(一) 差动变压器的性能实验

合集下载

完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法变压器差动保护是一种常用的保护装置,用于保护变压器免受内部故障以及外部短路故障的影响。

为了确保差动保护能够可靠地工作,需要对其进行调试和验证。

下面将详细介绍完整的变压器差动保护调试和验证方法。

一、调试方法:1.检查保护装置的接线是否正确。

检查差动保护装置与变压器的CT (电流互感器)接线是否正确,确保保护装置能够准确测量输入和输出电流。

2.对CT进行检定。

使用专业的CT测试仪对CT进行检定,测量CT的变比、二次回路电阻等参数,确保CT工作正常。

3.调整差动保护装置的参数。

根据变压器的参数和保护装置的要求,设置合适的差动电流定值和时间延迟等参数。

4.模拟故障事件进行测试。

通过人工模拟变压器的内部短路故障或外部短路故障,观察差动保护装置的动作情况。

同时,还可以利用保护回路测试仪模拟故障事件,测试保护装置的灵敏度和可靠性。

二、验证方法:1.进行整套装置的一次性测试。

通过对整个差动保护装置进行一次性测试,包括保护装置的所有功能和功能组合的验证,确保差动保护装置能够正常工作。

2.进行稳态和动态特性测试。

测试差动保护装置的稳态特性,包括固定和变化的负荷电流等情况下的响应速度和误动作情况。

同时,还需要测试差动保护装置的动态特性,包括起动和闭锁时的动作时间和误动作情况。

3.进行电流差动特性测试。

通过让一定量的故障电流流过变压器的输入和输出侧CT,并观察差动保护装置的动作情况,验证其能够可靠地检测和保护变压器。

4.进行接地故障测试。

在变压器的输入或输出线路中引入接地故障,并观察差动保护装置的动作情况,以验证其对接地故障的保护能力。

5.进行保护可靠性测试。

通过长时间的持续运行和重复测试,验证差动保护装置的稳定性和可靠性。

同时,进行周期性的差动保护装置的校验和定期的维护,确保其长期可靠工作。

总结:变压器差动保护调试和验证方法包括接线检查、CT检定、参数调整、故障模拟测试等步骤,通过这些步骤可以确保差动保护装置能够可靠地保护变压器。

变压器差动保护试验方法

变压器差动保护试验方法

变压器差动保护试验方法第一,绕组电压比差动试验。

该试验是通过加载不同的变压器绕组,在不同测点进行电压测量,然后计算电压差值来验证绕组之间的电压比差动。

具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置等。

2.进行变压器空载试验,记录各测点的电压值。

3.按照试验参数设置电流,对绕组进行加载试验。

4.在各测点测量电压,计算电压差值。

5.比较计算得到的电压差值与设定的差动值,如差值在允许范围内,则差动保护正常。

第二,同侧相位关系试验。

该试验是通过对变压器同侧绕组的相位关系进行检查,以保证差动保护系统的相位一致。

具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置等。

2.进行变压器空载试验,记录各测点的相位关系。

3.按照试验参数设置电流,对绕组进行加载试验。

4.在各测点测量电压和相位,检查相位关系是否一致。

5.如相位关系一致,则差动保护正常。

第三,误差变换试验。

该试验是通过对差动保护变压器继电器进行误差变换试验,以验证差动保护系统的测量误差是否满足要求。

具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置以及变比等。

2.进行变压器空载试验,记录各测点的电压和相位值。

3.按照试验参数设置电流,对绕组进行加载试验。

4.在继电器的输出端口测量电流,计算误差。

5.比较计算得到的误差与设定的误差范围,如误差在合理范围内,则差动保护正常。

第四,保护性校验试验。

该试验是通过在差动保护系统感应线圈内引入额外的故障源,观察差动保护系统的动作情况,以确保差动保护装置对变压器故障进行准确快速的切除。

1.在差动保护系统的感应线圈内接入故障源。

2.设置故障源的类型和参数,例如短路故障。

3.观察差动保护系统的动作情况,包括动作时间、动作电流等。

4.比较观察结果与设定的保护动作要求,如满足要求,则差动保护正常。

