薄膜制备方法
薄膜材料的制备及其应用

薄膜材料的制备及其应用薄膜材料是一种非常重要的材料,在形态和用途上都非常广泛。
与传统的块材料不同,薄膜材料可以制备成各种形状和大小,非常适合各种特殊需求的场合。
薄膜材料的制备技术也变得越来越成熟和多样化,能够满足不同领域的需求。
本文将从薄膜材料的制备和应用两个方面阐述其重要性。
一、薄膜材料的制备方法薄膜制备的方法有很多,可以根据需要选择不同的方法。
其中一些主要的方法有:1. 溅射法。
该方法是一种常见的薄膜制备方法,依靠高温下的原子或离子的加速碰撞使得物质凝聚在样品表面上,形成一层薄膜。
2. 化学气相沉积法。
该方法利用气相反应,使物质沉积在样品表面上,也是一种经常使用的薄膜制备方法。
3. 溶液法。
该方法利用一定的溶剂将物质溶解,然后通过各种方式沉积在样品表面上,也是一种略微便宜的方法。
薄膜材料的制备方法可以根据具体情况进行选择。
例如,需要制备高质量的薄膜材料,则溅射法和化学气相沉积法更适用,对薄膜材料的结晶质量有更高的要求。
需要大规模制备时,则可以使用溶液法,因为溶液法的成本相对较低。
二、薄膜材料的应用薄膜材料在很多领域都有广泛的应用,其中一些主要的领域有:1. 太阳能电池。
薄膜太阳能电池相对于其他太阳能电池的优势在于其更低的制造成本和更低的重量。
这就是为什么薄膜太阳能电池在过去几年里变得越来越流行的原因。
2. 光电显示器。
我们的笔记本电脑和手机等电子产品中使用的另一个薄膜材料是透明电极。
这种材料可以被施加电压来产生电子,从而控制光的透过。
3. 薄膜防护层。
薄膜材料不仅可以用来制造电子产品,还可以用来保护它们。
例如,我们可以使用一层防护膜来保护手机或平板电脑的屏幕免受划伤或破碎。
4. 超级电容器。
超级电容器是利用电容器原理储存电能的装置,其制作的核心就是薄膜电极。
使用薄膜电极具有较大的表面积,从而增加了超级电容器储存电能的能力。
总的来说,薄膜材料在现代科技领域的应用非常广泛,其制备方法也越来越成熟。
薄膜的制备方法有哪些

薄膜的制备方法有哪些薄膜是一种非常常见的材料形式,它在许多领域都有着广泛的应用,比如电子产品、光学器件、包装材料等。
薄膜的制备方法多种多样,包括物理方法、化学方法和生物方法等。
接下来,我们将介绍一些常见的薄膜制备方法。
首先,物理方法是制备薄膜的一种重要途径。
其中,蒸发法是一种常用的物理方法。
通过加热固体材料,使其升华成气体,然后在基底表面凝结成薄膜。
这种方法制备的薄膜质量较高,适用于制备金属薄膜和部分无机物薄膜。
其次,溅射法也是一种常见的物理方法。
在溅射法中,通过向靶材表面轰击离子或中性粒子,使靶材表面的原子或分子脱落,并在基底表面沉积成薄膜。
这种方法制备的薄膜具有较好的结晶性和附着力,适用于制备金属薄膜、氧化物薄膜等。
除了物理方法,化学方法也是制备薄膜的重要手段。
溶液法是一种常用的化学方法。
在溶液法中,将溶解了所需材料的溶液涂覆在基底表面,然后通过溶剂挥发或化学反应使溶液中的物质沉积成薄膜。
这种方法制备的薄膜适用范围广,可以制备有机薄膜、无机薄膜等。
此外,化学气相沉积(CVD)也是一种常用的化学方法。
在CVD 中,将气态前体物质输送到基底表面,经过化学反应生成薄膜。
这种方法制备的薄膜质量较高,适用于制备氧化物薄膜、氮化物薄膜等。
最后,生物方法也在制备薄膜中发挥着重要作用。
生物合成法是一种常见的生物方法。
在生物合成法中,利用生物体内的生物大分子,如蛋白质、多糖等,通过生物合成过程制备薄膜。
这种方法制备的薄膜具有生物相容性和可降解性,适用于医用材料等领域。
综上所述,薄膜的制备方法多种多样,包括物理方法、化学方法和生物方法等。
不同的制备方法适用于不同类型的薄膜材料,选择合适的制备方法对于薄膜的性能和应用具有重要意义。
希望本文能够帮助您更好地了解薄膜制备方法,为您的研究和应用提供参考。
薄膜材料的制备和应用研究进展

薄膜材料的制备和应用研究进展薄膜材料是一种在日常生活中用途广泛的材料。
它的应用范围涉及光学、电子、生物医学,甚至涂层等很多领域。
制备和应用研究方面也有很多成果,本文将从几个方面介绍薄膜材料的制备方法以及应用研究进展。
一、制备方法1、物理气相沉积法物理气相沉积法是指利用热能或者电子束激励的方式使材料蒸发并沉积在基底上形成薄膜。
