焊接机器人毕业论文
毕业论文机器人CMT焊接工艺研究
机器人CMT焊接工艺研究摘要本文利用焊接机器人和福尼斯CMT焊机对镀锌板进行堆焊,搭接和对接,分析CMT 机器人焊接焊接得到板材的外观,成型,硬度,气孔产生的原因,焊接变形产生的原因。
得到由于冷金属过渡焊接的特殊的抽送丝方式,其焊接热输入量更小,在同样焊接参数下,冷金属过渡焊接比MAG焊的飞溅更少,熔深更小,且硬度值要明显低于MAG焊。
但是在搭接镀锌板材时,由于无间隙,电弧力过大,弧长修正系数过大,焊接速度过快等原因,仍会出现气孔,对接时由于板材膨胀收缩不均匀仍会出现焊接变形。
关键词:机器人;冷金属过渡;镀锌板前言近年来镀锌板在工业中应用逐渐增多,在所有应用镀锌板的行业中,汽车工业的自动化程度最高,汽车轻量化需求越来越重要,镀锌薄板的应用也越来越多,但镀锌薄板如何有效的焊接一直困扰着工程技术人员,CMT焊接技术的发展成功解决了镀锌薄板的焊接问题。
本文围绕机器人CMT焊接镀锌板过程中容易出现的几个问题展开研究:焊缝外观是否美观,焊缝区域的硬度问题,焊接区域的气孔缺陷问题,焊接过程中的变形问题……本次研究对汽车车身的镀锌薄板的焊接具有一定的现实意义,可实现机器人CMT焊接镀锌薄板少气孔无气孔,少变形甚至无变形,焊接接头美观。
冷金属过渡焊接技术可代替传统MIG/MAG焊进行薄板焊接。
第1章绪论1.1焊接机器人我国在20世纪70年代末开始进行工业机器人的研究,经过二十多年科技的发展,工业机器人的性能更完善、价格更低,应用越来越普遍。
我国在产业转型的过程中,工业机器人的需求在快速增加。
利用焊接机器人不仅能稳定和提高焊接质量,保证其均一性,而且可以改善劳动条件,提高劳动生产率,缩短产品改型换代的周期,减小相应的设备投资。
现在焊接机器人更是遇到难得的发展机遇。
一方面,焊接机器人的价格不断下降,性能不断提升,性价比大幅度提高。
另一方面,劳动力成本也在不断上升。
现在的制造型企业也都在提升加工手段,提高产品质量和增强企业竞争力。
焊接机械手毕业设计
焊接机械手毕业设计【篇一:自动焊接机械手设计(毕业设计)】自动焊接机械手设计1 绪论1.1 技术概述工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。
特别适合于多品种、变批量的柔性生产。
它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。
机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。
机器人应用情况,是一个国家工业自动化水平的重要标志。
机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。
1.2 现状及国内外发展趋势国外机器人领域发展近几年有如下几个趋势:(1)工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。
(2)机械结构向模块化、可重构化发展。
例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。
(3)工业机器人控制系统向基于pc机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构;大大提高了系统的可靠性、易操作性和可维修性。
(4)机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中已有成熟应用。
六自由度焊接机器人设计
毕业设计(论文)中文摘要毕业设计(论文)外文摘要目录1 绪论 (2)1.1 课题研究的目的和意义 (4)1.2 本课题国内外研究现状和发展趋势 (5)1.3 本次设计主要完成的工作 (7)2 焊接机器人总体方案确定 (7)2.1 总体传动方案 (7)2.2 驱动方式选择 (7)2.3 各关节传动方案 (8)3 技术参数的确定及详细结构设计 (12)3.1 主要技术参数确定 (12)3.2 传动结构设计 (16)3.3 详细结构设计 (18)4 零部件的计算及校核 (26)4.1 直齿圆锥齿轮的校核计算 (26)4.2 直齿圆柱齿轮的校核计算 (29)4.3 轴的校核计算 (36)结论 (38)参考文献 (39)致谢 (40)1 绪论“机器人”一词最早出现于1920年捷克作家Karel Capek的剧本《罗萨姆的万能机器人》中。
1984年,ISO(国际标准化组织)采纳了美国机器人协会(RIA)的建议,给机器人下了个定义,即“机器人是一种可反复编程和多功能的用来搬运材料、零件、工具的操作工具,为了执行不同任务而具有可改变和可编程的动作的专门系统(A reprogrammable and multifunctional manipulator ,devised for the transport of materials,parts,tools or specialized systems,with varied and programmed movements,with the aim of carring out varied tasks)”。
[1]工业机器人作为现代制造技术发展重要标志之一和新兴技术产业,已为世人所认同,并正对现代高技术产业各领域以至人们的生活产生重要影响。
机器人是柔性自动化的集中体现。
自从美国推出世界上第一台工业机器人Unimate以来,机器人技术的研究和发展过程经历了三个阶段:(1)第一代是示教再现型的机器人,这类机器人不具备外界信息反馈能力,很难适应变化的环境。
六自由度焊接机器人设计论文_本科论文
1前言1.1设计背景与意义1.1.1 焊接机器人概述焊接机器人是从事焊接(包括切割与喷涂)的工业机器人。
工业机器人是一种多用途的、可重复编程的自动控制操作机,具有三个或更多可编程的轴,用于工业自动化领域。
为了适应不同的用途,工业机器人最后一个轴的机械接口,通常是一个连接法兰,可接装不同工具或称末端执行器。
焊接机器人就是在工业机器人的末轴法兰装接焊钳或焊(割)枪的,使之能进行焊接,切割或热喷涂。
自从世界上第一台工业机器人UNIMATE于1959年在美国诞生以来,机器人的应用和技术发展经历了三个阶段:示教再现型机器人、具有感知能力的机器人、智能型机器人。
1.1.2 焊接机器人国内外研究现状(1)国外研究现状自从世界上第一台工业机器人UNIMATE于1959年在美国诞生以来,机器人在工业发达国家得到了迅速发展。
其中日本具有机器人王国之称,此外,世界上还有许多工业发达国家,如美国、前苏联等一些国家的机器人产业也发展得很快。
在亚洲,韩国的机器人产业发展也很迅速,现排名世界前列。
现在国外的机器人各个方面的技术发展现状为,在机械结构上以发展关节型机器人为主流,在控制系统方面主要是发展基于PC的开放结构的控制系统,在驱动技术方面主要是发展 AC伺服驱动技术,此外智能化传感器技术的机器人数量呈上升趋势。
焊接机器人技术正朝着高速、高精度、多功能化方向发展。
(2)国内研究现状我国的工业机器人技术经过三十多年的发展,现在已掌握了机器人的设计制造技术、控制系统的硬件和软件设计技术、运动学和轨迹规划技术,开发出了弧焊、点焊、装配等机器人;现阶段我国焊接机器人的应用主要集中在汽车、摩托车、工程机械、铁路机车等主要行业。
其中弧焊机器人已广泛应用于各大汽车制造厂的自动焊装线上。
但从总体上来看,我国的工业机器人技术及其工程上的应用水平和国外相比起来还有一定的差距。
现阶段我国工业机器人技术主题发展战略目标是:根据2l世纪初,我国国民经济对先进制造及自动化技术的需求,瞄准国际前沿高新技术发展方向,创新性地进行研究和开发工业机器人技术领域的基础技术、关键技术,产品技术和系统技术。
