薄膜物理第五章

合集下载

薄膜物理与技术-5 薄膜的形成与生长

薄膜物理与技术-5  薄膜的形成与生长

吸附原子做表面迁移→碰撞→结合(为主)
• 临界核长成稳定核的速率决定于:
1)单位面积上的临界核数—临界核密度
2)每个临界核的捕获范围 3)所有吸附原子向临界核运动的总速度
5.2 成核理论-热力学界面能理论
* 成核速率 I 与临界核面密度 ni、临界核捕获范围 A和 吸附原子向临界核扩散的总速率 V 有关。
最小稳定核:即原子团的尺寸或所含原子的数目比它再小时, 原子团就不稳定。 对不同的薄膜材料与基片组合,都有各自的最小稳定核。如 在玻璃上沉积金属时,最小稳定核为3-10个原子 临界核:比最小稳定核再小点,或者说再小一个原子,原子 团就变成不稳定的。这种原子团为临界核。
5.2 成核理论
成核理论主要有两种理论模型: • 毛细理论(热力学界面能理论):建立在热力学基础上,利
1 ED fD exp D o kT 1
5.1 凝结过程
平均表面扩散距离
吸附原子在表面停留时间经过扩散运动所移动的距离(从起始
点到终点的间隔)称为平均表面扩散距离, 若用 ao表示相邻吸附位臵间距,则:
x
Ed ED x a0 exp 2kT
αT 1 αT 1
TR =TS 入射原子与基片能量交换充分,达到热平衡 完全适应,
不完全适应,TS < TR < TI
完全不适应, TI TR
入射原子与基片完全没有热交换
αT 0
5.2 成核理论
薄膜的形成是由成核 开始的。
凝结
5.2 成核理论
稳定核:要在基片上形成稳定的薄膜,在沉积过程中必须不 断产生这样的小原子团,即一旦形成就不分解。
5.1 凝结过程
1. 吸附

《薄膜物理与技术》课程教学大纲

《薄膜物理与技术》课程教学大纲

《薄膜物理与技术》课程教学大纲课程代码:ABCL0527课程中文名称: 薄膜物理与技术课程英文名称:Thin film physics and technology课程性质:选修课程学分数:1.5课程学时数:24授课对象:新能源材料与器件专业本课程的前导课程:《材料表面与界面》、《近代物理概论》、《材料科学基础》、《固体物理》、《材料物理性能》一、课程简介本课程主要论述薄膜的制造技术与薄膜物理的基础内容。