这种方法可以制备高质量、高结晶度的薄膜材料。
其中分子束蒸发技术和反蒸发方法属于物理气相沉积法的一种,依靠非常高的真空和完整的分子束,可以制备出高质量的薄膜材料,但是设备成本也非常高。
2、化学气相沉积法化学气相沉积法是指在较低的气压环境下,将材料前驱体分子通过热解、裂解或者还原等化学反应,制备出薄膜材料。
这种方法成本较低,操作简单,可以制备大面积、高质量的薄膜,因此尤其适合大规模生产。
3、物理涂敷法物理涂敷法是指利用物理过程,将材料沉积在基底上形成薄膜。
常见的物理涂敷法有磁控溅射、电子束蒸发、激光蒸发等。
这种方法可以制备出膜层均匀、结构紧密的薄膜,但是缺点是沉积速度较慢,不能用于大面积生产。
4、化学涂敷法化学涂敷法是指利用化学反应将材料前驱体分子沉积在基底上形成薄膜。
常见的化学涂敷法有溶胶凝胶法、自组装法等。
这种方法可以制备出薄膜材料的更多形式,如多孔薄膜、纳米结构薄膜等。
但是化学反应的复杂度和化学材料的不稳定性也增加了制备过程的难度。
二、应用研究进展1、光电材料在光电领域,薄膜材料的应用非常广泛。
其中,一些透明导电薄膜材料如氧化铟锡、氧化镓锌、氧化铟和氧化钙、锡等材料已成为制作 OLED 光电器件的重要材料。
此外,半导体材料如氧化物和硫化物薄膜也被广泛应用于光电器件中,如可见光光伏器件、光传感器等。
因此,随着该领域的发展,薄膜材料在光电设备中的应用前景不断向好。
2、生物医学薄膜材料在生物医学领域的应用也越来越广泛。
其中,一种叫做生物基薄膜的材料能够在各种生物医学应用中发挥重要作用。
薄膜制备方法

薄膜制备方法1.物理气相沉积法PVD:真空蒸镀、离子镀、溅射镀膜2.化学气相沉积法CVD:热CVD、等离子CVD、有机金属CVD、金属CVD;一、真空蒸镀即真空蒸发镀膜,是制备薄膜最一般的方法;这种方法是把装有基片的真空室抽成真空,使气体压强达到10ˉ2Pa以下,然后加热镀料,使其原子或者分子从表面气化逸出,形成蒸汽流,入射到温度较低的基片表面,凝结形成固态薄膜;其设备主要由真空镀膜室和真空抽气系统两大部分组成;保证真空环境的原因有防止在高温下因空气分子和蒸发源发生反应,生成化合物而使蒸发源劣化;防止因蒸发物质的分子在镀膜室内与空气分子碰撞而阻碍蒸发分子直接到达基片表面,以及在途中生成化合物或由于蒸发分子间的相互碰撞而在到达基片前就凝聚等在基片上形成薄膜的过程中,防止空气分子作为杂质混入膜内或者在薄膜中形成化合物;蒸发镀根据蒸发源的类别有几种:⑴、电阻加热蒸发源;通常适用于熔点低于1500℃的镀料;对于蒸发源的要求为a、熔点高b、饱和蒸气压低c、化学性质稳定,在高温下不与蒸发材料发生化学反应d、具有良好的耐热性,功率密度变化小;⑵、电子束蒸发源;热电子由灯丝发射后,被电场加速,获得动能轰击处于阳极的蒸发材料上,使蒸发材料加热气化,而实现蒸发镀膜;特别适合制作高熔点薄膜材料和高纯薄膜材料;优点有a、电子束轰击热源的束流密度高,能获得远比电阻加热源更大的能量密度,可以使高熔点可高达3000℃以上的材料蒸发,并且有较高的蒸发速率;b、镀料置于冷水铜坩埚内,避免容器材料的蒸发,以及容器材料与镀料之间的反应,这对于提高镀膜的纯度极为重要;c、热量可直接加到蒸发材料的表面,减少热量损失;⑶、高频感应蒸发源;将装有蒸发材料的坩埚放在高频螺旋线圈的中央,使蒸发材料在高频电磁场的感应下产生强大的涡流损失和磁滞损失铁磁体,从而将镀料金属加热蒸发;常用于大量蒸发高纯度金属;分子束外延技术molecularbeamepitaxy,MBE;外延是一种制备单晶薄膜的新技术,它是在适当的衬底与合适条件下,沿衬底材料晶轴方向逐层生长新单晶薄膜的方法;外延薄膜和衬底属于同一物质的称“同质外延”,两者不同的称为“异质外延”;10—Pa的超真空条件下,将薄膜诸组分元素的分子束流,在严格监控之下,直接喷射到衬底MBE是在8表面;其中未被基片捕获的分子,及时被真空系统抽走,保证到达衬底表面的总是新分子束;这样,到达衬底的各元素分子不受环境气氛的影响,仅由蒸发系统的几何形状和蒸发源温度决定;二、离子镀是在真空条件下,利用气体放电使气体或被蒸发物质离化,在气体离子或被蒸发物质离子轰击作用的同时,把蒸发物或其反应物蒸镀在基片上;常用的几种离子镀:(1)直流放电离子镀;蒸发源:采用电阻加热或电子束加热;充入气体:充入Ar或充入少量反应气体;离化方式:被镀基体为阴极,利用高电压直流辉光放电离子加速方式:在数百伏至数千伏的电压下加速,离化和离子加速一起进行;(2)空心阴极放电离子镀HCD,hollowcathodedischarge;等离子束作为蒸发源,可充入Ar、其他惰性气体或反应气体;利用低压大电流的电子束碰撞离化,0至数百伏的加速电压;离化和离子加速独立操作;(3)射频放电离子镀;电阻加热或电子束加热,真空,Ar,其他惰性气体或反应气体;利用射频等离子体放电离化,0至数千伏的加速电压,离化和离子加速独立操作;(4)低压等离子体离子镀;电子束加热,惰性气体,反应气体;等离子体离化,DC或AC50V离子镀是一个十分复杂过程,一般来说始终包括镀料金属的蒸发,气化,电离,离子加速,离子之间的反应,中和以及在基体上成膜等过程,其兼具真空蒸镀和真空溅射的特点;三、溅射镀膜是在真空室中,利用荷能粒子轰击靶表面,使被轰击出的粒子在基片上沉积的技术;用带有几十电子伏特以上动能的粒子或粒子束照射固体表面,靠近固体表面的原子会获得入射粒子所带能量的一部分进而向真空中逸出,这种现象称为溅射;应用于现在工业生产的主要溅射镀膜方式:1射频溅射是利用射频放电等离子体中的正离子轰击靶材、溅射出靶材原子从而沉积在接地的基板表面的技术;由于交流电源的正负性发生周期交替,当溅射靶处于正半周时,电子流向靶面,中和其表面积累的正电荷,并且积累电子,使其表面呈现负偏压,导致在射频电压的负半周期时吸引正离子轰击靶材,从而实现溅射;由于离子比电子质量大,迁移率小,不像电子那样很快地向靶表面集中,所以靶表面的点位上升缓慢,由于在靶上会形成负偏压,所以射频溅射装置也可以溅射导体靶;射频溅射装置的设计中,最重要的是靶和匹配回路;靶要水冷,同时要加高频高压;2磁控溅射高速低温溅射;其沉积速率快、基片温度低,对膜层的损伤小、操作压力低;磁控溅射具备的两个条件是:磁场和电场垂直;磁场方向与阴极靶表面平行,并组成环形磁场;电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar和新的电子;新电子飞向基片,Ar在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射;在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E电场×B磁场所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线;若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar来轰击靶材,从而实现了高的沉积速率;随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上;由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低;(3)反应溅射;反应溅射是指在存在反应气体的情况下,时,靶材会与反应形成化合物如氮化物或氧化物,在惰性气体溅射化合物靶材时由于化学不稳定性往往导致薄膜较靶材少一个或更多组分,此时如果加上反应气体可以补偿所缺少的组分,这种溅射也可以视为反应溅射;化学气相沉积chemicalvapordepositionCVD一、热CVD指把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程;原理:利用挥发性的金属卤化物和金属的有机化合物等,在高温下发生气相化学反应,包括热分解、氢还原可制备高纯度金属膜、氧化和置换反应等,在基板上沉积所需要的氮化物、氧化物、碳化物、硅化物、硼化物、高熔点金属、金属、半导体等薄膜;制备条件:1在沉积温度下,反应物具有足够的蒸气压,并能以适当的速度被引入反应室;2反应产物除了形成固态薄膜物质外,都必须是挥发性的;3沉积薄膜和基体材料必须具有足够低的蒸气压;二、等离子体CVD plasmachemicalvapordeposition是在高频或直流电场作用下,将原料气体电离形成等离子体,利用低温等离子体作为能量源,通入适量的反应气体,利用等离子体放电,使反应气体激活并实现化学气相沉积的技术;在保持一定压力的原料气体中,输入直流、高频或微波功率,产生气体放电,形成等离子体;在气体放电等离子体中,由于低速电子与气体原子碰撞,故除产生正、负离子外,还会产生大量的活性基激发原子、分子等,从而可大大增强反映气体的活性;这样就可以在较低的温度下,发生反应,产生薄膜;PCVD可以在更低的温度下成膜;可减少热损伤,减低膜层与衬底材料间的相互扩散及反应多用于太阳能电池及液晶显示器等;三、有机金属CVD MOCVD是将反应气体和气化的有机物通过反应室,经过热分解沉积在加热的衬底上形成薄膜;它是利用运载气携带金属有机物的蒸气进入反应室,受热分解后沉积到加热的衬底上形成薄膜;其特点是:1.