弧焊机器人工作站系统设计毕业论文
弧焊机器人工作站系统设计摘要随着工业技术的提高,机器人被广泛应用于生产实践中,机器人与手工操作相比,有着明显的优势,广泛采用工业机器人不仅可提高产品的质量和产量,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。
和计算机、网络技术一样,工业机器人的广泛应用日益改变人类的生产生活。
其中,焊接机器人是应用最为广泛的机器人,全球将近一半的工业机器人用于各种形式的焊接加工领域。
本论文以六自由度弧焊机器人为背景,详细介绍了机器人工作站的配置,硬件选型,PLC控制系统的设计、机器人配套设施的建设、仿真软件的应用及在实际环境中的调试。
论文首先总结了前人的工作,对焊接机器人工作站的发展现状和前景进行了展望。
总结了中外弧焊机器人的生产发展情况,对国内的弧焊机器人工作站的优缺点进行了分析。
然后结合工厂实际情况和生产要求,结合目前先进的机器人技术和解决方案,规划了本次机器人工作站的设计模块,对机器人工作站的配置和组成提出了合理创新的设计,采用简单高效的方法完成了工厂的应用要求。
工作站包括两台日本安川机器人公司的MOTOMAN NX100机器人,该机器人采用了6轴运动,能够在空间上做大自由度的运动,一台机器人安装了弧焊焊枪,进行弧焊作业,另一台机器人安装了夹持设备,进行辅助作业,两台机器人协调工作,共同完成作业任务。
本文对工作站的各个组成部分给出合适的规划,保证了机器人工作站的实用高效性,使用双机器人的协调工作及外部轴的控制实现高复杂度的焊接,能够适应不同的工作环境,使工作站拥有良好的柔性化拓展空间。
对工作站系统进行设计时采用了先进的3D模拟仿真技术,能够直观模拟机器人在实际工作环境下的运动状态,观察机器人I/O信号在运行中的应用情况,对现场环境下工作站的系统运行作出充分的模拟演示,保障了机器人工作站的稳定和高效,为机器人工作站的现场搭置提供了精确的数据支持。
一种焊接机器人毕业设计
一种焊接机器人毕业设计标题:基于六轴焊接机器人的自动焊接系统设计与实现一、引言焊接机器人是当前工业自动化领域的重要设备之一,它具备高效、精确的特性,广泛应用于金属加工、汽车制造、航空航天等领域。
本设计旨在基于六轴焊接机器人实现一种自动焊接系统,提高焊接质量和生产效率。
本文将从系统需求分析、机器人选型、系统设计、控制策略和实验验证等方面进行阐述。
二、系统需求分析1.硬件需求系统应选用能够满足焊接需求的六轴焊接机器人。
同时,还需要焊接头部、摇臂、控制系统和传感器等硬件设备。
2.软件需求系统设计应具备焊接路径规划和控制算法、运动方案生成和优化算法、实时监控与调整算法等功能。
3.功能需求系统应具备焊点检测、焊缝跟踪、焊接参数调整等功能,适应不同焊接需求。
三、机器人选型在六轴焊接机器人中,应首选与焊接操作相匹配的工作负载能力和尺寸。
同时,需考虑机器人的控制精度和可编程性,以达到对焊接路径的精确控制和实现不同焊接需求的灵活性。
四、系统设计1.焊接路径规划根据焊接物体的三维模型,将焊点转化为坐标系上的位置,确定焊缝的路径。
采用快速逼近算法生成规划路径,并实现对路径的优化。
2.控制策略设计并实现适应给定焊接路径的控制策略,包括PID控制、反馈控制和前馈控制等。
通过调整焊接参数,提高焊接质量。
3.传感器集成通过集成视觉传感器,实现焊点检测和焊缝跟踪,并利用传感器数据对焊接路径进行调整,维持焊接的准确性。
五、实验验证在实验中,通过焊接机器人完成一系列焊接任务,并对焊接质量进行评估。
通过实时监控焊接过程中的参数和数据,验证系统的性能和可靠性。
六、结论本设计基于六轴焊接机器人,通过软硬件设备的配合,实现了一种自动焊接系统。
该系统具备焊接路径规划、控制策略设计、传感器集成等功能,并通过实验验证了系统的可行性。
未来可以在该系统的基础上进一步优化焊接路径规划算法和控制策略,提高系统的自动化水平和焊接质量。
机器人焊接技术论文(2)
机器人焊接技术论文(2)机器人焊接技术论文篇二智能化机器人焊接技术研究进展摘要:随着先进制造技术的发展,焊接技术的自动化、智能化得到了显著提升,无论是焊接精度、效率都得到了快速发展与提高,可以说未来智能化机器人焊接技术的发展是大势所趋,必然会在大部分的制造业中取代传统的手工焊接。
本文通过对现代智能化机器人焊接技术研究进展,由此进一步探讨和研究未来的智能化焊接技术发展趋势。
关键词:智能化;机器人焊接技术;发展趋势;制造业引言现代科学技术的发展,传统焊接技术也已经发生了天翻地覆的变化,已经从过去单纯的手工式的焊接转变而智能化的操作,并且随着先进制造技术的发展,焊接技术的自动化、智能化得到了显著提升,无论是焊接精度、效率都得到了快速发展与提高,可以说未来智能化机器人焊接技术的发展是大势所趋,必然会在大部分的制造业中取代传统的手工焊接。
从上世纪六十年代至今,焊接机器人控制与发展主要经历了三个阶段,包括示教再现阶段、离线编程阶段和自主编程阶段。
而现代计算机控制技术以及智能化微处理技术的发展,也进一步提升了智能化机器人焊接技术的发展速率,未来的智能化机器人不仅仅是能够按照预先的编程进行运行和焊接,同时也能够实现多项命令下的同时操作以及良好的应变能力,由此更加智能化、柔性化的进行加工和生产。
1.人焊接智能化技术的主要构成现代焊接技术具有典型多学科交叉融合的特点,将现代智能技术引入到传统焊接应用中国,通过微处理技术和计算机技术,将预先程序事先植入到焊接机器人中,从而实现了其行为的自主性,由此使得其能够执行一系列复杂的动作,并且由于计算机的操控可以对其行为以及环境进行实时监控,从而保证了行为的有效性以及故障的可追溯性。
可以说智能化机器人焊接技术是多种技术的集成,实现了远程监控管理、统一调度规划等多项功能,让现代焊接效率更高,流程更清晰,分工更明确,同时也更加便于管理与协调,仅仅需要通过改变一定的程序就能够实现整体的焊接模式和机器人行为,无疑与传统单一的机器人焊接而言有了长足的进步。
机器人焊接论文
机器人焊接论文简介机器人焊接是一种自动化焊接技术,它使用机器人代替人工进行焊接操作。
这种技术在制造行业中具有广泛的应用,能够提高生产效率和焊接质量,同时减少人工成本和工作风险。
本文将介绍机器人焊接的原理、应用领域以及未来发展趋势。
机器人焊接原理机器人焊接是指利用机器人进行焊接操作的过程。
它可以分为以下几个步骤:1.取样和传感器检测:机器人会通过传感器对焊接对象进行取样和检测,以获取焊接参数和实时反馈信息。
2.路径规划:机器人根据焊接要求和焊接对象的几何形状,计算出最优的焊接路径。
3.焊接操作:机器人根据路径规划结果进行焊接操作,控制焊接枪的位置、速度和焊接电流,完成焊接任务。
4.质量检测:机器人在焊接完成后,可以使用传感器对焊缝进行质量检测,以确保焊接质量符合要求。
机器人焊接应用领域机器人焊接在制造行业中具有广泛的应用。
以下是一些常见的应用领域:1.汽车制造:汽车制造是机器人焊接的主要应用领域之一。
机器人可以用于焊接车身框架、车身板件以及其他关键零部件。
2.电子制造:机器人焊接在电子制造行业中也有应用。
它可以用于焊接电路板、电子设备外壳和连接线。
3.管道焊接:机器人焊接可用于管道制造领域。
它可以焊接各种类型的管道,包括石油管道、天然气管道和水管道。
4.空间航天:机器人焊接在航天制造领域也有应用。
它可以用于焊接航天器的结构件和航天器发动机部件。
机器人焊接的优势机器人焊接相比传统手工焊接具有许多优势:1.提高生产效率:机器人能够快速、精确地完成焊接任务,提高生产效率。
2.提高焊接质量:机器人焊接可以准确控制焊接参数,保证焊接质量的一致性。
3.减少人工成本:机器人焊接可以代替人工进行焊接操作,减少人工成本。
4.减少工作风险:机器人焊接可以减少人工与高温、有毒等环境接触的风险,提高工作安全性。
