220KV裕孟线路继电保护初步设计
220KV电网线路继电保护设计及整定计算
1.1 220KV 系统介绍KV 220系统由水电站1W ,2W 和两个等值的KV 220系统1S 、2S 通过六条KV 220线路构成一个整体。
整个系统最大开机容量为MVA 29.1509,此时1W 、2W 水电厂所有机组、变压器均投入,1S 、2S 两个等值系统按最大容量发电,变压器均投入;最小开机容量位MVA 77,1007,此时1W 厂停MVA 302 机组,2W 厂停MVA 5.77机组一台,1S 系统发电容量为MVA 300,2S 系统发电容量为MVA 240。
KV 220系统示意图如图1.1所示。
1.2 系统各元件主要参数 (1) 发电机参数如表1.1所示:表1.1 发电机参数电源总容量(MVA )每台机额定功率额定电压额定功率正序图1.1 220kV 系统示意图最大最小 (MVA ) (kV ) 因数cos φ 电抗 W 1厂 295.29 235.29 235.29 15 0.85 0.35 2*30 11 0.83 0.25 W 2厂 310 232.5 4*77.5 13.8 0.84 0.3 S 1系统 476 300 115 0.5 S 2系统4282401150.5对水电厂12 1.45X X =,对于等值系统12 1.22X X =(2) 变压器参数如表1.2所示:表1.2 变压器参数变电站 变压器容量(MVA ) 变比 短路电压(%)Ⅰ-Ⅱ Ⅰ-Ⅲ Ⅱ-ⅢA 变 20 220/35 10.5B 变-1 240 220/15 12 B 变-2 60 220/11 12C 变 3*120 220/115/35 17 10.5 6D 变 4*90 220/11 12E 变2*120220/115/351710.56 (3) 输电线路参数KM AB 60=,上端KM BC 250=,下端KM BC 230=,KM CD 185=,KM CE 30=,KM DE 170=;KM X X /41.021Ω==,103X X =,080=ΦL 。
220KV变电站电气部分初步设计
电气工程基础设计报告书题目:220KV变电站初步电气设计思路姓名:学号:专业:指导老师:孟鹏设计时间:2011年 6月目录一设计任务 (3)二原始资料 (3)三主变压器的选择 (3)四电气主接线选择 (6)五短路电流计算 (7)六电气设备的选择 (8)七电力电缆的选择 (9)八限流电抗器的选择 (9)九继电保护配置 (9)一、设计任务根据电力系统规划需新建一座220kv区域变电所。
该所建成后与110kv和220kv电网相连,并供给近区用户供电。
二、原始资料1、按规划要求,该所有220kv、110kv和10kv三个电压等级。
220kv 出线6回(其中备用2回),110kv出线8回(其中备用2回),10kv 出线12回(其中备用2回)。
2、110kv侧有两回出线供给远方大型冶炼厂,其容量为40MVA,其他作为一些地区变电所进线。
10kv侧总负荷为30MVA,Ⅰ、Ⅱ类用户占60%,最大一回出线负荷为3000KVA,变电站总的所用最大负荷为150KVA。
3、各级电压侧功率因数和最大负荷利用小时数为:220kv侧cosϕ=0.9T=3800小时/年max110kv侧cosϕ=0.85T=4200小时/年max10kv侧cosϕ=0.85T=4500小时/年max4、220kv和110kv侧出线主保护为瞬时动作,后备保护时间分别为2 s 、1.5s,10kv出线过流保护时间为1s ,断路器全分闸时间按0.1s考虑。
5、系统阻抗:220kv侧电源近似为无穷大系统,归算至本所220kv 母线侧阻抗为0.16 (S=100MVA),110kv侧电源容量为1000MVA,j归算至本所110kv母线侧阻抗为0.32(S=100 MVA),10kv侧没j有电源。
6、该地区最热月平均温度为28℃,年平均气温16℃,绝对最高气温为40℃,土壤温度为18℃,海拔153m。
三主变压器的选择在选择主变压器时,要根据原始资料和设计变电所的自身特点,在满足可靠性的前提下,要考虑到经济性来选择主变压器。
220KV变电站继电保护设计
第1章电气主接线电气主接线是变电所电气设计的重要部分,也是构成电力系统的重要环节。
电气主接线对电力系统整体及变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置布置、继电保护和控制方式的拟定有较大影响。
变电站主接线根据变电站在电力系统中的地位、负荷性质、出线回路数等条件和具体情况确定。
通常变电站主接线的高压侧,应尽可能采用短路器数目教少的接线,以节省投资,变电站低压侧应采用单母分段接线,以便于扩建。