较低的衬底温度;2.较高的生长速率,可生长极薄的薄膜;3.精确的组分控制可进行多元混晶的成分控制,可实现多层结构及超晶格结构;4.易获得大面积均匀薄膜;其缺陷是:1.残留杂质含量高2.反应气体及尾气一般为易燃、易爆及毒性很强的气体;。
材料科学中的薄膜制备技术研究综述

材料科学中的薄膜制备技术研究综述薄膜作为一种重要的材料形态,在材料科学领域中具有广泛的应用。
薄膜制备技术的研究和发展,不仅能够扩展材料的功能性,并提高材料的性能,还可以为各个领域提供更多的应用可能性。
本文将综述材料科学中薄膜制备技术的研究进展,并重点探讨了几种常见的薄膜制备技术。
1. 物理气相沉积(PVD)物理气相沉积是一种常见的薄膜制备技术,它通过蒸发或溅射等方法将材料转化为蒸汽或离子,经过气相传输沉积在基底上形成薄膜。
物理气相沉积技术包括热蒸发、电子束蒸发、分子束外延和磁控溅射等方法。
这些方法在薄膜制备中具有高温、高真空和高能量等特点,能够制备出具有优异性能的薄膜。
然而,物理气相沉积技术在薄膜厚度的控制上存在一定的局限,且对于一些化学反应活性较高的材料来说,难以实现。
2. 化学气相沉积(CVD)化学气相沉积是一种将反应气体在表面上发生化学反应生成薄膜的方法。
CVD 技术根据反应条件的不同可以分为低压CVD、大气压CVD和等离子CVD等。
这些技术在实现复杂薄膜结构和化学组成控制上相较于PVD技术更具优势。
化学气相沉积技术可用于金属、氧化物、氮化物以及半导体材料等薄膜的制备。
然而,该技术所需的气体和化学物质成分较复杂,容易引起环境污染,并且对设备的要求较高。
3. 溶液法制备薄膜溶液法是一种常用的低成本、高效率的薄膜制备技术。
常见的溶液法包括旋涂法、浸渍法、喷涂法和柔性印刷法等。
这些方法通过将溶液中的溶质沉积在基底上,形成薄膜。
溶液法制备薄膜的优势在于简单易行、成本低、适用于大面积薄膜制备。
然而,溶液法制备出的薄膜常常具有较低的晶化程度和机械强度,且在高温和湿润环境下易失去稳定性。
4. 磁控溅射技术磁控溅射技术是一种通过离子轰击固体靶材的方法制备薄膜。
在磁控溅射过程中,离子轰击靶材,使靶材表面的原子转化为蒸汽,然后通过惰性气体的加速将蒸汽沉积在基底上。
磁控溅射技术可用于金属、氧化物、氮化物等薄膜的制备,并可实现厚度和成分的精确控制。
第三章薄膜制备技术ppt课件

分子束外延是在超高真空条件下精确控制源材料的中性分子束强度,并使其在加热的基片上进行外延生长的一种技术。从本质上讲,分子束外延也属于真空蒸发方法,但 与传统真空蒸发不同的是,分子束外延系统具有超高真空,并配有原位监测和分析系统,能够获得高质量的单晶薄膜。
2、溅射法 荷能粒子轰击固体材料靶,使固体原子从表面射出,这些原子具有一定的动能和方向性。在原子射出的方向上放上基片,就可在基片上形成一层薄膜,这种制备薄膜的方法叫做溅射法。 溅射法属于物理气相沉积(PVD),射出的粒子大多处于原子状态,轰击靶材料的荷能粒子一般是电子、离子和中性粒子。
3.1.2 化学气相沉积 (chemical vapor deposition )
化学气相沉积:一定化学配比的反应气体,在特定激活条件下(一般是利用加热、等离子体和紫外线等各种能源激活气态物质),通过气相化学反应生成新的膜层材料沉积到基片上制取膜层的一种方法。 Chemical vapor deposition (CVD) is a chemical process often used in the semiconductor industry for the deposition of thin films of various materials.