机器人焊接的挑战机器人焊接也面临一些挑战:1.复杂工件的焊接:对于一些复杂形状的工件,机器人焊接可能需要更复杂的路径规划和控制算法。
焊接机器人论文
焊接机器人是从事焊接(包括切割与喷涂)的工业机器人。
根据国际标准化组织(ISO)工业机器人术语标准的定义,工业机器人是一种多用途的、可重复编程的自动控制操作机(Manipulator),具有三个或更多可编程的轴,用于工业自动化领域。
为了适应不同的用途,机器人最后一个轴的机械接口,通常是一个连接法兰,可接装不同工具或称末端执行器。
焊接机器人就是在工业机器人的末轴法兰装接焊钳或焊(割)枪的,使之能进行焊接,切割或热喷涂。
1. 焊接机器人的组成焊接机器人主要包括机器人和焊接设备两部分。
机器人由机器人本体和控制柜(硬件及软件)组成。
而焊接装备,以弧焊及点焊为例,则由焊接电源,(包括其控制系统)、送丝机(弧焊)、焊枪(钳)等部分组成。
对于智能机器人还应有传感系统,如激光或摄像传感器及其控制装置等。
图1a、b表示弧焊机器人和点焊机器人的基本组成。
2.焊接用机器人的主要结构形式及性能世界各国生产的焊接用机器人基本上都属关节式机器人,绝大部分有6个轴。
其中,1、2、3轴可将末端工具送到不同的空间位置,而4、5、6轴解决工具姿态的不同要求。
焊接机器人本体的机械结构主要有两种形式:一种为平行四边形结构,一种为侧置式(摆式)结构,如图2a、b所示。
侧置式(摆式)结构的主要优点是上、下臂的活动范围大,使机器人的工作空间几乎能达一个球体。
因此,这种机器人可倒挂在机架上工作,以节省占地面积,方便地面物件的流动。
但是这种侧置式机器人,2、3轴为悬臂结构,降低机器人的刚度,一般适用于负载较小的机器人,用于电弧焊、切割或喷涂。
平行四边形机器人其上臂是通过一根拉杆驱动的。
拉杆与下臂组成一个平行四边形的两条边。
故而得名。
早期开发的平行四边形机器人工作空间比较小(局限于机器人的前部),难以倒挂工作。
但80年代后期以来开发的新型平行四边形机器人,已能把工作空间扩大到机器人的顶部、背部及底部,又没有测置式机器人的刚度问题,从而得到普遍的重视。
专用焊接机器人毕业设计
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊专用焊接机器人设计[摘要]焊接机器人具有焊接质量稳定、改善工人劳动条件、提高劳动生产率等特点,广泛应用于汽车、工程机械、通用机械、金属结构和兵器工业等行业。
据不完全统计,全世界在役的工业机器人中大约有一半用于各种形式的焊接加工领域。
机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术。
从国内外研究现状来看,焊接机器人技术研究主要集中在焊缝跟踪技术、离线编程与路径规划技术、多机器人协调控制技术、专用弧焊电源技术、焊接机器人系统仿真技术、机器人用焊接工艺方法、遥控焊接技术七个方面。
本次设计所用的焊接机器人主要用于客车车窗焊缝的焊接。
目的是减少人力劳动强度、提高工作效率,可以在一些人工焊接不方便的位置工作,同时减少焊接时的火花及烟雾对人体造成的伤害。
设计主要是决定机器人的类型、自由度数、工作的范围。
根据设计要求计算缸体、轴、齿轮等部件选用是否合理,能否完成所需工作。
[关键词]焊接机器人齿轮轴经济┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊Special welding robot design[Abstract]Welding robot has the stable welding quality, improve labor condition, improve labor productivity and other characteristics, widely used in automobile, engineering machinery, general machinery, metal structure and weapon industry and other industries. According to incomplete statistics, in service of the world's industrial robots for about half of all kinds of welding processing field.Robotics is a combination of computer, information, cybernetics, agencies and sensing technology, artificial intelligence, bionics and other multi-disciplinary and formation of the new and high technology. From the research status at home and abroad, welding robot technology research mainly concentrated in the seam tracking technology, off-line programming and path planning technology, multi-robot coordinated control technology, special technology, welding robot arc welding power source system simulation technology, robot welding method, welding technology in seven aspects.The design used in the welding robot is mainly used for passenger car window seam welding. Purpose is to reduce human labor intensity, improve work efficiency, and can work in some manual welding are not convenient location, at the same time reduce the welding sparks and smoke when the damage to the human body.Design is mainly the type of robot, the degrees of freedom, the scope of work. According to the requirement of design calculation cylinder body, shaft, gear and other components to choose whether reasonable, whether the work needed to complete.