其中系统介绍了各种成膜技术的基本原理与方法,包括蒸发镀膜、溅射镀膜、离子镀、化学气相沉积、溶液制膜技术以及膜厚的测量与监控等。

同时介绍了薄膜的形成,薄膜的结构与缺陷,薄膜的电学性质、力学性质、半导体特性、磁学性质以及超导性质等。

通过本课程的讲授,使学生在薄膜物理基础部分,懂得薄膜形成物理过程及其特征,薄膜的电磁学、光学、力学、化学等性质。

在薄膜技术部分初步掌握各种成膜技术的基本内容以及薄膜性能的检测。

二、教学基本内容和要求掌握物理、化学气相沉积法制膜技术,了解其它一些成膜技术。

学会对不同需求的薄膜,应选用不同的制膜技术。

了解各种薄膜形成的过程及其物理特性。

理解并能运用热力学界面能理论及原子聚集理论解释薄膜形成过程中的一些现象,了解薄膜结构及分析方法,理解薄膜材料的一些基本特性,为薄膜的应用打下良好的基础。

以下分章节介绍:第一章真空技术基础课程教学内容:真空的基础知识及真空的获得和测量。

课程重点、难点:真空获得的一些手段及常用的测量方法。

课程教学要求:掌握真空、平均自由程的概念,真空各种单位的换算,平均自由程、碰撞频率、碰撞频率的长度分布率的公式,高真空镀膜机的系统结构及抽气的基本过程。

理解蒸汽、理想气体的概念,余弦散射率,真空中气体的来源,机械泵、扩散泵、分子泵以及热偶真空计和电离真空计的工作原理。

了解真空的划分,气体的流动状态的划分,气体分子的速度分布,超高真空泵的工作原理。

第二章真空蒸发镀膜法课程教学内容:真空蒸发原理,蒸发源的蒸发特性及膜厚分布,蒸发源的类型,合金及化合物的蒸发,膜厚和淀积速率的测量与监控。

薄膜的生长过程和薄膜结构

薄膜的生长过程和薄膜结构

薄膜生长过程概述
(2)表面扩散迁移 吸附气相原子在基体表面上扩散迁移,互相碰 撞结合成原子对或小原子团,并凝结在基体表面上。 (3)原子凝结形成临界核 这种原子团和其他吸附原子碰撞结合 ,或者释放一个单原子。这个过程反复进行,一旦原子团中的原 子数超过某一个临界值,原子团进一步与其他吸附原子碰撞结合 ,只向着长大方向发展形成稳定的原子团。含有临界值原子数的 原子团称为临界核,稳定的原子团称为稳定核。 (4)稳定核捕获其他原子生长 稳定核再捕获其他吸附原子,或者 与入射气相原子相结合使它进一步长大成为小岛。
(5-16)
式中,第一项正是自发形核过程的临界自由能变化(式5-5),
而后一项则为非自发形核相对于自发形核过程能量势垒降低的因
子。接触角θ越小,即衬底与薄膜的浸润性越好,则非自发形核
的能垒降低得越多,非自发形核的倾向也越大。在层状模式时,
形核势垒高度等于零。
薄膜的非自发形核理论
2、薄膜的形核率
形核率是在单位面积上,单位时间内形成的临界核心数目。为
10可求出形核自由能取得极值的条件为:
r* 2(a3 vf a2 fs a2 sv )
3a1GV
(5-14)
应用式5-11后,上式仍等于式5-4,即
r* 2 vf
GV
因而,虽然非自发形核过程的核心形状与自发形核时有所不同,
但二者所对应的临界核心半径相同。
将上式代入5-10得到相应过程的临界自由能变化为:
根据图5.5中表面能之间的平衡条件,核心形状的稳定性要求各
界面能之间满足关系式
sv fs vf cos
(5-11)
即θ取决于各界面之间的数量关系。薄膜与衬底的浸润性越差,

薄膜物理与技术

薄膜物理与技术

薄膜物理与技术Physics and Technology of Thin Films课程编号:07370110学分:2学时:30(其中:讲课学时: 30 实验学时:0 上机学时:0)先修课程:大学物理,普通化学适用专业:无机非金属材料工程(光电材料与器件)教材:《薄膜物理与技术》,杨邦朝,王文生主编,电子科技大学出版社,1994年1月第1版开课学院:材料科学与工程学院一.课程的性质与任务薄膜科学是现代材料科学中及其重要且发展非常迅速的一个分支,已成为微电子学、固体发光、光电子学等新兴交叉学科的材料基础,同时薄膜科学研究成果转化为生产力的速度愈来愈快,国内外对从事薄膜研发和生产的人才需求也日益强劲。

本门课程就是为适应学科发展,学生适应市场需求而设置的专业课程。

课程的基本任务是:1、基本掌握各种成膜技术的基本原理和方法;2、了解并初步掌握薄膜的形成、结构与缺陷,薄膜的电学、力学、半导体、磁学等物理性质。

二.课程的基本内容及要求第一章真空技术基础1、教学内容(1)真空的基本知识(2)稀薄气体的基本性质(3)真空的获得及测量2、教学要求理解真空的基本知识和稀薄气体的基本性质,掌握真空的获得、主要手段和真空度策略方法,了解实用真空系统。

第二章真空蒸发镀膜1、教学内容(1)真空蒸发原理(2)蒸发源的蒸发特性及膜厚分布(3)蒸发源的类型(4)合金及化合物的蒸发(5)膜厚和沉积速率的测量与监控2、教学要求掌握真空蒸发原理,掌握真空镀膜的特点和蒸发过程,理解饱和蒸汽压和蒸发源的发射特性,熟练掌握蒸发速率、薄膜厚度的测量和控制,了解蒸发镀膜的常用方法(电阻加热和电子束加热),了解合金膜及化合物摸的蒸镀。

第三章溅射镀膜1、教学内容(1)溅射镀膜的特点和基本原理(2)溅射镀膜的类型2、教学要求掌握溅射镀膜的基本原理和特点,理解表征溅射特性的参量及其影响因素,了解溅射机理及溅射镀膜的各种类型第四章离子镀膜1、教学内容(1)离子镀的原理和特点(2)离子轰击的作用(3)离子镀的类型2、教学要求掌握离子镀的基本原理和特点,理解离子轰击的作用,了解离子镀的类型。

物理气相沉积PPT课件

物理气相沉积PPT课件

成膜机理? 真空蒸发所得到的薄膜,一般都是多晶膜或无定 形膜,经历成核和成膜两个过程。蒸发的原子(或分子)碰撞 到基片时,或是永久附着在基片上,或是吸附后再蒸发而离开 基片,其中有一部分直接从基片表面反射回去。粘附在基片表 面的原子(或分子)由于热运动可沿表面移动,如碰上其它原 子便积聚成团。这种团最易于发生在基片表面应力高的地方, 或在晶体衬底的解理阶梯上,因为这使吸附原子的自由能最小。 这就是成核过程。进一步的原子(分子)淀积使上述岛状的团 (晶核)不断扩大,直至展延成连续的薄膜。
Stranski-Krastanov Mode
Layer Plus Island Growth
衬底
( 2D-3D )
PVD所需实验条件
►高真空 (HV) ►高纯材料 ►清洁和光滑的衬底表面 ►提供能量的电源
PVD的通用实验配置
衬底
真空室 反应气体管道
充气管道
Plume
厚度监控仪 靶材
真空泵
一、蒸发镀膜
提高薄膜纯度的方法: –降低残余气体分压,提高真空度; –提高基片温度,提高沉积速率;
二、溅射镀膜
溅射镀膜是利用电场对辉光放电过程中产生出来的带电离子进行加速,使其获得一 定的动能后,轰击靶电极,将靶电极的原子溅射出来,沉积到衬底形成薄膜的方法。
辉光放电
溅射沉积薄膜原理
Al膜

