或∠CAB≈158.2° (舍去). 即舰艇航行的方位角为45° +21.8° =66.8° . 2 所以舰艇以66.8° 的方位角航行,需 h才能靠近渔轮. 3
2 答案:舰艇以66.8° 的方位角航行,需3 h才能靠近渔轮.
点评:对于和航行有关的问题,要抓住时间和路程两个关键 量,解三角形时将各种关系集中在一个三角形中利用条件.
(2)由题意可知OB=vt, 在△AOB中利用余弦定理得: v2t2=400+900t2-2· 20· 30tcos60° 600 400 故v =900- t + t2 .
2
∵0<v≤30, 600 400 2 3 ∴900- t + t2 ≤900,即t2- t ≤0, 2 2 解得t≥3,又t=3时,v=30(海里/小时).
答案:A
3.已知两座灯塔A,B与海洋观察站C的距离相等,灯塔A在 观察站C的北偏东40° ,灯塔B在观察站C的南偏东60° ,则灯塔A 在灯塔B的( ) B.北偏西10° D.南偏西10°
A.北偏东10° C.南偏东10°
1 解析:如图,∠CBA= (180° -80° )=50° ,α=60° -50° = 2 10° ,故选B.

2015年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2} 2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.23.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.845.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.2【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.12【考点】3T:函数的值.【专题】11:计算题;51:函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==2×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.10【考点】IR:两点间的距离公式.【专题】11:计算题;5B:直线与圆.【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】96:平行向量(共线).【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z 最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= 3.【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.【考点】8H:数列递推式.【专题】54:等差数列与等比数列.﹣S n=a n+1可知S n+1﹣S n=S n+1S n,两边同时除以S n+1S n可知﹣【分析】通过S n+1=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论.=S n+1S n,【解答】解:∵a n+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【考点】HP:正弦定理;HT:三角形中的几何计算.【专题】58:解三角形.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】5G:空间角;5H:空间向量及应用.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF 与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】2:创新题型;52:导数的概念及应用.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2c osθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。

超实用高考数学专题复习:第四章三角函数解三角形 三角函数与解三角形热点问题

超实用高考数学专题复习:第四章三角函数解三角形  三角函数与解三角形热点问题

【尝试训练】 (2020·郑州质检)在△ABC 中,内角 A,B,C 的对边分别为 a,b,c, 若向量 m=2cos2C2 ,cos A-2 B,n=58,cos A-2 B,m·n=98. (1)求 tan Atan B 的值; (2)求c2a-bsai2n-Cb2的最小值. 解 (1)由题意可得 m·n=54cos2C2+cos2A-2 B=98, 即-58cos(A+B)+12cos(A-B)=0,展开可得 cos Acos B=9sin Asin B,
所以 f(x)的最小正周期 T=22π=π.
(2)由-π2+2kπ≤2x-π3≤π2+2kπ(k∈Z),得-1π2+kπ≤x≤51π2+kπ(k∈Z). 设 A=-4π,π4,B=x-1π2+kπ≤x≤51π2+kπ,k∈Z,易知 A∩B=-1π2,π4.
所以当 x∈-π4,π4时,f(x)在区间-1π2,π4上单调递增,在区间-π4,-1π2上单调 递减.
6+ 4
2 .
两角差正弦公式的应用
12′
[高考状元满分心得]
❶写全得步骤分:对于解题过程中得分点的步骤有则给分,无则没分,所以得分点
步骤一定要写全,如第(1)问中只要写出 0°<A<180°就有分,没写就扣 1 分,第(2)
问中 0°<C<120°也是如此.
❷写明得关键分:对于解题过程中的关键点,有则给分,无则没分,所以在答题时
教你如何审题——三角函数与平面向量
【例题】 (2020·湘赣十四校联考)已知向量 m=(sin x,-1),n=( 3,cos x),且函
数 f(x)=m·n. (1)若 x∈0,2π,且 f(x)=23,求 sin x 的值;
(2)在锐角三角形 ABC 中,内角 A,B,C 的对边分别为 a,b,c.若 a= 7,△ABC