总结起来,变压器差动保护试验方法主要包括绕组电压比差动试验、同侧相位关系试验、误差变换试验以及保护性校验试验等。

差动变压器性能实验1

差动变压器性能实验1

差动变压器性能实验1差动变压器是电力系统中常用的一种电力变压器,其具有保护电力系统的重要作用。

差动变压器可用于检测电力系统中的故障,并在故障发生时及时切断电力系统,以防止事故的发生。

为了保证差动变压器的性能和可靠性,需要开展相应的实验以检测其性能。

本文就差动变压器性能实验逐一进行介绍。

I. 实验目的1. 学习差动变压器的原理和结构;2. 掌握差动变压器的性能测试方法;3. 理解差动保护的基本原理,了解保护系统的作用;4. 学会对差动变压器性能测试结果进行分析和处理。

差动变压器、电源、电压表、电流表、直线阻抗测试仪、开关等。

差动变压器的原理是将电流互感器的原理应用到电力变压器中。

在一定的工作电压下,电流互感器中的一侧绕绕组所产生的磁通会感应到另一侧绕绕组中的电势,从而将电流传送到另一侧。

差动变压器由采样变压器和比率变压器组成,其中采样变压器用于测量绕组中的电流,比率变压器用于将电压进行变形,从而使电流保持平衡。

差动保护是一种非常重要的保护方式,其基本原理是通过对差流进行检测,以判断电力系统中是否存在故障。

在正常运行时,电流经过差动变压器的两侧绕组时是相等的,由于采样变压器可采集绕组中的电流,因此通过对两侧绕组的电流进行比较,即可得出电力系统中是否存在故障。

当系统中发生故障时,绕组间会产生一定的差流,此时保护系统会将信号反馈给操作员,使其切断电力系统以保证电力系统的安全。

1. 搭建差动变压器测试电路,连接直线阻抗测试仪,检查电路是否连接正确;2. 检测差动变压器的电气参数,包括绕组阻抗、变比、绕组耦合系数、相位差等;3. 测试差动保护的作用,包括灵敏度试验、速动保护试验和完整性试验等;4. 对测试结果进行分析,分析差动变压器的工作状态和保护系统的工作状态,确定是否达到安全标准;5. 记录测试结果,撰写实验报告。

V. 实验结果通过测试差动变压器的工作状态和保护系统的工作状态,得到了以下重要参数:1. 差动保护的灵敏度:建议灵敏度位于1%至10%之间,且灵敏度应该能够检测到所有系统中可能出现的故障;2. 差动保护的速动系数:速动系数应该足够高,以确保在故障发生时能够及时切断电力系统;3. 差动保护的完整性:保护系统应该具有良好的完整性,能够在系统出现故障时正常工作,不受其他因素的影响。

差动变压器的性能实验

差动变压器的性能实验

差动变压器的性能实验一、实验目的:了解差动变压器的工作原理和特性。

二、基本原理:差动变压器的工作原理电磁互感原理。

差动变压器的结构如图所示,由一个一次绕组1和二个二次绕组2、3及一个衔铁4组成。

差动变压器一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。

由于把二个二次绕组反向串接(*同名端相接),以差动电势输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。

当差动变压器工作在理想情况下(忽略涡流损耗、磁滞损耗和分布电容等影响),它的等效电路如图所示。

图中U1为一次绕组激励电压;M1、M2分别为一次绕组与两个二次绕组间的互感:L1、R1分别为一次绕组的电感和有效电阻;L21、L22分别为两个二次绕组的电感;R21、R22分别为两个二次绕组的有效电阻。

对于差动变压器,当衔铁处于中间位置时,两个二次绕组互感相同,因而由一次侧激励引起的感应电动势相同。

由于两个二次绕组反向串接,所以差动输出电动势为零。

当衔铁移向二次绕组L21,这时互感M1大,M2小,差动变压器的结构示意图差动变压器的等效电路图因而二次绕组L21内感应电动势大于二次绕组L22内感应电动势,这时差动输出电动势不为零。

在传感器的量程内,衔铁位移越大,差动输出电动势就越大。

同样道理,当衔铁向二次绕组L22一边移动差动输出电动势仍不为零,但由于移动方向改变,所以输出电动势反相。

因此通过差动变压器输出电动势的大小和相位可以知道衔铁位移量的大小和方向。

由图可以看出一次绕组的电流为:二次绕组的感应动势为:由于二次绕组反向串接,所以输出总电动势为:其有效值为:差动变压器的输出特性曲线如图所示.图中E21、E22分别为两个二次绕组的输出感应电动势,E2为差动输出电动势,x表示衔铁偏离中心位置的距离。