避免金属 真空 原子氧化
7、薄膜的纯度:
蒸发源纯度的影响: 加热器、坩埚、支撑材料等的污染: 残余气体的影响:
Substrate
残留气体在衬底上形成一单原子层所需时间
生长材料的分子 残留气体分子
Pressure (Torr) 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11

第5章+薄膜的生长过程和薄膜结构

第5章+薄膜的生长过程和薄膜结构
11
特点:每一层原子都自发地平铺于衬底或 者薄膜的表面,降低系统的总能量。
典型例子:沉积ZnSe薄膜时, 一种原子会自发地键合到另 一种原子所形成的表面上。
12
3. 层状-岛状(Stranski-Krastanov)生长模式
在层状—岛状生长模式中,在最开始的一两个原子层厚 度的层状生长之后,生长模式转化为岛状模式。 根本原因:薄膜生长过程中各种能量的相互消长。
3
第一节 薄膜生长过程概述
薄膜的生长过程直接影响到薄膜的结构以 及它最终的性能。 薄膜的生长过程大致划分为两个阶段:新 相形核阶段、薄膜生长阶段。
4
一.薄膜的生长过程
1. 在薄膜形成的最初阶段,一些气态的原子 或分子开始凝聚到衬底表面上,从而开始 了形核阶段。
2. 在衬底表面上形成一些均匀、细小而且可 以运动的原子团,这些原子团称为“岛”。
讨论:
27a12GV 2
(1)在热涨落作用下,半径r< r 的核心由于
降低的趋势而倾向于消失。
(2)r> r 的核心则可伴随着自由能不断下降
而长大。
36
(3) G* 可写为:
G*

16vf 3 3GV 2
(2 3cos 4
cos2
)
其中,
第一项
16
3 vf
是自发形核过程的临界自由能变化,
一.形核过程的分类:
在薄膜沉积过程 的最初阶段,都需 要有新核心形成。
新相的形核过程 自发形核
非自发形核
17
自发形核:指的是整个形核过程完全是在相变
自由能的推动下进行的。 发生条件:一般只是发生在一些精心控制的环 境中。
非自发形核过程:指的是除了有相变自由能作

2024年人教版八年级上册物理第五章透镜及其用 实践活动 制作模型照相机

2024年人教版八年级上册物理第五章透镜及其用 实践活动 制作模型照相机

实践活动制作模型照相机
【活动器材】硬纸板、凸透镜、刻度尺、剪刀、双面胶、塑料薄膜、铅笔等。

【动手实践】
1.让凸透镜正对太阳光缓慢移动,使最小最亮的光斑落在桌面或其他光屏上,用刻度尺测量凸透镜中心到最小最亮的光斑之间的距离,即为凸透镜的焦距。

2.用硬纸板做两个粗细相差很少的纸筒,使一个纸筒刚好能套入另一个纸筒内,并能前后滑动。

3.在粗纸筒的一端镶入凸透镜,在细纸筒的一端蒙上塑料薄膜;把蒙上塑料薄膜的一端插入粗的纸筒中;这样就做成了一个模型照相机。

4.通过拉动细纸筒,改变凸透镜和塑料薄膜间的距离,用自制的模型照相机在较暗的室内观察室外的景物。

【活动评估】
1.在取材时,塑料薄膜使用的应是半透明(选填“透明”“半透明”或“不透明”)薄膜。

2.制作之前首先要测量凸透镜的焦距,其目的是确定凸透镜到塑料薄膜的距离,即确定模型照相机暗箱的长度。

3.在设计伸缩纸筒的长度时,需考虑模型照相机的物距(u)应该满足u>2f ,像距(v)应该满足2f>v>f。

4.观察时,应选择较亮(选填“较亮”或“较暗”)的物体作为观察对象。

【实践应用】
1.小明用自制的照相机先拍摄到了远处的物体,再拍摄近处物体时,应增大(选填“增大”或“减小”)透镜和薄膜的距离;此时薄膜上的像变大(选填“变大”“变小”或“不变”)。