[Keywords]The welding robot gear shaft economic┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录前言 (1)第1章焊接机器人概述 (2)1.1 焊接机器人概念 (2)1.2 国内外研究状况及发展趋势 (2)1.2.1 焊接机器人的发展历程 (2)1.2.2 焊接机器人国内外应用现状 (2)1.2.3 我国焊接机器人的应用状况 (3)1.3 焊接机器人技术的研究现状 (4)1.3.1 焊缝跟踪技术 (4)1.3.2 离线编程与路径规划技术 (5)1.3.3 多机器人协调控制技术 (5)1.3.4 专用弧焊电源 (6)1.3.5 仿真技术 (6)1.3.6 机器人用焊接工艺方法 (6)第2章焊接机器人信息及选型 (8)2.1技术指标 (8)2.1.1 技术参数 (8)2.1.2 设计要求 (9)2.2 机器人的选择 (9)2.2.1 圆柱坐标型 (9)2.2.2 极坐标型 (9)2.2.3 直角坐标型 (10)2.2.4 多关节型 (10)第3章拟定总体方案 (11)3.1基本设计依据 (11)3.2 方案选定 (11)3.3 总体设计 (11)3.3.1 选择机型 (12)3.3.2 确定总体性能参数 (12)3.3.3 总体布局及各部件的结构形式 (12)第4章设计计算 (13)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊4.1.臂部伸缩油缸的设计计算 (13)4.1.1 确定活塞杆的材料 (13)4.1.2 按强度条件确定活塞杆的直径 (13)4.2 垂直升降油缸的计算 (14)4.2.1 活塞杆的直径 (14)4.3 腕部回转力矩的计算 (15)4.3.1 腕部回转支撑的摩擦力矩 (15)4.3.2 惯性力矩 (15)4.4 手臂回转后液压缸的设计计算 (15)4.4.1 手臂回转时所需的驱动力矩 (15)4.4.2 驱动力矩的计算 (16)4.4.3 回转缸内径的计算 (16)4.5 工作台驱动器缸设计计算 (16)4.6 调整电机选择 (17)4.7 焊接机械手的驱动系统设计及计算 (17)4.7.1 驱动系统概况 (17)4.7.2 计算参数 (18)4.7.3 由已知参数绘制工况图 (19)4.7.4 拟定液压回路 (21)4.7.5 编制程序 (21)4.8 齿轮的计算及校核 (23)4.8.1 总传动比的确定 (23)4.8.2 设计准则 (24)4.8.3 计算基本尺寸 (25)4.8.4 校核齿根弯曲疲劳强度 (25)4.9 轴的计算及校核 (26)4.9.1 轴材料选择 (26)4.9.2 轴的校核 (26)第5章经济技术分析 (28)5.1 技术评价 (28)5.2 产品的经济评价 (28)结论 (30)致谢 (32)参考文献 (33)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊前言工业机器人是二十世纪五十年代发展起来的机电一体化产品,他是新型独立的自动化装置,他在生产中的应用标志着世界工业技术的发展。
六自由度焊接机器人设计论文
六自由度焊接机器人设计论文2019年6月摘要 (1)第一章绪论及其发展 (2)1.1 机器人的概念 (3)1.1.1 操作机 (3)1.1.2 驱动单元 (3)1.1.3 控制装置 (3)1.1.4 人工智能系统 (4)第二章六自由度弧焊机器人的总体设计 (4)2.1 腕部设计 (4)2.1.1腕部设计的总体要求 (4)2.1.2 本次设计的腕部有2个如图所示 (5)2.2 小臂的设计 (5)2.2.1 小臂设计的总体要求 (5)2.3 大臂的设计 (5)2.3.1 大臂设计的总体要求 (5)2.3.2 大臂设计的总体要求 (5)2.3.3 电机的选择 (6)2.3.4齿轮的设计与校核计算 (8)2.4 腰关节的设计 (11)2.4.1 腰关节设计的总体要求 (11)2.5 传感器的选择 (11)第三章机器人设计展示 (11)参考文献 (12)近年来随着工业自动化的发展焊接机器人逐渐成为一门新兴的学科,并得到了较快的发展。
焊接机器人广泛地应用于锻压、冲压、铸造、焊接、装配、机加、喷漆、热处理等各个行业。
特别足在笨重、高温、有毒、危险、放射性、多粉尘等恶劣的劳动环境中,焊接机器人由于其显著的优点而受到特别重视。
总之,焊接机器人足提高劳动生产率,改誉劳动条件,减轻工人劳动强度和实现工业生产自动化的一一个重要手段,国内外都很重视它的应用和发展。
本次设计了一种关节式机器人,具有六个自由度,其中手腕关节具有三个自由度,其它的关节各具有一个自由度,各个关节采用电机驱动。
本设计主要介绍关于机器人的一些基本常识和原理,包括机器人的组成、分类和主要技术性能参数并参考通用型机器人的结构,进行六自由度弧焊机器人的结构设计和其计算机控制系统的设计。
本设计从实际情况出发,对机器人的机构可行方案进行了充分论证,用 Pro/Engineer 和 AutoCAD 等软件设计出了机器人本体结构。
关键词 :六自由度;弧焊机器人;控制系统第一章绪论及其发展1.1 机器人的概念机器人是一个在三维空间中具有较多自由度,并能实现较多拟人动作和功能的机器,而机器人则是在工业生产上应用的机器人,通用型弧焊机器人由机械系统、控制系统、驱动系统组成。
焊接工业机器人论文报告
焊接工业机器人论文报告机械卓越1102 游华栋(1.江阴宇博科技,江苏省江阴市邮编214400;)摘要:工业机器人是面向工业领域的多关节机械手或多自由度的机器人。
工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。
它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。
是要在多学科知识的综合应用方面,强化机器人技术应用能力的培养,以满足机械类应用型高级人才的培养。
结合有关文献对焊接机器人的机械结构、电机驱动、运动学计算、控制技术、传感器、轨迹规划与编程操作等应用进行系统解构。
机器人技术代表了机电一体化技术的最够研究成果,涉及机械工程、电子技术、计算机技术、自动控制理论、自动控制技术及人工智能等多门学科,当代科学技术发展最活跃的领域之一。
关键词:焊接机器人;结构设计;控制方式;感觉系统;W elding industrial robot reports HUADONG YOU(YUBO Technology Co., Ltd. ,Jiangyin, ,JiangYin province, 214400, china)Abstract:The industrial robot is a multi joint manipulator for industrial areas or more degrees of freedomrobot. Industrial robot is automatically performing work machine equipment, a machine that is controlled by its own power and ability to achieve the various functions. It can accept human command, and can also be run in accordance with the procedures of pre-arranged, modern industrial robots can also make according to the principles of the programme of action of the artificial intelligence technology. Is to be in the integrated application of multi subject knowledge, strengthen the training of application ability of robot technology, in order to meet the training applied talents of machinery. Based on relevant documents of a welding robot mechanical structure, the motor drive, kinematics, control technology,sensor, trajectory planningand programming operation application system deconstruction. Robot technology represents the mechatronics technology enough research results related to mechanical engineering, electronic technology, computer technology, automatic control theory, automatic control of multi discipline technology and artificial intelligence, one of the most active fields of contemporary science and technology development.