薄膜制备工艺技术

薄膜制备工艺技术薄膜制备工艺技术是指通过化学合成、物理沉积、溶液制备等方法制备出具有一定厚度和特殊性能的薄膜材料的技术。
薄膜广泛应用于光电子、微电子、光学、传感器、显示器、纳米技术等领域。
本文将详细介绍几种常见的薄膜制备工艺技术。
第一种是物理沉积法。
物理沉积法主要包括物理气相沉积法(PVD)和物理溶剂沉积法(PSD)两种。
其中,物理气相沉积法是将固态材料加热至其熔点或升华点,然后凝华在基底表面上形成薄膜。
而物理溶剂沉积法则是通过在沉积过程中溶剂的挥发使溶剂中溶解的材料沉积在基底表面上。
物理沉积法具有较高的沉积速度和较低的工艺温度,适用于大面积均匀薄膜的制备。
第二种是化学沉积法。
化学沉积法通过在基底表面上进行化学反应,使反应物沉积形成薄膜。
常见的化学沉积法有气相沉积法(CVD)、溶液法和凝胶法等。
气相沉积法是将气体反应物输送至反应室内,通过热、冷或化学反应将气体反应物沉积在基底表面上。
而溶液法是将溶解有所需沉积材料的溶液涂覆在基底表面上,通过溶剂挥发或加热使溶液中的沉积材料沉积在基底上。
凝胶法则是通过凝胶溶胶中的凝胶控制沉积材料的沉积,形成薄膜。
化学沉积法成本低、制备工艺简单且适用于大面积均匀薄膜的制备。
第三种是离子束沉积法(IBAD)、激光沉积法和磁控溅射法。
离子束沉积法是通过加速并聚焦离子束使其撞击到基底表面形成薄膜。
激光沉积法则是将激光束照射在基底表面上,通过激光能量转化和化学反应形成薄膜。
磁控溅射法是将材料附着在靶上,通过离子轰击靶表面并溅射出材料颗粒,最终沉积在基底表面上。
这些方法制备的薄膜具有优异的结构和性能,适用于制备复杂结构和功能薄膜。
综上所述,薄膜制备工艺技术包括物理沉积法、化学沉积法、离子束沉积法、激光沉积法和磁控溅射法等多种方法。
不同的方法适用于不同的材料和薄膜要求,可以根据具体需求选择合适的工艺技术。
薄膜制备方法

薄膜造备要领之阳早格格创做1.物理气相重积法(PVD):真空蒸镀、离子镀、溅射镀膜2.化教气相重积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD.一、真空蒸镀即真空挥收镀膜,是造备薄膜最普遍的要领.那种要领是把拆有基片的真空室抽成真空,使气体压强达到10¯²Pa以下,而后加热镀料,使其本子大概者分子从表面气化劳出,产死蒸汽流,进射到温度较矮的基片表面,凝结产死固态薄膜.其设备主要由真空镀膜室战真空抽气系统二大部分组成.包管真空环境的本果有预防正在下温下果气氛分子战挥收源爆收反应,死成化合物而使挥收源劣化.预防果挥收物量的分子正在镀膜室内与气氛分子碰碰而阻拦挥收分子间接到达基片表面,以及正在途中死成化合物大概由于挥收分子间的相互碰碰而正在到达基片前便凝结等正在基片上产死薄膜的历程中,预防气氛分子动做杂量混进膜内大概者正在薄膜中产死化合物.挥收镀根据挥收源的类型有几种:⑴、电阻加热挥收源.常常适用于熔面矮于1500℃的镀料.对付于挥收源的央供为a、熔面下b、鼓战蒸气压矮c、化教本量宁静,正在下温下没有与挥收资料爆收化教反应d、具备良佳的耐热性,功率稀度变更小.⑵、电子束挥收源.热电子由灯丝收射后,被电场加速,赢得动能轰打处于阳极的挥收资料上,使挥收资料加热气化,而真止挥收镀膜.特天符合创造下熔面薄膜资料战下杂薄膜资料.便宜有a、电子束轰打热源的束流稀度下,能赢得近比电阻加热源更大的能量稀度,不妨使下熔面(可下达3000℃以上)的资料挥收,而且有较下的挥收速率.b、镀料置于热火铜坩埚内,预防容器资料的挥收,以及容器资料与镀料之间的反应,那对付于普及镀膜的杂度极为要害.c、热量可间接加到挥收资料的表面,缩小热量益坏.⑶、下频感触挥收源.将拆有挥收资料的坩埚搁正在下频螺旋线圈的中央,使挥收资料正在下频电磁场的感触下爆收强盛的涡流益坏战磁滞益坏(铁磁体),从而将镀料金属加热挥收.时常使用于洪量挥收下杂度金属.分子束中延技能(molecular beam epitaxy,MBE).中延是一种造备单晶薄膜的新技能,它是正在符合的衬底与符合条件下,沿衬底资料晶轴目标逐层死少新单晶薄膜的要领.中延薄膜战衬底属于共一物量的称“共量中延”,二者分歧的称为“同量中延”.MBE是正在810—Pa的超真空条件下,将薄膜诸组分元素的分子束流,正在庄重监控之下,间接喷射到衬底表面.其中已被基片捕获的分子,即时被真空系统抽走,包管到达衬底表面的经常新分子束.那样,到达衬底的各元素分子没有受环境气氛的效率,仅由挥收系统的几许形状战挥收源温度决断.