2.小明在用自制的照相机拍室外的一棵树时,树在底片上成的像是倒立、缩小的实像。

如果要使树的像小一些,小明应将镜头远离(选填“远离”或“靠近”)树,同时调整镜头靠近(选填“远离”或“靠近”)底片。

- 1 -。

第五章 1光的干涉作业答案

第五章 1光的干涉作业答案

1光的干涉一、双缝干涉1.1801年,英国物理学家托马斯·杨在实验室里成功地观察到了光的干涉.2.双缝干涉实验(1)实验过程:激光束垂直射到两条狭缝S1和S2时,S1和S2相当于两个完全相同的光源,从S1和S2发出的光在挡板后面的空间叠加而发生干涉现象.(2)实验现象:在屏上得到明暗相间的条纹.(3)实验结论:光是一种波.3.出现明、暗条纹的条件光从两狭缝到屏上某点的路程差为半波长λ2的偶数倍(即波长λ的整数倍)时,这些点出现明条纹;当路程差为半波长λ2的奇数倍时,这些点出现暗条纹.二、薄膜干涉1.原理:以肥皂膜为例,单色光平行入射到肥皂泡液薄膜上,由液膜前后两个表面反射回来的两列光是相干光,它们相互叠加产生干涉,肥皂泡上就出现了明暗相间的条纹或区域.2.图样:以光照射肥皂泡为例,如果是单色光照射肥皂泡,肥皂泡上就会出现明暗相间的条纹或区域;如果是白光照射肥皂泡,液膜上就会出现彩色条纹.3.应用:检查平面的平整程度.原理:空气层的上下两个表面反射的两列光波发生干涉.1.判断下列说法的正误.(1)两只相同的手电筒射出的光在同一区域叠加后,看不到干涉图样的原因是干涉图样太细小看不清楚.(×)(2)屏上到双缝的路程差等于半波长的整数倍,此处为暗条纹.(×)(3)水面上的油膜呈现彩色条纹,是油膜表面反射光与入射光叠加的结果. (×)(4)观察薄膜干涉条纹时,应在入射光的另一侧.(×)2.如图1所示,在杨氏双缝干涉实验中,激光的波长为5.30×10-7 m,屏上P点距双缝S1和S2的路程差为7.95×10-7 m.则在这里出现的应是________(填“亮条纹”或“暗条纹”).图1答案暗条纹一、杨氏干涉实验1.杨氏双缝干涉实验(1)双缝干涉的装置示意图实验装置如图2所示,有光源、单缝、双缝和光屏.(2)单缝的作用:获得一个线光源,使光源有唯一的频率和振动情况.也可用激光直接照射双缝.(3)双缝的作用:将一束光分成两束频率相同且振动情况完全一致的相干光.2.光产生干涉的条件两束光的频率相同、相位差恒定、振动方向相同.杨氏双缝干涉实验是靠“一分为二”的方法获得两个相干光源的.3.干涉图样(1)单色光的干涉图样:干涉条纹是等间距的明暗相间的条纹.(2)白光的干涉图样:中央条纹是白色的,两侧干涉条纹是彩色条纹.例1 在双缝干涉实验中,以白光为光源,在屏幕上观察到了彩色干涉条纹,若在双缝中的一缝前放一红色滤光片(只能透过红光),另一缝前放一绿色滤光片(只能透过绿光),已知红光与绿光的频率、波长均不相等,这时( )A.只有红色和绿色的双缝干涉条纹,其他颜色的双缝干涉条纹消失B.红色和绿色的双缝干涉条纹消失,其他颜色的干涉条纹依然存在C.任何颜色的双缝干涉条纹都不存在,但屏上仍有光亮D.屏上无任何光亮答案 C解析 分别用绿色滤光片和红色滤光片挡住两条缝后,红光和绿光的频率不等,不能发生干涉,因此屏上不会出现干涉条纹,但仍有光亮.二、决定条纹间距的条件1.两相邻亮条纹(或暗条纹)间距离与光的波长有关,波长越长,条纹间距越大.白光的干涉条纹的中央是白色的,两侧是彩色的,这是因为:各种色光都能形成明暗相间的条纹,都在中央条纹处形成亮条纹,从而复合成白色条纹.两侧条纹间距与各色光的波长成正比,条纹不能完全重合,这样便形成了彩色干涉条纹.2.亮、暗条纹的判断如图3所示,设屏上的一点P 到双缝的距离分别为r 1和r 2,路程差Δr =r 2-r 1.(1)若满足路程差为波长的整数倍,即Δr =kλ(其中k =0,1,2,3…),则出现亮条纹.k =0时,PS 1=PS 2,此时P 点位于屏上的O 处,为亮条纹,此处的条纹叫中央亮条纹或零级亮条纹.k 为亮条纹的级次.(2)若满足路程差为半波长的奇数倍,即Δr =2k -12λ(其中k =1,2,3…),则出现暗条纹.k 为暗条纹的级次,从第1级暗条纹开始向两侧展开.例2 如图4所示是双缝干涉实验装置,使用波长为600 nm 的橙色光源照射单缝S ,在光屏中央P 处观察到亮条纹,在位于P 点上方的P 1点出现第一条亮条纹(即P 1到S 1、S 2的路程差为一个波长),现换用波长为400 nm 的紫色光源照射单缝,则( )A.P 和P 1仍为亮条纹B.P 为亮条纹,P 1为暗条纹C.P 为暗条纹,P 1为亮条纹D.P 、P 1均为暗条纹答案 B解析 从单缝S 射出的光波被S 1、S 2两缝分成两束相干光,由题意知屏中央P 点到S 1、S 2距离相等,即分别由S 1、S 2射出的光到P 点的路程差为零,因此中央是亮条纹,无论入射光是什么颜色的光、波长多大,P 点都是中央亮条纹.