其中E2的实线表示理想的输出特性,而虚线部分表示实际的输出特性。

E0为零点残余电动势,这是由于差动变压器制作上的不对称以及铁心位置等因素所造成的。

差动变压器实验报告

差动变压器实验报告

差动变压器实验报告差动变压器实验报告引言:差动变压器是一种常用的电力设备,用于保护电力系统中的变压器。

本次实验旨在深入了解差动变压器的原理和工作机制,并通过实验验证其性能。

一、实验目的:1. 掌握差动变压器的基本原理和结构;2. 了解差动保护的工作原理;3. 通过实验验证差动变压器的性能。

二、实验仪器与设备:1. 差动变压器实验装置;2. 电源;3. 电流互感器;4. 电压互感器;5. 示波器。

三、实验原理:差动变压器是由两个或多个互感器组成的,其中一个为主互感器,其余为副互感器。

主互感器的一侧与电源相连,另一侧与负载相连。

副互感器的一侧与主互感器的相同端子相连,另一侧与差动继电器相连。

差动保护的基本原理是通过比较主互感器和副互感器的输出信号来判断系统是否发生故障。

在正常情况下,主互感器和副互感器的输出信号相等,差动继电器不动作;而在发生故障时,由于主互感器和副互感器的输出信号不同,差动继电器会动作,从而实现对系统的保护。

四、实验步骤:1. 将差动变压器实验装置接入电源,调整电压和电流的大小;2. 通过电流互感器和电压互感器分别测量主互感器和副互感器的输出信号;3. 将测得的信号输入示波器,观察波形;4. 通过改变电流和电压的大小,以及引入不同的故障情况,观察差动继电器的动作情况。

五、实验结果与分析:通过实验观察,我们可以得到以下结论:1. 在正常情况下,主互感器和副互感器的输出信号相等,差动继电器不动作;2. 在发生故障时,主互感器和副互感器的输出信号不同,差动继电器会动作;3. 不同类型的故障会导致差动继电器的动作时间和动作方式不同。

六、实验总结:通过本次实验,我们深入了解了差动变压器的原理和工作机制,并通过实验验证了其性能。

差动变压器作为一种重要的保护设备,在电力系统中起着至关重要的作用。

掌握差动保护的原理和应用,对于保障电力系统的安全运行具有重要意义。

在今后的学习和工作中,我们应该进一步加深对差动变压器的理解和应用,不断提高自己的技能和知识水平。

差动变压器的特性实验-实验报告

差动变压器的特性实验-实验报告

一、实验目的1、了解差动变压器的基本结构。

2、掌握差动变压器及整流电路的工作原理。

3、掌握差动变压器的调试方法。

二、实验原理1、差动变压器由一个初级线圈和两个次级线圈及一个铁芯组成,当铁芯移动时,由于初级线圈和次级线圈之间的互感发生变化使次级线圈的感应电势产生变化,一个次级线圈的感应电势增加,另一个则减少,将两个次级线圈反向串接,就可以引出差值输出,其输出电势反映出铁芯的位移量。

2、差动变压器实验电路图如图1-1所示。

图1-1传感器的两个次级线圈(N2、N3)电压分别经 UR1、UR2两组桥式整流电路变换为直流电压,然后相减,经过差动放大器放大后,由电压表显示出来R1、R2为两桥臂电阻,RP1为调零电位器,R3、R4、C1组成滤波电路,R5为负载电阻,采用这种差动整流电路可以减少零点残余电压。

三、实验过程与数据处理1.固定好位移台架,将电感式传感器置于位移台架上。

调节测微器使其指示12mm左右,将测微器装入台架上部的开口处,再将测微器的测杆与电感式传感器的可动铁芯旋紧。

然后调节两个滚花螺母,使铁芯离开底面 10mm,注意要使铁芯能在传感器中轻松滑动,再将两个滚花螺母旋紧。

2.差动放大器调零,用导线将差动放大器的正负输入端连接,再将其输出端接到数字电压表的输入端;按下面板上电压量程转换开关的20V档按键(实验台为将电压量程拨到20V 档);接通电源开关,旋动放大器的调零电位器RP2旋钮使电压表指示向零趋近,然后换到2V量程,旋动调零电位器RP2旋钮使电压表指示为零;此后调零电位器 RP2旋钮不再调节,根据实验适当调节增益电位器RP1。

3.按图1-1将信号源的两输出端 A,B接到传感器的初级线圈N1上,传感器次级线圈 N2、N3分别接到转换电路板的 C、D 与 H、I上,并将F与L用导线连接,将差动放大器与数字电压表连接好。

这样构成差动变压器实验电路。

4、接通电源,调节信号源输出幅度电位器RP2到较大位置,平衡电位器RP1处于中间位置,调节测微器使输出电压接近零,然后上移或下移测微器 1mm,调节差动放大器增益使输出电压的值为300mV左右,再回调测微器使输出电压为 0mV。

变压器差动保护动作后试验项目

变压器差动保护动作后试验项目

变压器差动保护动作后试验项目
变压器差动保护动作后的试验项目主要包括以下几个步骤:
1.检查变压器本体:拉开变压器各侧闸刀,对变压器本体进
行认真检查,如油温、油色、防爆玻璃、瓷套管等,确定是否有明显异常。

2.检查差动保护范围内的设备:对变压器差动保护区范围的
所有一次设备进行检查,即变压器高压侧及低压侧断路器之间的所有设备、引线、母线等,以便发现在差动保护区内有无异常。