二、离子镀是正在真空条件下,利用气体搁电使气体大概被挥收物量离化,正在气体离子大概被挥收物量离子轰打效率的共时,把挥收物大概其反应物蒸镀正在基片上.时常使用的几种离子镀:(1)曲流搁电离子镀.挥收源:采与电阻加热大概电子束加热;充进气体:充进Ar大概充进少量反应气体;离化办法:被镀基体为阳极,利用下电压曲流辉光搁电离子加速办法:正在数百伏至数千伏的电压下加速,离化战离子加速所有举止.(2)空心阳极搁电离子镀(HCD,hollow cathode discharge ).等离子束动做挥收源,可充进Ar、其余惰性气体大概反应气体;利用矮压大电流的电子束碰碰离化, 0至数百伏的加速电压.离化战离子加速独力支配.(3)射频搁电离子镀.电阻加热大概电子束加热,真空,Ar,其余惰性气体大概反应气体;利用射频等离子体搁电离化, 0至数千伏的加速电压,离化战离子加速独力支配.(4)矮压等离子体离子镀.电子束加热,惰性气体,反应气体. 等离子体离化, DC大概AC 50V离子镀是一个格中搀杂历程,普遍去道末究包罗镀料金属的挥收,气化,电离,离子加速,离子之间的反应,中战以及正在基体上成膜等历程,其兼具真空蒸镀战真空溅射的特性.三、溅射镀膜是正在真空室中,利用荷能粒子轰打靶表面,使被轰打出的粒子正在基片上重积的技能.用戴有几十电子伏特以上动能的粒子大概粒子束映照固体表面,靠拢固体表面的本子会赢得进射粒子所戴能量的一部分从而背真空中劳出,那种局里称为溅射.应用于当前工业死产的主要溅射镀膜办法:(1)射频溅射是利用射频搁电等离子体中的正离子轰打靶材、溅射出靶材本子从而重积正在接天的基板表面的技能.由于接流电源的正背性爆收周期接替,当溅射靶处于正半周时,电子流背靶里,中战其表面散集的正电荷,而且散集电子,使其表面浮现背偏偏压,引导正在射频电压的背半周期时吸引正离子轰打靶材,从而真止溅射.由于离子比电子品量大,迁移率小,没有像电子那样很快天背靶表面集结,所以靶表面的面位降下缓缓,由于正在靶上会产死背偏偏压,所以射频溅射拆置也不妨溅射导体靶.射频溅射拆置的安排中,最要害的是靶战匹配回路.靶要火热,共时要加下频下压.(2)磁控溅射(下速矮温溅射).其重积速率快、基片温度矮,对付膜层的益伤小、支配压力矮.磁控溅射具备的二个条件是:磁场战电场笔曲;磁场目标与阳极(靶)表面仄止,并组成环形磁场.电子正在电场E的效率下,正在飞背基片历程中与氩本子爆收碰碰,使其电离爆收出Ar 战新的电子;新电子飞背基片,Ar 正在电场效率下加速飞背阳极靶,并以下能量轰打靶表面,使靶材爆收溅射.正在溅射粒子中,中性的靶本子大概分子重积正在基片上产死薄膜,而爆收的二次电子会受到电场战磁场效率,爆收E(电场)×B(磁场)所指的目标漂移,简称E×B漂移,其疏通轨迹近似于一条晃线.若为环形磁场,则电子便以近似晃线形式正在靶表面干圆周疏通,它们的疏通路径没有但是很少,而且被束缚正在靠拢靶表面的等离子体天区内,而且正在该天区中电离出洪量的Ar 去轰打靶材,从而真止了下的重积速率.随着碰碰次数的减少,二次电子的能量消耗殆尽,渐渐近离靶表面,并正在电场E的效率下最后重积正在基片上.由于该电子的能量很矮,传播给基片的能量很小,以致基片温降较矮.(3)反应溅射.反应溅射是指正在存留反应气体的情况下,溅射靶材时,靶材会与反应气体反应产死化合物(如氮化物大概氧化物),正在惰性气体溅射化合物靶材时由于化教没有宁静性往往引导薄膜较靶材少一个大概更多组分,此时如果加上反应气体不妨补偿所缺少的组分,那种溅射也不妨视为反应溅射.化教气相重积chemical vapor deposition(CVD)一、热CVD指把含有形成薄膜元素的气态反应剂大概液态反应剂的蒸气及反应所需其余气体引进反应室,正在衬底表面爆收化教反应死成薄膜的历程.本理:利用挥收性的金属卤化物战金属的有机化合物等,正在下温下爆收气相化教反应,包罗热领会、氢还本(可造备下杂度金属膜)、氧化战置换反应等,正在基板上重积所需要的氮化物、氧化物、碳化物、硅化物、硼化物、下熔面金属、金属、半导体等薄膜.造备条件:1)正在重积温度下,反应物具备脚够的蒸气压,并能以符合的速度被引进反应室;2)反应产品除了产死固态薄膜物量中,皆必须是挥收性的;3)重积薄膜战基体资料必须具备脚够矮的蒸气压.二、等离子体CVD(plasma chemical vapor deposition)是正在下频大概曲流电场效率下,将本料气体电离产死等离子体,利用矮温等离子体动做能量源,通进适量的反应气体,利用等离子体搁电,使反应气体激活并真止化教气相重积的技能.正在脆持一定压力的本料气体中,输进曲流、下频大概微波功率,爆收气体搁电,产死等离子体.