而分别由S 1、S 2射出的光到P 1点的路程差刚好是橙光的一个波长,即|P 1S 1-P 1S 2|=600 nm =λ橙.当换用波长为400nm 的紫光时,|P 1S 1-P 1S 2|=600 nm =32λ紫,则两列光波到达P 1点时振动情况完全相反,即分别由S 1、S 2射出的紫色光到达P 1点时相互削弱,因此,在P 1点出现暗条纹.综上所述,选项B 正确.三、薄膜干涉1.薄膜干涉中相干光的获得光照射到薄膜上,在薄膜的前、后两个面反射的光是由同一个实际的光源分解而成的,它们具有相同的频率,恒定的相位差.2.薄膜干涉的原理光照在厚度不同的薄膜上时,前、后两个面的反射光的路程差等于相应位置膜厚度的2倍,在某些位置,两列波叠加后相互加强,于是出现亮条纹;在另一些位置,叠加后相互削弱,于是出现暗条纹.3.薄膜干涉是经薄膜前、后表面反射的两束光叠加的结果出现亮条纹的位置,两束光的路程差Δr =kλ(k =0,1,2,3…),出现暗条纹的位置,两束光的路程差Δr =2k +12λ(k =0,1,2,3…).4.薄膜干涉的应用(1)检查平面平整度的原理光线经空气薄膜的上、下两面的反射,得到两束相干光,如果被检测平面是光滑平整的,得到的干涉条纹是等间距的.如果被检测平面某处凹下,则对应条纹提前出现,如果某处凸起,则对应条纹延后出现.(2)增透膜的原理在增透膜的前、后表面反射的两列光波形成相干波,当路程差为半波长的奇数倍时,两光波相互削弱,反射光的能量几乎等于零.例3 用单色光照射位于竖直平面内的肥皂液薄膜,所观察到的干涉条纹为( )答案 B解析 由于在光的干涉中亮、暗条纹的位置取决于两列光波相遇时通过的路程差,则在薄膜干涉中取决于入射点处薄膜的厚度.因肥皂液薄膜在重力作用下形成了一个上薄下厚的楔形膜,厚度相等的位置在同一条水平线上,故同一条干涉条纹必然是水平的,由此可知只有选项B 正确.1.由于薄膜干涉是经薄膜前、后表面反射的两束光叠加而形成的,所以观察时眼睛与光源应在膜的同一侧.2.在光的薄膜干涉中,前、后表面反射光的路程差由膜的厚度决定,所以薄膜干涉中同一亮条纹或同一暗条纹应出现在厚度相同的地方,因此又叫等厚干涉,每一条纹都是水平的.3.用单色光照射得到明暗相间的条纹,用白光照射得到彩色条纹.1.(双缝干涉实验)(2018·北京卷)用双缝干涉实验装置得到白光的干涉条纹,在光源与单缝之间加上红色滤光片后( )A.干涉条纹消失B.彩色条纹中的红色条纹消失C.中央条纹变成暗条纹D.中央条纹变成红色答案 D解析 在光源与单缝之间加上红色滤光片后,只透过红光,屏上出现红光(单色光)的干涉条纹,中央条纹变成红色.2.(亮、暗条纹的判断)在双缝干涉实验中,双缝到光屏上P 点的距离之差为0.6 μm ,若分别用频率为f 1=5.0×1014 Hz 和f 2=7.5×1014 Hz 的单色光垂直照射双缝,则P 点出现亮、暗条纹的情况是( )A.用单色光f 1和f 2分别照射时,均出现亮条纹B.用单色光f 1和f 2分别照射时,均出现暗条纹C.用单色光f 1照射时出现亮条纹,用单色光f 2照射时出现暗条纹D.用单色光f 1照射时出现暗条纹,用单色光f 2照射时出现亮条纹答案 C解析 单色光f 1的波长:λ1=c f 1=3×1085.0×1014 m =0.6×10-6 m =0.6 μm. 单色光f 2的波长:λ2=c f 2=3×1087.5×1014 m =0.4×10-6 m =0.4 μm. 因P 点到双缝的距离之差Δx =0.6 μm =λ1,所以用单色光f 1照射时P 点出现亮条纹.Δx =0.6 μm =32λ2, 所以用单色光f 2照射时P 点出现暗条纹,故选项C 正确.3.(多选)用红光做光的双缝干涉实验,如果将其中一条缝改用蓝光,下列说法正确的是( )A.在光屏上出现红蓝相间的干涉条纹B.只有相干光源发出的光才能在叠加时产生干涉现象,此时不产生干涉现象C.频率不同的两束光也能发生干涉现象,此时出现彩色条纹D.尽管亮、暗条纹都是光波相互叠加的结果,但此时红光与蓝光只叠加而不产生干涉现象答案 BD解析 频率相同、相位差恒定、振动方向相同是产生干涉现象的条件,红光和蓝光的频率不同,不能产生干涉现象,不会产生干涉条纹,A 、C 错误.4.(多选)用单色光做双缝干涉实验时( )A.屏上到双缝的路程差等于波长整数倍处出现亮条纹B.屏上到双缝的路程差等于半波长整数倍处,可能是亮条纹,也可能是暗条纹C.屏上的亮条纹一定是两列光波的波峰与波峰相遇的地方D.