太原市2017~2018学年第一学期初二期末考试数学试卷
┃精选3套试卷┃2018届太原市八年级上学期期末考前模拟数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与∠A 的大小关系是( )A .∠BOC=2∠AB .∠BOC=90°+∠AC .∠BOC=90°+12∠A D .∠BOC=90°-12∠A 【答案】C 【详解】∵BO 平分∠ABC ,CO 平分∠ACB ,∴∠OBC=12∠ABC ,∠OCB=12∠ACB , ∴∠OBC+∠OCB=12(∠ABC+∠ACB ))=12(180°-∠A )=90°−12∠A ,根据三角形的内角和定理,可得 ∠OBC+∠OCB+∠BOC=180°,∴90°-12∠A+∠BOC=180°, ∴∠BOC=90°+12∠A .故选C . 【点睛】(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°;(2)此题还考查了角平分线的定义,要熟练掌握,解答此题的关键是要明确:一个角的平分线把这个角分成两个大小相同的角.2.下列长度的三条线段,能组成三角形的是( )A .12,4cm cm cm ,B .15,9,3cm cm cmC .14135cm cm cm ,,D .4,7,13cm cm cm【答案】C【分析】根据三角形三边关系定理:三角形任意两边之和大于第三边进行分析即可. 【详解】解:A 、1+2<4,不能组成三角形,故此选项错误; B 、3+9<15,不能组成三角形,故此选项错误; C 、13+5>14,能组成三角形,故此选项正确; D 、4+7<13,不能组成三角形,故此选项错误;故选:C.【点睛】此题主要考查了三角形的三边关系,只要两条较短的线段长度之和大于第三条线段的长度即可.3.下列命题为真命题的是()A.三角形的一个外角大于任何一个和它不相邻的内角B.两直线被第三条直线所截,同位角相等C.垂直于同一直线的两直线互相垂直D.三角形的外角和为180【答案】A【解析】根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.【详解】三角形的一个外角大于任何一个和它不相邻的内角,A是真命题;两条平行线被第三条直线所截,同位角相等,B是假命题;在同一平面内,垂直于同一直线的两直线互相平行,C是假命题;三角形的外角和为360°,D是假命题;故选A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.下列图形①线段、②角、③等腰三角形、④直角三角形,是轴对称图形的是()A.①②B.③④C.①②③D.②③④【答案】C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得到轴对称图形,再根据对称轴的条数进行进一步筛选可得答案.【详解】解:根据轴对称图形的性质得出:线段,角,等腰三角形都是轴对称图形,故一共有3个轴对称图形.故选:C.【点睛】本题主要考查了轴对称图形,关键是找到图形的对称轴.5.某校组织学生参观绿博园时,了解到某种花的花粉颗粒的直径大约为0.0000065米.将0.0000065用科学记数法表示为10na 的形式,其中n的值为( )A.-6 B.6 C.-5 D.-7【答案】A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000065=6.5×10-6,则n=﹣6.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB边上,AD=AC,AE⊥CD,垂足为F,与BC交于点E,则BE的长是( )A.1.5 B.2.5 C.83D.3【答案】B【分析】连接DE,由勾股定理求出AB=5,由等腰三角形的性质得出CF=DF,由线段垂直平分线的性质得出CE=DE,由SSS证明△ADE≌△ACE,得出∠ADE=∠ACE=∠BDE=90°,设CE=DE=x,则BE=4-x,在Rt△BDE 中,由勾股定理得出方程,解方程即可.【详解】解:连接DE,如图所示,∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴222234AC BC++=5,∵AD=AC=3,AF⊥CD,∴DF=CF,∴CE=DE,BD=AB-AD=2,在△ADE 和△ACE 中,AC AD CE DE AE AE =⎧⎪=⎨⎪=⎩, ∴△ADE ≌△ACE (SSS ), ∴∠ADE=∠ACE=90°, ∴∠BDE=90°,设CE=DE=x ,则BE=4-x ,在Rt △BDE 中,由勾股定理得:DE 2+BD 2=BE 2, 即x 2+22=(4-x )2, 解得:x=1.5; ∴CE=1.5; ∴BE=4-1.5=2.5 故选:B . 【点睛】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解题的关键. 7.下列等式正确的是( ) A .(﹣1)﹣3=1B .(﹣2)3×(﹣2)3=﹣26C .(﹣5)4÷(﹣5)4=﹣52D .(﹣4)0=1【答案】D【分析】分别根据负整数指数幂的运算法则,积的乘方运算法则,同底数幂的除法法则以及任何非零数的零次幂等于1对各个选项逐一判断即可.【详解】A .(﹣1)﹣3=﹣1,故本选项不合题意;B .(﹣2)3×(﹣2)3=[(﹣2)×(﹣2)]3=(22)3=26,故本选项不合题意;C .(﹣5)4÷(﹣5)4=1,故本选项不合题意;D .(﹣4)0=1,正确,故本选项符合题意. 故选:D . 【点睛】本题主要考查了同底数幂的除法,负整数指数幂,幂的乘方与积的乘方以及零指数幂,熟记幂的运算法则是解答本题的关键.8.下列交通标志是轴对称图形的是( )A.B.C.D.【答案】C【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9.下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.13 2【答案】D【分析】根据勾股定理的逆定理判断即可.【详解】解:1+2=3,A不能构成三角形;22+32≠42,B不能构成直角三角形;42+52≠62,C不能构成直角三角形;12+32=22,D能构成直角三角形;故选D.【点睛】本题考查了能构成直角三角形的三边关系,解题的关键是掌握勾股定理.10.某学校计划挖一条长为300米的供热管道,开工后每天比原计划多挖5米,结果提前10天完成.若设原计划每天挖x米,那么下面所列方程正确的是()A.300300105x x-=+B.300300105x x-=-C.300300105x x-=+D.300300105x x-=-【答案】A【分析】若计划每天挖x米,则实际每天挖x+5米,利用时间=路程÷速度,算出计划的时间与实际时间作差即可列出方程.【详解】原计划每天挖x米,则实际每天挖x+5米,那么原计划所有时间:300x;实际所有时间:3005x+.提前10天完成,即300300105x x-=+.故选A.【点睛】本题考查分式方程的应用,关键在于理解题意找出等量关系.二、填空题11.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的部分对应值,x …﹣2 ﹣1 0 …y …m 2 n …则m+n的值为_____.【答案】1.【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n;∴m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=1.故答案为:1.【点睛】本题主要考查一次函数的待定系数法,把m+n看作一个整体,进行计算,是解题的关键.12.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了_______场.【答案】1【详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),∴胜场:40×(1﹣20%﹣25%)=40×55%=1(场).故答案为:1.【点睛】本题考查1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系.13.二次三项式29x kx -+是一个完全平方式,则k=_______. 【答案】±6【分析】根据完全平方公式的展开式,即可得到答案. 【详解】解:∵29x kx -+是一个完全平方式, ∴2136k =±⨯⨯=±; 故答案为6±. 【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式的展开式. 14.分解因式:3m 2﹣6mn+3n 2=_____. 【答案】3(m-n )2【解析】原式=2232)m mn n -+(=23()m n - 故填:23()m n -15.有6个实数:23-,17,0.31313120,______.【分析】先根据无理数的定义,找出这些数中的无理数,再计算所有无理数的和.【详解】无理数有:,∴⎛ ⎝=. 【点睛】本题是对无理数知识的考查,熟练掌握无理数的知识和实数计算是解决本题的关键.16.如图,ABC 中,90BAC ∠=,8AC cm =,DE 是BC 边上的垂直平分线,ABD 的周长为14cm ,则ABC 的面积是______2cm .【答案】1【解析】根据线段垂直平分线性质得出BD=DC,求出AB+AC=14cm,求出AB,代入12×AB×AC求出即可.【详解】解:∵DE是BC边上的垂直平分线,∴BD=DC,∵△ABD的周长为14cm,∴BD+AD+AB=14cm,∴AB+AD+CD=14cm,∴AB+AC=14cm,∵AC=8cm,∴AB=6cm,∴△ABC的面积是12AB×AC=12×6×8=1(cm2),故答案为:1.【点睛】本题考查了三角形的面积和线段垂直平分线性质,注意:线段垂直平分线上的点到线段的两个端点的距离相等.17.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是_____cm1.【答案】1【分析】根据30°的直角三角形,30°所对的边是斜边的一半,可得AC=1cm,进而求出阴影三角形的面积. 【详解】解:∵∠B=30°,∠ACB=90°,AB=4cm,∴AC=1cm,∵∠AED=∠ACB=90°,∴BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=1cm.故S △ACF =12×1×1=1(cm 1). 故答案为1. 【点睛】本题考查了30°的直角三角形的性质,熟练掌握相关性质定理是解题关键. 三、解答题18.在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为()()()2,4,0,4,2,1--A B C ,DEF ∆与ABC ∆关于x 轴对称,A 与,D B 与,E C 与F 对应.(1)在平面直角坐标系中画出ABC ∆;(2)在平面直角坐标系中作出DEF ∆,并写出D E F 、、的坐标.【答案】(1)详见解析;(2)图详见解详, ()()()2,4,0,4,2,1---D E F 【分析】(1)根据三点的坐标,在直角坐标系中分别标出位置即可;(2)关于x 轴对称的点的坐标,横坐标不变,纵坐标互为相反数,从而可得出D 、E 、F 的坐标. 【详解】(1)如图所示:(2)如图所示:()()()2,4,0,4,2,1---D E F【点睛】考查了坐标与图形性质、轴对称作图,解答本题的关键是正确的找出三点的位置,另外要掌握关于x 轴对称的点的坐标的特点.19.某市为了鼓励居民在枯水期(当年11月至第二年5月)节约用电,规定7:00至23:00为用电高峰期,此期间用电电费y 1(单位:元)与用电量x (单位:度)之间满足的关系如图所示;规定23:00至第二天早上7:00为用电低谷期,此期间用电电费y 2(单位:元)与用电量x (单位:元)之间满足如表所示的一次函数关系.(1)求y 2与x 的函数关系式;并直接写出当0≤x ≤180和x >180时,y 1与x 的函数关系式;(2)若市民王先生一家在12月份共用电350度,支付电费150元,求王先生一家在高峰期和低谷期各用电多少度. 低谷期用电量x 度 … 80 100 140 … 低谷期用电电费y 2元…202535…【答案】(1)y 2与x 的函数关系式为y =1.25x ;()()10.501800.618180x x y x x ⎧≤≤⎪=⎨->⎪⎩;(2)王先生一家在高峰期用电251度,低谷期用电111度.【分析】(1)设y 2与x 的函数关系式为y =k 2x+b 2,代入(81,21)、(111,25)解得y 2与x 的函数关系式;设当1≤x ≤181时,y 1与x 的函数关系式为y =1.5x ;当x >181时,设y 1=k 1+b 1 代入(181,91)、(281,151),即可y 1与x 的函数关系式.(2)设王先生一家在高峰期用电x 度,低谷期用电y 度,根据题意列出方程求解即可. 【详解】(1)设y 2与x 的函数关系式为y =k 2x+b 2,根据题意得2222802010025k b k b +=⎧⎨+=⎩, 解得220.250k b =⎧⎨=⎩ ,∴y 2与x 的函数关系式为y =1.25x ;当1≤x ≤181时,y 1与x 的函数关系式为y =1.5x ; 当x >181时,设y 1=k 1+b 1,根据题意得111118090280150k b k b +=⎧⎨+=⎩,解得110.618k b =⎧⎨=-⎩ , ∴y 1与x 的函数关系式为y =1.6x ﹣18;∴()()10.501800.618180x x y x x ⎧≤≤⎪=⎨->⎪⎩; (2)设王先生一家在高峰期用电x 度,低谷期用电y 度,根据题意得3500.5+0.25150x y x y +=⎧⎨=⎩, 解得250100x y =⎧⎨=⎩. 答:王先生一家在高峰期用电251度,低谷期用电111度.【点睛】本题考查了一元一次方程和二元一次方程组的实际应用,掌握一元一次方程和二元一次方程组的性质以及解法是解题的关键.20.在边长为1的小正方形网格中,△AOB 的顶点均在格点上.(1)B 点关于y 轴的对称点坐标为;(2)将△AOB 向左平移3个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;(3)在(2)的条件下,A 1的坐标为 .【答案】(3)(﹣3,3);(3)作图见解析(3)(﹣3,3).【解析】试题分析:(3)关于y 轴对称的点坐标是纵坐标相同,横坐标互为相反数,(3)分别将三个顶点A 、O 、B ,向左方向平移三个单位,然后连线.(3)左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3.试题解析:(3)因为B 的坐标是(3,3),所以B 关于y 轴对称的点的坐标是(-3,3)(3)将A 向左移三个格得到A 3,O 向左平移三个单位得到O 3,B 向左平移三个单位得到B 3,再连线得到△A 3O 3B 3.(3)因为A 的坐标是(3,3),左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3,所以A 3是(-3,3).考点:3.关于y 轴对称点坐标规律3.图形平移后点的坐标规律21.(1)式子x yz +y xz +z xy的值能否为0?为什么? (2)式子()()x y y z z x ---+()()y z x y z x ---+()()z x x y y z ---的值能否为0?为什么? 【答案】(1)不能为1,理由见解析;(2)不能为1,理由见解析【分析】(1)将原式通分,相加,根据原式的分母不为1,可得x≠1,y≠1,z≠1,从而分子也不为1,则原式的值不能为1;(2)将原式通分,相加,根据原式的分母不为1,可得y ﹣z≠1,x ﹣y≠1,z ﹣x≠1,从而分子也不为1,则原式的值不能为1.【详解】解:(1)222x y z x y z yz xz xy xyz++++=, 0yz ≠,0xz ≠,0xy ≠0x ∴≠,0y ≠,0z ≠2220x y z ∴++≠∴式子x y z yz xz xy++的值不能为1; (2)222()()()()()()()()()()()()x y y z z x x y y z z x y z z x x y z x x y y z x y y z z x ----+-+-++=--------- ()()0y z z x --≠,()()0x y z x --≠,()()0x y y z --≠0y z ∴-≠,0x y -≠,0z x -≠()()()0x y y z z x ∴---≠,222()()()0x y y z z x -++-≠-∴式子()()()()()()x y y z z x y z z x x y z x x y y z ---++------的值不能为1. 【点睛】本题考查了分式的加减及偶次方的非负性,掌握通分的方法,并明确偶次方的非负性,是解题的关键. 22.解下列分式方程.(1)1212x x=- (2)2115225x x x -+-=-- 【答案】(1)14x =;(2)2x = 【分析】(1)根据解分式方程的一般步骤解分式方程即可;(2)根据解分式方程的一般步骤解分式方程即可;【详解】解:(1)1212x x=- 化为整式方程为:122x x -=移项、合并同类项,得41x -=-解得:14x = 经检验:14x =是原方程的解. (2)2115225x x x -+-=-- 化为整式方程为:2152x x -++=-移项、合并同类项,得36x =解得:2x =经检验:2x =是原方程的解.【点睛】此题考查的是解分式方程,掌握解分式方程的一般步骤是解决此题的关键,需要注意的是解分式方程要验根.23.如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.网格中有一个格点ABC ∆(即三角形的顶点都在格点上).(1)在图中作出ABC ∆关于直线l 的对称图形111A B C ∆(要求点A 与1A ,B 与1B ,C 与1C 相对应). (2)在直线l 上找一点P ,使得PAC ∆的周长最小.【答案】见解析【分析】(1)直接利用关于直线对称点的性质得出对应点位置进而得出答案;(2)利用轴对称求最短路线的方法得出答案.【详解】(1)如图所示:111A B C ∆ 即为所求;(2)如图所示:点P 即为所求的点.【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.24.本学期我们学习了角平分线的性质定理及其逆定理,那么,你是否还记得它们的具体内容. (1)请把下面两个定理所缺的内容补充完整:角平分线的性质定理:角平分线上的点到______的距离相等.角平分线性质定理的逆定理:到角的两边距离相等的点在______.(2)老师在黑板上画出了图形,把逆定理的已知、求证写在了黑板上,可是有些内容不完整,请你把内容补充完整.已知:如右图,点P 是AOB ∠内一点,PD AO ⊥,PE OB ⊥,垂足分别为D 、E ,且PD =______.求证:点P 在AOB ∠的______上(3)请你完成证明过程:(4)知识运用:如图,三条公路两两相交,现在要修建一个加油站,使加油站到三条公路的距离相等,加油站可选择的位置共有______处.【答案】(1)这个角的两边,角平分线上;(2)PE ,平分线上;(3)见解析;(1)1【分析】(1)根据角平分线的性质定理和判定定理解答;(2)根据题意结合图形写出已知;(3)作射线OP ,证明Rt △OPD ≌Rt △OPE 即可;(1)根据角平分线的性质定理解答.【详解】解:(1)角平分线性质定理:角平分线上的点到这个角的两边的距离相等.角平分线判定定理:到角的两边距离相等的点在角平分线上,故答案为:这个角的两边;角平分线上;(2)已知:如图1,点P 是∠AOB 内一点,PD ⊥AO ,PE ⊥OB ,垂足分别为D 、E ,且PD=PE ,求证:点P 在∠AOB 的平分线上.故答案为:PE ;平分线上;(3)如图:作射线OP ,PD AO ⊥,PE OB ⊥,90PDO PEO ∴∠=∠=︒在Rt OPD △和Rt OPE △中,PD PE OP OP =⎧⎨=⎩∴Rt OPD Rt OPE ≌△△∴DOP EOP ∠=∠∴OP 是AOB ∠的平分线,即点P 在AOB ∠的平分线上.(1)如图2,M 、N 、G 、H 即为所求,故答案为:1.【点睛】本题考查的是角平分线的性质定理和判定定理的应用,掌握角的平分线上的点到角的两边的距离相等、到角的两边距离相等的点在角平分线上是解题的关键.25.如图,在平面直角坐标系中,点A ,B 分别在y 轴,x 轴正半轴上.(1)OAB ∠的平分线与ABO ∠的外角平分线交于点C ,求C ∠的度数;(2)设点A ,B 的坐标分别为()0,a ,(),0b ,且满足224250a a b b -+-+=,求OAB S 的面积; (3)在(2)的条件下,当ABD △是以AB 为斜边的等腰直角三角形时,请直接写出点D 的坐标.【答案】(1)45°;(2)1;(3)(1.5,1.5)或(-0.5,0.5)【分析】(1)根据角平分线的定义即可得出∠BAC=12∠OAB 、∠DBA=12∠EBA ,再根据三角形的外角的性质即可得出∠C=12∠AOB=45°; (2)利用非负数的性质求出a ,b 的值,即可求得OAB S 的面积;(3)作DE ⊥x 轴于E ,DF ⊥y 轴与F ,可得△DEB ≌△DFA ,则BE=AF ,DF=DE ,推出四边形OEDF 是正方形,OE=OF ,设BE=AF=x ,则OA-x=OB+x,求出x 的值,即可得D 的坐标,同理求出点D 1的坐标.【详解】解:(1)∵AC 平分∠OAB ,BD 平分∠EBA ,∴∠BAC=12∠OAB 、∠DBA=12∠EBA , ∵∠EBA=∠OAB+∠AOB , ∴∠DBA=12(∠OAB+∠AOB )=∠C+∠CAB , ∴∠C=12(∠OAB+∠AOB )-∠CAB =12(∠OAB+∠AOB )-12∠OAB =12∠AOB =45°;(2)∵且满足224250a a b b -+-+=,∴2244210a a b b -++-+=()()22210a b -+-= ∴a=2,b=1,∵点A ,B 的坐标分别为()0,a ,(),0b ,∴OA=2,OB=1,∴OAB S =1121122OA OB ⋅=⨯⨯=; (3)作DE ⊥x 轴于E ,DF ⊥y 轴与F ,∵ABD △是以AB 为斜边的等腰直角三角形,∴AD=BD ,∠ADB=90°,∵DE ⊥x 轴于E ,DF ⊥y 轴与F ,∠AOB=90°,∴四边形OEDF 是矩形,∠BED=∠AFD=90°,∴∠EDF=90°,∴∠EDB=∠FDA ,∴△DEB ≌△DFA ,∴BE=AF ,DF=DE ,∴四边形OEDF 是正方形,∴OE=OF ,设BE=AF=x ,则OA-x=OB+x,∵OA=2,OB=1,∴x=0.5,OE=OF=1.5,∴D 的坐标为(1.5,1.5),同理可得PD 1=0.5,OP=1.5-1=0.5,D 1的坐标为(-0.5,0.5),即D 的坐标为(1.5,1.5)或(-0.5,0.5).【点睛】本题考查全等三角形的判定与性质,三角形外角的性质,坐标与图形性质、三角形的面积计算,正方形的判定和性质等知识,熟练掌握基础知识是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列实数为无理数的是()A.0.101 B.9C.227D.π【答案】D【解析】由题意根据无理数的概念即无理数就是无限不循环小数,进行分析判断可得答案.【详解】解:A、0.101是有理数,B、9=3是有理数,C、227是有理数,D、π是无限不循环小数即是无理数,故选:D.【点睛】本题考查的是无理数的概念、掌握算术平方根的计算方法是解题的关键.2.把分式11361124xx+-的分子与分母各项系数化为整数,得到的正确结果是()A.3243xx+-B.4263xx+-C.2121xx+-D.4163xx+-【答案】B【分析】只要将分子分母要同时乘以12,分式各项的系数就可都化为整数.【详解】解: 不改变分值, 如果把其分子和分母中的各项的系数都化为整数,则分子分母要同时乘以12, 即分式11361124xx+-=4263xx+-故选B.【点睛】解答此类题一定要熟练掌握分式的基本性质, 无论是把分式的分子和分母扩大还是缩小相同的倍数, 分式的值不变.3.如图,由8个全等的小长方形拼成一个大正方形,线段AB的端点都在小长方形的顶点上,若点C是某个小长方形的顶点,连接CA,CB,那么满足△ABC是等腰三角形的点C的个数是()A .3B .4C .5D .6【答案】D 【分析】根据等腰三角形的判定即可得到结论.