多晶硅的传统制备方法
多晶硅生产工艺
多晶硅生产工艺冶金级硅(工业硅)是制造多晶硅的原料,它由石英砂(二氧化硅)在电弧炉中用碳还原而成。
尽管二氧化硅矿石在自然界中随处可见,但仅有其中的少数可以用于冶金级硅的制备。
一般来说,要求矿石中二氧化硅的含量应该在97~98%以上,并对各种杂质特别是砷、磷和硫等的含量有严格的限制。
冶金硅形成过程的化学反应式为:SiO2 + 2C = Si + 2CO。
在用于制造多晶硅的冶金硅中,要求含有99%以上的Si,还含有铁、铝、钙、磷、硼等,它们的含量在百万分之几十到百万分之一千(摩尔分数)不等。
而EG硅中的杂质含量应该降到10-9(摩尔分数)的水平,SOG硅中的杂质含量应该降到10-6(摩尔分数)的水平。
要把冶金硅变成SOG硅或EG硅,显然不可能在保持固态的状态下提纯,而必须把冶金硅变成含硅的气体,先通过分馏与吸附等方法对气体提纯,然后再把高纯的硅源气体通过化学气相沉积(CVD)的方法转化为多晶硅。
目前世界上生产制造多晶硅的工艺技术主要有:改良西门子法、硅烷(SiH4)法、流化床法以及专门生产SOG硅的新工艺。
1、改良西门子法1955年,西门子公司成功开发了利用氢气还原三氯硅烷(SiHCl3)在硅芯发热体上沉积硅的工艺技术,并于1957年开始了工业规模的生产,这就是通常所说的西门子法。
在西门子法工艺的基础上,通过增加还原尾气干法回收系统、SiCl4氢化工艺,实现了闭路循环,于是形成了改良西门子法——闭环式SiHCl3氢还原法。
改良西门子法的生产流程是利用氯气和氢气合成HCl(或外购HCl),HCl和冶金硅粉在一定温度下合成SiHCl3,分离精馏提纯后的SiHCl3进入氢还原炉被氢气还原,通过化学气相沉积反应生产高纯多晶硅。
具体生产工艺流程见图1。
改良西门子法包括五个主要环节:SiHCl3合成、SiHCl3精馏提纯、SiHCl3的氢还原、尾气的回收和SiCl4的氢化分离。
该方法通过采用大型还原炉,降低了单位产品的能耗。
ltps工艺技术介绍
ltps工艺技术介绍LTPS工艺技术,全称为低温多晶硅技术(Low Temperature Poly-Silicon),是一种在低温下制备多晶硅的工艺技术。
它在显示屏制造领域广泛应用,特别是在智能手机和平板电脑的屏幕制造上。
LTPS工艺技术相对于传统的TFT-LCD工艺技术具有很多优势,下面我们来介绍一下。
首先,LTPS工艺技术可以制造出更高分辨率和更高精度的屏幕。
多晶硅的晶粒更小,可以在同样的面积上装下更多的晶粒,从而提高分辨率。
同时,LTPS工艺技术可以制造出更细腻的像素点,使显示效果更加细腻和真实。
其次,LTPS工艺技术可以提高屏幕的响应速度。
在传统的TFT-LCD工艺技术中,液晶分子移动的速度有限,导致刷新速度较慢,容易出现动态模糊现象。
而LTPS工艺技术采用了更高质量的多晶硅材料,可以使晶体管开关速度更快,从而提高屏幕的响应速度,减少动态模糊现象的发生。
另外,LTPS工艺技术可以节省能源和降低功耗。
在传统的TFT-LCD工艺技术中,需要使用背光模组来提供光源,而LTPS工艺技术采用了自发光的设计,可以直接通过薄膜晶体管激活像素,减少了能量传递过程中的损耗,从而达到节能和降低功耗的效果。
此外,LTPS工艺技术还可以制造出更薄更轻的屏幕。
相比于传统的TFT-LCD工艺技术,LTPS工艺技术所需要的驱动电路更小更精简,可以减少屏幕的厚度和重量,提高设备的便携性。