正在气体搁电等离子体中,由于矮速电子与气体本子碰碰,故除爆收正、背离子中,还会爆收洪量的活性基(激励本子、分子等),从而可大大巩固反映气体的活性.那样便不妨正在较矮的温度下,爆收反应,爆收薄膜.PCVD不妨正在更矮的温度下成膜.可缩小热益伤,减矮膜层与衬底资料间的相互扩集及反应多用于太阳能电池及液晶隐现器等.三、有机金属CVD(MOCVD)是将反应气体战睦化的有机物通过反应室,通过热领会重积正在加热的衬底上产死薄膜.它是利用运载气携戴金属有机物的蒸气加进反应室,受热领会后重积到加热的衬底上产死薄膜.其特性是:1.较矮的衬底温度; 2.较下的死少速率,可死少极薄的薄膜; 3.透彻的组分统造可举止多元混晶的身分统造,可真止多层结构及超晶格结构; 4.易赢得大里积匀称薄膜;其缺陷是:1.残留杂量含量下 2.反应气体及尾气普遍为易焚、易爆及毒性很强的气体.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
薄膜制备方法
1.物理气相沉积法(PVD):真空蒸镀、离子镀、溅射镀膜
2.化学气相沉积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD。
一、真空蒸镀即真空蒸发镀膜,是制备薄膜最一般的方法。
这种方法是把装有基片的真空室抽成真空,使气体压强达到10ˉ2Pa以下,然后加热镀料,使其原子或者分子从表面气化逸出,形成蒸汽流,入射到温度较低的基片表面,凝结形成固态薄膜。
其设备主要由真空镀膜室和真空抽气系统两大部分组成。
保证真空环境的原因有?防止在高温下因空气分子和蒸发源发生反应,生成化合物而使蒸发源劣化。
?防止因蒸发物质的分子在镀膜室内与空气分子碰撞而阻碍蒸发分子直接到达基片表面,以及在途中生成化合物或由于蒸发分子间的相互碰撞而在到达基片前就凝聚等?在基片上形成薄膜的过程中,防止空气分子作为杂质混入膜内或者在薄膜中形成化合物。
蒸发镀根据蒸发源的类别有几种:
⑴、电阻加热蒸发源。
通常适用于熔点低于1500℃的镀料。
对于蒸发源的要求为a、熔点高
b、饱和蒸气压低
c、化学性质稳定,在高温下不与蒸发材料发生化学反应
d、具有良好的耐热性,功率密度变化小。
⑵、电子束蒸发源。
热电子由灯丝发射后,被电场加速,获得动能轰击处于阳极的蒸发材料上,使蒸发材料加热气化,而实现蒸发镀膜。
特别适合制作高熔点薄膜材料和高纯薄膜材料。
优点有a、电子束轰击热源的束流密度高,能获得远比电阻加热源更大的能量密度,可以使高熔点(可高达3000℃以上)的材料蒸发,并且有较高的蒸发速率。
b、镀料置于冷水铜坩埚内,避免容器材料的蒸发,以及容器材料与镀料之间的反应,这对于提高镀膜的纯度极为重要。
c、热量可直接加到蒸发材料的表面,减少热量损失。
⑶、高频感应蒸发源。
将装有蒸发材料的坩埚放在高频螺旋线圈的中央,使蒸发材料在高频电磁场的感应下产生强大的涡流损失和磁滞损失(铁磁体),从而将镀料金属加热蒸发。
常用于大量蒸发高纯度金属。
分子束外延技术(molecularbeamepitaxy,MBE)。
外延是一种制备单晶薄膜的新技术,它是在适当的衬底与合适条件下,沿衬底材料晶轴方向逐层生长新单晶薄膜的方法。
外延薄膜和衬底属于同一物质的称“同质外延”,两者不同的称为“异质外延”。
10—Pa的超真空条件下,将薄膜诸组分元素的分子束流,在严格监控之下,直接喷射到衬MBE是在8
底表面。
其中未被基片捕获的分子,及时被真空系统抽走,保证到达衬底表面的总是新分子束。
这样,到达衬底的各元素分子不受环境气氛的影响,仅由蒸发系统的几何形状和蒸发源温度决定。
二、离子镀是在真空条件下,利用气体放电使气体或被蒸发物质离化,在气体离子或被蒸发物质离子轰击作用的同时,把蒸发物或其反应物蒸镀在基片上。
常用的几种离子镀:
(1)直流放电离子镀。
蒸发源:采用电阻加热或电子束加热;充入气体:充入Ar或充入少量反应气体;离化方式:被镀基体为阴极,利用高电压直流辉光放电离子加速方式:在数百伏至数千伏的电压下加速,离化和离子加速一起进行。
(2)空心阴极放电离子镀(HCD,hollowcathodedischarge)。
等离子束作为蒸发源,可充入Ar、其他惰性气体或反应气体;利用低压大电流的电子束碰撞离化,0至数百伏的加速电压。
离化和离子加速独立操作。
(3)射频放电离子镀。
电阻加热或电子束加热,真空,Ar,其他惰性气体或反应气体;利用射频等离子体放电离化,0至数千伏的加速电压,离化和离子加速独立操作。
(4)低压等离子体离子镀。