正文:我国开发工业机器人晚于美国和日本,起于20世纪70年代,早期是大学和科研院所的自发性的研究。
焊接机器人毕业设计
焊接机器人毕业设计焊接机器人毕业设计随着科技的不断发展,机器人技术在各个领域得到了广泛应用。
其中,焊接机器人作为一种自动化设备,已经在工业生产中发挥了重要作用。
本文将探讨焊接机器人毕业设计的相关内容,包括设计目标、工作原理、技术难点和未来发展趋势等。
一、设计目标焊接机器人毕业设计的首要目标是设计一种能够自动完成焊接任务的机器人系统。
该系统应具备高效、精确、稳定的焊接能力,并能根据不同的焊接要求进行灵活调整。
此外,设计过程中还应考虑到成本、安全性和可维护性等因素。
二、工作原理焊接机器人的工作原理主要包括以下几个方面:1. 传感器控制:通过激光传感器、视觉传感器等感知设备,获取焊接目标的位置和形状信息,从而实现自动对焊接路径的规划和调整。
2. 运动控制:通过电机和伺服系统控制机器人的运动,使其按照预定的路径和速度进行焊接操作。
运动控制系统需要具备高精度和高速度的特点,以确保焊接质量和效率。
3. 焊接控制:通过焊接电源和焊接枪等设备,控制焊接参数,如电流、电压和焊接速度等,以实现焊接过程中的熔化和固化。
三、技术难点焊接机器人毕业设计中的技术难点主要包括以下几个方面:1. 路径规划:如何根据焊接目标的形状和尺寸,确定机器人的运动路径,使其能够在焊接过程中保持一定的速度和稳定性,是一个关键问题。
2. 焊接参数控制:如何根据不同焊接材料和焊接要求,调整焊接参数,以实现焊接质量的稳定和一致性,是一个具有挑战性的任务。
3. 感知与反馈:如何通过传感器获取焊接过程中的实时信息,并及时反馈给控制系统,以实现对焊接过程的实时监控和调整,是一个关键技术。
四、未来发展趋势随着科技的不断进步,焊接机器人毕业设计在未来有着广阔的发展前景。
以下是一些可能的发展趋势:1. 智能化:随着人工智能技术的发展,焊接机器人将更加智能化,能够根据不同的焊接任务和环境条件,自动调整焊接参数和路径,提高焊接质量和效率。
2. 多功能化:焊接机器人将不仅仅局限于焊接任务,还能够完成其他相关工作,如拆卸、装配和检测等,提高生产线的灵活性和多样化。
焊接机器人设计毕业论文
焊接机器人设计毕业论文摘要[0001]本发明涉及一种用来电阻焊工作的焊接机器人,它包括一个焊钳(21),一个焊接电流发生器(1),发生器连接在焊钳上的焊接电极(24,25),在电阻焊工作中为焊接电极提供电能,一个工业机器人。
工业机器人包括机器人手臂(2)和用于控制手臂移动的机械手控制装置(9)。
焊钳被连接到机器人手臂上,机械手控制装置被连接到焊接电流发生器和一个焊钳的钳驱动器上。
描述:本发明涉及一种焊接机器人。
[0002]DE 31 15 840 A1中介绍了焊接所用电阻,其特征在于,在焊接过程中,两焊接电极之间的电阻以参考电阻曲线为基准,随着电焊条接触力的变化而自动调整,此外,焊接电极所用的电压亦被调整至参考电位曲线上。
[0003]EP 1 508 396 B1 中介绍了焊接所用机器人,包括工业机器人和连接在机器人手臂上的焊钳。
焊钳,跟随机器人手臂移动,包含有两个电极臂,一个用来驱动电极臂的电动机,还有用于测量电机臂施加的接触力大小的力传感器。
该焊接装置还包括一个校正装置,根据实际接触力与理论接触力的偏差值,确定一个合适的变量来校正电动马达的位置。
[0004]本发明的目的是提供一种改善的焊接机器人。
[0005]本发明旨在创造一种用于电阻焊的新型焊接机器人,它包含以下几个方面:[0006]焊钳,由钳驱动器和两焊接电极构成,由钳驱动器驱动,在焊接机器人工作中,对至少两个要进行电阻焊接的材料加压。
[0007]焊接电流发生器,连接到焊机电极上,电阻焊工作中为焊接电极提供电能。
[0008]工业机器人,由机械手臂、机械手控制装置构成,控制装置用于控制机械手臂的移动,其中机器人手臂配置有为数众多的相互连接的肢,驱动连接到控制装置,焊钳连接到焊接电流发生器和钳驱动器上,在控制平台运行的电脑程序控制机械手臂的移动驱动器,钳驱动器也被设定好的模式控制着,使得在进行电阻焊作业时,预期的电位可以应用于焊接电极上,同时,也可以使得焊接电流发生器为焊接电极提供预期的电能。
智能制造-机器人焊接论文 精品
摘要随着科技的发展和工业需求的增加,焊接技术在工业生产中所占据的分量越来越大,而且焊接技术的优良程度直接影响着零件或产品的质量。
国内焊接机器人应用虽已具有一定规模,但与我国焊接生产总体需求相差甚远。
因此,大力研究并推广焊接机器人技术势在必行。
本设计的重点是运用机械原理和机械制造装备设计方法设计焊接机器人的实践和方法。
本次设计,是在了解焊接机器人在国内外现状的基础上,进而掌握焊接机器人内部结构和工作原理,并对手臂和腕部进行结构设计。
合理布置了液压缸。
同时了解机器人机械系统运动学及运动控制学。
为工业上焊接机器人的设计提供理论参考、设计参考和数据参考,为工业设计者提供设计理论和设计实践的参考。
该机器人具有刚性好,位置精度高、运行平稳的特点。
关键字:焊接机器人液压系统机械机构设计AbstractWith the development of technology and the increase in industrial demand, welding in industrial production occupied more and more weight, and excellent welding technology directly affects the degree of the quality of parts or products.Although the domestic application of welding robot with a certain scale, but falls far short of the overall demand for welding.Therefore, great efforts to study and promote the welding robot technology is imperative.The focus of this design is the use of mechanical theory and design of machinery and equipment design and methods of practice welding robot.The design of the welding robot in understanding the basis