【详解】解:如图所示,使△ABP 为等腰三角形的点P 的个数是6,故选:D .【点睛】本题考查了等腰三角形的判定,正确的找出符合条件的点P 是解题的关键.4.如图,在ABC ∆中,90ABC ∠=︒,点D 是BC 边上的一点,点P 是AD 的中点,若AC 的垂直平分线经过点D ,8DC =,则BP =( )A .8B .6C .4D .2【答案】C 【分析】根据线段垂直平分线的性质可得8AD DC ==,再根据直角三角形斜边中线定理即可求得答案.【详解】解:∵AC 的垂直平分线经过点D ,∴8AD DC ==,∵90ABC ∠=︒,点P 是AD 的中点, ∴118422BP AD ==⨯=, 故选:C .【点睛】本题考查了线段垂直平分线的性质,直角三角形斜边中线定理.5.已知直线MN EF ∥,一个含30角的直角三角尺()ABC AB BC >如图叠放在直线MN 上,斜边AC 交EF 于点D ,则1∠的度数为( )A .30B .45︒C .50︒D .60︒【答案】D 【分析】首先根据直角三角形的性质判定∠A=30°,∠ACB=60°,然后根据平行的性质得出∠1=∠ACB .【详解】∵含30角的直角三角尺()ABC AB BC >∴∠A=30°,∠ACB=60°∵MN EF ∥∴∠1=∠ACB=60°故选:D.【点睛】此题主要考查直角三角形以及平行的性质,熟练掌握,即可解题.6.下列银行标志中,既不是中心对称图形也不是轴对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,也是中心对称图形,故A 选项不合题意;B 、是轴对称图形,不是中心对称图形,故B 选项不合题意;C 、是轴对称图形,也是中心对称图形.故C 选项不合题意;D 、不是轴对称图形,也不是中心对称图形,故D 选项符合题意;故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.7.已知点M (a ,﹣2)在一次函数y =3x ﹣1的图象上,则a 的值为( )A .﹣1B .1C .13D .﹣13 【答案】D【分析】直接把点M (a ,﹣2)代入一次函数y =3x ﹣1,求出a 的值即可.【详解】解:∵点M (a ,﹣2)在一次函数y =3x ﹣1的图象上,∴﹣2=3a ﹣1,解得a =﹣13, 故选:D .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.已知:如图,在ABC ∆中,AB AC =,AB 的垂直平分线DE ,分别交AB ,AC 于点D ,E .若3AD =,5BC =,则BEC ∆的周长为( )A .8B .10C .11D .13【答案】C 【分析】先根据线段垂直平分线的定义和性质可得2AB AD =,AE BE =,然后求出ABC ∆周长等于AC BC +,再根据已知条件AB AC =,代入数据计算即可得解.【详解】∵DE 是AB 的垂直平分线∴2AB AD =,AE BE =∴BCE ∆的周长BE CE BC AE CE BC AC BC =++=++=+∵26AC AB AD ===,5BC =∴BCE ∆的周长6511=+=.故选:C【点睛】本题涉及到的知识点主要是线段垂直平分线的定义和性质,能够灵活运用知识点将求三角形周长的问题进行转化是解题的关键.9.下列各图中,a ,b ,c 为三角形的边长,则甲,乙,丙三个三角形中和左侧ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙【答案】B 【分析】根据全等三角形的判定定理逐图判定即可.【详解】解:∵甲图为SSA 不能全等;乙图为SAS ;丙图为AAS∴乙、丙两图都可以证明.故答案为B .【点睛】本题考查了全等三角形的判定定理,牢记AAS 、SAS 、ASA 、SSS 可证明三角形全等,AAA 、SSA 不能证明三角形全等是解答本题的关键.10.下列各式不能分解因式的是( )A .224x x -B .214x x ++C .229x y +D .21m - 【答案】C【解析】选项A. 224x x -=2x(x-2) .选项B. 214x x ++=(x+12)2 . 选项C. 229x y + ,不能分.选项D. 21m -=(1-m)(1+m).故选C.二、填空题11.若5x-3y-2=0,则105x ÷103y =_______;【答案】100【分析】由同底数幂除法运算法则,进行计算即可得到答案.【详解】解:∵5320x y --=,∴532x y -=,∴5353210101010100x y x y -÷===;故答案为100.【点睛】本题考查了同底数幂的除法,掌握同底数幂除法法则是解题的关键.12.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.【答案】小李.【详解】解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.故答案为:小李.13.若a+b=3,ab=2,则2()a b -= .【答案】1.【解析】试题分析:将a+b=3平方得:222()29a b a b ab +=++=,把ab=2代入得:22a b +=5,则2()a b -=222a ab b -+=5﹣4=1.故答案为1.考点:完全平方公式.14.若25x y -=,则代数式22288x xy y -+的值为___________.【答案】1【分析】将22288x xy y -+因式分解,然后代入求值即可.【详解】解:22288x xy y -+=()22244x xy y-+ =()222-x y将25x y -=代入,得原式=22550⨯=故答案为:1.【点睛】此题考查的是因式分解,掌握利用提取公因式法和完全平方公式因式分解是解决此题的关键. 15.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩_____.【答案】90分.【解析】试题分析:根据加权平均数的计算公式求解即可.解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.考点:加权平均数.16有意义的x 的取值范围为_______.【答案】x ≤12【分析】根据被开方数大于等于0列式进行计算即可得解.【详解】根据题意得,2-4x≥0,解得x≤12.故答案为:x≤12.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握二次根式的被开方数是非负数.17.诺如病毒的直径大约0.0000005米,将0.0000005用科学记数法可表示为________【答案】5×10-7【解析】试题解析:0.0000005=5×10-7三、解答题18.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD与△CQP全等,理由见解析;②当点Q的运动速度为125cm/s时,能够使△BPD与△CQP全等;(2)经过90s点P与点Q第一次相遇在线段AB上相遇.【分析】(1)①由“SAS”可证△BPD≌△CQP;②由全等三角形的性质可得BP=PC=12BC=5cm,BD=CQ=6cm,可求解;(2)设经过x秒,点P与点Q第一次相遇,列出方程可求解.【详解】解:(1)①△BPD与△CQP全等,理由如下:∵AB=AC=18cm,AD=2BD,∴AD=12cm,BD=6cm,∠B=∠C,∵经过2s 后,BP=4cm ,CQ=4cm ,∴BP=CQ ,CP=6cm=BD ,在△BPD 和△CQP 中,BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵点Q 的运动速度与点P 的运动速度不相等,∴BP≠CQ ,∵△BPD 与△CQP 全等,∠B=∠C ,∴BP=PC=12BC=5cm ,BD=CQ=6cm ,∴t=52, ∴点Q 的运动速度=612552=cm/s ,∴当点Q 的运动速度为125cm/s 时,能够使△BPD 与△CQP 全等; (2)设经过x 秒,点P 与点Q 第一次相遇,由题意可得:125x ﹣2x=36, 解得:x=90, 点P 沿△ABC 跑一圈需要181810232++=(s ) ∴90﹣23×3=21(s ),∴经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.19.在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,△ADC 和△CEB 全等吗?请说明理由;(2)聪明的小亮发现,当直线MN 绕点C 旋转到图1的位置时,可得DE=AD+BE ,请你说明其中的理由;。
★试卷3套精选★太原市2018届八年级上学期数学期末考前模拟试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.以下列各组数为边长,不能构成直角三角形的是( )A.3,4,5 B.1,1,2C.8,12,13 D.2、3、5【答案】C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A. 32+42=52,能构成直角三角形,故不符合题意;B. 12+12=(2)2,能构成直角三角形,故不符合题意;C. 82+122≠132,不能构成直角三角形,故符合题意;D.(2)2+(3)2=(5)2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.如图,四个图标分别是北京大学、人民大学、浙江大学和宁波大学的校徽的重要组成部分,其中是轴对称图形的有()A.1个B.2个C.3个D.4个【答案】B【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】北京大学和宁波大学的校徽是轴对称图形,共2个,故选B.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.a cb b【答案】B【分析】先由数轴观察a、b、c的正负和大小关系,然后根据不等式的基本性质对各项作出正确判断. 【详解】由数轴可以看出a<b<0<c,因此,A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴a cb b>,故选项错误.故选B.【点睛】此题主要考查了不等式的基本性质及实数和数轴的基本知识,比较简单.4.使分式32xx+有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±2【答案】A【分析】分式有意义要求分母不等于零.【详解】解:若分式3xx2+有意义,即x+2≠0,解得:x≠﹣2,故选A.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式概念是解题关键.5.若将实数3-,7,11,23这四个数分别表示在数轴上,则其中可能被如图所示的墨迹覆盖的数是().A.3-B7C11D.3【答案】B【分析】根据算术平方根的概念分别估算各个实数的大小,根据题意判断.【详解】30,273,311<4,3<234,7,故选:B .【点睛】本题考查的是实数和数轴,算术平方根,正确估算算术平方根的大小是解题的关键.6.下列命题的逆命题为假命题的是( )A .如果一元二次方程()200a bx c a ++=≠没有实数根,那么240b ac -<. B .线段垂直平分线上任意一点到这条线段两个端点的距离相等.C .如果两个数相等,那么它们的平方相等.D .直角三角形两条直角边的平方和等于斜边的平方.【答案】C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】A 、逆命题为:如果一元一次方程20ax bx c ++=()0a ≠中240b ac -<,那么没有实数根,正确,是真命题;B 、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,是真命题;C 、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;D 、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题.故选:C .【点睛】考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.7.张老师对本班40名学生的血型作了统计,列出如下的统计表,则本班AB 型血的人数是( )A .16人B .14人C .6人D .4人 【答案】D【分析】根据题意计算求解即可.【详解】由题意知:共40名学生,由表知:P (AB 型)=0.10.10.10.40.350.10.151. ∴本班AB 型血的人数=40×0.1=4名.故选D .【点睛】本题主要考查了概率的知识,正确掌握概率的知识是解题的关键.8.设,,a b c 是三角形的三边长,且满足222a b c ab bc ca ++=++,关于此三角形的形状有以下判断:①是直角三角形; ②是等边三角形; ③是锐角三角形;④是钝角三角形,其中正确的说法的个数有( )A .1个B .2个C .3个D .4个【答案】B【分析】先将原式转化为完全平方公式,再根据非负数的性质得出a b c ==.进而判断即可.【详解】∵222a b c ab bc ca ++=++,∴222222222a b c ab bc ca ++=++,即()()()2220a b b c a c -+-+-=,∴a b c ==,∴此三角形为等边三角形,同时也是锐角三角形.故选:B .【点睛】本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键.9.如图,在ABC ∆中,90,4,3C AC BC ︒∠===,将ABC ∆绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则,B D 两点间的距离为( )A 10B .22C .3D 5【答案】A 【分析】先利用勾股定理计算出AB ,再在Rt △BDE 中,求出BD 即可;【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=5,∵△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,∴AE=AC=4,DE=BC=3,∴BE=AB-AE=5-4=1,在Rt △DBE 中,223110+=故选A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.如图,在△ABC 中,∠B =∠C =60°,点D 在AB 边上,DE ⊥AB ,并与AC 边交于点E .如果AD =1,BC =6,那么CE 等于( )A .5B .4C .3D .2【答案】B 【解析】根据等边三角形的性质和含30°的直角三角形的性质解答即可.【详解】∵在△ABC 中,∠B =∠C =60°,∴∠A =60°,∵DE ⊥AB ,∴∠AED =30°,∵AD =1,∴AE =2,∵BC =6,∴AC =BC =6,∴CE =AC ﹣AE =6﹣2=4,故选:B .【点睛】考查含30°的直角三角形的性质,关键是根据等边三角形的性质和含30°的直角三角形的性质解答.二、填空题11.如图,在ABC ∆中,90C =∠,AD 平分CAB ∠,交BC 于点D ,若ADC 60∠=,2CD =,则ABC ∆周长等于__________.【答案】3+6【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC ,再求出AB 和BD 即可.【详解】因为在ABC ∆中,90C =∠,ADC 60∠=所以30DAC ∠=o所以AD=2CD=4所以=因为AD 平分CAB ∠,所以CAB ∠=2o DAC 60∠=所以o B BAD 30∠=∠=所以所以ABC ∆周长=AC+BC+AB=故答案为:+6【点睛】考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键.12.函数=y 的自变量x 的取值范围是______. 【答案】x≤3【解析】由题意可得,3-x≥0,解得x≤3.故答案为x≤3.13.点P (2,1)--关于x 轴的对称点坐标为________.【答案】(2,1)-【分析】根据点的坐标关于坐标轴对称的方法“关于谁对称,谁就不变,另一个互为相反数”可直接求解.【详解】解:由点P (2,1)--关于x 轴的对称点坐标为(2,1)-;故答案为(2,1)-.【点睛】本题主要考查点的坐标关于坐标轴对称,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键. 14.甲、乙二人做某种机械零件,己知甲每小时比乙多做6个,甲做90个零件所用的时间与乙做60个零件所用的时间相等.设甲每小时做x 个零件,依题意列方程为_________. 【答案】90x =606x - 【分析】设甲每小时做x 个零件,则乙每小时做(x-6)个零件,再根据题中的等量关系即可列出方程.【详解】设甲每小时做x 个零件,则乙每小时做(x-6)个零件,由甲做90个零件所用的时间与乙做60个零件所用的时间相等列出方程为90x=606x.【点睛】此题主要考查分式方程的应用,解题的关键是找出等量关系进行列方程.15.在△ABC中,AB=AC,与∠BAC相邻的外角为80°,则∠B=________.【答案】40°【分析】根据等边对等角可得∠B=∠C,然后根据三角形外角的性质可得∠B+∠C=80°,从而求出∠B.【详解】∵AB=AC,∴∠B=∠C∵与∠BAC相邻的外角为80°,∴∠B+∠C=80°即2∠B=80°∴∠B=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形外角的性质,掌握等边对等角和三角形外角的性质是解决此题的关键.16.面试时,某人的基本知识、表达能力、工作态度的得分分别是80分、70分、85分,若依次按30%、30%、40%的比例确定成绩,则这个人的面试成绩是____________.【答案】79分【分析】根据加权平均数定义解答即可.【详解】这个人的面试成绩是80×30%+70×30%+85×40%=79(分),故答案为:79分.【点睛】本题主要考查加权平均数的计算,掌握加权平均数的定义是解题的关键.17.将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.【答案】y=-x+1.【解析】根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.【详解】解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,∵经过点(2,1),∴1=2a+1,解得:a=-1,∴平移后的直线的解析式为y=-x+1,故答案为:y=-x+1.【点睛】本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.三、解答题18.现有一长方形纸片ABCD,如图所示,将△ADE沿AE折叠,使点D恰好落在BC边上的点F,已知AB =6,BC=10,求EC的长.【答案】8 3【分析】由勾股定理求出BF=8,得出FC=2,设DE=EF=x,则EC=6﹣x,在Rt△CEF中,EF2=FC2+EC2,即x2=22+(6﹣x)2,解得x=103,即可得出答案.【详解】解:∵四边形ABCD是矩形,∴CD=AB=6,AD=BC=10,∠B=∠C=90°,又∵将△ADE折叠使点D恰好落在BC边上的点F,∴AF=AD=10,DE=EF,在Rt△ABF中,AB=6,AF=10,∴22221068-=-=AF AB,∴FC=10﹣8=2,设DE=EF=x,则EC=6﹣x,在Rt△CEF中,EF2=FC2+EC2,即x2=22+(6﹣x)2,解得103x=,∴EC=6﹣x=83,即EC的长为83.【点睛】本题考查了折叠的性质、矩形的性质和勾股定理,利用折叠的性质和矩形的性质得出线段长及未知线段的数量关系,再由勾股定理得出方程是解题的关键.19.学校到- -家文具店给九年级学生购买考试用文具包,该文具店规一次购买300个以上,可享受八折优惠.若给九年级学生每人购买一个,则不能享受八折优惠,需付款2520元;若再多买70个就可享受八折优惠,并且同样只需付款2520元.求该校九年级学生的总人数. (列分式方程解答)【答案】该校九年级学生的总人数是280人.【分析】首先设九年级学生有x 人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款2520元”可得每个文具包的花费是2520x元,根据“若多买70个,就可享受8折优惠,同样只需付款2520元”可得每个文具包的花费是252070x +元,根据题意可得方程即可 【详解】解:设该校九年级学生的总人数是x 人, 由题意得,252025200.870x x ⨯=+ 解得: 280x =,经检验: 280x =是原分式方程的解,且符合题意.答:该校九年级学生的总人数是280人.【点睛】此题主要考查了分式方程的应用,关键是弄清题意,找出题目中的等量关系,列出方程,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.20.陈史李农场2012年某特产种植园面积为y 亩,总产量为m 吨,由于工业发展和技术进步,2013年时终止面积减少了10%,平均每亩产量增加了20%,故当年特产的总产量增加了20吨.(1)求2013年这种特产的总产量;(2)该农场2012年有职工a 人.2013年时,由于多种原因较少了30人,故这种特产的人均产量比2012年增加了14%,而人均种植面积比2012年减少了0.5亩.求2012年的职工人数a 与种植面积y .【答案】 (1) 2013年的总产量270吨;(2)农场2012年有职工570人,种植面积为5700亩.【分析】(1)根据平均每亩产量增加了20%,故当年特产的总产量增加了20吨,列出方程()()20120%110%m m y y ++=-,解方程求出m 的值;(2)根据人均产量比2012年增加了14%,而人均种植面积比2012年减少了0.5亩,列出方程组()()270250114%30110%1302a a y y a a ⎧=+⎪-⎪⎨-⎪=-⎪-⎩①②,解方程组求出结果. 【详解】(1)根据题意得:()()20120%110%m m y y ++=-解得,m=250.∴m +20=270答:2013年的总产量270吨.(2)根据题意得:() ()270250114%30110%1302a ay ya a⎧=+⎪-⎪⎨-⎪=-⎪-⎩①②解①得a=570.检验:当a=570时,a(a-30)≠0,所以a=570是原分式方程的解,且有实际意义.答:该农场2012年有职工570人;将a=570代入②式得,()110%15405702y y-=-,解得,y =5700.答:2012年的种植面积为5700亩.考点:分式方程的应用21.已知:如图,直线AB的函数解析式为y=-2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,若△PEF的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)以上(2)中的函数图象是一条直线吗?请尝试作图验证.【答案】(1)A(1,0);(2)S△PET=-m2+1m,(0<m<1);(3)见解析【分析】(1)根据坐标轴上点的特点直接求值,(2)由点在直线AB上,找出m与n的关系,再用三角形的面积公式求解即可;(3)列表,描点、连线即可.【详解】(1)解:令x=0,则y=8,∴B(0、8)令y=0,则2x+8=0x=1A(1,0),(2)解:点P(m,n)为线段AB上的一个动点,-2m+8=n,∵A(1.0)OA=1∴0<m<1∴S △PEF = 12 PF×PE= 12×m×(-2m+8)=2(-2m+8)=-m 2+1m ,(0<m<1); (3)S 关于m 的函数图象不是一条直线,简图如下:①列表x0 0.5 1 1.5 12 2.5 3 3.5 1 y 0 0.75 3 3.75 1 3.75 3 0.75 0 ②描点,连线(如图)【点睛】此题考查一次函数综合题,坐标轴上点的特点,三角形的面积公式,极值的确定,解题的关键是求出三角形PEF 的面积.22.如图,在平面直角坐标系中,ABC ∆的三个顶点坐标分别为11A (,),4(3)B ,,42C (,).