对本变电所进行分析,结合对电气主接线的可靠性、灵活性及经济性等基本要求,综合考虑。
在满足技术、经济政策的前提下,力争使其技术先进,供电可靠,经济合理的主接线方案。
此主接线还应具有足够的灵活性,能适应各种运行方式的变化,且在检修、事故等特殊状态下操作方便、调度灵活、检修安全、扩建发展方便。
变电站主接线见图图1-1 变电站主接线图第2章电气设备简介2.1 主变压器主变压器参数如表:2.2高压断路器高压断路器选择如下表:表2-2 高压断路器选择2.3互感器的选择1、电流互感器主要参数的选择:互感器是电力系统中测量仪表、继电保护等一次设备获取电气一次回路信息的传感器。
互感器将高电压、大电流按比例变成低电压(100、100/3V)和小电流(5、1A)。
电流互感器的二次侧绝对不能够开路。
电压互感器的二次侧绝对不能够短路。
电流互感器一次电流选择应遵循以下原则:①次电流应满足负荷要求,并在标准值中选取;②一次电流应使在正常运行情况下,二次输出电流满足保护装置和测量、计量仪表准确度要求。
⑴110KV线路独立电流互感器的选择:LB6—110W,额定电流比2*600/5、2*300/5;准确次级10P20,0.2;⑵#1主变三侧电流互感器:110KV侧:LRB-110 额定电流比600/5;准确次级10P20,0.5;35KV侧:LDJ1-40.5/300额定电流比1200/5;准确次级5P10;LZZBJ9-35 额定电流比800/5;准确次级10P20,0.5;10KV侧:LZZBJ9-10额定电流比2500/5;准确次级5P20,0.5;⑶10KV线路及电容器电流互感器:LZZBJ9-10,额定电流比600/5;准确次级10P20,0.5。
220kv变电所电气一次部分初步设计
摘要本次毕业设计首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷的发展趋势。
从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了220KV、110KV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器的台数,容量及类型,同时也确定了站用变压器的容量及型号。
最后,根据最大持续工作电流及短路计算的计算结果,对高压断路器,隔离开关,母线,,电压互感器,电流互感器进行了选型,从而完成了220KV电气一次部分的设计。
电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。
主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。
并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。
电能的使用已经渗透到社会、经济、生活的各个领域。
关键词:变电站电气主接线一次部分电气设备目录摘要 (I)设计任务书..................................................................................................................................... I V 设计课程设计指导书. (V)第一章电气主接线设计 (8)1.1电气主接线选择原则依据 (8)1.2常用电气主接线 (9)单母线接线 (9)单母线分段接线 (9)双母线接线 (9)双母线分段接线 (10)1.3 220 kV 、110 kV、10 kV电气主接线的确定 (11)1.4 所用电接线 (13)1.4.1所用电压等级的确定 (13)1.4.2 所用电接线基本要求 (13)1.4.3所用电接线形式 (13)第二章负荷计算及变压器选择 (15)2.1主变负荷、厂用负荷的计算 (15)2.2 主变压器台数、容量和型式的确定 (15)2.2.1主变压器台数的选择 (15)2.2.2主变压器容量的选择 (16)2.2.3变压器型式的选择 (16)2.2.4调压方式的选择 (17)2.2.5 冷却方式的选择 (17)2.3所用变台数、容量和型式的确定 (18)第三章最大持续工作电流及短路计算 (20)3.1 各回路最大持续工作电流 (20)3.2 短路电流计算点的确定和短路电流计算结果 (21)3.2.1 短路计算的目的及假设条件 (22)3.2.2短路电流计算的一般规定 (23)3.2.3短路计算基本假设 (23)3.2.4 短路电流计算的步骤 (24)第四章主要电气设备选择 (25)4.1高压断路器的选择说明 (25)4.2 隔离开关的选择说明 (26)4.3 母线的选择说明 (27)4.4 互感器的配置说明 (28)4.4.1电流互感器的选择 (29)4.4.2电压互感器的选择 (31)第五章短路电流计算书 (33)5.1系统最大运行方式接线及等值电路 (33)5.2 220kv母线(d1点)短路计算 (35)5.3 110KV母线(d2点)短路计算 (37)5.4 10KV母线(d3点)短路计算 (39)5.5 短路点短路电流表 (42)表5.2 短路点短路电流表 (42)第六章电气设备选择计算 (43)6.1 高压断路器的选择计算 (43)6.1.1 220KV侧断路器 (43)6.1.2 110KV侧断路器 (44)6.2 隔离开关的选择计算 (46)6.2.1 220KV侧隔离开关 (46)6.2.2 110K侧隔离开关 (47)6.3 母线的选择计算 (48)6.3.1 220KV侧母线的选择 (48)6.3.2 110KV侧母线的选择 (50)6.3.3 10KV侧母线接线选择 (51)总结 (52)参考文献 (53)附图 (54)设计任务书设计题目:220kV变电所电气一次部分初步设计设计内容:根据所给定的设计资料,设计一个220kV变电所的电气一次部分,包括:1.确定电气主接线;2.确定主变压器的台数、容量和型式;3.确定所用电接线、所用变压器的台数、容量和型式;4.确定各电压级的配电装置型式;5.确定电压互感器和电流互感器的配置;6.选择各电压级各主要电气设备。
220KV变电站继电保护设计
本/专科毕业设计(论文)题目:220KV变电站继电保护设计专业:电气工程及其自动化年级:学生姓名:学号:指导教师:2012年9月220KV变电站继电保护设计摘要:电力系统由发电厂、变电所、输电线路和用户组成。
变电所是联系发电厂和用户的中间环节,起着转换和分配电能的作用。
变电所根据它在电力系统中的地位,变电所分为枢纽变电所、中间变电所、地区变电所、终端变电所。
本设计主要对变电站的继电保护进行分析设计,通过合理的继电保护装置来了提高供电的安全可靠性。
本变电站的电压等级为220kV,站内安装两台240MVA变压器,其中220kV线路为两进两出;110kV线路为8条出线;10kV线路为10条出线。
关键字:220kV 变电站继电保护目录引言 (4)1 设计说明书 (5)2 主变压器保护设计 (5)2.1主变压器保护设计分析 (6)2.2变压器容量选择 (7)2.3变压器主保护 (7)2.4压器后备保护 (10)2.5变压器其他保护 (15)3 母线保护 (16)3.1母线保护设计分析 (16)3.2 220kV母线保护 (16)3.3 110kV母线保护 (16)4 线路保护 (16)4.1线路保护设计分析 (16)4.2 220kV线路保护 (16)4.3 110kV线路保护 (16)4.4 10kV线路保护 (16)结语 (16)致谢 (17)参考文献 (17)引言随着电力系统和自动化技术的不断发展,继电保护技术也在不断的发展.几十年来,目前,我国的电力系统正在不断向高电压、大机组、现代化大电网的发展方向前进,与之相伴的继电保护技术及其保护装置的应用水平也在大幅提升。
继电保护的发展按时间经历了三个时代, 20世纪50年代及以前,继电保护装置大多以电磁型的机械元件、整流型元件和半导体元件构成; 70年代以后出现了集成电路构成的继电保护装置并在电力系统中得到广泛的运用;80年代,微机保护逐渐应用,继电保护逐渐走向了数字化与智能化,保护的可靠性也在不断提高。
220KV变电站电气一次部分初步设计及防雷保护ppt课件
出线回路数多,I、II级
12
双母线接线分段 负荷所占比重较大,要求
可靠性较高。
变压器的选择
根据原始材料可知,我们需设计的变电站是220kV降压变电站,它是以220kV的 为主功率,把功率通过主变压器输送到110kV及35kV的的母线上,如果主变压器出现 了问题,必定影响下一级的变电所和整个电网的稳点运行,所以必须选择安全合理 的台数和型号。
主接线设计原则:可靠性,灵活性,经济性和可发展性。
电压等级 出线回路数
主接线方式
选择原因
220kV段
4
双母线接线
与单母线相比,投资有所 增加,但可靠性和灵活性
大为提高。
110kV段 35kV段
带旁路母线的双母线接 出线回路数较多,I、II
6
线
级负荷所占比重大,要求
(设专用旁路断路器) 可靠性高,灵活性好。
设计内容
本变电站设计可以满足该地区的供电需求,在设计过程中需要考 虑到该地区的发展,并且可以满足长远发展的原则。
本设计包括以下部分: 1.电气主接线的设计 2.主变压器的选择 3.短路电流计算 4.电气设备的选择 5.防雷保护及配置 6.站用电负荷和站用变压器选择 7.变电站相关图纸绘制