2015届高考数学(人教,理科)大一轮配套练透:第3章 三角函数、解三角形 第1节

2015届高考数学(人教,理科)大一轮配套练透:第3章 三角函数、解三角形 第1节

[课堂练通考点]1.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ)解析:选A 由三角函数的定义知P (cos θ,sin θ),选A.2.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1或4 B .1 C .4D .8解析:选A 设扇形的半径和弧长分别为r ,l , 则易得⎩⎪⎨⎪⎧l +2r =6,12lr =2,解得⎩⎨⎧ l =4r =1或⎩⎨⎧l =2,r =2.故扇形的圆心角的弧度数是4或1.3.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上. ∴⎩⎨⎧3a -9≤0,a +2>0,∴-2<a ≤3.故选A. 4.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________.解析:2 010°=676π=12π-5π6,∴与2 010°终边相同的角中绝对值最小的角的弧度数为5π6. 答案:5π65.(2014·辽源模拟)若三角形的两个内角α,β满足sin αcos β<0,则此三角形为________.解析:∵sin αcos β<0,且α,β是三角形的两个内角. ∴sin α>0,cos β<0,∴β为钝角. 故此三角形为钝角三角形. 答案:钝角三角形6.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,求α的三角函数值.解:∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴-1<cos θ<0,∴r =9cos 2θ+16cos 2θ=-5cos θ, 故sin α=-45,cos α=35,tan α=-43.[课下提升考能]第Ⅰ组:全员必做题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3B.π6 C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角. 故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16. 即为-16×2π=-π3.2.已知cos θ·tan θ<0,那么角θ是( ) A .第一或第二象限角B .第二或第三象限角C .第三或第四象限角D .第一或第四象限角解析:选C 易知sin θ<0,且cos θ≠0,∴θ是第三或第四象限角. 3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( ) A .-32 B.32 C .-12D.12解析:选D 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ),又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12 解析:选A 由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan 17π9,其中符号为负的是( ) A .① B .② C .③D .④解析:选C sin(-1 000°)=sin 80°>0;cos(-2 200°) =cos(-40°)=cos 40°>0;tan(-10)=tan(3π-10)<0; sin 7π10cos πtan 17π9=-sin 7π10tan 17π9,sin 7π10>0,tan 17π9<0,∴原式>0. 6.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3).答案:(-1,3)7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.解析:因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.答案:-358.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.解析:由α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z ),k π+π2<α2<k π+3π4(k ∈Z ),知α2是第二或第四象限角,再由⎪⎪⎪⎪⎪⎪sin α2=-sin α2知sin α2<0,所以α2只能是第四象限角.答案:四9.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .解:设圆的半径为r cm , 弧长为l cm ,则⎩⎪⎨⎪⎧12lr =1,l +2r =4,解得⎩⎨⎧r =1,l =2.∴圆心角α=lr =2.如图,过O 作OH ⊥AB 于H .则∠AOH =1弧度. ∴AH =1·sin 1=sin 1(cm), ∴AB =2sin 1(cm). 10.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限; (3)试判断tan α2sin α2cos α2的符号. 解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限, 故α角在第三象限,其集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪(2k +1)π<α<2k π+3π2,k ∈Z. (2)由(2k +1)π<α<2k π+3π2, 得k π+π2<α2<k π+3π4,k ∈Z , 故α2终边在第二、四象限. (3)当α2在第二象限时, tan α2<0,sin α2>0,cos α2<0, 所以tan α2sin α2cos α2取正号;当α2在第四象限时,tan α2<0,sin α2<0,cos α2>0, 所以tan α2sin α2cos α2也取正号. 因此,tan α2sin α2cos α2取正号. 第Ⅱ组:重点选做题1.满足cos α≤-12的角α的集合为________.解析作直线x =-12交单位圆于C 、D 两点,连接OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z2.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.解析:如图,连接AP ,分别过P ,A 作PC ,AB 垂直x 轴于C ,B 点,过A作AD ⊥PC 于D 点.由题意知 BP的长为2. ∵圆的半径为1, ∴∠BAP =2, 故∠DAP =2-π2.∴DP =AP ·sin ⎝ ⎛⎭⎪⎫2-π2=-cos 2,∴PC =1-cos 2,DA =AP cos ⎝ ⎛⎭⎪⎫2-π2=sin 2.∴OC =2-sin 2.故OP=(2-sin 2,1-cos 2). 答案:(2-sin 2,1-cos 2)。