3.检查差动保护回路:对变压器差动保护回路进行检查,看
有无短路、击穿以及有人误碰等情况。

4.外部测量:对变压器进行外部测量,以判断变压器内部有
无故障。

测量项目主要是摇测绝缘电阻。

5.进一步的测量分析:如果不能判断为外部原因,则应对变
压器进行更进一步的测量分析,如测量直流电阻、进行油的简化分析、或油的色谱分析等,以确定故障性质及差动保护动作的原因。

如果发现有内部故障的特征,则须进行吊芯检查。

在进行以上步骤时,检测人员应着重检测主变三侧差动CT间的情况,例如是否出现闪络放电和是否受损等。

同时,检测人员还应对避雷器、断路器、变压器等设备进行检查,检测这些设备表面是否存在异物,以及是否出现接地短路现象。

差动变压器式电感传感器的静态位移性能实验实验报告

差动变压器式电感传感器的静态位移性能实验实验报告

差动变压器式电感传感器的静态位移性能实验实验报告差动变压器式电感传感器的静态位移性能实验实验报告实验三电感式传感器实验传感器实验三、电感传感器实验——差动变压器性能实验(一)实验内容1.项目一、差动变压器式电感传感器性能实验2.项目二、差动螺管式电感传感器的静态位移性能实验 (二)实验目的1.了解差动变压器式电感传感器的原理和工作情况2.了解差动螺管式电感传感器测量系统的组成和工作情况 (三)实验原理螺旋测微器产生位移,经弹性梁带动衔铁在线圈中移动,交流电源激励,数字电压表显示数字,计算机自动生成示波器显示波形。

(四)实验操做步骤实验项目一、1.将音频振荡器LV输出接至数字频率计和数据采集CH1,由频率计显示频率,计算机自动生成示波器显示波形,调节音频振荡器频率为4kHz,峰峰值为5V。

2.将音频振荡器LV输出接差动变压器一次绕组,输出接CH1。

3.调螺旋测微器使衔铁处于中心位置(输出为零),向下每1mm读一个数。

实验项目二、1.按图接线2.将音频振荡器输出接至CH1,调节峰峰值为2V。

3.V/F表调至20V档。

4.接好电桥平衡网络、放大器、相敏检波器、LPF、V/F表、示波器。

5.将螺旋测微器与梁脱离,使梁处于自由状态;调节W1、W2,使输出最小(灵敏度最大)。

6.将螺旋测微器与梁相吸,调节螺旋测微器使输出最小(CH1示),再向上移2.5mm。

7.调节移相器使输出最大(CH2示);观察检波器波形,若两半波不对称,则微调放大器调零电位器。

8.向下每0.5mm读一个数。

项目一数据表第 1 页共 1 页项目二数据表篇二:传感器与检测技术实验报告准考证号:100214101370 姓名:倪帅彪院校:河南科技大学专业名称:080302机械制造及自动化(独立本科段)《传感器与检测技术》实验报告实验一常用传感器(电感式、电阻式或电容式)静态性能测试一、实验目的:1(进一步认识电阻式、电感式、电容式传感器的工作原理、基本结构、性能与应用。

差动变压器实训报告模板

差动变压器实训报告模板

一、实训目的1. 了解差动变压器的工作原理和特性。

2. 掌握差动变压器的安装、调试和测试方法。

3. 培养动手操作能力和分析问题的能力。

二、实训器材1. 差动变压器实验模板2. 差动变压器3. 测微头4. 双线示波器5. 音频信号源(音频振荡器)6. 直流电源7. 万用表8. 连接线、插头等辅助器材三、实训原理差动变压器是一种将机械位移转换为电信号的传感器。