电气主接线的设计
该变电站220kV母线有4回输出线路,2回与系统A相连,线路长度 为80km,2回与系统B相连,线路长度为60km,系统容量:220KV侧A、B两 个系统的容量分别为280MVA和320MVA。;在中压侧110KV母线,送出6回线 路,最大负荷为45MW,功率因数为0.9,,负荷同时率为0.85,I、II级负 荷占80%;35kV侧主要供给石油及重工,母线送出回路为12回,最大负荷 为5000KW,功率因数为0.9,,负荷同时率为0.85,I、II级负荷占70%。
220kv电网继电保护设计原始数据精选全文完整版
可编辑修改精选全文完整版220kV电网继电保护设计原始数据一、题目选择图1所示电力系统220kV线路的继电保护方式并进行整定计算。
图1所示系统由水电站W、R和两个等值的110kV系统S、N,通过六条220kV线路构成一个整体。
整个系统的最大开机总容量为1509.29MVA,最小开机总容量为1007.79 MVA,两种情况下各电源的开机容量如表1所示。
各发电机、变压器容量和连接方式已在图1中示出。
表1 系统各电源的开机情况代号开机情况说明第一种运行情况W、R水电厂所有机组、变压器均投入,S、N等值系统最大开机情况按最大容量发电、变压器均投入最小开机情况第二种运行情况W厂停2×30MVA机组,R厂停77.5MVA机组一台,S系统发电容量是300MVA,N系统发电容量为240MVA图1 220kV系统接线图二、系统中各元件的主要参数计算系统各元件的参数标么值时,取基准功率S b =60MVA ,基准电压U b =220kV ,基准电流I b=b S =0.157kA ,基准电抗x b = 806.67Ω。
(一) 发电机及等值系统的参数用基准值计算所得的发电机及等值系统元件的标么值参数见表2所列。
注:系统需要计算最大、最小方式下的电抗值;水电厂发电机2 1.45d x x '=,系统2 1.22d x x '=。
(二) 变压器的参数变压器的参数如表3所列。
表3 变压器参数(三) 输电线的参数线路单位电抗 x 1=x 2=0.41Ω/km ,x 0=3x 1,线路阻抗角80o 。
表4 输电线参数(四)电流互感器和电压互感器变比220kV线路的所有电流互感器均采用同一变比600:5=120,电压互感器的变比均为220000:100=2200。
(五)三、正序、负序、零序等值阻抗图根据系统各元件参数计算结果和变压器中性点接地的情况,作出系统的正序、负序、零序阻抗图。
四、系统潮流计算结果为了确定各线路的最大负荷电流,应计算系统在最大开机情况下的潮流分布。
220KV输电线路继电保护
银川能源学院课程设计课程名称:电力系统继电保护原理设计题目:220KV输电线路继电保护院(部):电力学院专业:电气工程及其自动化班级:1203班*名:**学号:**********成绩:指导教师:李莉李静日期:2015年6月8日——6月21日前言 (3)第一章绪论 (4)1.1继电保护的概论 (4)1.2继电保护的基本任务 (4)1.3继电保护的构成 (4)1.4课程设计的目标及基本要求 (5)第二章 220KV输电线路保护 (5)2.1 220KV线路保护概要 (5)2.2纵联保护 (6)2.2.1纵联方向保护原理 (6)2.2.2纵联保护通道 (7)2.3 输电线路参数的计算 (7)第三章输电线路上TA、TV及中性点接地的选择 (8)3.1 输电线路上T A、TV的选择 (8)3.2 变压器中性点接地方式的选择 (9)第四章相间距离保护整定计算 (10)4.1 距离保护的基本概念 (10)4.2距离保护的整定 (11)4.3 距离保护的评价及应用范围 (12)第五章电力网零序继电保护方式选择与整定计算 (12)5.1 零序电流保护的特点 (12)5.2 接地短路计算的运行方式选择 (13)5.3 最大分支系数的运行方式和短路点位置的选择 (13)5.4 电力网零序继电保护的整定计算 (13)5.5 零序电流保护的评价及使用范围 (15)心得体会 (16)参考文献 (17)继电保护伴随着电力系统而生,继电保护原理及继电保护装置的应用,是电力系统实用技术的重要环节。
继电保护技术的应用繁杂广泛,随着现代科技的飞速发展,继电保护在更新自身技术的基础上与现代的微机、通信技术相结合,使继电保护系统日趋先进。
无论是继电保护装置还是继电保护系统,都蕴含着严谨而又富有创兴的科学哲理,同时也折射出现代技术发展的光芒。
可以说继电保护是一门艺术。
由于电力系统是一个整体,电能的生产、传输、分配和使用是同时实现的,各设备之间都有电或磁的联系。