(1)在图中画出ABC ∆关于x 轴对称的111A B C ∆;(2)通过平移,使1C 移动到原点O 的位置,画出平移后的222A B C ∆.(3)在ABC ∆中有一点P m n (,),则经过以上两次变换后点P 的对应点2P 的坐标为 .【答案】(1)图见解析;(2)图见解析;(3)()4,2m n --+【分析】(1)先分别找到A 、B 、C 关于x 轴的对称点111A B C 、、,然后连接11A B 、11B C 、11A C 即可; (2)先判断1C 移动到原点O 的位置时的平移规律,然后分别将11A B 、、1C 按此规律平移,得到22A B 、、2C ,连接22A B 、22B C 、22A C 即可;(3)根据关于x 轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可得到1P ,然后根据(2)中的平移规律即可得到2P 的坐标.【详解】解:(1)先分别找到A 、B 、C 关于x 轴的对称点111A B C 、、,然后连接11A B 、11B C 、11A C ,如下图所示:111A B C ∆即为所求(2)∵42C (,)∴()142C ,-∴()142C ,-到点O (0,0)的平移规律为:先向左平移4个单位,再向上平移2个单位分别将11A B 、、1C 按此规律平移,得到22A B 、、2C ,连接22A B 、22B C 、22A C ,如图所示,222A B C ∆即为所求;(3)由(1)可知,()P m n ,经过第一次变化后为()1,P m n -然后根据(2)的平移规律,经过第二次变化后为()24,2P m n --+故答案为:()4,2m n --+.【点睛】此题考查的是画已知图形关于x 轴对称的图形、平移后的图形、点的对称规律和平移规律,掌握关于x 轴对称图形画法、平移后的图形画法、关于x 轴对称两点坐标规律和坐标的平移规律是解决此题的关键. 23.如图所示,四边形ABCD 中AB=AD ,AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD ,图中有无和△ABE 全等的三角形?请说明理由【答案】证△ABE ≌△ADF (AD=AB 、AE=AF )【分析】由题中条件AC平分∠BCD,AE⊥BC,AF⊥CD,可得AE=AF,由AB=AD,可由HL判定Rt△ABE≌Rt△ADF,即可得证.【详解】图中△ADF和△ABE全等.∵AC平分∠BCD,AF⊥CD,AE⊥CE;∴AF=AE,∠AFD=∠AEB=90°在Rt△ADF与Rt△ABE中,AB=AD,AF=AE∴Rt△ADF≌Rt△ABE.【点睛】本题考查的是全等三角形的判定定理HL,判定定理即“斜边,直角边判定定理”判定直角三角形全等.注意应用.24.一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点.(1)求出该一次函数的表达式;(2)画出该一次函数的图象;(3)判断(﹣5,﹣4)是否在这个函数的图象上?(4)求出该函数图象与坐标轴围成的三角形面积.【答案】(1)y=3x﹣2;(2)图象见解析;(3)(﹣5,﹣4)不在这个函数的图象上;(4)23.【分析】(1)利用待定系数法即可求得;(2)利用两点法画出直线即可;(3)把x=﹣5代入解析式,即可判断;(4)求得直线与坐标轴的交点,即可求得.【详解】解:(1)设一次函数的解析式为y=kx+b∵一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点∴245 k bk b+=⎧⎨-+=-⎩,解得:k3 b2=⎧⎨=-⎩∴一次函数的表达式为y=3x﹣2;(2)描出A、B点,作出一次函数的图象如图:(3)由(1)知,一次函数的表达式为y=3x﹣2将x=﹣5代入此函数表达式中得,y=3×(﹣5)﹣2=﹣17≠﹣4 ∴(﹣5,﹣4)不在这个函数的图象上;(4)由(1)知,一次函数的表达式为y=3x﹣2令x=0,则y=﹣2,令y=0,则3x﹣2=0,∴x=23,∴该函数图象与坐标轴围成的三角形面积为:12×2×23=23.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,一次函数的图象以及三角形的面积,熟练掌握待定系数法是解题的关键.25.为全面打赢脱贫攻坚战,顺利完成古蔺县2019年脱贫摘帽任务,我县某乡镇决定对辖区内一段公路进行改造,根据脱贫攻坚时间安排,需在28天内完成该段公路改造任务.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.【答案】(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队单独承包该项工程,理由见解析【分析】(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,根据题意列出分式方程即可求出答案;(2)因为甲乙两工程队均能在规定的28天内单独完成,所以有二种方案,根据条件列出算式即可求出答案.【详解】解:(1)设甲工程队单独完成该工程需经x天,则乙工程队单独完成该工程需2x天.根据题意得:101012x x+=, 解得:15x =,经检验,15x =是原方程的解,∴当15x =时,230x =,答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)因为乙工程队单独完成该工程需30天,超过了预定工期,所以有如下二种方案:方案一:由甲工程队单独完成.所需费用为:4.5×15=67.5(万元);方案二:由甲乙两队合作完成.所需费用为:(4.5+2.5)×10=70(万元).∵70>67.5,∴应该选择甲工程队承包该项工程.【点睛】本题考查了分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法正确的是( )A .(﹣3)2的平方根是3B .16=±4C .1的平方根是1D .4的算术平方根是2 【答案】D【解析】根据平方根和算术平方根的定义解答即可.【详解】A 、(﹣3)2的平方根是±3,故该项错误;B 、164=,故该项错误;C 、1的平方根是±1,故该项错误;D 、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义. 2.某小组长统计组内1人一天在课堂上的发言次数分别为3,3,0,4,1.关于这组数据,下列说法错误的是( )A .众数是3B .中位数是0C .平均数3D .方差是2.8 【答案】B【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可【详解】A. 3,3,0,4,1众数是3,此选项正确;B. 0,3,3,4,1中位数是3,此选项错误;C. 平均数=(3+3+4+1)÷1=3,此选项正确;D. 方差S 2=15[(3−3)2+(3−3)2+(3−0)2+(3−4)2+(3−1)2]=2.8,此选项正确; 故选B【点睛】本题考查了方差, 加权平均数, 中位数, 众数,熟练掌握他们的概念是解决问题的关键 3.如图,在ABC 中,9AB =, 15BC =,12AC =.沿过点D 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为CD .则BDE 的周长是( )A .15B .12C .9D .6【答案】B 【分析】先根据勾股定理的逆定理判断△ABC 是直角三角形,从而可得B 、E 、C 三点共线,然后根据折叠的性质可得AD=ED ,CA=CE ,于是所求的BDE 的周长转化为求AB+BE ,进而可得答案.【详解】解:在ABC 中,∵22222291222515AB AC BC +=+===,∴ABC 是直角三角形,且∠A=90°,∵沿过点D 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为CD ,∴B 、E 、C 三点共线,AD=ED ,CA=CE ,∴BE=BC -CE=15-1=3,∴BDE 的周长=BD+DE+BE=BD+AD+3=AB+3=9+3=1.故选:B .【点睛】本题考查了勾股定理的逆定理和折叠的性质,属于常见题型,熟练掌握上述基本知识是解题关键. 4.将数据0.0000025用科学记数法表示为( )A .72510-⨯B .80.2510-⨯C .72.510-⨯D .62.510-⨯【答案】D【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:60.0000025 2.510-=⨯.故选:D .【点睛】此题考查科学记数法,解题关键在于掌握其一般形式.5.下列计算正确的是( )A .(﹣1)0=1B .(x+2)2=x 2+4C .(ab 3)2=a 2b 5D .2a+3b =5ab 【答案】A【分析】根据零指数幂法则、完全平方公式、积的乘方法则以及合并同类项法则逐个判断即可【详解】解:A 、(﹣1)0=1,故本选项正确;B 、应为(x+2)2=x 2+4x+4,故本选项错误;C 、应为(ab 3)2=a 2b 6,故本选项错误;D 、2a 与3b ,不是同类项,不能合并,故本选项错误.故选:A .【点睛】本题考查了零指数幂法则、完全平方公式、积的乘方法则以及合并同类项法则,熟练掌握运算法则及乘法公式是解题的关键.6.据广东省旅游局统计显示,2018年4月全省旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为( )A .527710⨯B .80.27710⨯C .72.7710⨯D .82.7710⨯【答案】C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,整数位数减1即可.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将27700000用科学记数法表示为2.77×107,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.如图,△ABC 中,AB=10,BC=12,AC=213,则△ABC 的面积是( ).A .36B .1013C .60D .1213【答案】A 【分析】作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解.【详解】如图,作AD BC ⊥于点D设BD x =,则12CD BC x x =-=-∴222AB BD AD -=,222AC CD AD -=∴2222AB BD AC CD -=-∵AB=10,AC=213∴(()22221012x x -=-- ∴8x =∴6AD ===∴△ABC 的面积111263622BC AD =⨯=⨯⨯= 故选:A .【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.8.(1232020)(232021)(1232021)(232020)---⋯-⨯++⋯+----⋯-⨯++⋯+=( ) A .2019B .2020C .2021D .2019×2020 【答案】C【分析】首先令232020t =++⋯+,进行整体代换,然后进行整式混合运算即可得解.【详解】令232020t =++⋯+原式=()()()1202112021t t t t -+---⋅=22202120212020t t t t t -+-++=2021故选:C.【点睛】此题主要考查利用整体代换求解整式混合运算,熟练掌握,即可解题.9.k 、m 、n ===k 、m 、n 的大小关系正确的是( )A .k <m=nB .m=n <kC .m <n <kD .m <k <n 【答案】A【分析】先化简二次根式,再分别求出k 、m 、n 的值,由此即可得出答案.==2k ===5m ===5n =则k m n <=故选:A .【点睛】本题考查了二次根式的化简,掌握化简方法是解题关键. 10.一次函数y =﹣2x+2的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【分析】先根据一次函数的系数判断出函数图象所经过的象限,由此即可得出结论. 【详解】解:∵一次函数y =﹣2x+2中,k =﹣2<0,b =2>0, ∴此函数的图象经过一、二、四象限,不经过第三象限. 故选:C . 【点睛】本题考查一次函数的图象与系数的关系,熟知当k <0,b >0时,一次函数y=kx+b 的图象在一、二、四象限是解题关键. 二、填空题11.直角三角形两直角边长分别为5和12,则它斜边上的高为____________ 【答案】6013【分析】先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可. 【详解】∵直角三角形的两直角边长分别为5和12,13= ∵直角三角形面积S =12×5×12=12×13×斜边的高, ∴斜边的高=512601313⨯=. 故答案为:6013.【点睛】本题考查勾股定理及直角三角形面积,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.12.我国首艘国产航母山东舰于2019年12月17日下午4时交付海军,山东舰的排水量达到65000吨,请将65000精确到万位,并用科学记数法表示______. 【答案】4710⨯【分析】首先把65000精确到万位,然后根据:用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,判断出用科学记数法表示是多少即可. 【详解】65000≈70000, 70000=7×1. 故答案为:7×1.【点睛】本题主要考查了用科学记数法和近似数.一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.13.已知空气的密度是0.0012393/g cm ,用科学记数法表示为________3/g cm 【答案】1.239×10-3.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.001239=1.239×10-3 故答案为:1.239×10-3. 【点睛】本题考查了科学记数法的表示,熟练掌握n 的值是解题的关键.14.化简:222(1)169x xx x x --•--+的结果是_______. 【答案】3-x x 【分析】根据分式混合运算的法则计算即可【详解】解:()()222123(1)==169133----•--+---x x x x x x x x x x x x故答案为:3-x x 【点睛】本题考查了分式混合运算,熟练掌握分式混合运算的法则是解题的关键15.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,46ABG ∠=︒,则FAE ∠的度数是 ________ .【答案】26︒【分析】根据正五边形的性质与平行线的性质,即可求解. 【详解】∵在正五边形ABCDE 中, ∴∠BAE=180(52)1085︒⨯-=︒ ,∵FA ∥GB ,∴∠BAF+∠ABG=180°,∴FAE ∠=180°-108°-46°=26︒. 故答案为:26︒. 【点睛】本题主要考查正五边形的性质与平行线的性质,掌握正五边形的每个内角等于108°以及两直线平行,同旁内角互补,是解题的关键.16.如图,已知函数y =x+1和y =ax+3图象交于点P ,点P 的横坐标为1,则关于x ,y 的方程组13x y ax y -=-⎧⎨-=-⎩的解是_____.【答案】12x y =⎧⎨=⎩【分析】先把x =1代入y =x+1,得出y =2,则两个一次函数的交点P 的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:把1x =代入1y x =+,得出2y =, 函数1y x =+和3y ax =+的图象交于点(1,2)P , 即1x =,2y =同时满足两个一次函数的解析式,所以关于x ,y 的方程组13x y ax y -=-⎧⎨-=-⎩的解是12x y =⎧⎨=⎩.故答案为12x y =⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.17.已知正数x 的两个不同的平方根是2a ﹣3和5﹣a ,则x 的值为______. 【答案】49【解析】因为一个正数的平方根有两个,它们互为相反数,所以2a ﹣3+5﹣a=0,解得: a=﹣2,。
太原市2017-2018学年第一学期八年级阶段性评测数学试卷
太原市2017-2018学年第一学期八年级阶段性评测数学试卷一、选择题(本大题含10个小题,每题3分,共30分)1、实数6的相反数是().6A -.6B .6C -.6D -2、下列各组数中,能作为直角三角形三边长的是().4,5,6A .5,7,12B .1,1,2C .1,2,3D 3、下列计算正确的是().93A =±3.82B -=-()2.33C -=-.235D +=4、如图是用雷达探测器测得的六个目标,,,,,A B C DEF .其中,E F 的位置表示为()()300,3,210,5E F ,按照此方法表示目标,,,A B C D 的位置,不正确的是()().30,4A A ().90,2B B ().120,6C C ().240,3D D 5、一次函数25y x =--的图象经过坐标系的().A 第一、二、三象限.B 第一、二、四象限.C 第二、三、四象限.D 第一、三、四象限6、下列实数中的无理数为().0.53A3.27B -()2.6C .2D π7、已知平面直角坐标系中点A 的坐标为()4,3-,则下列结论正确的是().A 点A 到x 轴的距离为4.B 点A 到y 轴的距离为3.C 点A 到原点的距离为5.D 点A 关于x 轴对称的点的坐标为()4,3-8、若点()1,A a 和点()4,B b 在直线2y x m =-+上,则a 与b 的大小关系是().A a b >.B a b <.C a b =.D 与m 的值有关9、如图,数轴上的,,,A B C D 四点对应的数分别是3,2,1,2---,其中与表示3-的点距离最近的点是().A 点A.B 点B.C 点C.D 点D10、如图是放在地面上的一个长方体盒子,其中18,12,10AB cm BC cm BF cm ===,点M 在棱AB 上,且6AM cm =,点N 是FG 的中点,一只蚂蚁要沿着长方体盒子的表面从点M 爬行到点N ,它需要爬行的最短路程为().A 20cm .B 2106cm.C ()12234cm+.D 18cm二、填空题(本大题含5个小题,每小题2分,共10分)11、计算()()3131-+的结果为_____________.12、已知正比例函数y kx =的图象经过点()3,6P ,则k 的值等于__________.13、已知等边ABC ∆的边长为2cm ,它的高为_________cm .14、比较大小:551________82-.(填“>”,“<”,“=”)15、如图,Rt ABC ∆中,90,4,3ACB AC BC ∠===,以,,AB BC AC 为边在AB 同侧作正方形ABMN ,正方形ACDE 和正方形BCFG ,其中线段DE 经过点N ,CF 与BM 交于点P ,CD 与MN 交于点Q ,图中阴影部分的面积为____________.三、解答题(本大题含8个小题,共80分)16、计算:(每题3分,共12分)(1)1233+;(2)181052-+;(3)()2236+;(4)11181084553+-+.17、(本题6分)如图,在平面直角坐标系中,ABC ∆的顶点坐标为()()3,2,1,4A B --,()0,2C .(1)在如图的平面直角坐标系中画出ABC ∆关于y 轴对称的111A B C ∆,并直接写出111,,A B C 的坐标;(2)若将ABC ∆三个顶点的纵坐标分别乘1-,横坐标不变,将所得的三个点用线段顺次连接,得到的三角形与ABC ∆的位置关系是_______________.18、(本题4分)物体自由下落的高度h (单位:m )与下落时间t (单位:s )之间的关系为24.9h t =.如图,有一个物体从78.4m 高的建筑物上自由下落,到达地面需要多长时间?19、(本题5分)已知一次函数122y x =+的图象与x 轴相交于点A ,与y 轴相交于点B .(1)求点,A B 的坐标,并在如图的坐标系中画出函数122y x =+的图象;(2)若点()2,C m 在函数122y x =+的图象上,求点C 到x 轴的距离.20、(本题6分)如图,某小区的两个喷泉,A B 位于小路AC 的同侧,两个喷泉的距离AB 的长为250m .现要为喷泉铺设供水道,AM BM ,供水点M 在小路AC 上,供水点M 到AB 的距离MN 的长为120m ,BM 的长为150m .(1)求供水点M 到喷泉,A B 需要铺设的管道总长;(2)直接写出喷泉B 到小路AC 的最短路径.21、(本题6分)某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元.该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二,按总价的九折付款.购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个).设文具盒个数为x (个),付款金额为y (元).(1)分别写出两种优惠方案中y 与x 之间的关系式:方案一:1____________y =;方案二:2_________y =;(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品,最多可以买到________个文具盒(直接回答即可).22、(本题8分)问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动.小颖想到借助正方形网格解决问题.下列图1、图2都是88⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.操作发现:小颖在图1中画出ABC ∆,其顶点,,A B C 都是格点,同时构造正方形BDEF ,使它的顶点都在格点上,且它的边,DE EF 分别经过点,C A ,她借助此图形求出了ABC ∆的面积.(1)在图1中,小颖所画的ABC ∆的三边长分别是____,____,_____AB BC AC ===;ABC ∆的面积为___________;解决问题:(2)已知ABC ∆中,AB BC AC ===.请你根据小颖的思路,在图2的正方形网格中画出ABC ∆,并直接写出ABC ∆的面积.23、(本题13分)如图1,在平面直角坐标系中,一次函数28y x =-+的图象与x 轴,y 轴分别交于点A ,点C ,过点A 作AB x ⊥轴,垂足为点A ,过点C 作CB y ⊥轴,垂足为点C ,两条垂线相交于点B .(1)线段,,AB BC AC 的长分别为____,____,____AB BC AC ===;(2)折叠图1中的ABC ∆,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图2.请从下列,A B 两题中任选一题作答,我选择_______题..A :①求线段AD 的长;②在y 轴上,是否存在点P ,使得APD ∆为等腰三角形?若存在,请直接写出符合条件的所有点P 的坐标;若不存在,请说明理由..B :①求线段DE 的长;②在坐标平面内,是否存在点P (除点B 外),使得以点,,A P C 为顶点的三角形与ABC ∆全等?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.。