最后,LTPS工艺技术还可以提高屏幕的可靠性和寿命。
多晶硅具有更好的稳定性和耐用性,可以抵抗氧化和老化的影响,从而延长屏幕的使用寿命。
同时,LTPS工艺技术可以减少杂散电流和漏电流的发生,提高屏幕的稳定性和可靠性。
总之,LTPS工艺技术在显示屏制造领域具有广泛的应用前景。
它可以制造出更高分辨率、更高精度、更快响应速度、更节能、更薄轻、更可靠的屏幕,满足了现代科技产品对屏幕显示质量的要求,推动了智能手机和平板电脑等设备的发展。
随着技术的进步和创新,相信LTPS工艺技术在未来还将有更多的突破和应用。
多晶硅生产工艺
多晶硅生产工艺一、概述世界正从工业社会向信息社会过渡,信息技术已成为促进社会发展和进步的关键技术,信息化程度的高低已成为衡量一个国家现代化水平的标志。
微电子技术是信息技术的基础和关键技术,集成电路又是微电子技术的核心,一代又一代更为优秀的集成电路的出现,推进着全球经济一体化的进程,而半导体硅材料则是集成电路最重要的、不可替代的基础功能材料,多晶硅则是集成电路大厦的“基石” 或“粮食”。
二、多晶硅生产现状1、我国多晶硅生产现状我国多晶硅工业起步于50年代,60年代中期实现工业化生产,70年代初曾一度盲目发展,生产厂发展到20余家。
生产工艺多采用传统西门子法,由于技术水平低、生产规模小、产品质量差、消耗指标高环境污染严重、生产成本逐年增加等原因,多数生产厂难以维持生产而停产或倒闭,生产能力急剧萎缩,与当今信息产业的高速发展和多晶硅的市场需求急骤增加极不协调。
生产消耗和生产能力变化分别见表1和表2。
由上表可知,目前国内多晶硅生产规模太小,产能不断萎缩,厂家分散,工艺技术落后,装置陈旧,消耗高,环境污染严重,生产十分艰难,1999年只生产了46t,仅占世界产量的0.4%,远不能满足国内市场的需要。
如不积极组建现代化的、符合经济规模的大多晶硅厂,将制约我国生产符合集成电路和分离器件要求的高档次的单晶硅和硅片。
多晶硅对我国半导体工业的发展至关重要。
2、国外多晶硅生产现状多晶硅生产主要集中在美、日、德三国,世界市场由7家公司占有,1 998年多晶硅产量为16200t,其中德山曹达、黑姆洛克、瓦克三家公司占产量的63%。
见表2—3。
目前生产的多晶硅能满足集成电路及功率器件发展的技术要求,用户不经腐蚀、清洗,直接装炉。
多晶硅质量指标好,产品稳定,多晶硅N型电阻率都在1000Q·cm以上。
改良西门子法技术的完善与发展,使原辅材料及能耗大为降低;多晶硅生产的主要工序都应用计算机控制、设备装备水平较高。
三、我国多晶硅市场需求1、多晶硅严重短缺在改革开放形势下,国内市场是世界市场的一部分,两者有相同之处,但也有差别。
电子级多晶硅生产技术浅谈
电子级多晶硅生产技术浅谈摘要:在工业生产中,对于电子级多晶硅的需求量是非常大的,其质量对电子产品的电路级功能、二极管功能等有着重要的影响。
所以,想要保证工业生产中电子产品的质量,就需要确保电子级多晶硅产品的质量。
由此,论文先对电子级多晶硅生产工艺做了简要分析,进而深入研究与分析了现阶段电子级多晶硅的生产技术,以供借鉴。
关键词:电子级多晶硅;还原炉;生产技术;精馏;分析前言随着现代科学技术的快速发展,电子工业生产中对于电子级多晶硅的需求不断增大,但现阶段的电子级多晶硅生产技术还存在一定的缺陷问题,如提纯效率不高、污染大及生产成本高等。