电子束加热,惰性气体,反应气体。
等离子体离化,DC或AC50V
离子镀是一个十分复杂过程,一般来说始终包括镀料金属的蒸发,气化,电离,离子加速,离子之间的反应,中和以及在基体上成膜等过程,其兼具真空蒸镀和真空溅射的特点。
三、溅射镀膜是在真空室中,利用荷能粒子轰击靶表面,使被轰击出的粒子在基片上沉积的技术。
用带有几十电子伏特以上动能的粒子或粒子束照射固体表面,靠近固体表面的原子会获得入射粒子所带能量的一部分进而向真空中逸出,这种现象称为溅射。
应用于现在工业生产的主要溅射镀膜方式:
(1)射频溅射是利用射频放电等离子体中的正离子轰击靶材、溅射出靶材原子从而沉积在接地的基板表面的技术。
由于交流电源的正负性发生周期交替,当溅射靶处于正半周时,电子流向靶面,中和其表面积累的正电荷,并且积累电子,使其表面呈现负偏压,导致在射频电压的负半周期时吸引正离子轰击靶材,从而实现溅射。
由于离子比电子质量大,迁移率小,不像电子那样很快地向靶表面集中,所以靶表面的点位上升缓慢,由于在靶上会形成负偏压,所以射频溅射装置也可以溅射导体靶。
射频溅射装置的设计中,最重要的是靶和匹配回路。
靶要水冷,同时要加高频高压。
(2)磁控溅射(高速低温溅射)。
其沉积速率快、基片温度低,对膜层的损伤小、操作压力低。
磁控溅射具备的两个条件是:磁场和电场垂直;磁场方向与阴极(靶)表面平行,并组成环形磁场。
电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar和新的电子;新电子飞向基片,Ar在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。
在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。
若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar来轰击靶材,从而实现了高的沉积速率。
随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。
由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。
(3)反应溅射。
反应溅射是指在存在反应气体的情况下,时,靶材会与反应形成化合物(如氮化物或氧化物),在惰性气体溅射化合物靶材时由于化学不稳定性往往导致薄膜较靶材少一个或更多组分,此时如果加上反应气体可以补偿所缺少的组分,这种溅射也可以视为反应溅射。
化学气相沉积chemicalvapordeposition(CVD)
一、热CVD指把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程。
原理:利用挥发性的金属卤化物和金属的有机化合物等,在高温下发生气相化学反应,包括热分解、氢还原(可制备高纯度金属膜)、氧化和置换反应等,在基板上沉积所需要的氮化物、氧化物、碳化物、硅化物、硼化物、高熔点金属、金属、半导体等薄膜。
制备条件:1)在沉积温度下,反应物具有足够的蒸气压,并能以适当的速度被引入反应室;
2)反应产物除了形成固态薄膜物质外,都必须是挥发性的;
3)沉积薄膜和基体材料必须具有足够低的蒸气压。
二、等离子体CVD(plasmachemicalvapordeposition)是在高频或直流电场作用下,将原料气
体电离形成等离子体,利用低温等离子体作为能量源,通入适量的反应气体,利用等离子体放电,使反应气体激活并实现化学气相沉积的技术。
在保持一定压力的原料气体中,输入直流、高频或微波功率,产生气体放电,形成等离子体。
在气体放电等离子体中,由于低速电子与气体原子碰撞,故除产生正、负离子外,还会产生大量的活性基(激发原子、分子等),从而可大大增强反映气体的活性。
这样就可以在较低的温度下,发生反应,产生薄膜。
PCVD可以在更低的温度下成膜。
可减少热损伤,减低膜层与衬底材料间的相互扩散及反应多用于太阳能电池及液晶显示器等。
三、有机金属CVD(MOCVD)是将反应气体和气化的有机物通过反应室,经过热分解沉积在加热的衬底上形成薄膜。
它是利用运载气携带金属有机物的蒸气进入反应室,受热分解后沉积到加热的衬底上形成薄膜。
其特点是:1.较低的衬底温度;2.较高的生长速率,可生长极薄的薄膜;3.精确的组分控制可进行多元混晶的成分控制,可实现多层结构及超晶格结构;4.易获得大面积均匀薄膜;
其缺陷是:1.残留杂质含量高2.反应气体及尾气一般为易燃、易爆及毒性很强的气体。