┃精选3套试卷┃2018届太原市八年级上学期数学期末考前验收试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在1x,12,212x+,3xyπ,3x y+中,分式的个数是()A.2 B.3 C.4 D.5 【答案】A【解析】根据分式的定义即可得出答案.【详解】根据分式的定义可知是分式的为:1x、3x y+共2个,故答案选择A.【点睛】本题考查的主要是分式的定义:①形如AB的式子,A、B都是整式,且B中含有字母.2.下列大学校徽主体图案中,是轴对称图形的是()A.B.C.D.【答案】C【解析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,逐一判断即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项是轴对称图形,故本选项符合题意;D选项不是轴对称图形,故本选项不符合题意.故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.3.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一条边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等【答案】A【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【详解】A、全等三角形的判定必须有边的参与,故本选项符合题意;B 、符合判定ASA 或AAS ,故本选项正确,不符合题意;C 、符合判定SAS ,故本选项不符合题意;D 、符合判定HL ,故本选项不符合题意.故选:A .【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.具备下列条件的ABC ∆中,不是直角三角形的是( )A .ABC ∠+∠=∠B .A BC ∠-∠=∠ C .::1:2:3A B C ∠∠∠=D .3A B C ∠=∠=∠ 【答案】D【分析】根据三角形的内角和定理和直角三角形的定义逐项判断即可.【详解】A 、由180A B C ∠+∠+∠=和A B C ∠+∠=∠可得:∠C=90°,是直角三角形,此选项不符合题意;B 、由A BC ∠-∠=∠得A B C =+∠∠∠,又180A B C ∠+∠+∠=,则∠A=90°,是直角三角形,此选项不符合题意;C 、由题意,318090123C ∠=⨯=++,是直角三角形,此选项不符合题意;D 、由180A B C ∠+∠+∠=得3∠C+3∠C+∠C=180°,解得:1807C ∠=,则∠A=∠B=5407≠90°,不是直角三角形,此选项符合题意,故选:D .【点睛】 本题考查三角形的内角和定理、直角三角形的定义,会判定三角形是直角三角形是解答的关键. 5.如图,在Rt△ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC=3,则DE 的长为( )A .1B .2C .3D .4【答案】A 【解析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE 垂直平分AB ,∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB , ∵∠C=90°,∴3∠CAD=90°, ∴∠CAD=30°, ∵AD 平分∠CAB ,DE ⊥AB ,CD ⊥AC , ∴CD=DE=BD , ∵BC=3, ∴CD=DE=1 考点:线段垂直平分线的性质6.下面是一名学生所做的4道练习题:①0(2)1-=;②()3236xy x y -=;③222()x y x y +=+,④21(3)9--=,他做对的个数是( ) A .1B .2C .3D .4 【答案】B【分析】根据零次幂、积的乘方、完全平方公式、负整数指数幂进行判断.【详解】解:①0(2)1-=,正确;②()3236xy x y -=-,错误;③222()2x y x y xy +=++,错误; ④21(3)9--=,正确. 故选B.【点睛】本题考查了整式乘法和幂的运算,正确掌握运算法则是解题关键.7.已知点P 关于x 轴对称点的坐标是(-1,2),则点P 的坐标为( )A .(1,2)B .(1,-2)C .(2,-1)D .(-1,-2)【答案】D【解析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数.【详解】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,∴点P 关于x 轴对称点的坐标是(-1,2),则点P 的坐标为(-1,-2).故选:D .【点睛】解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数. 8.以下列各组线段为边,能组成三角形的是().A .2cm ,3cm ,5cmB .5cm ,6cm ,10cmC .1cm ,1cm ,3cmD .3cm ,4cm ,9cm 【答案】B【分析】根据三角形的三边关系对各选项进行逐一分析即可.【详解】A .∵2+3=5,∴不能组成三角形,故本选项错误;B.∵5+6=11>10,∴能组成三角形,故本选项正确;C.∵1+1=2<3,∴不能组成三角形,故本选项错误;D.∵3+4=7<9,∴不能组成三角形,故本选项错误.故选B.【点睛】本题考查了三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9.等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25B.25或32C.32D.19【答案】C【解析】因为等腰三角形的两边分别为6和13,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】解:当6为底时,其它两边都为13,6、13、13可以构成三角形,周长为32;当6为腰时,其它两边为6和13,6、6、13不可以构成三角形.故选C.【点睛】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.10.下列各式中,是最简二次根式的是()A B C D【答案】A【分析】根据最简二次根式的定义判断即可.需要符合以下两个条件: 1.被开方数中不含能开得尽方的因数或因式;2.被开方数的因数是整数,因式是整式.【详解】解:A. 不能继续化简,故正确;B. 故错误;C. 故错误;D. .故选:A.【点睛】本题考查最简二次根式的定义,理解掌握定义是解答关键.二、填空题11.在平面直角坐标系中,O为坐标原点,已知点A的坐标是(-2,0),点B在y轴上,若OA=2OB,则点B的坐标是______.【答案】(0,1)或(0,-1)【分析】先得出OA的长度,再结合OA=2OB且点B在y轴上,从而得出答案.【详解】∵点A的坐标是(-2,0),∴OA=2,又∵OA=2OB,∴OB=1,∵点B在y轴上,∴点B的坐标为(0,1)或(0,-1),故答案为:(0,1)或(0,-1).【点睛】本题主要考查了坐标与图形的性质,点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.12.一个多边形的内角和是外角和的72倍,那么这个多边形的边数为_______.【答案】1【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=72×360°,解得:n=1.故答案为:1.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.13.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+2b),宽为(2a+b)的大长方形,那么需要A类、B类和C类卡片的张数分别为______.【答案】2,2,1【分析】根据长乘以宽,表示出大长方形的面积,即可确定出三类卡片的张数.【详解】解:∵(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+1ab+2b2,∴需要A 类卡片2张,B 类卡片2张,C 类卡片1张.故答案为2,2,1.【点睛】此题考查了多项式乘多项式,弄清题意是解本题的关键.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.14.已知:如图,,AB AD BC DC == ,点P 在AC 上,则本题中全等三角形有___________对.【答案】1【分析】由AB=AD ,BC=DC ,AC 为公共边可以证明△ABC ≌△ADC ,再由全等三角形的性质可得∠BAC=∠DAC ,∠BCA=∠DCA ,进而可推得△ABP ≌△ADP ,△CBP ≌△CDP .【详解】在△ABC 和△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,∴△ABC ≌△ADC ;∴∠BAC=∠DAC ,∠BCA=∠DCA ,在△ABP 和△ADP 中,AB AD BAP DAP AP AP =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△ADP ,在△CBP 和△CDP 中,BC DC BCP DCP CP CP =⎧⎪∠=∠⎨⎪=⎩,△CBP ≌△CDP .综上,共有1对全等三角形.故答案为:1.【点睛】本题考查了三角形全等的判定定理和性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.腰长为5,高为4的等腰三角形的底边长为_____.【答案】6或25或45.【分析】根据不同边上的高为4分类讨论即可得到本题的答案.【详解】解:①如图1当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图1.当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3:当5AB AC ==,4CD =时,则223AD AC CD -=,∴8BD =,∴45BC =∴此时底边长为5故答案为6或【点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论.16.点(13)M x﹣,﹣在第四象限,则x 的取值范围是_______. 【答案】1x >【分析】根据第四象限的点的横坐标是正数,列出不等式,即可求解.【详解】解:∵点13M x (﹣,﹣)在第四象限,10x ∴﹣>解得1x >,即x 的取值范围是1x >故答案为1x >.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).17有意义,则x 的取值范围是__________【答案】3x ≥【分析】根据二次根式的性质(被开方数大于等于0)解答.【详解】解:根据题意得:30x -≥,解得:3x ≥.故答案为:3x ≥.【点睛】本题考查了二次根式有意义的条件,注意二次根式的被开方数是非负数.三、解答题18.我市为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作8天后,余下的工程由甲工程队单独来做还需3天完成.(1)问我市要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资2万元.两个工程队在完成这项工程后,共获得工程工资款总额65万元,请问该工程甲、乙两工程队各做了多少天?【答案】(1)15天;(2)甲工程队做了5天,乙工程队做了20天【分析】(1)设规定时间是x 天,那么甲单独完成的时间就是x 天,乙单独完成的时间为2x ,根据题意可列出方程;(2)设甲工程队做了m 天,乙工程队做了n 天,则可列出方程组得解.【详解】解:(1)设规定时间是x 天, 根据题意得,113812x x x⎛⎫++=⎪⎝⎭, 解得x =15,经检验:x =15是原方程的解.答:我市要求完成这项工程规定的时间是15天;(2)由(1)知,由甲工程队单独做需15天,乙工程队单独做需30天,由题意得, 11115305265m n m n ⎧+=⎪⎨⎪+=⎩. 解得m 5n 20=⎧⎨=⎩. 答:该工程甲工程队做了5天,乙工程队做了20天【点睛】本题主要考查了分式方程的应用及二元一次方程组的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤.19.先化简,再求值:22144(1)11x x x x -+-÷--,从1-,1,2,3中选择一个合适的数代入并求值. 【答案】12x x +-,1. 【分析】根据分式的运算法则和乘法公式将原式化简,根据分式存在有意义的条件选取合适的数代入代数式计算即可. 【详解】原式()()()2211=1111x x x x x x --⎛⎫-÷ ⎪---+⎝⎭ ()()()21121212x x x x x x x -+-⎛⎫=⨯ ⎪-⎝⎭-+=-. ∵x 2﹣1≠0,x ﹣2≠0,∴取x =3,原式=3132+-=1. 【点睛】本题考查的是分式的运算和分式存在有意义的条件,根据分式有意义的条件挑选出合适的值代入是解题的关键.20.△ABC 在平面直角坐标系中的位置如图所示,A ,B ,C 三点在格点上.(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)求△A1B1C1的面积.【答案】(1)见解析;(2)6.2【分析】(1)作出△ABC各个顶点关于y轴对称的对应点,顺次连接起来,即可;(2)利用△A1B1C1所在矩形面积减去周围三角形面积进而得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)△A1B1C1的面积为:3×2﹣12×1×2﹣12×2×3﹣12×2×3=6.2.【点睛】本题主要考查图形的轴对称变换,掌握轴对称变换的定义以及割补法求面积,是解题的关键.21.有一家糖果加工厂,它们要对一款奶糖进行包装,要求每袋净含量为100g.现使用甲、乙两种包装机同时包装100g的糖果,从中各抽出10袋,测得实际质量(g)如下:甲:101,102,99,100,98,103,100,98,100,99乙:100,101,100,98,101,97,100,98,103,102(1)分别计算两组数据的平均数、众数、中位数;(2)要想包装机包装奶糖质量比较稳定,你认为选择哪种包装机比较适合?简述理由.【答案】(1)甲:平均数为100、众数为100、中位数为100;乙:平均数为100、中位数是100、乙的众数是100;(2)选择甲种包装机比较合适.【分析】(1)根据平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数进行计算即可.(2)利用方差公式分别计算出甲、乙的方差,然后可得答案.【详解】解:(1)甲的平均数为:110(101+102+99+100+98+103+100+98+100+99)=100;乙的平均数为:110(100+101+100+98+101+97+100+98+103+102)=100;甲中数据从小到大排列为:98,98,99,99,100,100,100,101,102,103 故甲的中位数是:100,甲的众数是100,乙中数据从小到大排列为:97,98,98,100,100,100,101,101,102,103 故乙的中位数是:100,乙的众数是100;(2)甲的方差为:2S甲=110[(101﹣100)2+(102﹣100)2+(99﹣100)2+(100﹣100)2+(98﹣100)2+(103﹣100)2+(100﹣100)2+(98﹣100)2+(100﹣100)2+(98﹣100)2) =2.4;乙的方差为:2S乙=110[(100﹣100)2+(101﹣100)2+(100﹣100)2+(98﹣100)2+(101﹣100)2+(97﹣100)2+(100﹣100)2+(98﹣100)2+(103﹣100)2+(102﹣100)2] =3.2,∵2S甲<2S乙,∴选择甲种包装机比较合适.【点睛】此题主要考查了中位数、平均数、众数以及方差,关键是掌握三数的计算方法,掌握方差公式.22.甲、乙两人同时从相距90千米的A地匀速前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后按原速返回A地,如图是他们与A地之间的距离y(千米)与经过的时间x(小时)之间的函数图像.(1)a ,并写出它的实际意义;(2)求甲从B地返回A地的过程中y与x之间的函数表达式,并写出自变量x的取值范围;(3)已知乙骑电动车的速度为35千米/小时,求乙出发后多少小时与甲相遇?【答案】(1)2.5;甲从A地到B地,再由B地返回到A地一共用了2.5小时;(2)y=-90x+225(1.5≤x≤2.5);(3)1.8小时.【分析】(1)根据路程÷时间可得甲人的速度,即可求得返回的时间,从而可求出a 的值;(2)设y 与x 之间的函数关系式为y=kx+b ,根据图象可得直线经过(1.5,90)以及(2.5,0),利用待定系数法把此两点坐标代入y=kx+b ,即可求出一次函数关系式,根据返回可得自变量x 的取值范围; (3)求出乙的函数关系式,联立方程组求解即可.【详解】(1)90÷1=90(千米/时);90÷90=1(小时)∴a=1.5+1=2.5(时)A 表示的实际意义是:甲从A 地到B 地,再由B 地返回到A 地一共用了2.5小时;(2)设甲从B 地返回A 地的过程中,y 与x 之间的函数关系式为y=kx+b ,根据图象知,直线经过(1.5,90)和(2.5,0)2.501.590k b k b ⎨⎩++⎧==, 解得,90225k b ⎩-⎧⎨== 所以y=-90x+225(1.5≤x≤2.5);(3)由乙骑电动车的速度为35千米/小时,可得:y=35x ,由9022535y x y x ⎨⎩-+⎧==, 解得 1.863x y ⎧⎨⎩==, 答:乙出发后1.8小时和甲相遇.【点睛】此题主要考查了一次函数的应用,关键是看懂图象所表示的意义,利用待定系数法求出甲从B 地返回A 地的过程中,y 与x 之间的函数关系式.23.(1)计算:()05 3.1-+π-(2)化简求值:()()()22244x y x y x y y +--+÷⎡⎤⎣⎦,其中3x =,2y =-.【答案】(1)4;(2)25x y --,4【分析】(1)利用负数的绝对值是正数,任何一个数的零指数幂等于1(0除外)以及二次根式和三次根式的运算即可求出答案;(2)利用多项式乘以多项式将括号里的展开后再合并同类项,最后利用多项式除以单项式化简,将具体的值代入即可.【详解】解:(1)原式51424=+-+=;(2)原式()()2222248164820425x y x xy yy xy y y x y =----÷=--÷=--. 当3x =,2y =-时 原式()23526104=-⨯-⨯-=-+=.【点睛】本题主要考查的是实数的混合运算以及整式的乘除,掌握正确的运算方法是解题的关键.24.如图,在平面直角坐标系中,已知A (1,2),B (3,1),C (﹣2,﹣1).(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)写出点C 1的坐标: ;(3)△A 1B 1C 1的面积是多少?【答案】(1)见解析;(2)(2,﹣1);(3)4.5【分析】(1)分别作出三个顶点关于y 轴的对称点,再顺次连接即可得;(2)根据关于y 轴的对称点的坐标特点即可得出;(3)利用长方形的面积减去三个顶点上三个直角三角形的面积即可.【详解】解:(1)如图,△A 1B 1C 1即为所求;(2)由关于y 轴的对称点的坐标特点可得,点C 1的坐标为:(2,﹣1), 故答案为:(2,﹣1);(3)△A 1B 1C 1的面积为:11135253312 4.5222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题考查了轴对称与坐标变化,熟知关于y 轴对称的点的坐标特点是解答此题的关键.25.已知:如图,Rt ABC ∆中,90BAC ∠=︒,AB AC =,D 是BC 的中点,AE BF =.求证:(1)DE DF =;(2)若8BC =,求四边形AFDE 的面积.【答案】(1)见解析;(2)1.【分析】(1)连接AD ,证明△BFD ≌△AED ,根据全等三角形的性质即可得出DE=DF ;(2)根据△DAE ≌△DBF ,得到四边形AFDE 的面积=S △ABD =12S △ABC ,于是得到结论. 【详解】证明:(1)连接AD ,∵Rt △ABC 中,∠BAC=90°,AB=AC ,∴∠B=∠C=45°,∵AB=AC ,DB=CD ,∴∠DAE=∠BAD=45°,∴∠BAD=∠B=45°,∴AD=BD ,∠ADB=90°,在△DAE 和△DBF 中,45AE BF ADE B AD BD =⎧⎪∠=∠=︒⎨⎪=⎩,∴△DAE ≌△DBF (SAS ),∴DE=DF ; (2)∵△DAE ≌△DBF ,∴四边形AFDE 的面积=S △ABD =12S △ABC , ∵BC=1, ∴AD=12BC=4, ∴四边形AFDE 的面积=S △ABD =12S △ABC =12×12×1×4=1. 【点睛】本题主要考查了全等三角形的判定和性质以及等腰直角三角形的判定和性质.考查了学生综合运用数学知识的能力,连接AD,构造全等三角形是解决问题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q 在轨道槽AM 上运动,点P 既能在以A 为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN 上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是( )A .②③B .③④C .②③④D .①②③④【答案】C【分析】分别在以上四种情况下以P 为圆心,PQ 的长度为半径画弧,观察弧与直线AM 的交点即为Q 点,作出PAQ ∆后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,所以PAQ ∆不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,但是此时两个三角形全等,所以形状相同,所以PAQ ∆唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以④正确.综上:②③④正确.故选C .【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q 是关键.2.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C【答案】B【解析】利用判断三角形全等的方法判断即可得出结论.【详解】A 、利用SAS 判断出△PCA ≌△PCB ,∴CA=CB ,∠PCA=∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;B 、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C 、利用SSS 判断出△PCA ≌△PCB ,∴CA=CB ,∠PCA=∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;D 、利用HL 判断出△PCA ≌△PCB ,∴CA=CB ,∴点P 在线段AB 的垂直平分线上,符合题意,故选B .【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.3.已知△ABC ≌△DEF ,∠A =80°,∠E =50°,则∠F 的度数为( )A .30°B .50°C .80°D .100° 【答案】B【解析】试题分析:利用△ABC ≌△DEF ,得到对应角相等∠D=∠A=80°,然后在△DEF 中依据三角形内角和定理,求出∠F=180﹣∠D ﹣∠E=50°故选B .考点:全等三角形的性质.4.计算:|﹣13| ) A .1B .23C .0D .﹣1【答案】C 【分析】先计算绝对值、算术平方根,再计算减法即可得. 【详解】原式=13﹣13=0, 故选C .【点睛】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序与运算法则及算术平方根、绝对值性质. 5.下列各式计算正确的是( ) A .6232126()b a b a b a ---⋅= B .(3xy )2÷(xy )=3xyC .23a a a +=D .2x•3x 5=6x 6【答案】D 【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果.【详解】A. 2321526()b a b a b a ---⋅=,故选项A 错误; B. (3xy )2÷(xy )=9xy ,故选项B 错误;C. a 与2a 不是同类二次根式,不能合并,故选项C 错误;D. 2x•3x 5=6x 6,正确.故选:D .【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6.已知 △ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD 是平行四边形的依据是( )A .两组对边分别平行的四边形是平行四边形B .对角线互相平分的四边形是平行四边形C .一组对边平行且相等的四边形是平行四边形D .两组对边分别相等的四边形是平行四边形【答案】B【分析】根据尺规作图可知AC,BD 互相平分,即可判断.【详解】根据尺规作图可得直线垂直平分AC ,再可得到AC,BD 互相平分,故选B.【点睛】此题主要考查平行四边形的判定,解题的关键是熟知尺规作图的特点.7.如图,在△ABC 中,AD ⊥BC ,添加下列条件后,还不能使△ABD ≌△ACD 的是( )A .AB AC = B .BD CD = C .B C ∠=∠ D .AD BD =【答案】D【分析】根据全等三角形的判定定理解答即可. 【详解】∵AD ⊥BC ∴∠ADC=∠ADB=90°若添加AB=AC,又AD=AD 则可利用“HL”判定全等,故A 正确; 若添加BD=CD ,又AD=AD 则可利用“SAS”判定全等,故B 正确; 若添加∠B=∠C ,又AD=AD 则可利用“AAS”判定全等,故C 正确; 若添加AD=BD ,无法证明两个三角形全等,故D 错误. 故选:D 【点睛】本题考查了直角三角形全等的判定,掌握直角三角形的判定方法“SSS”、“AAS”、“SAS”、“ASA”“HL”是关键. 8.满足-2<x≤1的数在数轴上表示为( ) A . B .C .D .【答案】B【分析】-2<x≤1表示不等式x >﹣2和不等式x≤1的公共部分。