屏上的亮条纹是两列光波的波峰与波谷相遇的地方答案 AB解析在双缝干涉实验中,屏上到双缝的路程差等于波长整数倍处出现亮条纹,是振动加强处,不一定是两列光波的波峰与波峰相遇的地方,也可能是波谷与波谷相遇的地方,A选项正确,C选项错误;屏上到双缝的路程差等于半波长整数倍处,可能是半波长的奇数倍(暗条纹),也可能是半波长的偶数倍(亮条纹),B选项正确;两列光波的波峰与波谷相遇的地方,应是暗条纹,D选项错误.5.(多选)双缝干涉实验装置如图3所示,绿光通过单缝S后,投射到有双缝的挡板上,双缝S1和S2与单缝S的距离相等,光通过双缝后在与双缝平行的屏上形成干涉条纹.屏上O点距双缝S1和S2的距离相等,P点是O点上侧的第一条亮条纹,如果将入射的单色光换成红光或蓝光,已知红光波长大于绿光波长,绿光波长大于蓝光波长,则下列说法正确的是()A.O点是红光的亮条纹B.红光的同侧第一条亮条纹在P点的上方C.O点不是蓝光的亮条纹D.蓝光的同侧第一条亮条纹在P点的上方答案AB解析中央O点到S1、S2的路程差为零,所以换不同颜色的光时,O点始终为亮条纹,选项A正确,C错误;波长越长,条纹间距越宽,所以红光的同侧第一条亮条纹在P点上方,蓝光的同侧第一条亮条纹在P点下方,选项B 正确,D错误.6.(多选)下列现象中可以用薄膜干涉来解释的是()A.海市蜃楼B.水面上的油膜在阳光照射下呈彩色C.肥皂泡在阳光照射下呈现五颜六色D.荷叶上的水珠在阳光下晶莹透亮答案BC解析海市蜃楼是光在空气中发生折射形成的,故选项A错误;荷叶上的水珠在阳光下晶莹透亮是全反射的结果,故选项D错误;油膜在阳光照射下呈彩色、肥皂泡在阳光照射下呈现五颜六色都是薄膜干涉的结果,故选项B、C 正确.7.(多选)如图4所示,一束白光从左侧射入肥皂薄膜,下列说法中正确的是()A.人从右侧向左看,可以看到彩色条纹B.人从左侧向右看,可以看到彩色条纹C.彩色条纹水平排列D.彩色条纹竖直排列答案BC解析一束白光射到薄膜上,经前、后两个面反射回来的光相遇,产生干涉现象,从左侧向右看可看到彩色条纹,又由于薄膜同一水平线上的厚度相同,所以彩色条纹是水平排列的,故正确答案为B、C.8.如图所示是用干涉法检查某块厚玻璃板的上表面是否平整的装置,所用单色光是用普通光通过滤光片产生的,检查中所观察到的干涉条纹是由下列哪两个表面反射的光线叠加而成的()A.a的上表面和b的下表面B.a的上表面和b的上表面C.a 的下表面和b 的上表面D.a 的下表面和b 的下表面答案 C解析 干涉法的原理是利用单色光的薄膜干涉,这里的薄膜指的是标准样板与待测玻璃板之间的空气层.在空气层的上表面和下表面分别反射的光会发生干涉,观察干涉后形成的条纹是否为平行直线,可以判断厚玻璃板的上表面是否平整.因此选项C 正确.9在双缝干涉实验中,若双缝处的两束光的频率均为6×1014 Hz ,两光源S 1、S 2的振动情况恰好相反,光屏上的P 点到S 1与到S 2的路程差为3×10-6 m ,如图所示,则:(注意和同频同步结论刚好相反)(1)P 点是亮条纹还是暗条纹?(2)设O 为到S 1、S 2路程相等的点,则P 、O 间还有几条亮条纹,几条暗条纹?(不包括O 、P 两处的条纹) 答案 (1)暗条纹 (2)5条暗条纹,6条亮条纹解析 (1)由λ=c f得λ=5×10-7 m n =Δs λ=3×10-65×10-7=6 由于两光源的振动情况恰好相反,所以P 点为暗条纹.(2)O 点到S 1、S 2的路程差为0,也是暗条纹,OP 间还有5条暗条纹,6条亮条纹.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间内向上述表面扩散的吸附原子通量 。
33
每个临界核心接受扩散原子的外表面积相当于原 子直径a0围绕冠状核心一周的表面积,如图
A 2r a0 sin
* *
n ns e
*
G * kT
一、非自发形核过程的热力学 自发形核一般只发生在一些精心控制的过程之 中。在大多数相变过程中,形核的过程都是非自发
的。新相的核心将首先出现在那些能量比较有利的
位置上。 假设在形核过程中,衬底表面的原子可以 进行充分的扩散,即其扩散的距离远大于原子 的间距a。
24
考虑图中一个原子团在衬底上形成初期的自由能变 化。这时,原子团的尺寸很小,从热力学的角度讲还处 于不稳定的状态。 它可能吸 收外来原子 而长大,但 也可能失去 已拥有的原 子而消失。
气相的过饱和度S越大,则临界核心的半径越
小,临界核心的自由能变化G*也越小,所需克服 的形核势垒也较低,新相核心较易形成。 当r<r*时,在涨落过程中形成的这个新相核心将 处于不稳定的状态,它通过减小自身的尺寸将可以降
低自由能,因此它将倾向于再次消失。相反,当r>r*
时,新相的核心处于可以稳定生长的状态,它倾向于 继续长大,因为核心的生长将使得自由能下降。