为了更好地满足当前社会发展对于产品质量和数量等方面的实际需要,还需要进一步加大对电子级多晶硅生产技术的研究与探索,不断提升其生产技术水平,促进产品质量和效率的提升,从而更好地满足实际需要。
一、电子级多晶硅生产工艺就目前来看,许多制造企业在生产多晶硅时大多选用改良西门子法和流化床颗粒硅法实现的。
流化床颗粒硅法在实际生产过程中对于产品杂质的控制存在一定的难度,这与电子级多晶硅的生产不相符。
电子级多晶硅生产中所采用的改良西门子法主要包含了两种不同的工艺,一种是三氯氢硅生产工艺,一种是硅烷生产工艺。
其中前者主要以直拉单晶和区熔单晶作为高纯硅料实现生产的,其所生产的产品具有较高的纯度,也因此该生产工艺受到许多企业的青睐,尽管如此,但这种工艺在实际生产过程中会产生对环境污染较大的有害物质,且生产成本较高。
硅烷生产工艺则是以石英钟罩内的硅烷化学气相沉积来实现生产的,尽管这种工艺在生产过程中能耗较低,但存在其他额外的损耗,整体生产成本也比较高,再加上硅烷生产具有较高的危险性,也因此使得该工艺的应用受到一定的制约。
由上述可知,现阶段的电子级多晶硅生产工艺仍然存在一定的缺陷问题,所以,制造企业需要结合自身生产的实际需求和生产环境的实际情况,具有针对性的选择与之相符合的生产工艺,同时加以改进和优化,以确保电子级多晶硅的生产质量和效率。
定向凝固制备铸造多晶硅的原理及应用综述
定向凝固制备铸造多晶硅的原理及应用综述摘要:阐述了介绍了定向凝固应用于硅材料的理论基础,论述了近年来定向凝固制备技术在杂质提纯和晶体生长的研究进展,提出了定向凝固制备铸造多晶硅研究现状和存在的问题。
展望今后的发展前景,认为新型的定向凝固技术制备出的硅锭在杂质含量、晶体结构方面均优于传统凝固技术,应积极改善定向凝固技术,以制备高品质的太阳能硅材料。
关键词定向凝固;铸造多晶硅;杂质和缺陷;转化效率晶体硅太阳能电池包括单晶电池和多晶电池2种,多晶电池的市场份额占到一半以上,商业化的多晶电池效率可以达到14%左右[1]。
实验条件下,多晶电池的最高转化效率达到20.30左右,多晶电池的效率虽然略低于单晶电池1%~2%,但多晶电池制造成本低、环境污染小,仍有很高的性价比和市场[2]。
近年来,由于技术改良、电池效率提高及生产成本下降等有利因素,因而大大促进了多晶电池应用技术的发展,也使业内专家学者给予了多晶电池制备技术更多研究和关注[3]。
影响多晶电池转换效率主要有2个方面:一是多晶硅铸锭的纯度,即使材料中含有少量的杂质,对电池的光电性能就有很大的影响[4];二是尽量减少材料中各种缺陷,多晶硅铸锭中的晶界、位错与杂质聚集成载流子复合中心,大大的降低了多晶电池效率。
由以上表述可知,要提高多晶电池的效率,必须围绕提高材料纯度和降低材料缺陷的技术进行研究,而定向凝固技术正是制备硅晶体材料的典型应用。
定向凝固技术开始只用于传统的高温合金研制,经过几十年的发展,它已经是一种成熟的材料制备技术[5]。
定向凝固技术在多晶硅铸造主要是控制晶体生长和杂质提纯2方面的应用。
定向凝固技术可以很好地控制组织的晶面取向,消除横向晶界,获得大晶粒或单晶组织,提高材料的力学性能[6]。
同时,定向凝固可生成按照一定晶面取向、排列整齐的晶体结构,由于分凝系数的不同,杂质凝聚于晶界和铸锭上方,对材料起到提纯作用。
1. 基本原理多晶硅铸锭实际上就是由定向排列的柱状晶体组合形成,形成的理论基础就是定向凝固原理。
[整理]三氯氢硅氢还原制备高纯多晶硅.