2017-2018学年第一学期初二数学期末试题和答案
2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
〖汇总3套试卷〗太原市2018年八年级上学期数学期末学业质量检查模拟试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1,113,π中,无理数是 ( )AB .113CD .π 【答案】D【分析】无理数就是无限不循环小数,利用无理数的定义即可判定选择项.,113,π中,=2=-3,π是无理数.故选D.【点睛】此题主要考查了无理数的定义.初中范围内学习的无理数有三类:①π类,②开方开不尽的数,③虽有规律但是无限不循环的数.2.下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查【答案】C【分析】根据普查和抽样调查的特点解答即可.【详解】解:A .对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B .对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C .对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D .对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C .【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.如图,在ABC ∆中,DE 是AC 的垂直平分线,8AC cm =,且ABD ∆的周长为16cm ,则ABC ∆的周长为( )A .24cmB .21cmC .18cmD .16cm【答案】A 【分析】根据线段的垂直平分线的性质得到DA =DC ,根据三角形的周长公式计算,得到答案.【详解】∵DE 是AC 的垂直平分线,∴DA =DC ,∵△ABD 的周长为16cm ,∴AB +BD +DA =AB +BD +DC =AB +BC =16cm ,∴△ABC 的周长=AB +BC +AC =16+8=24(cm ),故选:A .【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4.如图,已知∠ACB =∠DBC ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A .∠ABC =∠DCBB .∠ABD =∠DCAC .AC =DBD .AB =DC【答案】D 【分析】根据全等三角形的判定定理 逐个判断即可.【详解】A 、∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD+∠DBC =∠ACD+∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;C 、∵在△ABC 和△DCB 中BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.如图,在ABC ∆中,CE 平分ACB ∠交AB 于点E ,CF 平分ACD ∠,//EF BC ,EF 交AC 于点M ,若5CM =,则22CE CF +=( )A .75B .100C .120D .125【答案】B 【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理求得CE 1+CF 1=EF 1.【详解】∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ACE=12∠ACB ,∠ACF=12∠ACD ,即∠ECF=12(∠ACB+∠ACD )=90°, 又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF ,∴CM=EM=MF=5,EF=10,由勾股定理可知CE 1+CF 1=EF 1=2.故选:B【点睛】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.6.交通警察要求司机开车时遵章行驶,在下列交通标志中,不是轴对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形的定义,逐一判断选项,即可.【详解】∵A 是轴对称图形,∴A 不符合题意,∵B 是轴对称图形,∴B 不符合题意,∵C 不是轴对称图形,∴C 符合题意,∵D 是轴对称图形,∴D 不符合题意,故选C .【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.7.在xy , 1,23x ,(x+y ),2xy x y +这四个有理式中,分式是( ) A .xyB .2xC .13(x+y )D .2xy x y+ 【答案】D【分析】根据分式的定义逐项排除即可;【详解】解:A .属于整式中单项式不是分式,不合题意;B .属于整式中的单项式不是分式,不合题意;C .属于整式中的多项式不是分式,不合题意;D .属于分式,符合题意;故答案为D .【点睛】本题考查了分式的定义,牢记分式的分母一定含有字母其π不是字母是解答本题的关键.8.如图,AC 、BD 相交于点O ,OA =OB ,OC =OD ,则图中全等三角形的对数是( ).A .1对B .2对C .3对D .4对【答案】C 【解析】试题分析:已知OA=OB,∠DOA=∠COB,OC=OD,即可得△OAD ≌△OBC ,所以∠ADB=∠BCA,AD=BC,再由OA =OB ,OC =OD ,易得AC=-BD ,又因AB=BA,利用SSS 即可判定△ABD ≌△BAC,同理可证△ACD ≌△BDC,故答案选C .考点:全等三角形的判定及性质.9.已知如图,等腰ABC ∆中,,120,AB AC BAC AD BC =∠=︒⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,.OP OC =下面的结论:① 30APO DCO ∠+∠=︒;②OPC ∆是等边三角形;③AC AO AP =+;④APO DCO ∠=∠.其中正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】A 【分析】①连接BO ,根据等腰三角形的性质可知AD 垂直平分BC ,从而得出BO=CO ,又OP=OC,得到BO=OP ,再根据等腰三角形的性质可得出结果;②证明∠POC=60°,结合OP=OC ,即可证得△OPC 是等边三角形;③在AC 上截取AE=PA ,连接PE ,先证明△OPA ≌△CPE ,则AO=CE ,AC=AE+CE=AO+AP ;④根据∠APO=∠ABO ,∠DCO=∠DBO ,因为点O 是线段AD 上一点,所以BO 不一定是∠ABD 的角平分线,可作判断.【详解】解:①如图1,连接OB ,∵AB=AC ,AD ⊥BC ,∴BD=CD ,∠BAD=12∠BAC=12×120°=60°, ∴OB=OC ,∠ABC=90°-∠BAD=30°,∵OP=OC ,∴OB=OC=OP ,∴∠APO=∠ABO ,∠DCO=∠DBO ,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°-(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形,故②正确;③如图2,在AC上截取AE=PA,连接PE,∵∠PAE=180°-∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,PA PEAPO CPE OP CP=⎧⎪∠=∠⎨⎪=⎩,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP,故③正确;④由①中可得,∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故④不正确;故①②③正确.故选:A.【点睛】本题主要考查了等腰三角形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,正确作出辅助线是解决问题的关键.10.已知小明从A地到B地,速度为4千米/小时,,A B两地相距3千米,若用x(小时)表示行走的时间,y(千米)表示余下的路程,则y与x之间的函数表达式是()A .4y x =B .43y x =-C .4y x =-D .34y x =-【答案】D 【分析】根据路程=速度×时间,结合“剩下的路程=全路程-已行走”容易知道y 与x 的函数关系式.【详解】∵剩下的路程=全路程-已行走,∴y=3-4x .故选:D .【点睛】本题主要考查了一次函数的应用,理清“路程、时间、速度”的关系是解答本题的关键.二、填空题11.约分:222x y xy - =_____. 【答案】2x y- 【分析】根据分式的基本性质,约分化简到最简形式即可.【详解】22=22x y x y xy--, 故答案为:2x y-. 【点睛】 考查了分式的基本性质,注意负号可以提到前面,熟记分式约分的方法是解题关键.12.如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线ED 交AB 于点E ,交BC 于点D ,若CD=3,则BD 的长为______.【答案】1【分析】根据线段垂直平分线的性质求出AD=BD ,求出∠BAD=∠B=30°,求出∠CAD=30°,根据含30°角的直角三角形的性质求出AD 即可.【详解】∵DE 是线段AB 的垂直平分线,∴AD=BD ,∵∠B=30°,∴∠BAD=∠B=30°,又∵∠C=90°∴∠CAB=90°-∠B=90°-30°=10°,∴∠DAC=∠CAB-∠BAD=10°-30°=30°,∴在Rt △ACD 中,AD=2CD=1,∴BD=AD=1.故答案为:1.【点睛】本题考查的是线段垂直平分线的性质,含30°角的直角三角形的性质,掌握线段垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.13.如图,点F 是△ABC 的边BC 延长线上一点,DF ⊥AB 于点D ,∠A =30°,∠F =40°,∠ACF 的度数是_____.【答案】80°【分析】根据三角形的内角和可得∠AED =60°,再根据对顶角相等可得∠AED =∠CEF =60°,再利用三角形的内角和定理即可求解.【详解】解:∵DF ⊥AB ,∴∠ADE =90°,∵∠A =30°,∴∠AED =∠CEF =90°﹣30°=60°,∴∠ACF =180°﹣∠F ﹣∠CEF =180°﹣40°﹣60°=80°,故答案为:80°.【点睛】本题考查三角形的内角和定理、对顶角相等,灵活运用三角形的内角和定理是解题的关键.14.一次函数y=kx+b 与y=x+2两图象相交于点P (2,4),则关于x ,y 的二元一次方程组2y kx b y x =+⎧⎨=+⎩的解为____. 【答案】24x y =⎧⎨=⎩. 【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】∵一次函数y=kx+b 与y=x+2两图象相交于点P (2,4),∴关于x ,y 的二元一次方程组2y kx b y x =+⎧⎨=+⎩的解为24x y =⎧⎨=⎩.故答案为:24x y =⎧⎨=⎩. 【点睛】 本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 15.已知:如图,ABC 和ADE 为两个共直角顶点的等腰直角三角形,连接CD 、BE .图中一定与线段CD 相等的线段是__________.【答案】BE【解析】∵△ABC 和△ADE 都是等腰直角三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=90°,∴∠BAC -∠BAD=∠DAE -∠BAD ,∴∠DAC=∠BAE ,∵在△CAD 和△BAE 中,AB AC DAC BAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAD ≌△BAE ,∴CD=BE.故答案为BE.点睛:本题关键在于掌握三角形全等的判定方法.16.已知一组数据:2,4,5,6,8,则它的方差为__________.【答案】1【分析】先求出这组数据的平均数,再由方差的计算公式计算方差.【详解】解:一组数据2,1,5,6,8, 这组数据的平均数为:1(24568)55x =++++=, ∴这组数据的方差为:2222221(25)(45)(55)(65)(85)45S ⎡⎤=-+-+-+-+-=⎣⎦. 故答案为:1.【点睛】本题考查求一组数的方程.掌握平均数和方差的计算公式是解决此题的关键.17.计算:0.09的平方根是________.±【答案】0.3【分析】根据平方根的定义即可求解.±【详解】0.09的平方根是0.3±.故答案为:0.3【点睛】此题主要考查平方根,解题的关键是熟知其定义.三、解答题18.某广告公司为了招聘一名创意策划,准备从专业技能和创新能力两方面进行考核,成绩高者录取.甲、乙、丙三名应聘者的考核成绩以百分制统计如下表.(1)如果公司认为专业技能和创新能力同等重要,则应聘人______将被录取.(2)如果公司认为职员的创新能力比专业技能重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.【答案】(1)甲;(2)乙将被录取,理由见解析.【分析】(1)根据平均数的计算公式分别计算出甲、乙、丙的平均数,再进行比较,即可得出答案;(2)根据题意先算出按6和4的甲、乙、丙的平均数,再进行比较,即可得出答案【详解】(1)甲的平均数是:(90+88)÷2=89(分),乙的平均数是:(80+95)÷2=87.5(分),丙的平均数是:(85+90)÷2=87.5(分),∵甲的平均成绩最高,∴候选人甲将被录取.故答案为:甲.(2)根据题意得:甲的平均成绩为:(88×6+90×4)÷10=88.8(分),乙的平均成绩为:(95×6+80×4)÷10=89(分),丙的平均成绩为:(90×6+85×4)÷10=88(分),因为乙的平均分数最高,所以乙将被录取.【点睛】此题考查平均数,解题关键在于掌握算术平均数和加权平均数的定义.19.选择适当的方法解下列方程.(1)241x x -=;(2)22530x x -+=.【答案】(1)1225,25x x =-=+;(2)123,12x x == 【分析】(1)直接使用配方法解一元二次方程即可;(2)直接使用因式分解法解一元二次方程即可.【详解】解:(1)配方24414x x -+=+开方得()225x -=, 25x -=±解得:1225,25x x =-=+;(2)因式分解得,(2x-3)(x-1)=0,2x-3=0或x-1=0,解得:123,12x x ==. 【点睛】本题考查了一元二次方程的解法,掌握并灵活运用配方法和因式分解法解一元二次方程是解答本题的关键.20.如图,在∆ABC 中,AB=4,AC=3,BC=5,DE 是BC 的垂直平分线,DE 交BC 于点D ,交AB 于点E ,求AE 的长.【答案】78【分析】根据勾股定理的逆定理可得ABC 是直角三角形,且∠A =90°,然后设AE x =,由线段垂直平分线的性质可得4EB EC x ==-,再根据勾股定理列方程求出x 即可.【详解】解:连接CE ,∵在ABC 中,4AB =,3AC =,5BC =,∴222AB AC BC +=,∴ABC 是直角三角形,且∠A =90°,∵DE 是BC 的垂直平分线,∴EC EB =,设AE x =,则4EB EC x ==-,∴2223(4)x x +=-, 解得78x =, 即AE 的长是78. 【点睛】本题考查了线段垂直平分线的性质,勾股定理及其逆定理.关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.21.在ABC ∆中,点Q 是BC 边上的中点,过点A 作与线段BC 相交的直线l ,过点B 作BN l ⊥于N ,过点C 作CM l ⊥于M .(1)如图1,如果直线l 过点Q ,求证:QM QN =;(2)如图2,若直线l 不经过点Q ,联结QM ,QN ,那么第(1)问的结论是否成立?若成立,给出证明过程;若不成立,请说明理由.【答案】(1)详见解析;(2)成立,理由详见解析【分析】(1)由“AAS”可证△BQN ≌△CQM ,可得QM=QN ;(2)延长NQ 交CM 于E ,由“ASA”可证△BQN ≌△CQE ,可得QE=QN ,由直角三角形的性质可得结论.【详解】(1) 点Q 是BC 边上的中点,BQ CQ ∴=,BN l ⊥,CM l ⊥,90BNQ CMQ ∴∠=∠=︒,且BQ CQ =,BQN CQM ∠=∠,()BQN CQM AAS ∴∆≅∆,QM QN ∴=;(2)仍然成立,理由如下:如图,延长NQ 交CM 于E ,点Q 是BC 边上的中点,BQ CQ ∴=,BN l ⊥,CM l ⊥,//BN CM ∴,NBQ QCM ∴∠=∠,且BQ CQ =,BQN CQE ∠=∠,()BQN CQE ASA ∴∆≅∆,QE QN ∴=,且90NME ∠=︒,QM NQ QE ∴==.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键. 22.如图,在ABC ∆中,90C ∠=︒.(1)用尺规作图作BAC ∠的平分线AD ,交BC 于D ;(保留作图痕迹,不要求写作法和证明) (2)若10AB cm =,4CD cm =,求ABD ∆的面积.【答案】(1)见解析;(1)10cm 1.【分析】(1)根据尺规作角平分线的方法,即可得到答案;(1)过D 作DE AB ⊥于E ,根据角平分线的性质定理和三角形的面积公式,即可求解.【详解】(1)如图所示:AD 即为所求;(1)过D 作DE AB ⊥于E ,∵AD 平分BAC ∠,90C ∠=︒,∴4DE CD ==cm , ∴2111042022ABD S AB DE cm ∆=⨯=⨯⨯=.【点睛】本题主要考查尺规作角平分线以及角平分线的性质定理,掌握角平分线的性质定理,是解题的关键. 23.计算:()20192020122⎛⎫-⨯ ⎪⎝⎭=________.【答案】2【分析】利用同底数幂的乘法运算将原式变形,再利用积的乘方求出结果. 【详解】解:(-2)202012⨯()2019 =2202012⨯()2019 =2⨯2201912⨯()2019 =2122⨯⨯()2019=21⨯=2【点睛】此题考察整式乘法公式的运用,准确变形是解题的关键.24.若241x x -=-,求(1)21()4x x -+;(2)1x x -的值. 【答案】(1)4;(2)23±.【分析】(1)根据241x x -=-可得14x x+=,再利用完全平方公式(222()2a b a ab b ±=±+)对代数式进行适当变形后,代入即可求解;(2)根据完全平方公式两数和的公式和两数差的公式之间的关系(22()()4a b a b ab -=+-)即可求解. 【详解】解:(1)∵241x x -=-,∴14x x+=, 2222221111()4242()x x x x x x x x-+=+-+=++=+ 将14x x+=代入, 原式=24=4;(2)由(1)得14x x +=,即22211()216x x x x +=++=, ∴221212x x +-=, 即21()12x x-=,即11223x x -=±=±. 【点睛】本题考查通过对完全平方公式变形求值,二次根式的化简.熟记完全平方公式和完全平方公式的常见变形是解决此题的关键.25.如图,ABC ∆是等边三角形,延长BC 到E ,使12CE BC =,点D 是边AC 的中点,连接ED 并延长ED 交AB 于F .求证:(1)EF AB ⊥;(2)2DE DF =.【答案】(1)见解析;(2)见解析.【分析】(1)根据等边三角形的性质可知AB BC AC ==,60∠=∠=∠=︒A B C ,从而可得,30CD CE CDE E =∠=∠=︒,再利用三角形的内角和可求得90BFE ∠=︒,最后根据垂直定义可证得EF AB ⊥(2)通过添加辅助线BD 构造出Rt BDF ∆,再利用等边三角形的相关性质证得30DBE E ∠=∠=︒,从而得出BD DE =,最后根据30角所对的直角边等于斜边的一半知2BD DF =,即2DE DF =.【详解】(1)∵ABC ∆为等边三角形∴AC BC =,60ACB ∠=︒,60B ∠=︒∵D 是边AC 的中点∴12AD DC AC ==∵12CE BC = ∴DC CE =,∴CDE E ∠=∠∵ACB E CDE ∠=∠+∠,60ACB ∠=︒∴30CDE E ∠=∠=︒∴180306090BFE ∠=︒-︒-︒=︒∴EF AB ⊥;(2)连接BD∵ABC ∆为等边三角形∴AB BC =,60ABC ∠=︒,∵D 是边AC 的中点 ∴1302ABD DBC ABC ∠=∠=∠=︒ ∵30E ∠=︒∴30DBE E ∠=∠=︒∴BD DE =∵在Rt BDF ∆中,30FBD ∠=︒ ∴12DF BD =, ∴12FD DE =,即:2DE FD =【点睛】本题主要考查了等边三角形的性质,含30的直角三角形的性质.第一问再利用三角形的内角和、垂直定义等知识点即可得证;第二问解题关键在于辅助线的添加,构造出含30的直角三角形,再利用等边三角形的性质以及等要三角形的判定进一步转化得证最后结论.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法正确的是( )A.等腰直角三角形的高线、中线、角平分线互相重合 B.有两条边相等的两个直角三角形全等C.四边形具有稳定性D.角平分线上的点到角两边的距离相等【答案】D【分析】根据等腰三角形的性质、全等三角形的判定、四边形的性质、角平分线的性质判断即可.【详解】解:等腰三角形底边上的中线、高线和所对角的角平分线互相重合,A选项错误;有两条边相等的两个直角三角形全等,必须是对应直角边或对应斜边,B选项错误;四边形不具有稳定性,C选项错误;角平分线上的点到角两边的距离相等,符合角平分线的性质,D选项正确.故选D.【点睛】本题比较简单,考查的是等腰三角形的性质、全等三角形的判定、四边形的性质、角平分线的性质,需要准确掌握定理内容进行判断.2.下列长度的线段能组成三角形的是()A.3、4、8 B.5、6、11 C.5、6、10 D.3、5、10【答案】C【解析】解:A、3+4<8,故不能组成三角形,故A错误;B、5+6=11,故不能组成三角形,故B错误;C、5+6>10,故能组成三角形,故C正确;D、3+5<10,故不能组成三角形,故D错误.故选C.点睛:本题主要考查了三角形三边的关系,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】请在此输入详解!3.已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.18【答案】A【解析】试题分析:由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解:∵8+8+5=1.∴这个三角形的周长为1.故选A .考点:等腰三角形的性质.4+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间【答案】C【解析】∵,∴,在在3和4之间.