220kV输电线路继电保护设计
本科课程设计课程名称:电力系统继电保护原理设计题目:220kV输电线路继电保护设计院(部):专业:__________________班级:______________________姓名:________________________学号:_________________成绩:_____________________________指导教师:摘要继电保护是一种电力系统的反事故自动装置,它在电力系统中的地位十分重要。
继电保护伴随着电力系统而生,继电保护原理及继电保护装置的应用,是电力系统实用技术的重要环节。
继电保护技术的应用繁杂广泛,伴随着现代科技的飞速发展,继电保护在更新自身技术的基础上与现代的微机、通信技术相结合,使继电保护系统日趋先进。
电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的发展不断地注入新的活力,继电保护技术未来发展趋势是计算机化、网络化、智能化和数据通信一体化发展。
本次设计主要内容是220KV输电线路继电保护的配置和整定,设计内容包括:220KV电网元件参数的计算、中性点接地的选择、输电线路纵联保护、自动重合闸等。
关键词:参数计算接地的选择纵联保护自动重合闸目录1:220KV电网元件参数的计算 (1)1.1:设计原则和一般规定 (1)1.2:220KV电网元件参数计算原则 (1)1.3:变压器参数的计算 (2)1.4:输电线路参数的计算 (5)2:输电线路上TA、TV及中性点接地的选择 (6)2.1:输电线路上T A、TV变比的选择 (6)3: 输电线路纵联保护 (8)3.1:纵联保护的基本概念 (8)3.2: 各种差动保护及其动作方程 (9)3.3:纵联电流差动保护的原理 (9)3.4: 算例 (9)3.5: 纵联差动保护计算参数列表 (11)4:自动重合闸 (11)4.1: 自动重合闸的作用 (11)4.2:重合闸的前加速和后加速 (11)4.3: 自动重合闸动作时间整定应考虑问题 (12)4.4: 双侧电源线路三相跳闸后的重合闸检查条件 (13)4.5:综合重合闸的主要元件 (13)4.6: 综合重合闸整定计算算例 (14)5:参考文献 (15)6:致谢 (19)1:220KV电网元件参数的计算1.1:设计原则和一般规定电网继电保护和安全自动装置是电力系统的重要组成部分,对保证电力系统的正常运行,防止事故发生或扩大起了重要作用。
220KV变电站电气一次部分初步设计说明书
220KV变电站电气一次部分初步设计说明书第一章电气主接线设计1.1主接线设计要求电气主接线又称为电气一次接线,它是将电气设备以规定的图形和文字符号,按电能生产、传输、分配顺序及相关要求绘制的单相接线图。
主接线代表了变电站高电压、大电流的电器部分主体结构,是电力系统网络结构的重要组成部分。
它直接影响电力生产运行的可靠性、灵活性,同时对电气设备选择、配电装置布置、继电保护、自动装置和控制方式等诸多方面都有决定性的关系。
因此,主接线设计必须经过技术与经济的充分论证比较,综合考虑各个方面的影响因素,最终得到实际工程确认的最终方案。
电气主接线设计的基本要求,概况地说应包括可靠性、灵活性和经济性三方面。
1.可靠性安全可靠是电力生产的首要任务,保证供电可靠是电气主接线最基本的要求,而且也是电力生产和分配的首要要求。
主接线可靠性的基本要求通常包括以下几个方面。
(1)断路器检修时,不宜影响对系统供电。
(2)线路、断路器或母线故障时,以及母线或母线隔离开关检修时,尽量减少停运出线回路数和停电时间,并能保证对全部I类及全部或大部分II 类用户的供电。
(3)尽量避免变电站全部停电的可能性。
(4)大型机组突然停运时,不应危及电力系统稳定运行。
2.灵活性电气主接线应能适应各种运行状态,并能灵活地进行运行方式的转换。
灵活性包括以下几个方面。
(1)操作的方便性。
电气主接线应该在服从可靠性的基本要求条件下,接线简单,操作方便,尽可能地使操作步骤少,以便于运行人员掌握,不至在操作过程中出差错。
(2)调度的方便性。
可以灵活地操作,投入或切除某些变压器及线路,调配电源和负荷能够满足系统在事故运行方式,检修方式以及特殊运行方式下的调度要求。
(3)扩建的方便性。
可以容易地从初期过渡到其最终接线,使在扩建过渡时,无论在一次和二次设备装置等所需的改造为最小。
3.经济性主接线在满足可靠性、灵活性要求的前提下做到经济合理。
(1)投资省。
主接线应简单清晰,并要适当采用限制短路电流的措施,以节省开关电器数量、选用价廉的电器或轻型电器,以便降低投资。
220KV变电站电气部分初步设计方案
主变压器台数和容量的确定