of the status quo at home and abroad, and then grasp the welding robot and working principle of the internal structure, and structural design of the arm and wrist.Rational arrangement of the hydraulic cylinder.At the same time understand the robot mechanical system kinematics and motion control study.For the design of industrial welding robots to provide a theoretical reference, reference and data reference design for industrial designers and design practice, design theory reference.The robot has a good rigidity, high precision location, stable characteristics.Keyword:Welding robot;hydraulic system;mechanical structure design目录摘要 (I)Abstract (II)目录.................................................................................................................. I II 第1章引言. (1)第2章焊接机器人的总体方案 (3)2.1 总体设计的思路 (3)2.2 自由度和坐标系的选择 (3)2.3 传动方案论证 (4)2.4 焊接机器人的组成 (6)2.4.1执行机构 (6)2.4.2控制系统分类 (8)2.5 焊接机器人的技术参数 (8)2.6 本章小结 (8)第3章腕部结构的设计及计算 (10)3.1 腕部设计的基本要求 (10)3.2 腕部结构及选择 (10)3.2.1典型的腕部结构 (10)3.2.2腕部结构和驱动结构的选择 (10)3.3 腕部结构设计计算 (11)3.3.1腕部驱动力计算 (11)3.3.2腕部驱动液压缸的计算 (11)3.4 液压缸盖螺钉的计算 (12)3.5 动片和输出轴间的连接螺钉 (13)3.6 本章小结 (13)第4章臂部结构的设计及计算 (15)4.1 臂部设计的基本要求 (15)4.2 手臂的典型机构以及结构的选择 (16)4.2.1手臂的典型运动机构 (16)4.2.2手臂运动机构的选择 (16)4.3 手臂直线运动的驱动力计算 (17)4.3.1手臂摩擦力的分析与计算 (17)4.3.2手臂惯性力的计算 (18)4.3.3密封装置的摩擦阻力 (18)4.4 液压缸工作压力和结构的确定 (18)4.5活塞杆的计算校核 (19)4.6 本章小结 (20)第5章机身结构的设计及计算 (21)5.1机身的整体设计 (21)5.2机身回转机构的设计计算 (22)5.3 机身升降机构的计算 (23)5.3.1 手臂偏重力矩的计算 (23)5.3.2 升降不自锁条件分析计算 (24)5.3.3 手臂做升降运动的液压缸驱动力的计算 (24)5.4 轴承的选择分析 (25)5.5 本章小结 (25)总结 (26)致谢 (27)................................................................................................ 错误!未定义书签。
焊接机器人系统毕业设计论文
第1章绪论1.1课题研究的目的及意义焊接是制造业中最重要的工艺技术之一。
它在机械制造、核工业、航空航天、能源交通、石油化工及建筑和电子等行业中的应用越来越广泛。
随着科学技术的发展,焊接已从简单的构件连接方法和毛坯制造手段,发展成为制造业中一项基础工艺,一种生产尺寸精确的产品的生产手段。
传统的手工焊接已不能满足现代高技术产品制造的质量、数量要求。
因此,保证焊接产品质量的稳定性、提高生产率和改善劳动条件已成为现代焊接制造工艺发展亟待解决的问题。
电子技术、计算机技术、数控及机器人技术的发展为焊接过程自动化提供了十分有利的技术基础,并已渗透到焊接各领域中。
近20年来,在半自动焊、专机设备以及自动焊接技术方面已取得了许多研究和应用成果,表明焊接过程自动化已成为焊接技术新的生长点之一。
从21世纪先进制造技术的发展要求看,焊接自动化生产已是必然趋势。
焊接机器人的诞生是焊接自动化革命性的进步,它突破了焊接刚性自动化的传统方式,开拓了一种柔性自动化的生产方式,从而使中小批量的产品自动化焊接成为可[1]。
焊接机器人已经广泛应用于汽车、工程机械、摩托车等行业,极大地提高了焊接生产的自动化水平,使焊接生产效率和生产质量产生了质的飞跃。
同时改善了工人的劳动环境[2]。
但是,现在焊接领域中自动化程度最高的手臂式机器人在使用时有两个局限性:一个是它的活动范围较小,因为它像一个手臂,手臂长1.5~2米,也就是其活动半径,所以焊接的工件不能太长,最大范围也不能超过2米。
二是它必须用编程或示教进行工作,对不规则的焊缝,特别是在焊接过程中焊缝发生形变时,则很难适应。
然而,许多大型工件体积非常庞大,而且必须在工地和现场进行焊接。
例如:石化工业中的大型储油罐、球罐,造船业中的各种轮船,对这类产品的焊接,就很难实现自动化,许多建设工作仍然采用人工焊接[3]。
因此,给焊接机器人加装各种传感器,使它们具有焊接路径自主获取、焊缝跟踪以及焊接参数在线调整等能力,具有很高的实用价值。
六自由度焊接机器人毕业设计
六自由度焊接机器人毕业设计摘要本文介绍了一种针对焊接领域的六自由度机器人的设计与实现。
该机器人采用了六个旋转自由度的设计结构,可以实现焊接工作的复杂动作控制,提高了生产效率和焊接质量。
文章主要介绍了机器人的硬件设计、运动控制系统设计和软件程序设计。
通过仿真和实验验证了机器人的控制算法和工作性能。
最终,该机器人成功实现了对金属焊接工作的控制,对于提高焊接工作的自动化水平具有重要的意义和实际应用价值。
关键词:六自由度机器人,焊接,控制算法,仿真与实验AbstractKeywords: six-degree-of-freedom robot, welding, control algorithm, simulation and experiment1.引言第1章介绍了六自由度焊接机器人的研究背景, 研究意义,以及发展现状。
第2章介绍了机器人的整体硬件设计,主要包括机械结构设计和电气连接设计。
第3章详细描述了机器人控制系统的设计和实现,包括运动控制和通信控制两个方面。
第4章介绍了机器人的软件程序设计,主要是控制算法的实现和仿真验证。
第5章为仿真和实验结果分析。
第6章是对研究工作的总结与展望。
2.机器人硬件设计2.1机械结构设计机械结构是焊接机器人的主体,直接决定了其运动范围和精度。
本文设计的焊接机器人采用了一个立柱底座、一个运动底盘、一个垂直关节、三个旋转关节和一个手臂结构。
机械结构的总设计图如图1所示。
2.2电气连接设计机器人的电气连接包括电源接口、电机和传感器接口及控制信号传输等两个部分。
在实际设计中,需要根据机器人的具体运动特性和控制需求进行设计。
本文设计的焊接机器人电气连接包括电源接口、电机和传感器接口及控制信号传输等两个部分。
3.机器人控制系统设计3.1 运动控制设计机器人运动控制是实现对机械手臂的动作精度、速度等控制的关键。