故选C.5.下列命题的逆命题为假命题的是( )A .如果一元二次方程()200a bx c a ++=≠没有实数根,那么240b ac -<.B .线段垂直平分线上任意一点到这条线段两个端点的距离相等.C .如果两个数相等,那么它们的平方相等.D .直角三角形两条直角边的平方和等于斜边的平方.【答案】C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】A 、逆命题为:如果一元一次方程20ax bx c ++=()0a ≠中240b ac -<,那么没有实数根,正确,是真命题;B 、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,是真命题;C 、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;D 、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题.故选:C .【点睛】考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.6.方差:一组数据:2,x ,1,3,5,4,若这组数据的中位数是3,是这组数据的方差是( ) A .10B .53C .2D .83 【答案】B【分析】先根据中位数是3,得到数据从小到大排列时x 与3相邻,再根据中位数的定义列方程求解即得x的值,最后应用方差计算公式即得.【详解】∵这组数据的中位数是3∴这组数据按照从小到大的排列顺序应是1,2,x ,3,4,5或1,2, 3,x ,4,5∴()323x +÷=解得:3x =∴这组数据是1,2,3,3,4,5 ∴这组数据的平均数为1+2+334536x +++== ∵2222121()()...()n S x x x x x x n ⎡⎤=-+-++-⎣⎦ ∴222222215(13)(23)(33)(33)(43)(53)63S ⎡⎤=⨯-+-+-+-+-+-=⎣⎦ 故选:B .【点睛】本题考查了中位数的定义和方差的计算公式,根据中位数定义应用方程思想确定x 的值是解题关键,理解“方差反映一组数据与平均值的离散程度”有助于熟练掌握方差计算公式.7.计算12a 2b 4•(﹣332a b )÷(﹣22a b )的结果等于( ) A .﹣9aB .9aC .﹣36aD .36a【答案】D 【分析】通过约分化简进行计算即可.【详解】原式=12a 2b 4•(﹣332a b )·(﹣22a b) =36a.故选D.【点睛】本题考点:分式的化简. 8.把分式11361124x x +-的分子与分母各项系数化为整数,得到的正确结果是( ) A .3243x x +- B .4263x x +- C .2121x x +- D .4163x x +- 【答案】B【分析】只要将分子分母要同时乘以12,分式各项的系数就可都化为整数.【详解】解: 不改变分值, 如果把其分子和分母中的各项的系数都化为整数,则分子分母要同时乘以12, 即分式11361124xx+-=4263xx+-故选B.【点睛】解答此类题一定要熟练掌握分式的基本性质, 无论是把分式的分子和分母扩大还是缩小相同的倍数, 分式的值不变.9.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=【答案】C【解析】分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30 天完成任务,即可得出关于x的分式方程.详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=.故选C.点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.10.如图,在ABC∆中,32B=︒∠,将ABC∆沿直线m翻折,点B落在点D的位置,则12∠-∠的度数是()A.32︒B.45︒C.60︒D.64︒【答案】D【分析】由翻折得∠B=∠D,利用外角的性质得到∠3及∠1,再将∠B的度数代入计算,即可得到答案.【详解】如图,由翻折得∠B=∠D ,∵∠3=∠2+∠D ,∠1=∠B+∠3,∴∠1=∠2+2∠B ,∵32B =︒∠,∴12∠-∠=64︒,故选:D.【点睛】此题考查三角形的外角性质,三角形的外角等于与它不相邻的内角的和,熟记并熟练运用是解题的关键.二、填空题11.若实数5x <则x 可取的最大整数是_______. 【答案】2 【分析】根据24593=<<= ,得出x 可取的最大整数是2 【详解】∵24593=<=∴x 可取的最大整数是2【点睛】本题考查了无理数的大小比较,通过比较无理数之间的大小可得出x 的最大整数值12.对实数a 、b ,定义运算☆如下:a ☆b=(,0){(,0)b b a a b a a a b a ->≠≤≠,例如:2☆3=2﹣3=18,则计算:[2☆(﹣4)]☆1=_____.【答案】1【解析】判断算式a ☆b 中,a 与b 的大小,转化为对应的幂运算即可求得答案.【详解】由题意可得:[2☆(﹣4)]☆1=2﹣4☆1 =116☆1=(116)﹣1 =1,故答案为:1.【点睛】本题考查了新定义运算、负整数指数幂,弄清题意,理解新定义运算的规则是解决此类题目的关键. 13.如图,在矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使DA 与对角线DB 重合,点A 落在点A′处,折痕为DE ,则A′E 的长是_________.【答案】32. 【详解】在Rt △ABD 中,AB=4,AD=3,∴222243AB AD ++, 由折叠的性质可得,△ADE ≌△A'DE , ∴A'D=AD=3,A'E=AE ,∴A'B=BD-A'D=5-3=2,设AE=x ,则A'E=AE=x ,BE=4-x ,在Rt △A'BE 中,x 2+22=(4-x )2解得x=32, 即AE=32. 考点:1.翻折变换(折叠问题);2.勾股定理.14.已知一个角的补角是它余角的3倍,则这个角的度数为_____.【答案】45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.15.如图,在△ABC 中,∠ACB =90°,AB 的垂直平分线DE 交AB 于E ,交AC 于D ,∠DBC =30°,BD =4.6,则D 到AB 的距离为 .【答案】2.1【解析】先根据线段的垂直平分线的性质得到DB=DA ,则有∠A=∠ABD ,而∠C=90°,∠DBC=10°,利用三角形的内角和可得∠A+∠ABD=90°-10°=60°,得到∠ABD=10°,在Rt △BED 中根据含10°的直角三角形三边的关系即可得到DE=12BD=2.1cm . 解:∵DE 垂直平分AB ,∴DB=DA ,∴∠A=∠ABD ,而∠C=90°,∠DBC=10°,∴∠A+∠ABD=90°-10°=60°,∴∠ABD=10°,在Rt △BED 中,∠EBD=10°,BD=4.6cm ,∴DE=12BD=2.1cm , 即D 到AB 的距离为2.1cm .故答案为2.1.16. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC=CD=DE,点D 、E 可在槽中滑动.若∠BDE=75°,则∠CDE 的度数是__________【答案】80°【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC 据三角形的外角性质即可求出∠ODC 数,进而求出∠CDE 的度数.【详解】∵OC CD DE ==,∴O ODC ∠=∠,DCE DEC ∠=∠,设O ODC x ∠=∠=,∴2DCE DEC x ∠=∠=,∴180CDE DCE DEC ∠=︒-∠-∠1804x =︒-,∵75BDE ∠=︒,∴180ODC CDE BDE ∠+∠+∠=︒,即180475180x x +-+=︒︒︒,解得:25x =︒,180480CDE x ︒∠=-=︒.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键. 17.如图,等边△ABC 的边长为6,点P 沿△ABC 的边从A→B→C 运动,以AP 为边作等边△APQ ,且点Q 在直线AB 下方,当点P 、Q 运动到使△BPQ 是等腰三角形时,点Q 运动路线的长为_____.【答案】3或1【分析】如图,连接CP ,BQ ,由“SAS”可证△ACP ≌△ABQ ,可得BQ =CP ,可得点Q 运动轨迹是A→H→B ,分两种情况讨论,即可求解.【详解】解:如图,连接CP ,BQ ,∵△ABC ,△APQ 是等边三角形,∴AP =AQ =PQ ,AC =AB ,∠CAP =∠BAQ =60°,∴△ACP ≌△ABQ(SAS)∴BQ =CP ,∴当点P 运动到点B 时,点Q 运动到点H ,且BH =BC =6,∴当点P 在AB 上运动时,点Q 在AH 上运动,∵△BPQ 是等腰三角形,∴PQ =PB ,∴AP =PB =3=AQ ,∴点Q 运动路线的长为3,当点P 在BC 上运动时,点Q 在BH 上运用,∵△BPQ 是等腰三角形,∴PQ =PB ,∴BP =BQ =3,∴点Q 运动路线的长为3+6=1,故答案为:3或1.【点睛】本题考查了点的运动轨迹,全等三角形的判定和性质,等边三角形的性质,确定点Q 的运动轨迹是本题的关键.三、解答题18.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.【答案】()1证明见解析;()2BEF 67.5∠=.【解析】()1由题意可知:CD CE =,DCE 90∠=,由于ACB 90∠=,从而可得ACD BCE ∠∠=,根据SAS 即可证明ACD ≌BCE ;()2由ACD ≌()BCE SAS 可知:A CBE 45∠∠==,BE BF =,从而可求出BEF ∠的度数. 【详解】()1由题意可知:CD CE =,DCE 90∠=,ACB 90∠=,ACD ACB DCB ∠∠∠∴=-,BCE DCE DCB ∠∠∠=-,ACD BCE ∠∠∴=,在ACD 与BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,ACD ∴≌()BCE SAS ;()2ACB 90∠=,AC BC =,A 45∠∴=,由()1可知:A CBE 45∠∠==,AD BF =,BE BF ∴=,BEF 67.5∠∴=.【点睛】本题考查了旋转的性质、全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.19.(1212-⎛⎫ ⎪⎝⎭; (2)已知:()22181x -=,求x 的值.【答案】(1)-3;(2)5x =或 4x =-.【分析】(1)原式利用算术平方根的定义,立方根和负整数指数评价的人运算法则进行计算,最后再进行加减运算即可;(2)方程利用平方根的定义开方即可求得方程的解. 【详解】(1212-⎛⎫ ⎪⎝⎭, =2-1-4=-3;(2)()22181x -=开方得,219x -=±∴219x -=,219x -=-解得,5x =或 4x =-.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,已知△ABC 中,∠C=90°,∠B=15°,AC=2cm ,分别以A 、B 两点为圆心,大于12AB 的长为半径画弧,两弧分别相交于E 、F 两点,直线EF 交BC 于点D ,求BD 的长.。
2017-2018学年度 八年级数学期末测试卷(含答案)
2017—2018学年度第一学期期末检测试卷八年级数学A 卷 B 卷题号一二三2324252627总 分得分A 卷(100分)一、选择题(每小题4分,共40分)1、-8的立方根为 ( )A .2B .-2C .±2D .±42、实数, -π, , , 0, 3 , 0.1010010001……中,无理数的71132-4个数是 ( )A .2B .3C .4D .53、下列图形中是中心对称图形的为 ( )4、下列运算正确的是 ( )A. B. C. D.623a a a =⨯633x x =)(1055x x x =+3325b a ab ab -=-÷-)()(5、分解因式结果正确的是 ( )32b b a -A 、B 、C 、D 、)(22b a b -2)(b a b -))((b a b ab -+))((b a b a b -+6、通过估算,估计 76 的大小应在 ( )A .7~8之间B .8.0~8.5之间C .8.5~9.0之间D .9~10之间7、下列图形中是旋转对称图形有 ( )①正三角形 ②正方形 ③三角形 ④圆 ⑤线段A.个B.个C.个D.个54328、已知a 、b 、c 是三角形的三边长,如果满足,则0108)6(2=-+-+-c b a 三角形的形状是 ( )A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形9、如图:在菱形ABCD 中,AC=6,BD=8,则菱形的边长为 ( )A .5B .10C .6D .810、如图,□ABCD 中,对角线AC 和BD 交于O ,若AC =8,BD =6,则AB 长的取值范围是 ( )A .B .71<<AB 42<<AB C .D .86<<AB 43<<AB 二、填空题(每小题4分,共32分)11、的算术平方根是________;3612、.计算: .()[]=+-222322221n m mn n m 13、多项式是完全平方式,则m = .6422++mx x 14、如图,在平行四边形ABCD 中,EF∥AD,GH∥AB,EF 、GH10题图9题图相交于点O,则图中共有____ 个平行四边形.15、已知,如图,网格中每个小正方形的边长为1,则四边形ABCD 的面积为 .16、已知:等腰梯形的两底分别为和,一腰长为,则它的对cm 10cm 20cm 89角线的长为 .cm 17、□中,是对角线,且,,则ABCD BD BD BC =︒=∠70CBD =∠ADC 度.三、解答题(共28分)19、(每小题4分,共8分)因式分解(1) (2)22916y x -22242y xy x +-20、(本题8分) 先化简,再求值:,其中()()()()224171131x x x x +--++-12x =-15题图18题图A B CD 14题H G F EO21、(每小题3分,共6分)在如图的方格中,作出△ABC 经过平移和旋转后的图形:(1)将△ABC 向下平移4个单位得△;C B A '''(2)再将平移后的三角形绕点顺时针方向旋转90度。
2017-2018学年八年级数学上学期期末考试试题 (含答案)
2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。
2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)
2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。
2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。
3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。
4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。
不按以上要求作答的答案无效。
5.考试结束只上交答题卡。
第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。
1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。
山西省太原市2017-2018学年八年级(上)期末数学试卷(解析版)
2017-2018学年山西省太原市八年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.等于()A.2B.﹣C.2D.﹣22.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则正比例函数的解析式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x3.在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)4.如图,在Rt△ABC中,∠ACB=90°,∠A=55°,点D是AB延长线上的一点.∠CBD的度数是()A.125°B.135°C.145°D.155°5.若x,y满足方程组,则x+y的值为()A.3B.4C.5D.66.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④7.某单位要购买一批直径为10mm 的螺丝,先从甲、乙、丙、丁四个加工厂生产的同类螺丝中各随机抽取20 个进行测量.下表记录了这些螺丝直径的平均数和方差:根据表中数据,应选择购买的厂家是()甲乙丙丁平均数(mm)9.9610.079.9610.07方差0.0160.0580.0080.023A.甲B.乙C.丙D.丁8.如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为()A.8B.9.6C.10D.4 59.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息可得,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大10.从A地到B地有一段上坡路和一段平路,如果车辆保持上坡每小时行驶30km,平路每小时行驶50km,下坡每小时行驶60km,那么车辆从A地到B地需要48分钟,从B地到A地需要27分钟,问A,B两地之间的坡路和平路各有多少千米?若设A,B两地之间的坡路为xkm,平路为ykm,根据题意可列方程组为()A.B.C.D.二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上.11.把化成最简二次根式为.12.如图是一块四边形绿地,其中AB=4m,BC=13m,CD=12m,DA=3m,∠A=90°,这块绿地的面积为m2.13.如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则方程组的解是.14.某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示,若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.28元,则图中a的值为.15.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为.三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程.16.(8分)计算:(1);(2)(2+)×﹣12.17.(5分)解方程组:.18.(6分)如图,在△ABC中,∠BAC=40°,∠C=70°,BD平分∠ABC,且∠ADB=35°,求证:AD∥BC.19.(6分)某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)教学能力科研能力组织能力甲818586乙928074(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?20.(6分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔和3个B种魔方共需95元;购买3个A种魔方所需款数恰好等于购买5个B种魔方所需款数,求这两种魔方的单价.21.(8分)甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系,且OP与EF相交于点M.(1)求线段OP对应的y甲与x的函数关系式(不必注明自变量x的取值范围);(2)求y乙与x的函数关系式以及A,B两地之间的距离;(3)请从A,B两题中任选一题作答,我选择题.A.直接写出经过多少小时,甲、乙两人相距3km;B.设甲、乙两人的距离为s(km),直接写出s与x的函数关系式,并注明x的取值范围.22.(9分)问题情境:已知:如图1,直线AB∥CD,现将直角三角板△PMN放入图中,其中∠MPN=90°,点P始终在直线MN右侧.PM交AB于点E,PN交CD于点F,试探究:∠PFD与∠AEM的数量关系.(1)特例分析:如图2,当点P在直线AB上(即点E与点P重合)时,直接写出∠PFD 与∠AEM的数量关系,不必证明;(2)类比探究:如图1,当点P在AB与CD之间时,猜想∠PFD与∠AEM的数量关系,并说明理由;(3)拓展延伸:如图3,当点P在直线AB的上方时,PN交AB于点H,其他条件不变,猜想∠PFD与∠AEM的数量关系,并说明理由.23.(12分)如图1,平面直角坐标系中,直线y=kx+b与x轴交于点A(6,0),与y轴交于点B,与直线y=2x交于点C(a,4).(1)求点C的坐标及直线AB的表达式;(2)如图2,在(1)的条件下,过点E作直线l⊥x轴于点E,交直线y=2x于点F,交直线y=kx+b于点G,若点E的坐标是(4,0).①求△CGF的面积;②直线l上是否存在点P,使OP+BP的值最小?若存在,直接写出点P的坐标;若不存在,说明理由;(3)若(2)中的点E是x轴上的一个动点,点E的横坐标为m(m>0),当点E在x 轴上运动时,探究下列问题:请从A,B两题中任选一题作答,我选择题:A.当m取何值时,直线l上存在点Q,使得以A,C,Q为顶点的三角形与△AOC全等?请直接写出相应的m的值.B.当△BFG是等腰三角形时直接写出m的值.2017-2018学年山西省太原市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.等于()A.2B.﹣C.2D.﹣2【分析】根据立方根的定义求解即可.【解答】解:∵2的立方等于8,∴8的立方根等于2,即等于2.故选:C.【点评】此题主要考查了立方根定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则正比例函数的解析式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x【分析】直接把点(1,﹣2)代入y=kx,然后求出k即可.【解答】解:把点(1,﹣2)代入y=kx得k=﹣2,所以正比例函数解析式为y=﹣2x.故选:B.【点评】本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k ≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.3.在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点(3,﹣2)关于y轴对称的点的坐标是(﹣3,﹣2),故选:D.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.4.如图,在Rt△ABC中,∠ACB=90°,∠A=55°,点D是AB延长线上的一点.∠CBD的度数是()A.125°B.135°C.145°D.155°【分析】直接利用三角形的一个外角等于与它不相邻的两内角的和,即可得出结论.【解答】解:∵∠CBD是△ABC的外角,∴∠CBD=∠A+∠ACB,∵∠A=55°,∠ACB=90°,∴∠CBD=55°+90°=145°,故选:C.【点评】此题主要考查了三角形的外角的性质,熟记性质是解本题的关键.5.若x,y满足方程组,则x+y的值为()A.3B.4C.5D.6【分析】直接把两式相加即可得出结论.【解答】解:,①+②得,6x+6y=18,解得x+y=3.故选:A.【点评】本题考查的是解二元一次方程组,熟知利用加减法解二元一次方程组是解答此题的关键.6.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【解答】解:由图象得:①关于x的方程kx+b=0的解为x=2,正确;②关于x的方程kx+b=3的解为x=0,正确;③当x>2时,y<0,正确;④当x<0时,y>3,错误;故选:A.【点评】本题主要考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.7.某单位要购买一批直径为10mm 的螺丝,先从甲、乙、丙、丁四个加工厂生产的同类螺丝中各随机抽取20 个进行测量.