三氯氢硅氢还原制备高纯多晶硅1.高纯多晶硅生产工艺简介20世纪50年代,联邦德国西门子公司研究开发出大规模生产多晶硅的技术,即通常所说的西门子工艺。
多晶硅生产的西门子工艺,其原理就是在表面温度1100℃左右的高纯硅芯上用高纯氢还原高纯含硅反应物,使反应生成的硅沉积在硅芯上。
改良西门子方法是在传统西门子方法的基础上,具备先进的节能低耗工艺,可有效回收利用生产过程中大量的SiCl4 、HCl、H2等副产物以及大量副产热能的多晶硅生产工艺。
经过半个世纪的发展,多晶硅的制备从生产技术、规模、质量和成本都达到空前的水平,主要集中在美国、日本、德国三个国家。
这三国几乎垄断了世界多晶硅市场。
多晶硅生产的技术仍在进步发展,比如现在出现的硅棒对数达上百对的还原炉,可以使多晶硅的还原能耗降低到一个新的水平。
多晶硅的规格形态:表面无氧化杂质,呈银灰色带有金属光泽Si含量 99.9999%(太阳能级) 99.9999999(电子级)B含量≤0.003PPb(W)P含量≤0.3PPb(W)C含量≤100PPb(W)体内金属含量≤0.5PPb(W)(Fe,Cu,Ni,Zn,Cr)2.三氯氢硅氢还原反应基本原理2.1 三氯氢硅氢还原反应原理SiHCl 3和H 2混合,加热到900℃以上,就能发生如下反应:)(HCl 3)( Si )( H )(SiHCl 110090023气固气气℃~+−−−−→←+ 同时,也会产生SiHCl 3的热分解以及SiCl 4的还原反应:2490032H 3SiCl Si 4SiHCl ++−−→←℃ 4HCl Si 2H SiCl 24+−→←+此外,还有可能有43SiCl 2HCl Si 2SiHCl ++−→←HCl SiCl SiHCl 23+−→←以及杂质的还原反应:6HC1 2P 3H PCl 23+−→←+这些反应,都是可逆反应,所以还原炉内的反应过程是相当复杂的。
在多晶硅的生产过程中,应采取适当的措施,抑制各种逆反应和副反应。
三氯氢硅氢还原制备多晶硅
二、三氯氢硅氢还原反应基本工艺流程
冷凝器 来自精馏工 序 蒸 发 器
F
L
氢 气 放 空 补 充 电 解 氢
蒸 发 器
F
还原炉
P T
P
P
蒸 发 器
冷却水 系统
多 晶 硅
热水制 备
回收H2
回收至合成工序 回收氯硅烷至精 馏
CDI 尾气回收 系统
SiHCI3氢还原工艺流程示意图
SiHCI3氢还原制备多晶硅主要工序包括混合气 氢还原制备多晶硅主要工序包括混合气 氢还原制备多晶硅主要工序包括 制备系统、氢还原炉、 系统、 制备系统、氢还原炉、DCS系统、电器控制系统和 系统 与之配套的冷却水系统、吹扫系统。 与之配套的冷却水系统、吹扫系统。 从精馏塔提纯出来的精制SiHCI3原料,按照还 原料, 从精馏塔提纯出来的精制 原料 原工艺条件的要求,经管道连续加入到SiHCI3蒸 原工艺条件的要求,经管道连续加入到 蒸 发器中。 发器中。经尾气回收系统收下来的氢气与来自电解 制氢系统的补充氢气在氢气总管中汇合后也进入蒸 发器中, 发器中,氢气总管的压力通过调节补充电解氢的流 和氢气放空的流量)控制, 量(和氢气放空的流量)控制,以实现进入蒸发气 的氢气压力恒定。 的氢气压力恒定。 蒸发器中的SiHCI3液体在一定的温度和压力下 蒸发器中的 液体在一定的温度和压力下 蒸发,氢气对SiHCI3液体进行集中鼓泡。形成一 液体进行集中鼓泡。 蒸发,氢气对 液体进行集中鼓泡 定体积比的H2和 的混合气体。 定体积比的 和SiHCI3的混合气体。SiHCI3蒸发 的混合气体 蒸发 所需的热量由专门的热水制备系统供给。 所需的热量由专门的热水制备系统供给。
3.在光和热的作用下,能使电子激发,从而使导电 在光和热的作用下,能使电子激发,
多晶硅生产工艺流程
多晶硅生产工艺流程(简介)-------------------------来自于网络收集多晶硅生产工艺流程,多晶硅最主要的工艺包括,三氯氢硅合成、四氯化硅的热氢化(有的采用氯氢化),精馏,还原,尾气回收,还有一些小的主项,制氢、氯化氢合成、废气废液的处理、硅棒的整理等等。