它由一个初级线圈和两个次级线圈及一个铁芯组成。

当被测物体移动时,差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化,促使次级线圈感应电势产生变化。

一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动电势输出。

其输出电势反映出被测物体的移动量。

四、实训步骤1. 差动变压器的安装:将差动变压器装在差动变压器实验模板上,确保连接牢固。

2. 实验接线:根据实验模板图,正确连接差动变压器、测微头、双线示波器、音频信号源、直流电源和万用表等设备。

3. 调节实验参数:调节音频振荡器的频率,使其输出频率为45kHz(可用主控箱的频率表输入Fin来监测)。

调节输出幅度为峰峰值Vp-p 2V(可用示波器监测:X轴为0.2ms/div)。

4. 测试差动变压器性能:a. 调整测微头,使其处于初始位置,观察示波器上的输出波形,记录初始电压值。

b. 逐步调整测微头,使其沿轴向移动,观察示波器上的输出波形变化,记录不同位置下的电压值。

c. 分析差动变压器输出电压与位移之间的关系,计算线性度、灵敏度等性能指标。

5. 数据处理与分析:将实验数据整理成表格,绘制曲线图,分析差动变压器的性能。

五、实验结果与分析1. 记录实验数据,包括测微头位移X、次级输出电压vp-、初级输入电压Vi等。

2. 分析差动变压器的线性度、灵敏度等性能指标,与理论值进行比较。

3. 分析实验过程中可能存在的问题,如接线错误、设备故障等,并提出改进措施。

实验3差动变压器性能测试

实验3差动变压器性能测试

实验小组:黄文玉(201006020128)昝贵彬(201006080107)林雅萍(201006090130)差动变压器式电感传感器基本原理:电感传感器是把被测量转换成线圈的自感变化来实现检测的,而差动变压器是把被测量变化转移成线圈的互感变化来进行测量。

差动变压器本身是一个变压器,初级线圈输入交流电压,次级线圈感应出交流信号,当初次级间的互感受外界影响而变化时,次级所感应的电压幅值也随之发生变化。

由于两个次级线圈接成差动形式,故称为差动变压器。

差动变压器结构是由一个圆筒形骨架上分三段绕制成三个线圈和插入其中的可动铁芯组成。

中间绕组N1为初级线圈,上下各有一组完全对称于初级的次级线圈N2,在铁芯处于中间位置时,初级线圈的互感相等。

实验3. 差动变压器性能测试实验目的:了解差动变压器的工作原理。

熟悉差动变压器的性能。

实验所用单元:音频振荡器,差动变压器,双波示波器。

实验注意事项:差动变压器的两个次级线圈必须接成差动形式,即同名端相连。

可通过信号相位是否变化进行判别。

实验步骤:(1)按图1接线,将音频振荡器LV输出至差动变压器初级,频率为4KHZ。

(2)打开主电源及副电源调整音频振荡器幅度,用示波器观察,使音频LV信号输出电压峰峰值为2V。

(3)调节测微头使次级的差动输出电压最小,提高示波器灵敏度,读出的最小电压叫做零点残余电压,观察输入与输出相位差约为__90°___。

当铁芯由上至下时,相位由___同____相变为___反____相。

(4)输出从零开始,旋转测微头,从示波器上读出电压Vp-p值填入下表1:(5)根据所得结果,画出X—Vp-p曲线,指出曲线线性工作范围,求出灵敏度。

k=△V/△X图1 差动变压器性能测试和结构示意图如图2:图2 差动变压器输出特性曲线由上图可看出,传感器的线性工作范围是X=-2~+2之间,求传感器的灵敏度:K = △U/△x = 200/4 = 50 mV/mm.。

检测技术实验报告电气 华中科技大学

检测技术实验报告电气 华中科技大学

2010 级《信号与控制综合实验》课程实验报告(检测技术实验)指导教师日期实验成绩实验评分表基本实验实验编号名称/内容(此列由学生自己填写)实验分值评分电气学科大类差动变压器性能检测10 差动变压器零残电压的补偿20 差动变压器的标定40设计性实验实验名称/内容实验分值评分超声波测距40创新性实验实验名称/内容实验分值评分教师评价意见总分目录实验一差动变压器性能检测 ..................................................................实验二差动变压器零残电压的补偿....................................................... 实验三差动变压器的标定 ...................................................................... 实验四超声波测距 ................................................................................... 总结............................................................................................................ 参考书目 ....................................................................................................实验二十二.差动变压器的标定一.差动变压器的基本结构:差动变压器由衔铁、初级线圈、次级线圈和线圈骨架等组成。