2.1 主变压器选择的要求:
1.和电力系统连接的主变压器一般不超过两台。当只有一个电源或变电所的一级负荷另有备用电源保证供电时,可装设 一台主变压器。
2.变压器装设两台及以上主变压器时 ,每台容量的选择应按照其中任一台停用时,其余变压器容量至少能保证所供电的全部一级负荷或为变电所全部负荷的60-75%。通常一次变电所为75%,二次变电所为60%。
3.3.1第一种方案主接线图(如图3.1):
图3.1第一种方案主接线图
此种方案的特点:
一次侧(220KV侧)采用单母分段接线形式
优点:单母分段按可进行分段检修,对于重要负荷可以从不同段引出两个回路,使重要负荷有两个电源供电,在这种情况下,当一段母线发生故障时,由于分段断路器在继电保护装置的作用下能自动将故障切除,因而保证了正常段母线不间断供电和不致使重要负荷停电。
(3)具有直接由高压降为低压供电条件的变电所,为简化电压等级,减少重复降压容量,可采用双绕组。
根据本变电所实际情况,交通便利,只有两个电压等级220/60KV,故选择采用三相双绕组变压器。
(4)根据计算,确定选择两台容量为63000KVA的变压器,查《电力 设备手册》选用两台双卷有载调压变压器,其型号为SFP7-63000/220,电压为220±2*2.5%/63KV,采用YN,d11连接组,附套管电流互感器,其具体型号和参数见表2.1。
b.要能使断电保护和二次回路不过于复杂,以节省二次 设备和控制电缆。
c.要能限制短路电流,以便于选择价廉的电气设备或轻型电器。
d.如能满足系统安全运行及继电保护要求,110KV及以下终端或分支变电所可采用简易电器。
(2)占地面积小
220KV变电站继电保护设计
220KV变电站继电保护设计继电保护设计是电力系统中至关重要的一环。
本文旨在解释220KV变电站继电保护设计的背景和目的,并介绍文章的结构和主要内容。
随着电力系统的发展和进步,变电站的重要性不断凸显。
变电站作为电力输配系统中的关键节点,负责变电、配电、保护等重要工作。
继电保护设计在变电站中具有至关重要的作用,它能够及时检测和保护电力设备,确保系统的安全稳定运行。
本文的目的是对220KV变电站的继电保护设计进行详细探讨和分析。
通过深入了解继电保护设计的原理和方法,可以有效提高变电站的安全性和可靠性,保障电力系统的正常运行。
本文分为以下几个部分:引言:介绍文章的背景、目的和结构。
220KV变电站概述:对220KV变电站的基本情况和功能进行概述。
继电保护设计原理:详细阐述继电保护设计的理论基础和工作原理。
继电保护设计方案:介绍具体的继电保护设计方案,包括设备选型、参数配置等。
实施与运维:对继电保护设计的实施和运维进行讨论,包括测试、校准和故障排除等。
结论:对本文进行总结,并提出对继电保护设计的展望。
本文将重点涵盖以下内容:继电保护设计的基本概念和背景。
继电保护设计的原理和方法。
220KV变电站的特点和要求。
继电保护设计方案的具体要求和步骤。
继电保护设备的选型和配置。
继电保护设计的实施和运维要点。
通过深入研究和理解以上内容,可以对220KV变电站的继电保护设计有更全面的认识,并为实际工程应用提供参考和指导。
以上是关于《220KV变电站继电保护设计》文档的简要介绍和大纲。
继电保护设计对于220KV变电站的正常运行是至关重要的。
继电保护系统是变电站中的重要组成部分,它主要负责监测和保护变电站设备和电力系统,以避免故障引发事故和损坏。
以下是继电保护设计的重要性:设备保护:继电保护系统能够监测电力设备的工作状态,及时发现异常情况并采取措施。
它可以监测电流、电压、频率等参数,一旦发现异常,会立即采取相应的保护行动,如断开故障电路、切除受故障影响的设备,保护其他设备的安全运行。
220KV电力系统继电保护和设计
二. 电力系统继电保护和自动装盟的配置(1)线路继电保护配置保护方式的选择对电力系统的安全运行有直接的影响。
选择保护方式时,在满足继电保护“四性”要求的前提下,应力求采用简单的保护装置来达到系统提出的要求,只有当简单的保护不能满足要求时,才采用较复杂的保护。
水利电力部颁发的《继电保护和安全自动装置枝术规程》规定,对110~220kV、中性点直接接地电网中的线路,应装置反应接地短路和相间短路的保护。
该规程又规定,电力设备和线路的短路保护应有主保护和后备保护,必要时可再增设辅助保护。
在110~220kV中性点直接接地的电网中,线路的相间短路保护及单相接地短路保护均应动作于断路器使其跳闸。
在下列情况下,应装设全线任何部分短路时均能速动的保护装置:①根据系统稳定要求有必要时;②线路发生三相短路故障,使厂用电或重要用户母线电压低于额定电压的60%,且其保护不能无时限和有选择地切除短路故障时;③若某些线路采用全线速动保护能显着简化电力系统保护,并提高保护的选择性、灵敏性和速动性时。