高考数学总复习 第四章 三角函数、解三角形 第5节 函数yAsin(ωxφ)的图像及应用教案 文(含

高考数学总复习 第四章 三角函数、解三角形 第5节 函数yAsin(ωxφ)的图像及应用教案 文(含

第5节 函数y =A sin(ωx +φ)的图像及应用y =A sin(ωx +φ)的物理意义;能画出y =A sin(ωx +φ)的图像,了解参数A ,ω,φ对函数图像变化的影响;2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.知 识 梳 理y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示.x -φω -φω+π2ωπ-φω3π2ω-φω 2π-φωωx +φ 0 π2π 3π2 2π y =A sin(ωx +φ)A-Ay =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)表示一个振动量时振幅 周期频率相位初相AT =2πωf =1T =ω2πωx +φ φy =sin x 的图像经变换得到y =A sin(ωx +φ)的图像的两种途径[微点提醒]y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2(k ∈Z )确定;对称中心由ωx +φ=k π(k ∈Z )确定其横坐标.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)将函数y =3sin 2x 的图像左移π4个单位长度后所得图像的解析式是y =3sin ⎝⎛⎭⎪⎫2x +π4.( ) (2)利用图像变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )(3)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图像的两个相邻对称中心之间的距离为T2.( ) (4)由图像求解析式时,振幅A 的大小是由一个周期内图像中最高点的值与最低点的值确定的.( )解析 (1)将函数y =3sin 2x 的图像向左平移π4个单位长度后所得图像的解析式是y =3cos2x .(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为⎪⎪⎪⎪⎪⎪φω.故当ω≠1时平移的长度不相等. 答案 (1)× (2)× (3)√ (4)√2.(必修4P56T3改编)y =2sin ⎝ ⎛⎭⎪⎫12x -π3的振幅、频率和初相分别为( )A.2,4π,π3B.2,14π,π3C.2,14π,-π3D.2,4π,-π3解析 由题意知A =2,f =1T =ω2π=14π,初相为-π3.答案 C3.(必修4P60B 组改编)某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现.下表是今年前四个月的统计情况:月份x1234收购价格y (元/斤) 6 7 6 5选用一个正弦型函数来近似描述收购价格(元/斤)与相应月份之间的函数关系为________________________.解析 设y =A sin(ωx +φ)+B (A >0,ω>0),由题意得A =1,B =6,T =4,因为T =2πω,所以ω=π2,所以y =sin ⎝ ⎛⎭⎪⎫π2x +φ+6.因为当x =2时,y =7,所以sin(π+φ)+6=7,即sin φ=-1, 即φ=-π2+2k π(k ∈Z ),可取φ=-π2.所以y =sin ⎝ ⎛⎭⎪⎫π2x -π2+6=6-cos π2x .答案 y =6-cos π2x4.(2019·某某模拟)函数y =2cos ⎝⎛⎭⎪⎫2x +π6的部分图像大致是( )解析 由y =2cos ⎝ ⎛⎭⎪⎫2x +π6可知,函数的最大值为2,故排除D ;又因为函数图像过点⎝ ⎛⎭⎪⎫π6,0,故排除B ;又因为函数图像过点⎝ ⎛⎭⎪⎫-π12,2,故排除C.答案 A5.(2016·全国Ⅰ卷)若将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图像向右平移14个周期后,所得图像对应的函数为( )A.y =2sin ⎝ ⎛⎭⎪⎫2x +π4B.y =2sin ⎝ ⎛⎭⎪⎫2x +π3C.y =2sin ⎝ ⎛⎭⎪⎫2x -π4D.y =2sin ⎝⎛⎭⎪⎫2x -π3 解析 函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图像向右平移14个周期即π4个单位,所得函数为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π6=2sin ⎝ ⎛⎭⎪⎫2x -π3,故选D.答案 D6.(2018·某某模拟改编)y =cos(x +1)图像上相邻的最高点和最低点之间的距离是________.解析 相邻最高点与最低点的纵坐标之差为2,横坐标之差恰为半个周期π,故它们之间的距离为π2+4. 答案π2+4考点一 函数y =A sin(ωx +φ)的图像及变换【例1】 某同学用“五点法”画函数f (x )=A sin(ωx +φ) ⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图像时,列表并填入了部分数据,如下表:ωx +φ 0 π2 π 3π2 2π X π3 5π6 A sin(ωx +φ)5-5(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图像上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (xy =g (x )图像的一个对称中心为⎝⎛⎭⎪⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:ωx +φ 0 π2 π 3π2 2π x π12 π3 7π12 5π6 1312π A sin(ωx +φ)5-5且函数解析式为f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6. (2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎪⎫2x +2θ-π6. 因为函数y =sin x 图像的对称中心为(k π,0)(k ∈Z ). 令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ(k ∈Z ).由于函数y =g (x )的图像关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12(k ∈Z ),解得θ=k π2-π3(k ∈Z ).由θ>0可知,当k =1时,θ取得最小值π6.规律方法 作函数y =A sin(ωx +φ)(A >0,ω>0)的图像常用如下两种方法:(1)五点法作图,用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图像;(2)图像的变换法,由函数y =sin x 的图像通过变换得到y =A sin(ωx +φ)的图像有两种途径:“先平移后伸缩”与“先伸缩后平移”.