初级线圈作为差动变压器激励用,相当于变压器的原边;次级线圈由两个结构尺寸和参数相同的相同线圈反相串接而成,相当于变压器的副边。

差动变压器的性能实验报告

差动变压器的性能实验报告

差动变压器的性能实验报告差动变压器的性能实验报告引言:差动变压器是一种常见的电力设备,广泛应用于电力系统中。

本次实验旨在通过对差动变压器的性能参数进行测量和分析,探讨其在电力系统中的作用和应用。

一、实验目的本次实验的主要目的是测量差动变压器的性能参数,包括变比、短路阻抗和负载损耗。

通过实验数据的分析,研究差动变压器的工作原理和性能特点,为其在电力系统中的应用提供理论依据。

二、实验原理差动变压器是由两个或多个相同变比的互感器组成,其中一个互感器称为主绕组,其余的称为副绕组。

差动变压器的工作原理是通过主绕组和副绕组之间的磁耦合作用,实现电能的传递和变压。

三、实验仪器和设备本次实验所需的仪器和设备包括差动变压器、电流互感器、电压互感器、电流表、电压表、功率表等。

四、实验步骤1. 连接实验仪器和设备:根据实验装置图,将差动变压器、电流互感器、电压互感器、电流表、电压表、功率表等连接起来。

2. 测量变比:将一组已知电压和电流输入到主绕组和副绕组,测量主副绕组的电压和电流值,计算得到变比。

3. 测量短路阻抗:将主副绕组短路,施加一组已知电压和电流,测量主副绕组的电压和电流值,计算得到短路阻抗。

4. 测量负载损耗:将主副绕组接入负载,施加一组已知电压和电流,测量主副绕组的电压和电流值,计算得到负载损耗。

五、实验结果和分析根据实验数据和计算结果,得到了差动变压器的性能参数。

通过对实验结果的分析,可以得出以下结论:1. 变比是差动变压器的重要性能指标,其值应接近设计变比,否则会影响电力系统的正常运行。

2. 短路阻抗是衡量差动变压器性能稳定性的指标,其值应适中,既不能过低导致过大的短路电流,也不能过高导致过大的负载损耗。

3. 负载损耗是差动变压器在正常工作状态下的能量损耗,其值应尽可能小,以提高电力系统的效率。

六、实验总结通过本次实验,我们对差动变压器的性能参数进行了测量和分析,深入了解了差动变压器的工作原理和性能特点。

差动变压器的性能及零点残余误差消除实验(精)

差动变压器的性能及零点残余误差消除实验(精)

实验三差动变压器的性能实验一、实验目的:了解差动变压器的工作原理和特性。

二、基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。

当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。

其输出电势反映出被测体的移动量。

三、需用器件与单元:差动变压器实验模板、测微头、双踪示波器、差动变压器、音频信号源、直流电源(音频振荡器)、万用表。

四、实验步骤:1、根据图3-1,将差动变压器装在差动变压器实验模板上。

图3-1差动变压器电容传感器安装示意图2、在模块上按图3-2接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频振荡器的频率,输出频率为4-5KHz(可用主控箱的频率表输入Fin来监测)。

调节输出幅度为峰-峰值Vp-p=2V(可用示波器监测:X轴为0.2ms/div)。

图中1、2、3、4、5、6为连接线插座的编号。

接线时,航空插头上的号码与之对应。

当然不看插孔号码,也可以判别初次级线圈及次级同名端。

判别初次线图及次级线圈同中端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。

当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅度值变化很大,基本上能过零点,而且相应与初级线圈波形(Lv音频信号Vp-p=2v波形)比较能同相或反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。

图中(1)、(2)、(3)、(4)为实验模块中的插孔编号。

3、旋动测微头,使示波器第二通道显示的波形峰-峰值Vp-p为最小,这时可以左右位移,假设其中一个方向为正位移,另一个方向位称为负,从Vp-p最小开始旋动测微头,每隔0.5mm从示波器上读出输出电压Vp-p值,填入下表3-1,再人Vp-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。

变压器差动保护试验接线及测试方法

变压器差动保护试验接线及测试方法

变压器差动保护试验接线及测试方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

本文下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documentscan be customized and modified after downloading, please adjust and use it accordingto actual needs, thank you!In addition, our shop provides you with various types of practical materials, suchas educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!差动保护是电力系统中一项关键的保护措施,它能够有效地检测和定位电力系统中的故障,并及时采取措施以保护设备和人员的安全。

变压器差动保护试验方法

变压器差动保护试验方法

我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。

传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。

由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。

下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。

这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。

该型号的差动保护定值(已设定)见表1:表1NDT302变压器保护装置保护定值单下面我们先来分析一下微机差动保护的算法原理(三相变压器)。

这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。

具体接线见图1:图1而微机保护要求接入保护装置的各侧CT均为Y型接线,显而易见移相是通过软件来完成的,下面来分析一下微机软件移相原理。

ND300系列变压器差动保护软件移相均是移Y型侧,对于∆侧电流的接线,TA二次电流相位不调整。

电流平衡以移相后的Y型侧电流为基准,△侧电流乘以平衡系数来平衡电流大小。

完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法变压器差动保护是保护变压器正常运行和防止故障的重要措施之一、它通过比较发往变压器和变压器的输出之间的差异来判断变压器是否发生故障。