主要反应包括:Si+HCl---SiHCl3+H2(三氯氢硅合成);SiCl4+H2---SiHCl3+HCl(热氢化);SiHCl3+H2---SiCl4+HCl+Si (还原)多晶硅是由硅纯度较低的冶金级硅提炼而来,由于各多晶硅生产工厂所用主辅原料不尽相同,因此生产工艺技术不同;进而对应的多晶硅产品技术经济指标、产品质量指标、用途、产品检测方法、过程安全等方面也存在差异,各有技术特点和技术秘密,总的来说,目前国际上多晶硅生产主要的传统工艺有:改良西门子法、硅烷法和流化床法。
改良西门子法是目前主流的生产方法,采用此方法生产的多晶硅约占多晶硅全球总产量的85%。
但这种提炼技术的核心工艺仅仅掌握在美、德、日等7家主要硅料厂商手中。
这些公司的产品占全球多晶硅总产量的90%,它们形成的企业联盟实行技术封锁,严禁技术转让。
短期内产业化技术垄断封锁的局面不会改变。
西门子改良法生产工艺如下:这种方法的优点是节能降耗显著、成本低、质量好、采用综合利用技术,对环境不产生污染,具有明显的竞争优势。
改良西门子工艺法生产多晶硅所用设备主要有:氯化氢合成炉,三氯氢硅沸腾床加压合成炉,三氯氢硅水解凝胶处理系统,三氯氢硅粗馏、精馏塔提纯系统,硅芯炉,节电还原炉,磷检炉,硅棒切断机,腐蚀、清洗、干燥、包装系统装置,还原尾气干法回收装置;其他包括分析、检测仪器,控制仪表,热能转换站,压缩空气站,循环水站,变配电站,净化厂房等。
(1)石英砂在电弧炉中冶炼提纯到98%并生成工业硅,其化学反应SiO2+C→Si+CO2↑(2)为了满足高纯度的需要,必须进一步提纯。
单晶硅与多晶硅的基础知识及生产工艺
单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。
如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。
多晶硅与单晶硅的差异主要表现在物理性质方面。
例如在力学性质、电学性质等方面,多晶硅均不如单晶硅。
多晶硅可作为拉制单晶硅的原料。
单晶硅可算得上是世界上最纯净的物质了,一般的半导体器件要求硅的纯度六个9以上。
大规模集成电路的要求更高,硅的纯度必须达到九个9。
目前,人们已经能制造出纯度为十二个9 的单晶硅。
单晶硅是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。
多晶硅的生产工艺主要由高纯石英(经高温焦碳还原)→工业硅(酸洗)→硅粉(加HCL)→SiHCL3(经过粗馏精馏)→高纯SiHCL3(和H2反应CVD工艺)→高纯多晶硅国内的多晶硅单价主要看纯度,纯度在9个9的很少,价格应该在2500以上了!详细价格不定,单晶硅生产工艺主要有两种,一种是直拉法,一种是区熔法。
工艺的介绍也可以在网上找得到。
单晶硅片的单价是论片算,不会按吨算的,这里还要区分是太阳能级还是IC级,这里我只知道关于6寸太阳能级硅片,每片价格在53元左右单晶硅的制造方法和设备1、一种单晶硅压力传感器制造方法及其结构2、单晶硅生产装置3、制造单晶硅的设备4、单晶硅直径测定法及其设备5、单晶硅直径控制法及其设备【单晶硅】英文名: Monocrystalline silicon分子式: Si硅的单晶体。
具有基本完整的点阵结构的晶体。
不同的方向具有不同的性质,是一种良好的半导材料。
纯度要求达到99.9999%,甚至达到99.9999999%以上。
用于制造半导体器件、太阳能电池等。
用高纯度的多晶硅在单晶炉内拉制而成。
熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。
单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。
多晶硅生产主要工艺技术指标