【训练1】 (1)(2017·全国Ⅰ卷)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( )C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2)(2018·某某调研)若把函数y =sin ⎝ ⎛⎭⎪⎫ωx -π6的图像向左平移π3个单位长度,所得到的图像与函数y =cos ωx 的图像重合,则ω的一个可能取值是( ) A.2 B.32C.23D.12解析 (1)易知C 1:y =cos x =sin ⎝ ⎛⎭⎪⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π2的图像,再把所得函数的图像向左平移π12个单位长度,可得函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π2=sin ⎝ ⎛⎭⎪⎫2x +2π3的图像,即曲线C 2,因此D 项正确.(2)y =sin ⎝⎛⎭⎪⎫ωx +ω3π-π6和函数y =cos ωx 的图像重合,可得ω3π-π6=π2+2k π,k ∈Z ,则ω=6k +2,k ∈Z . ∴2是ω的一个可能值. 答案 (1)D (2)A考点二 求函数y =A sin(ωx +φ)的解析式【例2】 (1)(一题多解)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图像如图所示,则函数f (x )的解析式为________.(2)(2019·长郡中学、某某八中联考)函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图像如图所示,已知A ⎝⎛⎭⎪⎫5π12,1,B ⎝ ⎛⎭⎪⎫11π12,-1,则f (x )图像的对称中心为( )A.⎝ ⎛⎭⎪⎫k π2+5π6,0(k ∈Z )B.⎝ ⎛⎭⎪⎫k π+5π6,0(k ∈Z )C.⎝⎛⎭⎪⎫k π2+π6,0(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π+π6,0(k ∈Z ) 解析 (1)由题图可知A =2,法一 T 4=7π12-π3=π4,所以T =π,故ω=2, 因此f (x )=2sin(2x +φ), 又⎝⎛⎭⎪⎫π3,0对应五点法作图中的第三个点,因此2×π3+φ=π+2k π(k ∈Z ),所以φ=π3+2k π(k ∈Z ),又|φ|<π2,所以φ=π3.故f (x )=2sin ⎝⎛⎭⎪⎫2x +π3.法二 以⎝ ⎛⎭⎪⎫π3,0为第二个“零点”,⎝ ⎛⎭⎪⎫7π12,-2为最小值点,列方程组⎩⎪⎨⎪⎧ω·π3+φ=π,ω·7π12+φ=3π2,解得⎩⎪⎨⎪⎧ω=2,φ=π3,故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.(2)T =2⎝⎛⎭⎪⎫11π12-5π12=π=2πω,∴ω=2, 因此f (x )=sin(2x +φ). 由五点作图法知A ⎝⎛⎭⎪⎫5π12,1是第二点,得2×5π12+φ=π2,2×5π12+φ=π2+2k π(k ∈Z ),所以φ=-π3+2k π(k ∈Z ),又|φ|<π2,所以φ=-π3.∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3.由2x -π3=k π(k ∈Z ),得x =k π2+π6(k ∈Z ).∴f (x )图像的对称中心为⎝⎛⎭⎪⎫k π2+π6,0(k ∈Z ).答案 (1)f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 (2)Cf (x )=A sin(ωx +φ)(A >0,ω>0)的部分图像求其解析式时,A 比较容易看图得出,利用周期性求ω,难点是“φ”的确定. 2.y =A sin(ωx +φ)中φ的确定方法(1)代入法:把图像上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图像的最高点或最低点代入.(2)五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.【训练2】 (1)(2019·某某一模)已知函数f (x )=-2cos ωx (ω>0)的图像向左平移φ⎝⎛⎭⎪⎫0<φ<π2个单位,所得的部分函数图像如图所示,则φ的值为( )A.π6B.5π6C.π12D.5π12(2)已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,|φ|<π2,ω>0的图像的一部分如图所示,则f (x )图像的对称轴方程是________.解析 (1)由题图知,T =2⎝⎛⎭⎪⎫11π12-5π12=π,∴ω=2πT=2,∴f (x )=-2cos 2x ,∴f (x +φ)=-2cos(2x +2φ),则由图像知,f ⎝ ⎛⎭⎪⎫512π+φ=-2cos ⎝ ⎛⎭⎪⎫56π+2φ=2. ∴5π6+2φ=2k π+π(k ∈Z ),则φ=π12+k π(k ∈Z ). 又0<φ<π2,所以φ=π12.(2)由图像知A =2,又1=2sin(ω×0+φ),即sin φ=12,又|φ|<π2,∴φ=π6.又11π12×ω+π6=2π,∴ω=2, ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π6,令2x +π6=π2+k π(k ∈Z ),得x =k π2+π6(k ∈Z ).∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的对称轴方程为x =k π2+π6(k ∈Z ).答案 (1)C (2)x =k π2+π6(k ∈Z )考点三 y =A sin(ωx +φ)图像与性质的应用 多维探究角度1 三角函数模型的应用【例3-1】 如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O 离地面1米,点O 在地面上的射影为A .风车圆周上一点M 从最低点O 开始,逆时针方向旋转40秒后到达P 点,则点P 到地面的距离是________米.解析 以圆心O 1为原点,以水平方向为x 轴方向,以竖直方向为y 轴方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O 离地面1米,12秒转动一周,设∠OO 1P =θ,运动t (秒)后与地面的距离为f (t ).又周期T =12,所以θ=π6t ,则f (t )=3+2sin ⎝⎛⎭⎪⎫θ-π2=3-2cos π6t (t ≥0), 当t =40 s 时,f (t )=3-2cos ⎝ ⎛⎭⎪⎫π6×40=4.答案 4角度2 三角函数性质与图像的综合应用【例3-2】 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调递增区间.(2)将函数f (x )的图像向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图像,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值. 解 (1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1)=sin 2ωx -3cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx -π3. 