下面将详细介绍变压器差动保护的调试和验证方法。

一、调试方法1.检查安装位置:首先需要检查变压器差动保护的安装位置,确保安装位置正确,设备与变压器之间的连接线路正确牢固。

2.检查接线:仔细检查变压器差动保护设备的接线是否正确,包括数字量输入和输出模块、变压器接线柜中的CT(电流互感器)接线等。

3.测试连接:将模拟量和数字量的连接进行测试,确保变压器差动保护设备可以正常接收和处理来自CT和PT(电压互感器)的模拟量信号。

4.参数设置:根据实际情况,设置变压器差动保护设备的参数,包括差动保护动作电流、动作时间等参数。

5.检查稳态运行:确认变压器正常运行后,记录各相电流、相电压、接地电流等参数,以便日后与故障时的参数进行对比分析。

6.切换至差动模式:通过操作变压器差动保护设备的面板,将其切换至差动保护模式。

7.测试差动保护:模拟一次变压器内部故障,注入差动电流,观察差动保护设备是否能够及时动作,并通过信号输出模块输出信号。

8.人工确认:在差动保护动作后,需要手动确认是否为真实故障,避免误动作。

二、验证方法1.发电机保护功能测试:通过模拟发电机运行现场的实际运行条件,注入不同频率和不同相位的模拟量信号,检查差动保护设备的保护功能是否正常。

2.发电机保护动作测试:通过模拟故障信号,注入差动保护设备,观察差动保护设备是否能够及时动作,并且是否正确地输出保护信号。

3.发电机保护恢复测试:在发电机保护动作后,检查差动保护设备的复位功能是否正常,保护信号是否正确地恢复至正常状态。

4.防误动能力测试:通过模拟故障信号注入,检查差动保护设备的防误动能力,确保在正常工作状态下不会误动作。

5.与其他保护设备协调运行测试:检查差动保护设备与其他保护设备的协调运行情况,包括过电流保护、过温保护等。

变压器比率差动保护的校验方法

变压器比率差动保护的校验方法

变压器比率差动保护的校验方法一、一次侧和二次侧线圈变比校验一、变压器一次侧和二次侧线圈的变比校验是差动保护校验的基础,通过检查变压器的一次侧和二次侧线圈的额定变比是否一致,可以确定差动保护的校验结果。

1.校验仪器准备:需要准备一个变比表或变比测试仪,这个仪器可以测量一次侧和二次侧的变比是否一致。

2.操作步骤:(1)将一次侧的一个线圈与测试仪连接,将另一个线圈与二次侧的变比表或变比测试仪连接。

(2)将测试仪或变比测试仪的探头放在一次侧的一个线圈上,观察到的变比应该是变压器一次侧的额定变比。

(3)将变比表或变比测试仪的探头放在二次侧的一个线圈上,观察到的变比应该是变压器二次侧的额定变比。

(4)将测试结果与变压器铭牌上的额定变比进行比较,如果误差在允许范围内,说明差动保护线圈的变比校验合格。

(5)如果测试结果不在允许范围内,说明差动保护线圈的变比存在问题,需要进一步检查和修复。

二、差动流保护测试方法差动流保护是变压器差动保护的核心部分,通过对差动电流进行监测和比较,来判断变压器是否存在故障或事故。

差动流保护测试的目的是验证差动保护的准确性和可靠性。

1.测试仪器准备:需要准备一个差动流模拟器和一个差动保护测试仪。

2.操作步骤:(1)首先检查差动保护测试仪的工作状态和参数设置,确保测试仪能正常工作。

(2)将差动流模拟器的模拟电流线圈与变压器的一次侧和二次侧线圈连接。

(3)根据变压器的额定容量和负载情况,设置差动流模拟器输出的模拟差动电流。

(4)观察差动保护测试仪的显示结果,如果差动电流的值与设置的模拟值相等或非常接近,并且没有误差报警,说明差动保护的测试合格。

(5)如果测试结果不符合要求,说明差动保护的测试不合格,需要进一步检查和调整。

三、变压器有载分接开关检查变压器有载分接开关是变压器调整电压比例的重要设备,也会影响差动保护的工作方式和准确性。

因此,对有载分接开关进行定期检查和校验是一种有效的差动保护校验方法。

互感式电感传感器——差动变压器性能测试一、实验目的1、了解差动

互感式电感传感器——差动变压器性能测试一、实验目的1、了解差动

互感式电感传感器——差动变压器性能测试一、实验目的:1、了解差动变压器原理及工作情况;2、说明如何用适当的网络线路对残余电压进行补偿;3、了解差动变压器测量系统的组成和标定方法;4、了解差动变压器的实际应用。

二、实验内容:1、差动变压器的性能实验;2、差动变压器零残余电压的补偿实验;3、差动变压器的标定实验;4、差动变压器的应用实验(振幅测量、电子称)(一)差动变压器的性能实验实验单元及附件:音频振荡器测微头示波器主、副电源差动变压器振动平台。

旋钮的初始位置:音频振荡器4KHz~8KHz之间,双踪示波器第一通道灵敏度500mv/div,第二通道灵敏度10mv/div,触发选择打到第一通道,主、副电源关闭,示波器第二通道为悬浮工作状态。

实验原理:差动变压器由衔铁、初级线圈、次级线圈和线圈骨架等组成。

初级线圈做为差动变压器激励用,相当于变压器的原边,次级线圈由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器的副边,差动变压器是开磁路,工作是建立在互感基础上的。