多晶硅生产主要工艺技术指标多晶硅是一种重要的半导体材料,广泛用于太阳能电池、集成电路等领域。
多晶硅的生产工艺技术指标是评价生产工艺水平的重要指标,以下是多晶硅生产主要工艺技术指标的详细介绍。
固氯法是多晶硅生产的传统工艺,其主要技术指标包括:• 污染物含量:多晶硅要求高纯度,所以污染物含量是一个重要指标。
主要污染物包括铁、铝、钠等。
优质多晶硅要求铁含量低于10ppmw,铝、钠等含量低于0.1ppmw。
•收率:制备多晶硅的收率是衡量工艺的重要指标。
目前,固氯法制备多晶硅的收率可达到20%以上,优良工艺可达25%以上。
•产品质量:多晶硅的晶体结构决定了其电学性能。
所以,产品的纯度、晶粒大小、晶体结构等也是工艺指标。
氯化气相法是近年来发展起来的多晶硅制备工艺,其主要技术指标包括:•氯化反应器参数:氯化气相法的核心是氯化反应器,反应器的设计和参数决定了工艺的效果。
主要参数包括反应温度、反应器的直径和高度、反应器过程中的气流速度等。
•气相传输效率:氯化气相法制备多晶硅需要通过蒸发和冷凝过程中的气体传输,气体传输的效率也是一个指标。
化学气相沉积是一种新型的多晶硅制备工艺,其主要技术指标包括:• 沉积速率:化学气相沉积法制备多晶硅需要较快的沉积速率,以提高生产效率。
一般来说,沉积速率应大于1um/min。
•沉积温度:化学气相沉积法对沉积温度要求较高,一般在600-650℃之间。
•沉积均匀性:多晶硅的沉积均匀性影响其电学性能,所以化学气相沉积法的均匀性也是一个重要指标。
总结:多晶硅生产的工艺技术指标主要包括污染物含量、收率、能耗、产品质量等。
不同的制备工艺有不同的指标要求,但都追求高纯度、高收率、低能耗的目标。
未来,随着技术的不断发展,多晶硅生产工艺技术指标也会不断提高,以满足市场的需求。
多晶硅生产工艺—西门子法
多晶硅生产工艺—西门子法西门子法生产多晶硅发展及展望西门子法生产多晶硅的工艺流程可分为三步:一是SiHCl3制备,二是SiHCl3还原制取多晶硅,最后为尾气的回收利用。
从图1、图2可见,左边的流床反应器即为由冶金级硅和HCl气体反应生成SiHCl3的部分;中间标有“高纯Si”的反应炉为制取多晶硅的部分;右边为尾气回收系统。
其中,SiHCl3氢还原制取多晶硅部分最为重要。
西门子法至今已有50多年的历史,多年前即发展成为生产电子级多晶硅的主流技术,现在生产技术已相当成熟。
这和它具有以下优点是密不可分的[20-22]:(1)SiHCl3比较安全,可以安全地运输,贮存数月仍能保持电子级纯度。
当容器打开后不像SiH4或SiH2Cl2那样会燃烧或发生爆炸,即使燃烧,温度也不高,可以盖上。
(2)西门子法的有用沉积比为1某103,是硅烷法的100倍。
(4)在现有方法中它的沉积速率最高,达8~10μm/min。
(5)一次转换效率为5%~20%,在现有方法中也是最高的。
不足之处在于沉积温度较高,在1100℃左右,所以电耗高,达120kWh/kg。
1.3.1发展历程1第一代多晶硅生产流程[20]适用于100t/a以下的小型硅厂,以HCl气体和冶金级硅为原料,在300℃和0.45MPa下催化生成SiHCl3。
主要副产物为SiCl4和SiH2Cl2,含量分别为5.2%和1.4%,此外还有1.9%较大分子量的氯硅烷。
生成物经沉降器去除固体颗粒,再经冷凝器进行汽液分离。
分离出的H2压缩后返回流床反应器,液态产物SiCl4、SiH2Cl2、较大分子量的氯硅烷和SiHCl3则进入多级分馏塔进行分离,馏出物SiHCl3作为原料再次进入储罐。
SiHCl3在常温下是液体,由H2携带进入钟罩反应器,在1100℃左右的硅芯上沉淀。
反应为:SiHCl3+H2→Si+HCl(1)2SiHCl3→Si+SiCl4+2HCl(2)式(1)是希望发生的反应,但式(2)也同时进行。
多晶硅精馏工艺流程
多晶硅精馏工艺流程
多晶硅精馏工艺流程是一种重要的半导体材料制备方法,下面将从多晶硅的制备、精馏工艺流程以及其应用领域等方面进行介绍。