由最小正周期为π,得ω=1, 所以f (x )=2sin ⎝⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),整理得k π-π12≤x ≤k π+5π12(k ∈Z ),所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).(2)将函数f (x )的图像向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图像;所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ),所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.所以b 的最小值为4π+11π12=59π12.规律方法 1.三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题,二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. 2.方程根的个数可转化为两个函数图像的交点个数.y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.【训练3】 (1)某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎢⎡⎦⎥⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃. 解析 因为当x =6时,y =a +A =28;当x =12时,y =a -A =18,所以a =23,A =5, 所以y =f (x )=23+5cos ⎣⎢⎡⎦⎥⎤π6(x -6),所以当x =10时,f (10)=23+5cos ⎝ ⎛⎭⎪⎫π6×4 =23-5×12=20.5.(2)已知函数f (x )=5sin x cos x -53cos 2x +523(其中x ∈R ),求:①函数f (x )的最小正周期; ②函数f (x )的单调区间;③函数f (x )图像的对称轴和对称中心.解 ①因为f (x )=52sin 2x -532(1+cos 2x )+532=5(12sin 2x -32cos 2x )=5sin ⎝ ⎛⎭⎪⎫2x -π3,所以函数的最小正周期T =2π2=π. ②由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ),所以函数f (x )的递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).由2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),得k π+5π12≤x ≤k π+11π12(k ∈Z ),所以函数f (x )的递减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z ).③由2x -π3=k π+π2(k ∈Z ),得x =k π2+5π12(k ∈Z ),所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z ).由2x -π3=k π(k ∈Z ),得x =k π2+π6(k ∈Z ),所以函数f (x )的对称中心为⎝⎛⎭⎪⎫k π2+π6,0(k ∈Z ).[思维升华](1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图像变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化.解决由函数y =A sin(ωx +φ)的图像确定A ,ω,φ的问题时,常常以“五点法”中的五个点作为突破口,要从图像的升降情况找准第一个“零点”和第二个“零点”的位置.要善于抓住特殊量和特殊点. [易错防X]y =sin x 的图像经过变换得到y =A sin(ωx +φ)的图像,如先伸缩再平移时,要把x 前面的系数提取出来.y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φω<0,要先根据诱导公式进行转化.y =A sin(ωx +φ)在x ∈[m ,n ]上的最值,可先求t =ωx +φ的X 围,再结合图像得出y=A sin t 的值域.逻辑推理与数学运算——三角函数中有关ω的求解数学运算是解决数学问题的基本手段,通过运算可促进学生思维的发展;而逻辑推理是得到数学结论、构建数学体系的重要方式.运算和推理贯穿于探究数学问题的始终,可交替使用,相辅相成.类型1 三角函数的周期T 与ω的关系【例1】 为了使函数y =sin ωx (ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值为( )A.98πB.1972πC.1992π解析 由题意,至少出现50次最大值即至少需用4914个周期,所以1974T =1974·2πω≤1,所以ω≥1972π.答案 B评析 解决此类问题的关键在于结合条件弄清周期T =2πω与所给区间的关系,从而建立不等关系.类型2 三角函数的单调性与ω的关系【例2】 若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω的取值X 围是( ) A.0≤ω≤23B.0≤ω≤32C.23≤ω≤3D.32≤ω≤3 解析 令π2+2k π≤ωx ≤32π+2k π(k ∈Z ),得π2ω+2k πω≤x ≤3π2ω+2k πω,因为f (x )在⎣⎢⎡⎦⎥⎤π3,π2上单调递减,所以⎩⎪⎨⎪⎧π2ω+2k πω≤π3,π2≤3π2ω+2k πω,得6k +32≤ω≤4k +3.又ω>0,所以k ≥0,又6k +32<4k +3,得0≤k <34,所以k =0.故32≤ω≤3. 答案 D评析 根据正弦函数的单调递减区间,确定函数f (x )的单调递减区间,根据函数f (x )=sinωx (ω>0)在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,建立不等式,即可求ω的取值X 围.类型3 三角函数的对称性、最值与ω的关系【例3】 (1)(2019·枣庄模拟)已知f (x )=sin ωx -cos ωx ⎝ ⎛⎭⎪⎫ω>23,若函数f (x )图像的任何一条对称轴与x 轴交点的横坐标都不属于区间(π,2π),则ω的取值X 围是________.(结果用区间表示)(2)已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值X 围是________.解析 (1)f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎪⎫ωx -π4,令ωx -π4=π2+k π(k ∈Z ),解得x =3π4ω+k πω(k ∈Z ).当k =0时,3π4ω≤π,即34≤ω,当k =1时,3π4ω+πω≥2π,即ω≤78.综上,34≤ω≤78.(2)显然ω≠0,分两种情况:若ω>0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,-π3ω≤ωx ≤π4ω.因函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,所以-π3ω≤-π2,解得ω≥32.