规程规定,ll0kV线路的后备保护宜采用远后备方式;220kV线路则宜采用近后备方式,如能实现远后备方式时,则宜采用远后备方式或同时采用远、近后备结合的方式。
220kV线路的保护可按以下原则配置。
对于单侧电源单回路线路,可装设三相多段式电流电压保护作为相间短路的保护。
但若不能满足灵敏度要求,则应装设多段式距离保护。
对于接地短路,宜装设带方向性元件或不带方向性元件的多段式零序电流保护,对某些线路,若装设带方向性接地距离保护可以明显改善整个电力系统接地保护性能时,可装设接地距离保护,并辅之以多段式零序电流保护。
对于双电源单回路线路,可装设多段式距离保护,若不能满足灵敏度和速动性要求时,则应加装高频保护作为主保护,把多段式距离保护作为后备保护。
在正常运行方式下,若保护安装处短路且无时限电流速断保护装置能够动作时,可装设此种保护作为辅助保护。
220kV电力系统继电保护及自动装置设计
220kV电力系统继电保护及自动装置设计摘要220kV电力系统继电保护及自动装置是电力系统中保障电力运行稳定的重要设备之一。
本文总结了电力系统继电保护及自动装置的基本原理和应用,重点探讨了220kV电力系统继电保护及自动装置的设计要点和注意事项,旨在为电力系统的继电保护及自动化装置的合理选择和设计提供参考。
基本原理和应用电力系统继电保护及自动装置是根据电力系统的运行状态自动采取控制手段,保障电力系统的稳定运行,防止电力事故发生。
继电保护的基本原理是利用电力系统运行过程中各个装置或设备的状态量进行监测和分析,当发生过压、欠压、过电流等异常情况时,立即采取相应的控制措施,保证电力系统的安全稳定运行。
自动化装置则是利用电力系统的运行状态自动执行各种控制清楚,如自动校准、自动切换、自动调节、自动停机等。
电力系统继电保护及自动装置主要应用在输电线路、变电站等电力系统中,保护电力设备不被损坏,保障电力系统稳定运行,提高电力系统的可靠性和经济性。
继电保护及自动化装置的应用非常广泛,已经成为电力系统安全运行和控制的重要手段。
220kV电力系统继电保护及自动装置的设计要点和注意事项220kV电力系统继电保护及自动装置的设计要点和注意事项如下:设计要点1.保障电力系统的安全、可靠、稳定运行;2.提高电力系统的自动化程度和智能化水平;3.考虑变电站的可靠性和经济性;4.确定继电保护及自动化装置的技术指标;5.选好适合的继电保护及自动化装置设备;注意事项1.继电保护及自动化装置是针对电力系统传送线路、变电站等电器设备的,为保护设备安全,继电保护及自动化装置的参数要与设备的参数相匹配,如保护等级、开关功率等;2.设计要科学合理,继电保护及自动化装置的安装方式、线路接法和数据互通都应符合电力系统的标准;3.要注意继电保护及自动化装置的维护和管理,及时做好日常维修、巡视和保养等工作,以延长其使用寿命。
总结继电保护及自动化装置是电力系统中非常重要的设备,对电力系统的安全、可靠、稳定运行具有重要的作用。
220KV电网继电保护设计方案
220KV电网继电保护设计方案概述一、电网的特点题目所给出的电网系统接线图中,主要包括两个发电厂,两个系统,两条平行双回线及两条单回线路构成的辐射状态连接起来的整体系统,同时还有两个降压变电站。
本系统为220kv多电源电网,负荷分配均匀、合理,线路属于中短线路,可以减少一些由于线路长而传输起来灵敏度不易配合等问题,但是,由于系统中含有两条位置处于中心的平行线路,这将给设计的整定计算带来一些困难和麻烦。
二、电网分析和保护初步选择根据电网结构的不同,运行要求不同,再在满足继电保护“四性”(速动性、选择性、灵敏性、可靠性)的前提下,求取其电力系统发展的需要。
对于220kv大接地电流电网的线路上,应装设反应相间故障和接地故障的保护装置。
(1)对于单侧电源辐射形电网中单回线上,一般可装设无时限和带时限的电流及电压速断装置为主保护带阶段时限的过电流保护装置作为后备保护。
在结构比较复杂的电网上,可先考虑用带方向或不带方向的阶段式电流或电压保护作为主保护,当这类保护在选择性,灵敏性及速动性上不能满足要求时,则应装设距离保护。
(2)、在双侧电源线路上,如果要求全线速动切除故障时,则应装设高频保护作为主保护,距离保护作为后备保护,否则,一般情况,应装设阶段式距离保护。
(3)、在平行线路上,对于220kv线路,一般应装设横差方向保护或全线速动的高频保护作为主保护。
以距离保护或阶段式保护带方向或不带方向电流或电压作为后备保护。
对于单相和多相接地短路故障,一般应装设带方向的或不带方向的无时限和带时限的零序电流速断保护及灵敏的零序过电流保护。