以这种方式形成的薄膜,一般是单晶膜,并且和衬底
有确定的取向关系。例如在Au衬底上生长Pb单晶膜、在 PbSe衬底上生长PbSe单晶膜等。
5

(3) 层核生长型 特点:生长机制介于核生长型和层生长型的
中间状态。在最开始的一两个原子层的层状生长
之后,生长模式从层状转为岛状模式

这种模式转变的机制较复杂,但其本质是薄膜生
3
临界自由能改变G*随r变化的趋势同自发形核时相仿。 在热涨落的作用下,半径r<r*的核心会由于G降 低的趋势倾向于消失,半径r>r*的核心则可能伴随着
自由能的不断下降而长大。
29
非自发形核过程的临界自由能变化还可以表示为
16 (2 3 cos cos 3 ) * G 2 3GV 4
过程属于这种类型。
4
(2) 层生长型

特点:沉积原子在衬底的表面以单原子层的形式均
匀地覆盖一层,然后再在三维方向上生长第二层、第三
层„„。表明被沉积物质与衬底之间的浸润性很好,被 沉积物质更倾向于与衬底原子相键合。

一般在衬底原子与沉积原子之间的键能接近于沉积原
子相互之间键能的情况下发生这种生长方式的生长。
原子团称为稳定核。 4、稳定核再捕获其它吸附原子或与入射气相原子相结
合使它进一步长大成为小岛。 形核过程若在均匀相中进行则称为均匀形核;若 在非均匀相或不同相中进行则称为非均匀形核。
8
§5.2 新相的自发形核理论
形核理论研究的主要内容包括核形成的条件和核
生长速度,就是求出与核生长速度有关的表达式。
时,
是能够平衡存在的最小的固相核心半径,又称为临界 核心半径。从而形成临界核心时系统自由能的变化为
15
16 G 2 3GV
*
3
图中给出的
是,在不同气相
过饱和度时形核 自由能的变化G 随新相核心半径 r 的变化曲线。
16
可见,形成临界核心的临界自由能变化G*实 际上就相当于形核过程的势垒。
25
形成这样一个原子团时的自由能变化为
G G GS GV 球冠体积 GS
球冠体积
2
r
3
3
(2 3 cos cos )
3
GS 2r (1 cos ) fV r sin ( fS SV )
2 2
fV ,
fS ,
一方面温度增加会提高新相的平衡蒸气压,并导致 G*增加而形核率减小;
21
另一方面,温度增加时原子的脱附几率增加,
在一般情况下温度上升会使得n*减少,因而降低
衬底温度一般可以获得高的薄膜形核率。但在某 些情况下,动力学因素又起着关键性的作用:低 温时化学反应的速度下降,这将造成薄膜形核率 反而降低。 要想获得平整、均匀的薄膜沉积,需要提高n*、 即降低r*, 其有效的作法是在薄膜沉积的形核阶段大 幅度地提高气相的过饱和度,以形成核心细小、致 密连续的薄膜。
22
当气相过饱和度提高到一定程度以后,临界核 心小到了只含有很少几个原子。同时,G*也会大
幅度地降低。从而大大提高薄膜的形核率。
此外,降低衬底的温度还可以抑制原子和小 核心的扩散,冻结形核后的细晶粒组织,抑制晶
核的长大过程。它使得沉积后的原子固定在其初
始沉积的位置,形成特有的低温沉积组织。
23
§5.3 新相的非自发形核理论
接触角θ可由表面能最小的杨氏方程给出:
fV cos fS SV