若ω<0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,π4ω≤ωx ≤-π3ω,因函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,所以π4ω≤-π2,解得ω≤-2.综上所述,符合条件的实数ω≤-2或ω≥32.答案 (1)⎣⎢⎡⎦⎥⎤34,78(2)⎩⎨⎧⎭⎬⎫ω|ω≤-2或ω≥32评析 这类三角函数题除了需要熟练掌握正弦函数、余弦函数、正切函数的单调性外,还必须知晓一个周期里函数最值的变化,以及何时取到最值,函数取到最值的区间要求与题目给定的区间的关系如何.基础巩固题组 (建议用时:40分钟)一、选择题1. (2016·全国Ⅱ卷)函数y =A sin(ωx +φ)的部分图像如图所示,则( )A.y =2sin ⎝ ⎛⎭⎪⎫2x -π6B.y =2sin ⎝⎛⎭⎪⎫2x -π3 C.y =2sin ⎝ ⎛⎭⎪⎫x +π6 D.y =2sin ⎝⎛⎭⎪⎫x +π3 解析 由题图可知,A =2,T =2⎣⎢⎡⎦⎥⎤π3-⎝ ⎛⎭⎪⎫-π6=π,所以ω=2,由五点作图法知2×π3+φ=π2+2k π(k ∈Z ),所以φ=-π6,所以函数的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6.答案 A2.(2019·某某期中)将函数y =sin ⎝ ⎛⎭⎪⎫x +φ2·cos ⎝ ⎛⎭⎪⎫x +φ2的图像沿x 轴向左平移π8个单位后,得到一个偶函数的图像,则φ的取值不可能是( ) A.-3π4 B.-π4C.π4D.5π4解析 将y =sin ⎝ ⎛⎭⎪⎫x +φ2cos ⎝ ⎛⎭⎪⎫x +φ2=12sin(2x +φ)的图像向左平移π8个单位后得到的图像对应的函数为y =12sin ⎝ ⎛⎭⎪⎫2x +π4+φ,由题意得π4+φ=k π+π2(k ∈Z ),∴φ=k π+π4(k ∈Z ),当k =-1,0,1时,φ的值分别为-3π4,π4,5π4,φ的取值不可能是-π4.答案 B3.(2019·某某模拟)已知点P (32,-332)是函数y =A sin(ωx +φ)(ω>0)图像上的一个最低点,M ,N 是与点P 相邻的两个最高点,若∠MPN =60°,则该函数的最小正周期是( ) A.3 B.4 C.5解析 由P 是函数y =A sin(ωx +φ)(ω>0)图像上的一个最低点,M ,N 是与P 相邻的两个最高点,知|MP |=|NP |,又∠MPN =60°,所以△MPN 为等边三角形. 由P ⎝ ⎛⎭⎪⎫32,-332,得|MN |=2×3323×2=6. ∴该函数的最小正周期T =6. 答案 D4.(2018·某某卷)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图像向右平移π10个单位长度,所得图像对应的函数( )⎣⎢⎡⎦⎥⎤-π4,π4上单调递增⎣⎢⎡⎦⎥⎤-π4,0上单调递减 ⎣⎢⎡⎦⎥⎤π4,π2上单调递增 ⎣⎢⎡⎦⎥⎤π2,π上单调递减 解析 y =sin ⎝ ⎛⎭⎪⎫2x +π5=sin 2⎝ ⎛⎭⎪⎫x +π10,将其图像向右平移π10个单位长度,得到函数y =sin2xk π-π2≤2x ≤2k π+π2,k ∈Z ,得k π-π4≤x ≤k π+π4,k ∈Z .令k =0,可知函数y =sin 2x 在区间⎣⎢⎡⎦⎥⎤-π4,π4上单调递增.答案 A5.(2019·某某模拟)将函数f (x )=3sin 2x -cos 2x 的图像向左平移t (t >0)个单位后,得到函数g (x )的图像,若g (x )=g ⎝ ⎛⎭⎪⎫π12-x ,则实数t 的最小值为( )A.5π24B.7π24C.5π12D.7π12解析 由题意得,f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6, 则g (x )=2sin ⎝⎛⎭⎪⎫2x +2t -π6,从而2sin ⎝ ⎛⎭⎪⎫2x +2t -π6=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π12-x +2t -π6=-2sin(2x -2t )=2sin(2x -2t +π),又t >0,所以当2t -π6=-2t +π+2k π时,即t =7π24+k π2(k ∈Z ),实数t min =724π.答案 B 二、填空题y =sin x 的图像上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是________________.―————————―→横坐标伸长到原来的2倍y =sin ⎝ ⎛⎭⎪⎫12x -π10.答案 y =sin ⎝ ⎛⎭⎪⎫12x -π107. (2018·某某质检)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图像如图所示,则f ⎝ ⎛⎭⎪⎫π4=________.解析 由图像可知A =2,34T =11π12-π6=3π4,∴T =π,∴ω=2.∵当x =π6时,函数f (x )取得最大值,∴2×π6+φ=π2+2k π(k ∈Z ),∴φ=π6+2k π(k ∈Z ),∵0<φ<π,∴φ=π6,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,则f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2+π6=2cos π6= 3.答案3f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,则ω=____________________________________________. 解析 依题意,x =π6+π32=π4时,y 有最小值,∴sin ⎝ ⎛⎭⎪⎫π4·ω+π3=-1,∴π4ω+π3=2k π+3π2 (k ∈Z ).∴ω=8k +143(k ∈Z ),因为f (x )在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值, 所以π3-π4≤πω,即ω≤12,令k =0,得ω=143.答案143三、解答题9.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)某某验室这一天上午8时的温度; (2)某某验室这一天的最大温差. 解 (1)f (8)=10-3cos ⎝⎛⎭⎪⎫π12×8-sin ⎝ ⎛⎭⎪⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝ ⎛⎭⎪⎫-12-32=10.故实验室上午8时的温度为10 ℃. (2)因为f (t )=10-2(32cos π12t +12sin π12t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1. 于是,f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.f (x )=3sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,-π2≤φ<π2的图像关于直线x =π3对称,且图像上相邻最高点的距离为π.(1)求f ⎝ ⎛⎭⎪⎫π4的值;(2)将函数y =f (x )的图像向右平移π12个单位后,得到y =g (x )的图像,求g (x )的单调递减区间.解 (1)因为f (x )的图像上相邻最高点的距离为π, 所以f (x )的最小正周期T =π,从而ω=2πT=2.