一、多晶硅的制备
多晶硅是由硅资源经过一系列的冶炼和提纯工艺得到的。
首先,将硅矿石经过破碎、磨矿等步骤得到粉状硅粉。
然后,将硅粉与氯气进行化学反应生成四氯化硅。
接着,通过热还原法将四氯化硅还原为多晶硅。
多晶硅的制备过程需要严格控制温度、气氛和反应时间等参数,以确保产品的质量和纯度。
多晶硅精馏是在多晶硅的制备过程中的一个重要环节。
精馏是通过升华法进行的,主要包括以下几个步骤:
1. 加热:将多晶硅放入精馏炉中,炉内温度逐渐升高,使硅材料逐渐升华。
2. 分离:升华后的硅蒸汽经过冷却,使其重新凝结成为固体硅。
3. 收集:将凝结后的固体硅收集起来,作为多晶硅的成品。
三、多晶硅的应用领域
多晶硅是一种重要的半导体材料,广泛应用于电子、光伏等领域。
在电子领域,多晶硅可用于制备集成电路、太阳能电池等器件。
在光伏领域,多晶硅是太阳能电池的主要材料之一,可将太阳能转化
为电能。
此外,多晶硅还可以用于制备光纤、光学器件等。
总结:
多晶硅精馏工艺流程是一种重要的半导体材料制备方法。
通过多晶硅的制备和精馏工艺,可以得到高纯度的多晶硅材料。
多晶硅在电子和光伏等领域有着广泛的应用,为现代科技的发展做出了重要贡献。
通过不断提升多晶硅制备工艺和精馏工艺的技术水平,可以进一步提高多晶硅的质量和应用性能,推动半导体行业的发展。
多晶硅生产中精馏工艺优化研究
43第2卷 第34期多晶硅生产中精馏工艺优化研究王共远(江苏中能硅业科技发展有限公司,江苏 徐州 221000)摘要:高质量的多晶硅材料在各行业中都有着广泛的应用,因此,文章对多晶硅生产中的精馏工艺优化进行了探讨。
首先列举了传统的多晶硅生产精馏工艺,而后对工艺中存在的问题进行了分析,并对各工艺环节的优化改进措施进行了详细阐述,以期促进多晶硅生产质量的提升和能耗的降低。
关键词:多晶硅;三氯氢硅;精馏工艺;工艺优化中图分类号:TQ127.2 文献标识码:A 文章编号:2096-6164(2020)34-0043-02在多晶硅的生产过程中,其重要的中间产物是三氯氢硅,显然,三氯氢硅的质量直接决定着多晶硅的质量,而决定多晶硅质量的关键因素则是三氯氢硅的精馏工序。
为此,必须在三氯氢硅的精馏工艺方面上进行研究,以进行工艺优化,这对于降低生产成本、提高产品的生产效率和质量而言,都有着非常重要的作用。
1 传统的多晶硅生产精馏工艺1.1 合成工艺由于三氯氢硅是多晶硅生产过程中的重要中间产物,因此三氯氢硅的精制过程就等同于多晶硅的精馏过程。
三氯氢硅的合成过程中,其主要原料是氯硅烷,将氯硅烷通过粗馏系统和精馏系统,就能够实现氯硅烷的提纯,进而提高三氯氢硅的纯度[1]。
具体来看,该工艺的具体操作流程主要分为以下三个步骤:首先,将氯硅烷加入到粗馏系统当中,在粗馏系统中的催化剂作用下,氯硅烷分解为三氯氢硅和四氯化硅;然后,反应物中大部分杂质都会在粗馏系统中得到去除,同时分离出三氯氢硅,使得三氯氢硅的纯度显著提升;最后,将三氯氢硅输送到精馏系统当中,进行一系列处理,最终使得三氯氢硅的纯度满足精制要求。
1.2 还原工艺在三氯氢硅得到提纯后,就要将其输送到精馏塔中进一步提纯,分离出三氯氢硅中残存的四氯化硅,以获得纯度较高的多晶硅生产原料。
具体来看,该工艺分为以下三个步骤:首先,将精制三氯化硅输送到第一个精馏塔中,通过三氯氢硅和四氯化硅物理性质的不同,将二者进行分离;其次,将分离出的三氯氢硅进一步输送到第二精馏塔中,确保三氯氢硅和四氯化硅杂质之间彻底分离,使三氯氢硅的纯度达到预期目标;最后,通过一系列的反复提纯操作中,技术人员需要数次检测提纯情况,确保提纯效果合格后,将原料输送到下一操作工序。
多晶硅提纯技术