下表记录了这些螺丝直径的平均数和方差:根据表中数据,应选择购买的厂家是()甲乙丙丁平均数(mm)9.9610.079.9610.07方差0.0160.0580.0080.023A.甲B.乙C.丙D.丁【分析】根据表格中的数据可知,丙的质量误差小,再根据方差越小越稳定即可解答本题.【解答】解:由根据方差越小越稳定可知,丙的质量误差小,故选:C.【点评】本题考查方差,解答本题的关键是明确方差的意义.8.如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为()A.8B.9.6C.10D.4 5【分析】作AD⊥BC于D,则∠ADB=90°,由等腰三角形的性质和勾股定理求出AD,当BM⊥AC时,BM最小;由△ABC的面积的计算方法求出BM的最小值.【解答】解:作AD⊥BC于D,如图所示:则∠ADB=90°,∵AB=AC,∴BD=BC=6,由勾股定理得:AD==8,当BM⊥AC时,BM最小,此时,∠BMC=90°,∵△ABC的面积=AC•BM=BC•AD,即×10×BM=×12×8,解得:BM=9.6,故选:B.【点评】本题考查了勾股定理、等腰三角形的性质、垂线段最短、三角形面积的计算方法;熟练掌握勾股定理,由三角形面积的计算方法求出BM的最小值是解决问题的关键.9.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息可得,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【解答】解:甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数=8(环),甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,9,9,10,则中位数是8环,乙10次射击成绩的平均数=(6+2×7+3×8+2×9+10)÷9=8(环),甲队的方差= [(6﹣8)2+3×(7﹣8)2+2×(8﹣8)3+3×(9﹣8)2+(10﹣8)2]=1.4;乙队的方差= [(6﹣8)2+2×(7﹣8)2+3×(8﹣8)3+2×(9﹣8)2+(10﹣8)2]=;则正确的是D;故选:D.【点评】本题考查了平均数、中位数和方差的定义和公式;解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.从A地到B地有一段上坡路和一段平路,如果车辆保持上坡每小时行驶30km,平路每小时行驶50km,下坡每小时行驶60km,那么车辆从A地到B地需要48分钟,从B地到A地需要27分钟,问A,B两地之间的坡路和平路各有多少千米?若设A,B两地之间的坡路为xkm,平路为ykm,根据题意可列方程组为()A.B.C.D.【分析】设A,B两地之间的坡路为xkm,平路为ykm,根据车辆从A地到B地需要48分钟,从B地到A地需要27分钟列出方程组即可.【解答】解:设A,B两地之间的坡路为xkm,平路为ykm,由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确从A地到B地的上坡路是从B地到A地的下坡路.二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上.11.把化成最简二次根式为.【分析】被开方数的分母分子同时乘以5即可.【解答】解:原式===,故答案为:.【点评】此题主要考查了化简二次根式,关键是掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行化简.12.如图是一块四边形绿地,其中AB=4m,BC=13m,CD=12m,DA=3m,∠A=90°,这块绿地的面积为36m2.【分析】连接BD,首先根据勾股定理求得BD的长,再根据勾股定理的逆定理判定∠BDC=90°,则四边形的面积即可分割成两个直角三角形的面积进行计算.【解答】解:连接BD,∵AB=4m,DA=3m,∠A=90°,∴BD=5m,又∵CD=12m,BC=13m,∴BD2+CD2=BC2,∴∠BDC=90°,=S△ABD+S△BCD=6+30=36.∴S四边形ABCD答:这块绿地的面积是36m2.故答案为:36【点评】本题综合运用勾股定理以及勾股定理的逆定理.注意不规则四边形的面积可以运用分割法求解.13.如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则方程组的解是.【分析】由两条直线的交点坐标(m,4),先求出m,再求出方程组的解即可.【解答】解:∵y=x+2的图象经过P(m,4),∴4=m+2,∴m=2,∴一次函数y=kx+b与y=x+2的图象相交于点P(2,4),∴方程组的解是,故答案为.【点评】本题考查一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标.14.某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示,若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.28元,则图中a的值为58元.【分析】直接利用函数图象进而分析得出答案.【解答】解:由图象可得:a=30+(600﹣500)×0.28=58(元).故答案为:58元.【点评】此题主要考查了一次函数的应用,正确读懂函数图象是解题关键.15.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为14或4.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故答案为14或4.【点评】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程.16.(8分)计算:(1);(2)(2+)×﹣12.【分析】(1)根据分式的性质得出原式=﹣,再利用二次根式的除法运算法则计算、化简可得;(2)利用乘方分配律展开、化简二次根式,再计算乘法、合并同类二次根式的即可得.【解答】解:(1)原式=﹣=﹣=﹣2=﹣;(2)原式=2×+×﹣12×=6+6﹣6=6.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.17.(5分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×2,得:6x﹣2y=26 ③,②+③,得:11x=33,解得:x=3,将x=3代入①,得:9﹣y=13,解得:y=﹣4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(6分)如图,在△ABC中,∠BAC=40°,∠C=70°,BD平分∠ABC,且∠ADB=35°,求证:AD∥BC.【分析】根据三角形的内角和和角平分线的定义以及平行线的判定证明即可.【解答】证明:在△ABC中,∠ABC=180°﹣∠BAC﹣∠C=180°﹣40°﹣70°=70°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠ABC=35°,∵∠ADB=35°,∴∠CBD=∠ADB,∴AD∥BC.【点评】此题考查三角形内角和,关键是根据三角形的内角和和角平分线的定义以及平行线的判定证明.19.(6分)某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)教学能力科研能力组织能力甲818586乙928074(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?【分析】(1)根据算术平均数的定义列式计算可得;(2)根据加权平均数的定义列式计算可得.【解答】解:(1)甲的平均成绩为=84(分);乙的平均成绩为=82(分),因为甲的平均成绩高于乙的平均成绩,所以甲被录用;(2)根据题意,甲的平均成绩为=83.2(分),乙的平均成绩为=84.8(分),因为甲的平均成绩低于乙的平均成绩,所以乙被录用.【点评】本题主要考查平均数,解题的关键是熟练掌握算术平均数和加权平均数的计算公式.20.(6分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔和3个B种魔方共需95元;购买3个A种魔方所需款数恰好等于购买5个B种魔方所需款数,求这两种魔方的单价.【分析】设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔和3个B种魔方共需95元;购买3个A种魔方所需款数恰好等于购买5个B种魔方所需款数”即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为25元/个,B种魔方的单价为15元/个.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.(8分)甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系,且OP与EF相交于点M.(1)求线段OP对应的y甲与x的函数关系式(不必注明自变量x的取值范围);(2)求y乙与x的函数关系式以及A,B两地之间的距离;(3)请从A,B两题中任选一题作答,我选择B题.A.直接写出经过多少小时,甲、乙两人相距3km;B.设甲、乙两人的距离为s(km),直接写出s与x的函数关系式,并注明x的取值范围.【分析】(1)根据函数图象中的数据可以求得相应的函数解析式;(2)根据图象中的数据可以求得相应的函数解析式和AB 两地的距离; (3)任选一题,然后根据(1)和(2)中的函数解析式即可解答本题. 【解答】解:(1)设线段OP 对应的函数解析式为y 甲=kx , 9=0.5k ,得k=18,∴线段OP 对应的函数解析式为y 甲=18x ; (2)设y 乙与x 的函数关系式是y 乙=mx +n ,,得,即y 乙与x 的函数关系式是y 乙=﹣6x +12, 当x=0时,y 乙=12,∴A 、B 两地的距离是12km ;(3)请从A ,B 两题中任选一题作答,我选择B 题, 故答案为:B ,B 题:当0≤x ≤0.5时,s=(﹣6x +12)﹣18x=﹣24x +12, 甲到达B 地用的时间为:12÷(9÷0.5)=小时, 当0.5<x ≤时,s=18x ﹣(﹣6x +12)=24x ﹣12, 当时,s=12﹣(﹣6x +12)=6x .补充:若选A ,解答如下,当0≤x ≤0.5时,(﹣6x +12)﹣18x=3,解得,x=, 当0.5<x ≤时,18x ﹣(﹣6x +12)=3,得x=.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(9分)问题情境:已知:如图1,直线AB ∥CD ,现将直角三角板△PMN 放入图中,其中∠MPN=90°,点P 始终在直线MN 右侧.PM 交AB 于点E ,PN 交CD 于点F ,试探究:∠PFD 与∠AEM 的数量关系.(1)特例分析:如图2,当点P 在直线AB 上(即点E 与点P 重合)时,直接写出∠PFD 与∠AEM 的数量关系,不必证明;(2)类比探究:如图1,当点P 在AB 与CD 之间时,猜想∠PFD 与∠AEM 的数量关系,并说明理由;(3)拓展延伸:如图3,当点P在直线AB的上方时,PN交AB于点H,其他条件不变,猜想∠PFD与∠AEM的数量关系,并说明理由.【分析】(1)根据平行线的性质得到∠PFD=∠APF,结合图形证明;(2)作PQ∥AB交MN于Q,根据平行线的性质解答;(3)根据平行线的性质、三角形的外角的性质解答.【解答】解:(1)∠PFD+∠AEM=90°,理由如下:∵AB∥CD,∴∠PFD=∠APF,∵∠APF+∠AEM=90°,∴∠PFD+∠AEM=90°;(2)∠PFD+∠AEM=90°,理由如下:作PQ∥AB交MN于Q,∵AB∥CD,∴PQ∥CD,∴∠AEM=∠QPE,∠PFD=∠QPF,∵∠QPE+∠QPF=90°,∴∠PFD+∠AEM=90°;(3)∠PFD﹣∠AEM=90°,理由如下:∵AB∥CD,∴∠PFD=∠PHB,∵∠PHB﹣∠PEB=90°,∠AEM=∠PEB,∴∠PHB﹣∠AEM=90°,∴∠PFD﹣∠AEM=90°.【点评】本题考查的是平行线的性质、三角形的外角的性质,掌握两直线平行,同位角相等以及三角形的外角的性质是解题的关键.23.(12分)如图1,平面直角坐标系中,直线y=kx+b与x轴交于点A(6,0),与y轴交于点B,与直线y=2x交于点C(a,4).(1)求点C的坐标及直线AB的表达式;(2)如图2,在(1)的条件下,过点E作直线l⊥x轴于点E,交直线y=2x于点F,交直线y=kx+b于点G,若点E的坐标是(4,0).①求△CGF的面积;②直线l上是否存在点P,使OP+BP的值最小?若存在,直接写出点P的坐标;若不存在,说明理由;(3)若(2)中的点E是x轴上的一个动点,点E的横坐标为m(m>0),当点E在x 轴上运动时,探究下列问题:请从A,B两题中任选一题作答,我选择A(或B)题:A.当m取何值时,直线l上存在点Q,使得以A,C,Q为顶点的三角形与△AOC全等?请直接写出相应的m的值.B.当△BFG是等腰三角形时直接写出m的值.【分析】(1)将C(2,4)和A(6,0)代入y=kx+b,即可得到直线AB的解析式;(2)①设点F(4,y1),G(4,y2),分别代入y=2x和y=﹣x+6,可得FE=8,GE=2,FG=6,=FG×CH,进行计算即可;②设点O关于直线l 过点C作CH⊥FG于H,依据S△FCG的对称点为D(8,0),设直线BD的解析式为y=mx+n,将B(0,6),D(8,0)代入y=mx+n,可得直线BD的解析式为y=﹣x+6,令x=4,则y=3,即可得出P(4,3);(3)选A题时,需要分数轴情况进行讨论,画出图形,依据全等三角形的对应顶点的位置,即可得到m的值;选B题时,依据△BFG是等腰三角形分四种情况进行讨论,进而得出m的值.【解答】解:(1)将点C(a,4)代入y=2x,可得a=2,∴C(2,4),将C(2,4)和A(6,0)代入y=kx+b,可得,解得,∴直线AB的解析式为y=﹣x+6;(2)①如图1,∵l⊥x轴,点E,F,G都在直线l上,且点E的坐标为(4,0),∴点F,G的横坐标均为4,设点F(4,y1),G(4,y2),分别代入y=2x和y=﹣x+6,可得y1=8,y2=2,∴F(4,8),G(4,2),∴FE=8,GE=2,FG=6,如图2,过点C作CH⊥FG于H,∵C(2,4),∴CH=4﹣2=2,=FG×CH=×6×2=6;∴S△FCG②存在点P(4,3),使得BP+OP的值最小.理由:设点O关于直线l的对称点为D(8,0),设直线BD的解析式为y=mx+n,将B(0,6),D(8,0)代入y=mx+n,可得,解得,∴直线BD的解析式为y=﹣x+6,点P在直线l:x=4上,令x=4,则y=3,∴P(4,3);(3)A题:m的值为2或6或8.理由:分三种情况讨论:①当△OAC≌△QCA,点Q在第四象限时,∠ECA=∠EAC,∴AE=CE=4,OE=6﹣4=2,∴m=2;②当△ACO≌△ACQ,Q在第一象限时,OE=AO=6,∴m=6;③当△ACO≌△CAQ,点Q在第四象限时,四边形AOCQ是平行四边形,CQ=AO=6,AE=2,∴OE=8,∴m=8;B题:m的值为3或6或或.理由:分四种情况讨论:①如图,当BG=GF时,m=﹣m+6﹣2m,解得m=;②如图,当BF=GF时,m=2m﹣(﹣m+6),解得m=3;③如图,当GB=GF时,m=2m﹣(﹣m+6),解得m=;④如图,当BG=BF时,FG=BG,即2m﹣(﹣m+6)=×m,解得m=6.【点评】本题属于一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,轴对称的性质,全等三角形的判定与性质以及等腰三角形的性质的综合运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.解决等腰三角形问题的关键是运用分类思想,画出图形,利用等腰三角形的腰长相等列方程求解.。
山西省太原市2017-2018学年八年级(上)期末数学试卷(解析版)
2017-2018 学年山西省太原市八年级(上)期末数学试卷一、选择题(本大题共10 个小题,每小题 3 分,共 30 分)1.等于()A.2 B.﹣C.2 D.﹣ 22.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则正比例函数的解析式为()A.y=2x B. y=﹣2x C.y= x D.y=﹣x3.在平面直角坐标系中,点(3,﹣ 2)关于 y 轴对称的点的坐标是()A.( 3, 2)B.(3,﹣ 2)C.(﹣ 3,2)D.(﹣ 3,﹣ 2)4.如图,在 Rt△ABC中,∠ ACB=90°,∠ A=55°,点 D 是 AB 延长线上的一点.∠CBD的度数是()A.125°B. 135°C.145°D.155°5.若 x, y 满足方程组,则 x+y 的值为()A.3 B. 4 C.5 D.66.如图,已知一次函数y=kx+b 的图象与 x 轴,y 轴分别交于点( 2,0),点(0,3).有下列结论:①关于x 的方程 kx+b=0 的解为 x=2;②关于 x 的方程 kx+b=3 的解为 x=0;③当 x> 2 时, y<0;④当 x<0 时, y< 3.其中正确的是()A.①②③B.①③④C.②③④D.①②④7.某单位要购买一批直径为10mm 的螺丝,先从甲、乙、丙、丁四个加工厂生产的同类螺丝中各随机抽取20 个进行测量.下表记录了这些螺丝直径的平均数和方差:根据表中数据,应选择购买的厂家是()甲乙丙丁平均数( mm )9.96 10.07 9.96 10.07方差0.016 0.058 0.008 0.023A.甲B.乙C.丙D.丁8.如图,在△ ABC中,点 M 是 AC 边上一个动点.若 AB=AC=10, BC=12,则 BM 的最小值为()A.8 B.9.6 C.10 D.4 59.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息可得,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大10.从 A 地到 B 地有一段上坡路和一段平路,如果车辆保持上坡每小时行驶30km,平路每小时行驶 50km,下坡每小时行驶60km,那么车辆从 A 地到 B 地需要 48 分钟,从 B 地到 A 地需要 27 分钟,问 A,B 两地之间的坡路和平路各有多少千米?若设A,B 两地之间的坡路为xkm,平路为 ykm,根据题意可列方程组为()A.B.C.D.二、填空题(本大题含 5 个小题,每小题 2 分,共 10 分)把答案写在题中横线上.11.把化成最简二次根式为.12.如图是一块四边形绿地,其中AB=4m, BC=13m, CD=12m,DA=3m,∠ A=90°,这块绿地的面积为m2.13.如图,一次函数y=kx+b 与y=x+2 的图象相交于点P(m, 4),则方程组的解是.14.某通讯公司的 4G 上网套餐每月上网费用 y(单位:元)与上网流量 x(单位:兆)的函数关系的图象如图所示,若该公司用户月上网流量超过 500 兆以后,每兆流量的费用为 0.28 元,则图中 a 的值为.15.△ ABC中, AB=15,AC=13, BC边上的高 AD=12,则 BC的长为.三、解答题(本大题含8 个小题,共 60 分)解答应写出必要的文字说明、演算步骤或推理过程.16.(8分)计算:( 1);(2)(2 + )×﹣12 .17.(5分)解方程组:.18.(6分)如图,在△ ABC中,∠ BAC=40°,∠ C=70°,BD 平分∠ ABC,且∠ ADB=35°,求证: AD∥ BC.19.(6 分)某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)教学能力科研能力组织能力甲818586乙928074( 1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?( 2)根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?20.(6 分)学校“百变魔方”社团准备购买A,B 两种魔方,已知购买 2 个A 种魔和 3 个B 种魔方共需95 元;购买 3 个A 种魔方所需款数恰好等于购买 5 个B 种魔方所需款数,求这两种魔方的单价.21.(8 分)甲骑自行车从 A 地出发前往 B 地,同时乙步行从 B 地出发前往 A 地,如图的折线 OPQ 和线段 EF,分别表示甲、乙两人与 A 地的距离 y 甲、y 乙与他们所行时间x( h)之间的函数关系,且 OP 与 EF相交于点 M .(1)求线段 OP 对应的 y 甲与 x 的函数关系式(不必注明自变量 x 的取值范围);(2)求 y 乙与 x 的函数关系式以及 A,B 两地之间的距离;( 3)请从 A, B 两题中任选一题作答,我选择题.A.直接写出经过多少小时,甲、乙两人相距3km;B.设甲、乙两人的距离为 s(km),直接写出 s 与 x 的函数关系式,并注明 x 的取值范围.22.(9 分)问题情境:已知:如图 1,直线 AB∥ CD,现将直角三角板△ PMN 放入图中,其中∠MPN=90°,点 P 始终在直线 MN 右侧. PM 交 AB于点 E,PN 交 CD于点 F,试探究:∠ PFD与∠AEM 的数量关系.(1)特例分析:如图 2,当点 P 在直线 AB 上(即点 E 与点 P 重合)时,直接写出∠ PFD 与∠ AEM 的数量关系,不必证明;(2)类比探究:如图 1,当点 P 在 AB 与 CD之间时,猜想∠ PFD与∠ AEM 的数量关系,并说明理由;(3)拓展延伸:如图 3,当点 P在直线 AB 的上方时, PN 交 AB 于点 H,其他条件不变,猜想∠PFD与∠ AEM 的数量关系,并说明理由.23.(12 分)如图 1,平面直角坐标系中,直线y=kx+b 与 x 轴交于点 A(6,0),与 y 轴交于点 B,与直线 y=2x 交于点 C( a,4).(1)求点 C 的坐标及直线 AB 的表达式;(2)如图 2,在( 1)的条件下,过点 E 作直线 l⊥x 轴于点 E,交直线 y=2x 于点 F,交直线y=kx+b 于点 G,若点 E 的坐标是( 4,0).①求△ CGF的面积;②直线 l 上是否存在点 P,使 OP+BP 的值最小?若存在,直接写出点P 的坐标;若不存在,说明理由;( 3)若( 2)中的点 E 是 x 轴上的一个动点,点 E 的横坐标为 m( m>0),当点 E 在 x 轴上运动时,探究下列问题:请从 A,B 两题中任选一题作答,我选择题:A.当 m 取何值时,直线 l 上存在点 Q,使得以 A,C,Q 为顶点的三角形与△ AOC全等?请直接写出相应的m 的值.B.当△ BFG是等腰三角形时直接写出m 的值.2017-2018 学年山西省太原市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10 个小题,每小题 3 分,共 30 分)1.等于()A.2 B.﹣C.2 D.﹣ 2【分析】根据立方根的定义求解即可.【解答】解:∵ 2 的立方等于 8,∴8 的立方根等于 2,即等于2.故选: C.【点评】此题主要考查了立方根定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.已知正比例函数 y=kx(k≠0)的图象经过点(1,﹣2),则正比例函数的解析式为()A.y=2x B. y=﹣2x C.y= x D.y=﹣x【分析】直接把点( 1,﹣ 2)代入 y=kx,然后求出 k 即可.【解答】解:把点( 1,﹣ 2)代入 y=kx 得 k=﹣2,所以正比例函数解析式为y=﹣2x.故选: B.【点评】本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k ≠0),然后把正比例函数图象上一个点的坐标代入求出k 即可.3.在平面直角坐标系中,点(3,﹣ 2)关于y 轴对称的点的坐标是()A.(3,2)B.(3,﹣ 2)C.(﹣ 3,2)D.(﹣ 3,﹣ 2)【分析】根据关于 y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点( 3,﹣ 2)关于 y 轴对称的点的坐标是(﹣3,﹣ 2),故选: D.【点评】此题主要考查了关于y 轴对称点的坐标,关键是掌握点的坐标的变化规律.4.如图,在 Rt△ABC中,∠ ACB=90°,∠ A=55°,点 D 是 AB 延长线上的一点.