又f (x )的图像关于直线x =π3对称, 所以2×π3+φ=k π+π2(k ∈Z ),因为-π2≤φ<π2,所以k =0,所以φ=π2-2π3=-π6,所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6, 则f ⎝ ⎛⎭⎪⎫π4=3sin ⎝⎛⎭⎪⎫2×π4-π6=3sin π3=32.(2)将f (x )的图像向右平移π12个单位后,得到f ⎝ ⎛⎭⎪⎫x -π12的图像,所以g (x )=f ⎝ ⎛⎭⎪⎫x -π12=3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6=3sin ⎝ ⎛⎭⎪⎫2x -π3.当2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),即k π+5π12≤x ≤k π+11π12(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z ).能力提升题组 (建议用时:20分钟)11.(2019·某某调研)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图像的一条对称轴,将函数f (x )的图像向右平移3π4个单位长度后得到函数g (x )的图像,则函数g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( ) A.-2 B.-1 C.-2D.- 3解析 ∵x =π12是f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图像的一条对称轴,∴π3+φ=k π+π2(k ∈Z ),即φ=k π+π6(k ∈Z ).∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝⎛⎭⎪⎫2x +π3, ∴g (x )=-2sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1.答案 Bf (x )=23sin ωx 2cos ωx 2+2cos 2ωx 2-1(ω>0)的最小正周期为π,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,方程f (x )=m 恰有两个不同的实数解x 1,x 2,则f (x 1+x 2)=( ) A.2 B.1 C.-1 D.-2 解析 函数f (x )=23sinωx2cosωx2+2cos2ωx2-1=3sin ωx +cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π6.由T =2πω=π,可得ω=2,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴π6≤2x +π6≤7π6,∴-1≤f (x )≤2.画出f (x )的图像(图略),结合图像知x 1+x 2=π3,则f (x 1+x 2)=f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2π3+π6=2sin 5π6=1.答案 B13.(2019·某某省际名校联考)将函数f (x )=1-23·cos 2x -(sin x -cos x )2的图像向左平移π3个单位,得到函数y =g (x )的图像,若x ∈⎣⎢⎡⎦⎥⎤-π2,π2,则函数g (x )的单调递增区间是________.解析 ∵f (x )=1-23cos 2x -(sin x -cos x )2=sin 2x -3cos 2x -3=2sin ⎝ ⎛⎭⎪⎫2x -π3-3,∴g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3-π3-3=2sin ⎝ ⎛⎭⎪⎫2x +π3-3,由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z ),得-5π12+k π≤x ≤π12+k π(k ∈Z ),∵x ∈⎣⎢⎡⎦⎥⎤-π2,π2, ∴函数g (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的单调递增区间是⎣⎢⎡⎦⎥⎤-5π12,π12. 答案 ⎣⎢⎡⎦⎥⎤-5π12,π12f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图像如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图像上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图像向左平移π6个单位长度,得到函数y =g (x )的图像,求函数g (x )在区间⎣⎢⎡⎦⎥⎤0,π8上的最小值.word解 (1)设函数f (x )的最小正周期为T ,由题图可知A =1,T 2=2π3-π6=π2, 即T =π,所以π=2πω,解得ω=2, 所以f (x )=sin(2x +φ),又过点⎝ ⎛⎭⎪⎫π6,0, 由0=sin ⎝ ⎛⎭⎪⎫2×π6+φ可得π3+φ=2k π(k ∈Z ), 则φ=2k π-π3(k ∈Z ),因为|φ|<π2,所以φ=-π3, 故函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎪⎫2x -π3. (2)根据条件得g (x )=sin ⎝⎛⎭⎪⎫4x +π3, 当x ∈⎣⎢⎡⎦⎥⎤0,π8时,4x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6, 所以当x =π8时,g (x )取得最小值,且g (x )min =12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题四 解三角形
1.(15北京理科)在ABC △中,4a =,5b =,6c =,则
sin 2sin A
C
= .
【答案】1 【解析】 试题分析:
222sin 22sin cos 2sin sin 2A A A a b c a C C c bc
+-==⋅
2425361616256⨯+-=⋅=⨯⨯ 考点:正弦定理、余弦定理
2.(15北京文科)在C ∆AB 中,3a =,b =23
π
∠A =
,则∠B = . 【答案】
4
π
【解析】
试题分析:由正弦定理,得
sin sin a b A B =
,=所以sin B =所以4B π
∠=. 考点:正弦定理.
3.(15年广东理科)设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若a =
1sin 2B =
,6
C =π
,则b = 【答案】1.
【考点定位】本题考查正弦定理解三角形,属于容易题.
4.(15年广东文科)设C ∆AB 的内角A ,B ,
C 的对边分别为a ,b ,c .若2a =,c =,
cos A =
b c <,则b =( )
A .
B .2
C .
D .3
【答案】B 【解析】
试题分析:由余弦定理得:2222cos a b c bc =+-A ,所以
(2
2222b b =+-⨯⨯即2680b b -+=,解得:2b =或4b =,因为b c <,所以2b =,故选B . 考点:余弦定理.
5.(15年安徽理科) 在ABC ∆中,,6,4
A A
B A
C π
===点D 在BC 边上,AD BD =,