本文设计的运动控制方法为PID控制。
通信控制是指机器人与上位机进行信息交换的控制系统。
六自由度弧焊机器人毕业设计论文
摘要机器人是一种集机械、电子、传感技术、控制技术等多种现代技术于一体的机电一体化产品。
进入80年代,随着自动化生产流水线以及柔性生产系统(FMS)和柔性自动化(FA)在工业生产中的大量应用,机器人发挥着越来越重要的作用。
机器人的特点是能在自动控制下通过编程完成目标操作或移动作业;机器人的构造和性能体现了人和机器各自的优点,特别是体现了人的智能和适应性以及机器的作业准确性和在各种环境中完成作业的能力。
综观机器人发展的历史和高新技术的发展趋势,可以断言,机器人必将成为现代化工业发展中不可缺少的必备工具。
本文设计了一种关节式机器人,具有六个自由度,其中手腕关节具有三个自由度,其它的关节各具有一个自由度,各个关节采用电机驱动。
本设计主要介绍关于机器人的一些基本常识和原理,包括机器人的组成、分类和主要技术性能参数并参考通用型机器人的结构,进行六自由度弧焊机器人的结构设计和其计算机控制系统的设计。
本设计从实际情况出发,对机器人的机构可行方案进行了充分论证,用Pro/Engineer 和AutoCAD 等软件设计出了机器人本体结构。
关键词: 六自由度;弧焊机器人;控制系统ABSTRACTThe robot is the mechanical-electrical production which is composed of the technique of mechanical、electrical、sensor、control. Coming the 80 age, with the application of the automatic manufacture pipelining、flexible manufacture system and flexible automation, the robot will exert the profound influence on this. A characteristic of the robot is its ability to complete object manipulation or moving task through programming under the auto-control. The constitution and performance of the robot embody each quality of the man and robot, especially the man’s intelligence and applicability as well as the veracity of the robot’s task and the ability of completing task under each environment.A joint type robot was designed in this paper.It had six degrees of freedom.The wrist had three degrees of freedom and the other joints had three degrees of freedom.The painting robot’s joints were driven by motors.This scheme introduced some basic information and theory of the robots. It is included that the composition of the robot, the group of the robot, and the main capability of technology. It consulted the structure of the common robot to design the structure and computer control system of six degrees of freedom robot. After demonstrating the feasibility of robot mechanics, the artic le have designed the robot’s entity structure with Pro/engineer and AutoCAD and otherwise software from the matter of fact.KEYWORDS:Six degrees of freedom;Arc welding robot;Control system目录摘要 ................................................................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章绪论1.1课题研究的目的及意义焊接是制造业中最重要的工艺技术之一。
它在机械制造、核工业、航空航天、能源交通、石油化工及建筑和电子等行业中的应用越来越广泛。
随着科学技术的发展,焊接已从简单的构件连接方法和毛坯制造手段,发展成为制造业中一项基础工艺,一种生产尺寸精确的产品的生产手段。
传统的手工焊接已不能满足现代高技术产品制造的质量、数量要求。
因此,保证焊接产品质量的稳定性、提高生产率和改善劳动条件已成为现代焊接制造工艺发展亟待解决的问题。
电子技术、计算机技术、数控及机器人技术的发展为焊接过程自动化提供了十分有利的技术基础,并已渗透到焊接各领域中。
近20年来,在半自动焊、专机设备以及自动焊接技术方面已取得了许多研究和应用成果,表明焊接过程自动化已成为焊接技术新的生长点之一。
从21世纪先进制造技术的发展要求看,焊接自动化生产已是必然趋势。
焊接机器人的诞生是焊接自动化革命性的进步,它突破了焊接刚性自动化的传统方式,开拓了一种柔性自动化的生产方式,从而使中小批量的产品自动化焊接成为可[1]。
焊接机器人已经广泛应用于汽车、工程机械、摩托车等行业,极大地提高了焊接生产的自动化水平,使焊接生产效率和生产质量产生了质的飞跃。
同时改善了工人的劳动环境[2]。
但是,现在焊接领域中自动化程度最高的手臂式机器人在使用时有两个局限性:一个是它的活动范围较小,因为它像一个手臂,手臂长1.5~2米,也就是其活动半径,所以焊接的工件不能太长,最大范围也不能超过2米。
二是它必须用编程或示教进行工作,对不规则的焊缝,特别是在焊接过程中焊缝发生形变时,则很难适应。
然而,许多大型工件体积非常庞大,而且必须在工地和现场进行焊接。
例如:石化工业中的大型储油罐、球罐,造船业中的各种轮船,对这类产品的焊接,就很难实现自动化,许多建设工作仍然采用人工焊接[3]。
因此,给焊接机器人加装各种传感器,使它们具有焊接路径自主获取、焊缝跟踪以及焊接参数在线调整等能力,具有很高的实用价值。
机器人焊接过程的自主化和智能化已经成为科研工作者的一个研究重点。
移动焊接机器人由于其良好的移动性、强的磁吸附力以及较高的智能,成为解决大型焊接结构件自动化焊接的有效方法[4]。
尽管自主移动机器人的实用化研究还不够完善,但移动机器人是解决无轨道,无导向,无范围限制焊接的良好方案。
1.2国内外研究现状自1962年美国推出世界上第一台Unimate型和Versatra型工业机器人以来,越来越多的工业机器人投入生产使用中。
这其中大约有半数是焊接机器人。
焊接机器人是在工业机器人上装备焊接系统,如送丝机、软管、焊枪、焊炬或焊钳,并配备相应的焊接电源的自动化焊接装备[1]。