如果零序电流保护不能满足选择性和灵敏性的要求,可采用接地距离保护。
在平行线路上,一般装设零序横差动方向保护作为主保护,如果根据系统运行稳定性等要求,需装设全线速动保护,与上述相同,也可以用一套高频保护,同时作为相间短路和接地短路的保护,而以接每一回线或接于两回线电流之上的阶段零序电流保护作为后备保护。
电力初步设计
1电力初步设计23总论1.1 设计依据本工程依据以下文件进行初步设计:1、江苏省电力公司文件苏电发展[2005]1426号《关于220千伏苏州地区阊胥等输变电工程(ST2007220)可行性研究报告的批复》之一“220千伏阊胥输变电工程”(2005-9-28)。
2、江苏省电力公司苏州供电公司文件苏供电计[2005]517号《关于220千伏三区北扩建等工程设计委托的函》之六“220千伏虎丘变扩建工程”(2005-9-30)。
1.2 原工程概况220kV配电装置原有出线4回(陆墓、苏州西各2回),主变进线2回,远景出线6回,接线型式为双母线接线,设有母联断路器。
1.3 设计内容本期工程扩建220kV出线1回(阊胥),与扩建内容相关的电气一次、二次、土建及相应的系统保护、远动、通信等专业的设计。
1.4 设计范围本期工程设计范围为扩建220kV 1回出线间隔的本体设计。
220kV出线间隔的配电装置设计到电缆出线下桩头,不包括进线电缆及其金具。
1.5 主要技术经济指标总投资:542 万元其中静态投资:536 万元2 系统部分2.1 系统一次2.1.1电网现状2004年,苏州市经济延续快速发展的好势头,全年实现生产总值3450亿元,按可比价格计算,比上年增长17.6%。
2004年苏州市全社会用电量413.17亿kW·h,同比2003年增长了27.97%,其中网供电量369.08亿kW.h,同比增长22.66%;全社会最高负荷为6660MW,同比增长了16.74%,网供最高负荷为5878MW,同比增长了16.84%,用电位居全省各市第一。
苏州电网位于江苏苏南电网末端。
苏州电网最高额定电压为500kV,至2004年底苏州电网拥有:500kV变电所4座,主变7台,主变压器总容量6250MVA,500kV线路12条,线路总长度405.223km;220kV变电所37座,主变73台,主变容量合计11550MVA,220kV线路105条,总长度为1867.307km;另有220kV 用户变电站3座共720MVA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009 届本科毕业设计(论文)
题目: 220KV裕孟线路继电保护初步设计
班级:2006级电气工程
学号: 2006KDH72004
姓名:曹嫄
指导教师:马士英
2008年10月
220KV裕孟线路继电保护初步设计
学生姓名:曹嫄
学号:2006KDH72004
所在函授站:郑州电力高专
班级:2006级电力工程
指导教师:马士英
完成日期:2008年10月
目录
摘要 (1)
引言 (2)
第一章 220KV裕孟线路在电网中的地位 (3)
第二章 220KV线路继电保护配置的具体要求 (4)
一、中性点直接接地电网线路保护的构成方式 (4)
二、220KV线路保护配置的具体要求 (4)
三、220KV线路接地保护的要求 (5)
四、220KV线路相间距离保护的要求 (6)
五、 220KV线路纵差保护的要求 (6)
第三章 220KV裕孟线路保护配置设计 (7)
一、RCS-931B光纤纵差保护装置技术说明 (7)
二、WXH-802高频闭锁式距离保护装置技术说明 (13)
三、 WXH-864断路器辅助保护装置技术说明 (15)
第四章220KV裕孟线路短路电流计算 (17)
一、技术参数 (17)
二、电抗的计算 (17)
三、短路电流的计算 (18)
四、结论 (20)
第五章 220KV裕孟线路保护整定计算 (21)
一、 RCS-931B光纤纵差保护装置定值计算 (21)
(一)纵差保护定值整定 (21)
(二)接地距离保护定值整定 (24)
(三)相间距离保护定值整定 (24)
(四)零序电流保护定值整定 (26)
(五)重合闸定值整定 (29)
二、WXH-802高频闭锁式纵联距离保护装置定值整定 (29)
(一)纵联距离保护定值整定 (29)
(二)距离保护定值整定 (30)
(三)零序电流保护定值整定 (30)
(四)重合闸定值整定 (30)
三、WDLK-864断路器辅助保护装置定值整定 (30)
第六章组屏 (31)
结束语 (32)
参考文献 (33)
致谢 (34)
附图:
1、短路计算等值阻抗变换图
2、继电保护平面布置图。