多晶硅提纯技术目录摘要 (1)1引言 (1)2 多晶硅的提纯技术 (2)2.1 改良西门子法——闭环式三氯氢硅氢还原法 .........................2.2 流化床法——硅烷法——硅烷热分解法............................2.3冶金法——物理法——等离子体法 ................................ 3多晶硅提纯后的副产物的综合利用. (6)3.1 四氯化硅的性质 (6)3.2 四氯化硅的综合利用 .......................................... 4技术比较及发展趋势...................................................4.1国外多晶硅生产技术发展的特点.......................................4.2国内多晶硅生产技术发展趋势 (12)5 结束语 (14)6致谢 (15)7参考文献 (16)多晶硅的提纯技术及副产物的利用摘要:高纯多晶硅是电子工业和太阳能光伏产业的基础原料,在未来的50年里,还不可能有其他材料能够替代硅材料而成为电子和光伏产业主要原材料。
随着信息技术和太阳能产业的飞速发展,全球对多晶硅的需求增长迅猛,多晶硅价格也随之暴涨。
自2006年以来,受市场虚高价格与短期暴利诱惑,我国掀起了一波多晶硅项目的建设高潮,规模与投资堪称世界之最。
我国多晶硅产量2005年时仅有60吨,2006年也只有287吨,2007年为1156吨,但2008年狂飙到4000吨以上,2009年,中国多晶硅产量达1.5万吨。
2008年在金融危机影响下,多晶硅价格暴跌,从最高时的四五百美元/公斤,跌至最低至每公斤五六十美元。
2010年随着海外市场复苏,多晶硅进入新一轮投产热,乐电天威、鄂尔多斯子公司等多晶硅生产企业纷纷发布投产消息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多晶硅的传统制备方法
目前世界上多晶硅生产最常见的方法有三种;四氯化硅氢还原法、三氯氢硅氢还原法和硅烷裂解法。
三氯氢硅氢还原法是德国西门子公司发明的,因此又被称为西门子法。
由于西门子法诞生的时间较早,后来有人又进行了一些新的改良,因此又有人将其称为改良西门子法。
其实,改良西门子法还是西门子法,它的主体工艺流程基本没有变,还是利用氢气还原三氯氢硅来生产多晶硅。
因此,为简单起见,我们还称它为西门子法。
上诉这三种多晶硅的制备方法格有千秋,从制备的难度和投资额的多少来看,四氯化硅氢还原法生产设备最少,最简单,四氯化硅的合成和提纯不需要冷冻系统,普通水冷即可将四氯化硅气体冷凝为液态的四氯化硅,而且无需将工业硅加工成硅粉,只需是合格的硅块就可以了。
因此,四氯化硅还原法的投资额最少,最容易上马。
硅烷沸点太低,为-112℃,要想用精馏法提纯硅烷,不仅要有极深度的制冷机,而且设备也极其复杂。
因此,硅烷裂解法的投资额最大,最难。
从沉积硅的直接回收率上看,硅烷裂解法最高,几乎是100%,最低是四氯化硅氢还原法,不足20%,西门子法高于四氯化硅氢还原法,约为25%左右。
从安全上看,硅烷最危险,最容易爆炸,三氯氢硅次之,也容易爆炸,四氯化硅最安全,根本就不会发生爆炸。
从上面的介绍可以看出,硅烷裂解法最难,投资额最大,特别是,硅烷本身是易燃易爆物,容易发生剧烈的爆炸,一旦爆炸,将造成不可挽回的经济损失。
20世纪60、70年代玩过曾有人研究过硅烷裂解法,而且也曾生产出品质很高的多晶硅,但由于事故频繁,损失惨重,最终还是停产下马。
目前我国已经很少再有人采用此法来生产多晶硅了。
虽然如此,也要清楚硅烷裂解法是具有许多优势的,只要解决好防爆问题,它还是非常有前途的。
当前常采用的是四氯化硅氢还原法和三氯氢硅氢还原法(西门子法),而且这两种方法与多晶硅和石英玻璃的联合制备法密切相关。
四氯化硅氢还原法是以四氯化硅和氢气为原料,在还原炉内发生化学反应来生成多晶硅的方法;三氯氢硅氢还原法是以三氯氢硅和氢气为原料,在还原炉内发生化学反应来生成多晶硅的方法。
这两种方法基本相同,不同之处只是,一个是以四氯化硅和氢气为原料,另一个是以三氯氢硅和氢气为原料。