其原理及输出特性见图4-1。

实验步骤:(1)根据图4-2接线,将差动变压器、音频振荡器(必须LV输出)、双踪示波器连接起来,组成一个测量线路。

开启主、副电源,将示波器探头分别接至差动变压器的输入和输出端,调节差动变压器源边线圈音频振荡器激励信号峰峰值为2V。

(2)用手提压差动变压器磁芯,观察示波器第二通道波形是否能过零翻转,如不能则改变两个次级线圈的串接端。

图4-1 图4-2(3)转动测微头使测微头与振动平台吸合,再向上转动测微头5mm,使振动平台往上位移。

(4)向下旋钮测微头,使振动平台产生位移。

每位移0.2mm,用示波器读出差动变压器输出端峰峰值填入下表,根据所得数据计算灵敏度S。

S=△V/△X(式中△V为电压变化,△X为相应振动平台的位移变化),作出V-X关系曲线。

读数过程中应注意初、次级波形的相应关系。

思考题:(1)根据实验结果,指出线性范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三电磁式传感器
(一)差动变压器的性能实验
一、实验目的:了解差动变压器的工作原理和特性。

二、基本原理:差动变压器同一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式
和三段式,本实验采用三段式结构。

当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。

其输出电势反映出被测体的移动量。

三、需用器件与单元:差动变压器实验模板、测微头、双线示波器、差动变压器、电感式传感器、音频信号源
(音频振荡器)、直流电源、万用表。

四、实验步骤:
1、根据图3-1,将差动变压器装在差动变压器实验模板上。

图3-1 差动变压器电容传感器安装示意图
2、在模块上近图3-2接线,音频振荡器信号必须从主控箱中的L v端子输出,调节音频振荡器的频率,输出频率
为4~5KHz(可用主控箱的数显表的频率档Fin输入来监测)。

调节幅度使输出幅度为峰一峰值 V p-p=2V(可用示波器监测:X轴为0.25ms/div、Y轴CH1为1V/div、CH2为20mv/div)。

判别初次级线圈及次级线圈同名端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。

当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点,而且相位与初级圈波形(L v音频信号V p-p=2V波形)比较能同相和反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。

图中(1)、(2)、(3)、(4)为模块中的实验插孔。

图3-2 双线示波与差动变压器连结示意图
3、旋动测微头,使示波器第二通道显示的波形峰一峰值V p-p为最小。

这时可以左右位移,假设其中一个方向为
正位移,则另一方向移为负。

从V p-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压V p-p值填入下表(3-1)。

再从V p-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。

表(3-1)差动变压器位移ΔX值与输出电压V p-p数据表
X(mm) 无数据-←0mm 1.5 3.0 4.5 6.0 7.5
V(mv) 233 248 264 288 312 336
4、实验过程中注意差动变压输出的最小值即为差动变压器的零点残余电压大小。

根据表4-1画出V op-p-X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。

>> axis([0 7.5 233 336 ]);
coords=[0,1.5,3.0,4.5,6.0,7.5;233,248,264,288,312,366];
grid;
hold;
plot(coords(1,:),coords(2,:),'*');
x=coords(1,:)
y=coords(2,:)'
b=size(coords);
c=ones(1,b(2));
MT=[c;x];
M=MT';
f=inv(MT*M)*MT*y
['y=',num2str(f(2)),'x+',num2str(f(1))]
x=-max(x):0.01:max(x);
y=f(1)+f(2)*x;
mistake=max(x-y)/(max(y)-min(y));
fprintf('传感器的系数灵敏度S=%5.3f%%\n',abs(f(2)));
fprintf('非线性误差f=%5.3f%%\n',mistake);
plot(x,y);
xlabel('x/mm');
ylabel('V/mv');
title('差动变压器的性能试验');
legend(['y=',num2str(f(2)),'x+',num2str(f(1))]);
计算结果:
ans =
y=16.781x+222.2381
传感器的系数灵敏度S=16.781%
非线性误差f=-0.413%
五、思考题:
1)用差动变压器测量较高频率的振幅,例如1KHz的振动幅填,可以吗?差动变压器测量频率的上限受到什么影响?
答:可以,受铁磁材料磁感应频率响应上限影响。

2)试分析差动变压器与一般电源变压器的异同?
答:差动变压器一般用于作为检测元件,而一般变压器作为电源变换部件或者信号转换部件;差动变压器由一只初级线圈和两只次级线圈及铁心组成,当传感器随着被测物体移动时,由于初级线圈和次级线圈之间的互感发生变换,使次级线圈产生感应电势的变化,而两只次级线圈是同名端相连,就引出差动输出,其输出电势反映出来的就是被测体的位移量。

而一般电源变压器就是把连个线圈套在同一个铁心上构成的。

相关文档
最新文档