SV fV fS , 0
此时薄膜的生长为岛状生长模式(衬底与气相界 面的自由能小)
27

SV fV fS , 0
此时薄膜的生长转化为层状生长或中间模式
dG 由 0 可得临界半径 dr
18
G G j jG1
Gj、G1 分别是一个新相核心与一个气相原子的自 由能。 所以核心数与吸附原子数之间的平衡常数为
K
nj n1
e
G kT
nj为含有j个原子的核心的面密度;n1为衬底表面单 个原子的面密度。将此关系用于临界核心,可得临 界核心面密度为:
19
ห้องสมุดไป่ตู้
n ns e
*
3
fV
第一项正是自发形核过程的临界自由能变化,而 后二项则为非自发形核相对于自发形核过程能量势垒 降低的因子。 接触角θ越小,即衬底与薄膜的浸润性越好,则非 自发形核的能垒降低得越多,非自发形核的倾向也越
大。在层状模式时,形核势垒高度等于零。
30
此外,核心常出现在衬底的某个局部位置上, 如晶体缺陷、原子层形成的台阶、杂质原子处等。
SV
是气相V、薄膜f(新相核心)、
衬底S之间界面的单位面积的自由能
26
所以
其中
G a1r GV a2 r ( fS SV ) a3r fV
3 2 2
a1 (2 3 cos cos ) / 3
3
a2 sin
2
a3 2 (1 cos )
面上,吸附的原子中有一小部分因能量稍大而再蒸发。
7
2、吸附气相原子在衬底表面上扩散迁移,互相结
合成原子对或小原子团,并凝结在衬底表面。
3、这种原子团和其它吸附原子碰撞结合,这个过 程反复进行,一旦原子团中的原子数超过某一个
临界值,向着长大的方向发展形成稳定的原子团。
含有临界值原子数的原子团称为临界核,稳定的
形核过程可近似地被认为是一个自发形核的过程。 考虑从过饱和气相中凝结出一个球形的新相核心 的过程。设新相核心的半径 r,则其体自由能的变化 为
4 3 r GV 3
GV 是单位体积的固相在凝结过程中的相变自由能变化
10
因为每个原子的自由能为
Gi G RT ln ai G kT ln ai NA NA NA
个是吸附原子沿衬底表面的扩散迁移碰撞结合。
在形核的初期,已有的核心数极少,因而后一种 可能性应该是原子来源的主要部分。即形核所需的原
子主要来自扩散来的表面吸附原子。
32
在单位时间内,单位表面上由临界尺寸的原子
团长大的核心数目就是形核率,它应该正比于三个
因子的乘积,即
dN * * n A dt
n*为衬底上的临界核心面密度;A*为每个临界核心 接受沿衬底表面扩散来的吸附原子的面积;ω为单位
其中JV和J分别是凝结相的蒸发通量和气相的沉积通量。
12
薄膜形核过程的示意图
J 是欲凝结物质的沉积通量
13
上式还可写成
kT GV ln(1 S )
其中,S= (p-pV)/pV 是气相的过饱和度。
当过饱和度为0时,GV=0这时将没有新相的核心
可以形成,已经形成的新相核心不再长大。 当气相存在过饱和现象时S>0,GV<0,它就是新 相形核的驱动力。
长过程中各种能量的相互消长。 在半导体表面形成金属膜时常呈现这种方式的生 长。例如在Ge表面上沉积Cd,在Si表面上沉积 Bi、Ag等都属于这种类型。
6

三、形核与生长的物理过程
有四个步骤,示意如图
1、从蒸发源出来的气相原子入射到衬底表面上,其中有 一部分因能量较大而弹回去,另一部分则吸附在衬底表
r
*
2[a3 rfV a2 ( fS SV )] 3a1GV

2 fV GV
可见尽管非自发形核过程的核心形状与自发形核 时不同,但二者具有相同的临界半径。
28
所以临界自由能变化为:
G
*
4[a3 fV a2 ( fS SV )] 27a G
2 1 2 V
G * kT
ns为所有可能形核点的密度,依赖于衬底表面上单
个原子的密度n1。
可见临界核心面密度n*取决于n1和G *,而n1 正比于气相原子的沉积通量J或气相的压力p,而
G* 依赖于过饱和度(也即压力)。影响最大的是
指数项,它是气相过饱和度S的函数,当S> 0时, GV<0, 气相中开始均匀自发形核。
在薄膜沉积过程的最初阶段,都需要有新相的核 心形成。新相的形核过程可以被分为自发形核与非自 发形核。自发形核,指的是整个形核过程完全是在相 变自由能的推动下进行的,而非自发形核则指的是除 了有相变自由能作推动力之外,还有其他的因素起着 帮助新相核心生成的作用。
9
一、自发形核
相关文档
最新文档