AD

长。

6.(15年安徽文科)在ABC ∆中,6=AB , 75=∠A ,
45=∠B ,则
=AC 。

【答案】2 【解析】 试












45sin )]4575(180sin[AC AB =+-245sin 60sin 6=⇒=⇒AC AC
考点:正弦定理.
7.(15年福建理科)若锐角ABC ∆的面积为,且5,8AB AC == ,则BC 等于
________. 【答案】7 【解析】
试题分析:由已知得ABC ∆的面积为
1
s i n 20s i n 2A B A C A A ⋅
=1=,所
以s i n 2
A =,
(0,)
2
A π
∈,所以
3
A π
=
.由余弦定理得
2222c o s B C A B A C
A B A C A
=
+-⋅=49,7BC =. 考点:1、三角形面积公式;2、余弦定理.
8.(15年福建文科)若ABC ∆
中,AC =,045A =,0
75C =,则BC =_______.
【解析】
试题分析:由题意得0
18060B A C =--=.由正弦定理得
sin sin AC BC
B A
=,则s i n s i n A C A
BC B
=

所以BC =
=
考点:正弦定理. 9.(15年新课标1理科)
10.(15年新课标2理科)∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 是∆ADC
面积的2倍。

(Ⅰ)求
C
B
∠∠sin sin ;
(Ⅱ) 若AD =1,DC =
2
2
求BD 和AC 的长.
11.(15年新课标2文科)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (I )求
sin sin B
C
∠∠ ;
(II )若60BAC ∠= ,求B ∠. 【答案】(I )
12
;30
.
考点:解三角形
12.(15年陕西理科) C ∆AB 的内角A ,B ,C 所对的边分别为a ,
b ,
c .向量()
m a =
与()cos ,sin n =A B
平行. (I )求A ;
(II )若a =2b =求C ∆AB 的面积.
【答案】(I )
3π;(II )2

试题解析:(I )因为//m n
,所以sin cos 0a B A -=,
由正弦定理,得sinAsinB 0-
=
又sin 0B ≠,从而tan A 由于0A π<<,所以3
A π
=
(II)解法一:由余弦定理,得2
2
2
2cos a b c bc A =+-
而2,a =3
π
A =
得2
742c c =+-,即2
230c c --= 因为0c >,所以3c =.
故∆ABC 的面积为
1bcsinA 22
=
.
考点:1、平行向量的坐标运算;2、正弦定理;3、余弦定理;4、三角形的面积公式.
13.(15年陕西文科)ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量()m a =

(cos ,sin )n A B =
平行.
(I)求A ;
(II)若2a b ==求ABC ∆的面积.
【答案】(I) 3
A π
=
;(II)
试题解析:(I)因为//m n
,所以sin cos 0a B A =
由正弦定理,得sin sin cos 0A B B A =,
又sin 0B ≠,从而tan A =
由于0A π<< 所以3
A π
=
(II)解法一:由余弦定理,得
2222cos a b c bc A =+-,而2a b ==,3
A π
=

得2
742c c =+-,即2
230c c --= 因为0c >,所以3c =,
故ABC ∆面积为
1sin 22
bc A =.
2sin sin
3
B
=
从而sin B =
又由a b >知A B >,所以cos B = 故sin sin()sin()3
C A B B π
=+=+
sin cos
cos sin
3
3
B B π
π
=+=
所以ABC ∆面积为
1sin 22
ab C =
. 考点:1.正弦定理和余弦定理;2.三角形的面积.
14.(15年天津理科)在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的
面积为,12,cos ,4
b c A -==- 则a 的值为 . 【答案】8 【解析】
试题分析:因为0A π<<,所以sin 4
A ==

又1sin 2428ABC S bc A bc ∆=
==∴=,解方程组224
b c bc -=⎧⎨
=⎩得6,4b c ==,由余弦定理得
2222212cos 64264644a b c bc A ⎛⎫
=+-=+-⨯⨯⨯-= ⎪⎝⎭
,所以8a =.
考点:1.同角三角函数关系;2.三角形面积公式;3.余弦定理. 15.(15年天津文科)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为
12,cos ,4
b c A -==-
(I )求a 和sin C 的值; (II )求cos 26A π⎛⎫
+
⎪⎝

的值.
【答案】(I )a =8,sin 8C =(II )16
. 【解析】
考点:1.正弦定理、余弦定理及面积公式;2三角变换.。

相关文档
最新文档