从20世纪60年代诞生和发展到现在,焊接机器人可大致分为三代:第一代是指基于示教再现工作方式的焊接机器人,由于其具有操作简便、不需要环境模型、示教时可修正机械结构带来的误差等特点,在焊接生产中得到大量使用。
第二代是指基于一定传感器信息的离线编程焊接机器人,得益于焊接传感器技术和离线编程技术的不断改进,这类机器人现已进入应用研究的阶段。
第三代是指装有多种传感器,接收作业指令后能根据客观环境自行编程的高度适应性智能焊接机器人,由于人工智能技术的发展相对滞后,这一代机器人正处于试验研究阶段。
随着计算机控制技术的不断进步,使焊接机器人由单一的示教再现型向多传感、智能化方向发展将成为科研人员追求的目标[5]。
焊接机器人的技术水平在不断的进步,目前,焊接机器人几乎全部采用交流伺服电机驱动,这种电机因为没有电刷,故障率很低。
控制器中普遍采用32位的计算机,除可以控制机器人本体的5-6个轴外,还可以使外围设备和机器人协调联动。
例如,日本安川公司的新型焊接机器人控制器NX100技术中,一台控制器能同时控制四台机器人共36轴(每台机器人有本体6个轴,3个外部轴),并且能够使用软PLC对周围装置进行控制。
与NX100配套的示教盒也采用了功能强大的Windows CE操作系统。
而瑞士的ABB等其他公司也有类似的控制器产品,如ABB的第五代机器人控制器IRC5[6-7]。
配套焊接系统也有很多新的进展,在1993年的埃森展览会上,日本松下公司把旋转电弧焊技术用于弧焊机器人。
由于采用旋转电弧焊时,焊丝能够以50Hz以上的频率旋转,所以用这种技术进行焊缝跟踪时,其跟踪精度比机器人经常采用的摆动焊(摆动频率小于10Hz)要高得多[8]。
该公司还于1993年首先销售在控制柜中内藏焊机的机器人,依靠数字通讯技术实现了焊机和机器人的结合。
并于2004年研制出了TAWERS机器人,实现了焊机和机器人的融合,即由机器人控制器直接控制焊接波形。
其中焊机采用了频率为100kHz的逆变电源,体积小巧,控制精度高。
焊机和机器人融合的优点主要有焊机和焊枪的动作能够实现同步的精确控制,便于实现缜密的焊接条件控制,并使焊接系统小型化。
另外,该机器人把送丝机和机器人手臂做成一体,使送丝机能够配合焊枪的动作进行转动,以保证送丝始终顺畅。
焊接是工业机器人应用最重要的领域之一,随着国外对工业机器人在焊接方面的研究应用,基于生产实践的需要,我国也开始了焊接机器人的研究。
20世纪50年以来我国在焊缝自动跟踪方面有了长足发展,技术水平不断提高,并取得了许多应用成果。
我国已发展了各种类型的传感器技术,控制坐标已从单坐标和双坐标发展到了多坐标。
20世纪50~60年代多采用接触跟踪,西安交通大学和三桥机车车辆厂是中国从事接触跟踪和电磁跟踪研究较早的单位。
60~70年代后期发展了电磁跟踪、光电跟踪、电弧跟踪、激光跟踪等非接触跟踪技术。
华中科技大学与湖北造船厂合作研制成功全位置电磁跟踪气体保护焊机,跟踪精度达±1mm。
华南理工大学与广州造船厂共同研制的电磁立焊缝自动跟踪焊机,用在万吨轮的焊接上。
天水电气传动研究所和上海造船工艺研究所合作,研制的光电跟踪装置用于螺旋管焊接和船舶的焊接生产中。
哈尔滨焊接研究所与辽阳钢厂合作研制的激光跟踪装置用于螺旋管焊接自动生产线等。
20世纪80年代后期,微机跟踪和电视跟踪技术得到迅速发展,从而为传统焊接自动化向现代焊接自动化发展奠定了基础[9]。
从20世纪70年代末开始,清华大学潘际銮院士对电弧传感焊缝跟踪做了大量研究。
80年代末,潘院士在电弧传感器结构及控制方面又进行了新的研究,研制出一种空心马达式高速旋转扫描电弧传感器,并成功地对一种无道轨的自动小车进行跟踪控制,获得了专利[[10]。
此外,哈尔滨工业大学研制成功了单片机控制高精度激光跟踪系统,西北工业大学研制成功微处理机控制熔化极脉冲窄间隙焊缝自动跟踪系统等,都获得了较好的自动控制效果[11]。
计算机图像法控制技术也在80年代研究成功,如水电部电力建设研究所研制成功DL-64固态图像传感器进行焊缝跟踪的装置。
总的说来,我国的焊接研究人员对各种焊缝跟踪方法进行了研究,并在某些特定的应用中获得了成功。
但是,由于种种原因,我国的焊缝跟踪技术大都还停留在实验室中,在生产中应用的绝大部分还是针对特定焊接对象、工艺和焊接状况的焊缝跟踪系统,能够形成商业化的产品非常少见,而这正是我国在焊缝跟踪领域与发达国家的最大差距所在[12]。
第2章焊接机器人系统组成2.1系统总体结构本论文研究的爬行式焊接机器人系统主要由运动机构、焊接系统、检测系统与控制系统四部分组成,系统基本框架如图2.1所示。
该机器人的运动机构由爬行机构和十字滑块组成;焊接系统包括有焊接电源、送气送丝机构、焊炬摆动机构组成;检测系统包括有激光图像传感器,霍尔传感器,限位开关和位移传感器等各种传感器来得到各种可用于控制的信息与信号;控制部分由控制器、人机界面、驱动电路及设备、远程操作盒等几部分组成。
2.2小车部分该爬行式全位置焊机器人半履带小车,特征是小车的后驱动依靠两个后交(直)流伺服电机单独驱动两根履带,具有较强的驱动力,双履带为小车左、右配置,从动链轮的芯轮轴置于可前后和上下移动的调节滑块和弹性悬架上,前轮既起转向作用又具有驱动功能,小车牵引力得到增强,能满足在小车负载较大时对牵引力的需求,转向精度高;依靠永磁磁钢、扼铁与被焊工件间形成强磁路所构成的吸附磁路吸附在所需焊接的钢构件上。
小车由控制电路发出信号控制交(直)流伺服电机和转向步进电机,从而完成焊缝轨迹自动跟踪,交(直)流伺服电机调速方便,反应速度快,可实现无级变速,能保证小车精确位置移动。
2.3运动机构焊接机器人运动机构的任务是携带焊接装置,移动到工件壁面上所需到达的任意位置。
该机器人具备6个自由度,包括焊炬的X、Y、Z三个方向平动及转动姿态的调整。
2.3.1爬行机构2.3.1.1移动方式目前移动机器人采用的移动机构类型主要有轮式、步行式和履带式三种。
轮式具有移动平稳、机动性高和便于操作等优点,但是其着地面积小、壁面适应性差;步行式能够在凹凸不平的地面上行走,可跨越台阶,具有良好的机动性,但存在运动间歇大、稳定性差等问题[20]。
这两种移动机构都无法很好地满足焊接的实际要求。
履带式能够在凹凸不平的地面上行走,稳定性好,且能够爬越较大斜坡,适合焊接现场需要。
综合以上考虑,本论文所设计机器人采用履带式移动机构,由两个电机分别带动两个无轨道履带运动。
2.3.1.2传动方式根据结构的需要,综合考虑性能成本等方面的原因,本论文选用了链传动作为履带前后轮传动方式。
链传动主要用在要求工作可靠,且两轴相距较远。
与带传动相比,链传动无弹性滑动和打滑现象,因而能保持准确的平均传动比,传动效率高。
整个行走机构安装在车体两侧,由主动链轮、行走轮、链条、可控永磁装置及链条张紧机构组成。
可以在车体内部的一端安装动力部分,其输出分别带动车体两侧行走机构的主动链轮和行走轮,在车体内部的另一端安置行走轮轴,其两端安装链轮和行走轮。
链轮带动两根封闭式的链条滚动,在两根链条之间的空隙处安装可控永磁铁装置,可控永磁铁装置随链条运动。
在车体两侧的侧板下端装有磁悬浮构件,以增加吸附力。
将车体放在导磁性材料的工件上,车体就可以吸附在上面,启动电机,车体即可在工件上爬行[20-21]。
2.3.1.3吸附方式由于焊接机器人要求在壁面、球面、管道等曲面上爬行,所以运动机构必须具有较强的壁面适应能力和承载能力。
目前爬壁机器人的吸附方式有三种:真空吸附、磁吸附和推力吸附。
由于焊接工件表面为导磁性材料,且凹凸不平,为了提高吸附力,所以本课题选用磁吸附法作为机器人吸附方式。
2.3.1.4驱动方式本机器人系统是采用两轮独立驱动的双履带结构。
可采用两台交流伺服电机分别作为两履带轮的驱动电机,驱动单元包括带有减速齿轮的交流电机、伺服放大器以及用作速度反馈的旋转光码盘,它们提供转动时所需要的转速和力矩。