∠ CBD的度数是()A.125°B. 135°C.145°D.155°【分析】直接利用三角形的一个外角等于与它不相邻的两内角的和,即可得出结论.【解答】解:∵∠ CBD是△ ABC的外角,∴∠ CBD=∠A+∠ ACB,∵∠ A=55°,∠ ACB=90°,∴∠ CBD=55°+90°=145°,故选: C.【点评】此题主要考查了三角形的外角的性质,熟记性质是解本题的关键.5.若 x, y 满足方程组,则 x+y 的值为()A.3 B.4 C.5 D.6【分析】直接把两式相加即可得出结论.【解答】解:,①+②得, 6x+6y=18,解得 x+y=3.故选: A.【点评】本题考查的是解二元一次方程组,熟知利用加减法解二元一次方程组是解答此题的关键.6.如图,已知一次函数y=kx+b 的图象与 x 轴,y 轴分别交于点( 2,0),点(0,3).有下列结论:①关于x 的方程 kx+b=0 的解为 x=2;②关于 x 的方程 kx+b=3 的解为 x=0;③当 x> 2 时, y<0;④当 x<0 时, y< 3.其中正确的是()A.①②③B.①③④C.②③④D.①②④【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【解答】解:由图象得:①关于x 的方程 kx+b=0 的解为 x=2,正确;②关于 x 的方程 kx+b=3 的解为 x=0,正确;③当 x>2 时, y< 0,正确;④当 x<0 时, y> 3,错误;故选: A.【点评】本题主要考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.7.某单位要购买一批直径为10mm 的螺丝,先从甲、乙、丙、丁四个加工厂生产的同类螺丝中各随机抽取20 个进行测量.下表记录了这些螺丝直径的平均数和方差:根据表中数据,应选择购买的厂家是()甲乙丙丁平均数( mm )9.9610.079.96 10.07方差0.0160.0580.008 0.023 A.甲B.乙C.丙D.丁【分析】根据表格中的数据可知,丙的质量误差小,再根据方差越小越稳定即可解答本题.【解答】解:由根据方差越小越稳定可知,丙的质量误差小,故选: C.【点评】本题考查方差,解答本题的关键是明确方差的意义.8.如图,在△ ABC中,点 M 是 AC 边上一个动点.若 AB=AC=10, BC=12,则 BM 的最小值为()C.10 D.4 5 A.8 B. 9.6【分析】作AD⊥BC 于D,则∠ ADB=90°,由等腰三角形的性质和勾股定理求出AD,当BM⊥AC 时, BM 最小;由△ABC的面积的计算方法求出BM 的最小值.【解答】解:作 AD⊥ BC于 D,如图所示:则∠ ADB=90°,∵AB=AC,∴ BD= BC=6,由勾股定理得: AD= =8,当BM⊥AC 时, BM 最小,此时,∠ BMC=90°,∵△ ABC的面积 = AC?BM= BC?AD,即×10×BM= ×12×8,解得: BM=9.6,故选: B.【点评】本题考查了勾股定理、等腰三角形的性质、垂线段最短、三角形面积的计算方法;熟练掌握勾股定理,由三角形面积的计算方法求出 BM 的最小值是解决问题的关键.9.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息可得,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【解答】解:甲队员 10 次射击的成绩分别为 6, 7, 7, 7, 8, 8, 9, 9, 9,10,则中位数=8(环),甲10 次射击成绩的平均数 =(6+3× 7+2×8+3×9+10)÷ 10=8(环),乙队员 10 次射击的成绩分别为6,7,7,8,8,8,9,9,10,则中位数是 8 环,乙10 次射击成绩的平均数 =(6+2× 7+3×8+2×9+10)÷ 9=8(环),甲队的方差 = [ ( 6﹣ 8)2+3×(7﹣8)2+2×(8﹣8)3+3×(9﹣8)2+(10﹣8)2] =1.4;乙队的方差 = [ (6﹣8)2+2×(7﹣8)2+3×(8﹣8)3+2×( 9﹣8)2+( 10﹣8)2] = ;则正确的是 D;故选: D.【点评】本题考查了平均数、中位数和方差的定义和公式;解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.从 A 地到 B 地有一段上坡路和一段平路,如果车辆保持上坡每小时行驶30km,平路每小时行驶 50km,下坡每小时行驶60km,那么车辆从 A 地到 B 地需要 48 分钟,从 B 地到 A 地需要 27 分钟,问 A,B 两地之间的坡路和平路各有多少千米?若设A,B 两地之间的坡路为xkm,平路为 ykm,根据题意可列方程组为()A.B.C.D.【分析】设 A,B 两地之间的坡路为xkm,平路为 ykm,根据车辆从 A 地到 B 地需要 48 分钟,从 B 地到 A 地需要 27 分钟列出方程组即可.【解答】解:设 A, B 两地之间的坡路为xkm,平路为 ykm,由题意可得,,故选: D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确从 A 地到 B 地的上坡路是从 B 地到 A 地的下坡路.二、填空题(本大题含 5 个小题,每小题 2 分,共 10 分)把答案写在题中横线上.11.把化成最简二次根式为.【分析】被开方数的分母分子同时乘以 5 即可.【解答】解:原式= = = ,故答案为:.【点评】此题主要考查了化简二次根式,关键是掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行化简.12.如图是一块四边形绿地,其中AB=4m, BC=13m, CD=12m,DA=3m,∠ A=90°,这块绿地的面积为36 m2.【分析】连接 BD,首先根据勾股定理求得 BD 的长,再根据勾股定理的逆定理判定∠ BDC=90°,则四边形的面积即可分割成两个直角三角形的面积进行计算.【解答】解:连接 BD,∵AB=4m, DA=3m,∠ A=90°,∴ BD=5m,又∵ CD=12m, BC=13m,∴BD2 CD22,+ =BC∴∠ BDC=90°,∴S四边形△S△BCD=6 30=36.ABCD=S ABD++答:这块绿地的面积是 36m2.故答案为: 36【点评】本题综合运用勾股定理以及勾股定理的逆定理.注意不规则四边形的面积可以运用分割法求解.13.如图,一次函数 y=kx+b 与 y=x+2 的图象相交于点 P(m, 4),则方程组的解是.【分析】由两条直线的交点坐标( m,4),先求出 m,再求出方程组的解即可.【解答】解:∵ y=x+2 的图象经过 P( m,4),∴4=m+2,∴m=2,∴一次函数 y=kx+b 与 y=x+2 的图象相交于点P( 2, 4),∴方程组的解是,故答案为.【点评】本题考查一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标.14.某通讯公司的4G 上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示,若该公司用户月上网流量超过500 兆以后,每兆流量的费用为 0.28 元,则图中 a 的值为58 元.【分析】直接利用函数图象进而分析得出答案.【解答】解:由图象可得: a=30+( 600﹣ 500)× 0.28=58(元).故答案为: 58 元.【点评】此题主要考查了一次函数的应用,正确读懂函数图象是解题关键.15.△ ABC中, AB=15,AC=13, BC边上的高 AD=12,则 BC的长为14 或 4 .【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD, CD,再由图形求出 BC,在锐角三角形中, BC=BD+CD,在钝角三角形中, BC=CD﹣BD.【解答】解:( 1)如图,锐角△ ABC中, AB=15,AC=13,BC边上高 AD=12,在Rt△ABD 中 AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣ 122=81,∴BD=9,在Rt△ACD中 AC=13,AD=12,由勾股定理得2 2﹣AD2 2﹣122,CD =AC=13 =25∴CD=5,∴BC的长为 BD+DC=9+5=14;( 2)钝角△ ABC中, AB=15,AC=13,BC边上高 AD=12,在Rt△ABD 中 AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣ 122=81,∴BD=9,在Rt△ACD中 AC=13,AD=12,由勾股定理得:2 2 2 2 2CD =AC﹣AD =13 ﹣12=25,∴CD=5,∴BC的长为 DC﹣BD=9﹣5=4.故答案为 14 或 4.【点评】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.三、解答题(本大题含8 个小题,共60 分)解答应写出必要的文字说明、演算步骤或推理过程.16.(8 分)计算:(1);(2)(2 + )×﹣12 .【分析】( 1)根据分式的性质得出原式= ﹣,再利用二次根式的除法运算法则计算、化简可得;( 2)利用乘方分配律展开、化简二次根式,再计算乘法、合并同类二次根式的即可得.【解答】解:( 1)原式 = ﹣=﹣=﹣ 2=﹣;(2)原式 =2 ×+ ×﹣12×=6 +6﹣6=6.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.17.(5 分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①× 2,得: 6x﹣2y=26 ③,②+③,得: 11x=33,解得: x=3,将 x=3 代入①,得: 9﹣y=13,解得: y=﹣ 4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(6 分)如图,在△ ABC中,∠ BAC=40°,∠ C=70°,BD 平分∠ ABC,且∠ ADB=35°,求证:AD∥ BC.【分析】根据三角形的内角和和角平分线的定义以及平行线的判定证明即可.【解答】证明:在△ ABC中,∠ ABC=180°﹣∠ BAC﹣∠ C=180°﹣40°﹣70°=70°,∵BD平分∠ ABC,∴∠ CBD=∠ABD= ∠ABC=35°,∵∠ ADB=35°,∴∠ CBD=∠ADB,∴AD∥BC.【点评】此题考查三角形内角和,关键是根据三角形的内角和和角平分线的定义以及平行线的判定证明.19.(6 分)某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)教学能力科研能力组织能力甲818586乙928074( 1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?( 2)根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?【分析】(1)根据算术平均数的定义列式计算可得;( 2)根据加权平均数的定义列式计算可得.【解答】解:( 1)甲的平均成绩为=84(分);乙的平均成绩为=82(分),因为甲的平均成绩高于乙的平均成绩,所以甲被录用;( 2)根据题意,甲的平均成绩为=83.2(分),乙的平均成绩为=84.8(分),因为甲的平均成绩低于乙的平均成绩,所以乙被录用.【点评】本题主要考查平均数,解题的关键是熟练掌握算术平均数和加权平均数的计算公式.20.(6 分)学校“百变魔方”社团准备购买 A,B 两种魔方,已知购买2 个 A 种魔和 3 个B 种魔方共需95 元;购买 3 个A 种魔方所需款数恰好等于购买 5 个B 种魔方所需款数,求这两种魔方的单价.【分析】设 A 种魔方的单价为 x 元 / 个,B 种魔方的单价为 y 元 / 个,根据“购买 2 个 A 种魔和 3 个 B 种魔方共需 95 元;购买 3 个 A 种魔方所需款数恰好等于购买 5 个 B 种魔方所需款数”即可得出关于 x、y 的二元一次方程组,解之即可得出结论.【解答】解:设 A 种魔方的单价为x 元/ 个, B 种魔方的单价为y 元/ 个,根据题意得:,解得:.答: A 种魔方的单价为 25 元/ 个, B 种魔方的单价为15 元/ 个.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.(8 分)甲骑自行车从 A 地出发前往 B 地,同时乙步行从 B 地出发前往 A 地,如图的折线OPQ 和线段 EF,分别表示甲、乙两人与 A 地的距离 y 甲、y 乙与他们所行时间x( h)之间的函数关系,且OP 与 EF相交于点 M .(1)求线段 OP 对应的 y 甲与 x 的函数关系式(不必注明自变量 x 的取值范围);(2)求 y 乙与 x 的函数关系式以及 A,B 两地之间的距离;( 3)请从 A, B 两题中任选一题作答,我选择 B 题.A.直接写出经过多少小时,甲、乙两人相距3km;B.设甲、乙两人的距离为s(km),直接写出 s 与 x 的函数关系式,并注明x 的取值范围.【分析】(1)根据函数图象中的数据可以求得相应的函数解析式;(2)根据图象中的数据可以求得相应的函数解析式和AB 两地的距离;(3)任选一题,然后根据( 1)和( 2)中的函数解析式即可解答本题.【解答】解:( 1)设线段 OP 对应的函数解析式为 y 甲 =kx,9=0.5k,得 k=18,∴线段 OP 对应的函数解析式为y 甲 =18x;( 2)设 y 乙与 x 的函数关系式是 y 乙=mx+n,,得,即y 乙与 x 的函数关系式是 y 乙 =﹣6x+12,当 x=0 时, y 乙=12,∴ A、 B 两地的距离是 12km;( 3)请从 A, B 两题中任选一题作答,我选择 B 题,故答案为: B,B 题:当 0≤x≤0.5 时, s=(﹣ 6x+12)﹣ 18x=﹣24x+12,甲到达 B 地用的时间为: 12÷( 9÷ 0.5) = 小时,当0.5< x≤时, s=18x﹣(﹣ 6x+12)=24x﹣ 12,当时,s=12﹣(﹣ 6x 12)=6x.+补充:若选 A,解答如下,当0≤ x≤ 0.5 时,(﹣ 6x+12)﹣ 18x=3,解得, x= ,当0.5< x≤时, 18x﹣(﹣ 6x+12) =3,得 x= .【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(9 分)问题情境:已知:如图 1,直线 AB∥ CD,现将直角三角板△ PMN 放入图中,其中∠MPN=90°,点 P 始终在直线 MN 右侧. PM 交 AB于点 E,PN 交 CD于点 F,试探究:∠ PFD与∠ AEM 的数量关系.(1)特例分析:如图 2,当点 P 在直线 AB 上(即点 E 与点 P 重合)时,直接写出∠ PFD 与∠ AEM 的数量关系,不必证明;(2)类比探究:如图 1,当点 P 在 AB 与 CD之间时,猜想∠ PFD与∠ AEM 的数量关系,并说明理由;(3)拓展延伸:如图 3,当点 P在直线 AB 的上方时, PN 交 AB 于点 H,其他条件不变,猜想∠PFD与∠ AEM 的数量关系,并说明理由.【分析】(1)根据平行线的性质得到∠PFD=∠ APF,结合图形证明;(2)作 PQ∥AB 交 MN 于 Q,根据平行线的性质解答;(3)根据平行线的性质、三角形的外角的性质解答.【解答】解:( 1)∠ PFD+∠AEM=90°,理由如下:∵ AB∥CD,∴∠ PFD=∠APF,∵∠APF+∠AEM=90°,∴∠ PFD+∠AEM=90°;(2)∠ PFD+∠AEM=90°,理由如下:作 PQ∥AB 交 MN 于 Q,∵AB∥CD,∴ PQ∥CD,∴∠ AEM=∠QPE,∠ PFD=∠QPF,∵∠QPE+∠QPF=90°,∴∠ PFD+∠AEM=90°;(3)∠ PFD﹣∠ AEM=90°,理由如下:∵ AB∥CD,∴∠ PFD=∠PHB,∵∠ PHB﹣∠ PEB=90°,∠ AEM=∠PEB,∴∠ PHB﹣∠ AEM=90°,∴∠ PFD﹣∠ AEM=90°.【点评】本题考查的是平行线的性质、三角形的外角的性质,掌握两直线平行,同位角相等以及三角形的外角的性质是解题的关键.23.(12 分)如图 1,平面直角坐标系中,直线y=kx+b 与 x 轴交于点 A(6,0),与 y 轴交于点 B,与直线 y=2x 交于点 C( a,4).(1)求点 C 的坐标及直线 AB 的表达式;(2)如图 2,在( 1)的条件下,过点 E 作直线 l⊥x 轴于点 E,交直线 y=2x 于点 F,交直线y=kx+b 于点 G,若点 E 的坐标是( 4,0).①求△ CGF的面积;②直线 l 上是否存在点 P,使 OP+BP 的值最小?若存在,直接写出点P 的坐标;若不存在,说明理由;( 3)若( 2)中的点 E 是 x 轴上的一个动点,点 E 的横坐标为 m( m>0),当点 E 在 x 轴上运动时,探究下列问题:请从 A,B 两题中任选一题作答,我选择A(或 B)题:A.当 m 取何值时,直线 l 上存在点 Q,使得以 A,C,Q 为顶点的三角形与△ AOC全等?请直接写出相应的m 的值.B.当△ BFG是等腰三角形时直接写出m 的值.【分析】(1)将 C( 2, 4)和 A(6,0)代入 y=kx+b,即可得到直线AB 的解析式;(2)①设点 F(4,y1),G( 4,y2 ),分别代入 y=2x 和 y=﹣x+6,可得 FE=8,GE=2,FG=6,过点 C 作 CH⊥FG 于 H,依据 S△FCG×,进行计算即可;②设点O 关于直线l= FG CH的对称点为 D(8,0),设直线 BD 的解析式为 y=mx+n,将 B( 0, 6),D(8,0)代入 y=mx+n,可得直线 BD 的解析式为 y=﹣ x+6,令 x=4,则 y=3,即可得出 P(4,3);(3)选 A 题时,需要分数轴情况进行讨论,画出图形,依据全等三角形的对应顶点的位置,即可得到 m 的值;选 B 题时,依据△ BFG是等腰三角形分四种情况进行讨论,进而得出 m 的值.【解答】解:( 1)将点 C( a, 4)代入 y=2x,可得 a=2,将C(2,4)和 A( 6,0)代入 y=kx+b,可得,解得,∴直线 AB 的解析式为 y=﹣ x+6;(2)①如图 1,∵ l⊥ x 轴,点 E, F, G 都在直线 l 上,且点 E 的坐标为( 4,0),∴点 F,G 的横坐标均为 4,设点 F(4,y1),G(4,y2),分别代入 y=2x 和 y=﹣ x+6,可得y1=8,y2=2,∴F(4,8),G(4,2),∴FE=8,GE=2,FG=6,如图 2,过点 C 作 CH⊥ FG于 H,∵C(2,4),∴ CH=4﹣ 2=2,∴S△ FCG= FG× CH= ×6×2=6;②存在点 P( 4, 3),使得 BP+OP 的值最小.理由:设点 O 关于直线 l 的对称点为 D(8,0),设直线 BD 的解析式为 y=mx+n,将B(0,6),D( 8, 0)代入 y=mx+n,可得,解得,∴直线 BD 的解析式为 y=﹣x+6,点P 在直线 l: x=4 上,令 x=4,则 y=3,(3)A 题: m 的值为 2 或 6 或 8.理由:分三种情况讨论:①当△ OAC≌△ QCA,点 Q 在第四象限时,∠ ECA=∠EAC,∴ AE=CE=4, OE=6﹣ 4=2,∴ m=2;②当△ ACO≌△ ACQ, Q 在第一象限时, OE=AO=6,∴m=6;③当△ ACO≌△ CAQ,点 Q 在第四象限时,四边形 AOCQ是平行四边形, CQ=AO=6,AE=2,∴m=8;B 题: m 的值为 3 或 6 或或.理由:分四种情况讨论:①如图,当 BG=GF时,m=﹣m+6﹣ 2m,解得 m= ;②如图,当 BF=GF时, m=2m﹣(﹣ m+6),解得 m=3;③如图,当 GB=GF时,m=2m﹣(﹣ m+6),解得 m= ;④如图,当 BG=BF时, FG= BG,即 2m﹣(﹣ m+6)= ×m,解得 m=6.【点评】本题属于一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,轴对称的性质,全等三角形的判定与性质以及等腰三角形的性质的综合运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.解决等腰三角形问题的关键是运用分类思想,画出图形,利用等腰三角形的腰长相等列方程求解.。
∥3套精选试卷∥2018年太原市八年级上学期期末联考数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.要使分式2x 93x 9-+的值为0,你认为x 可取得数是 A .9B .±3C .﹣3D .3【答案】D 【解析】试题分析:根据分式分子为0分母不为0的条件,要使分式2x 93x 9-+的值为0,则必须2x 3x 30{{x 3x 33x 90=±-=⇒⇒=≠-+≠.故选D . 2.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( ) A .7B .7或8C .8或9D .7或8或9【答案】D【解析】试题分析:设内角和为1010°的多边形的边数是n ,则(n ﹣2)•110°=1010°,解得:n=1. 则原多边形的边数为7或1或2.故选D .考点:多边形内角与外角.3.下列长度的三条线段不能构成直角三角形的是( )A .3、4、5B .5、12、13C .2、4D .6、7、8 【答案】D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A 、∵32+42=52,∴此三角形是直角三角形,不符合题意;B 、∵52+122=132,∴此三角形是直角三角形,不符合题意;C 、∵22+2=42,∴此三角形是直角三角形,不符合题意;D 、∵62+72≠82,∴此三角形不是直角三角形,符合题意;故选:D .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.500米口径球面射电望远镜,简称FAST ,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.2018年4月18日,FAST 望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为( ) A .5.19×10-2B .5.19×10-3C .5.19×10-4D .51.9×10-3【答案】B【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00519=5.19×10-1.故选:B .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图所示,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是( )A .123S S S +=B .222123S S S +=C .123S S S +>D .123S S S +<【答案】A 【分析】设三个半圆的直径分别为:d 1、d 2、d 1,半圆的面积=12π×(2直径)2,将d 1、d 2、d 1代入分别求出S 1、S 2、S 1,由勾股定理可得:d 12+d 22=d 12,观察三者的关系即可.【详解】解:设三个半圆的直径分别为:d 1、d 2、d 1,S 1=12×π×(12d )2=21π8d , S 2=12×π×(22d )2=22π8d , S 1=12×π×(32d )2=23π8d . 由勾股定理可得:d 12+d 22=d 12,∴S 1+S 2=π8(d 12+d 22)=23π8d =S 1, 所以S 1、S 2、S 1的关系是:S 1+S 2=S 1.故选A .【点睛】本题主要考查运用勾股定理结合图形求面积之间的关系,关键在于根据题意找出直角三角形,运用勾股定理求出三个半圆的直径之间的关系.6.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果1=2∠∠ ,那么1∠ 与2∠ 是对顶角.③三角形的一个内角大于任何一个外角.④如果0x > ,那么20x > .A .1 个B .2 个C .3 个D .4 个 【答案】A【分析】正确的命题是真命题,根据定义解答即可.【详解】①两条直线被第三条直线所截,内错角相等,是假命题;②如果1=2∠∠ ,那么1∠ 与2∠ 是对顶角,是假命题;③三角形的一个内角大于任何一个外角,是假命题;④如果0x > ,那么20x > ,是真命题,故选:A.【点睛】此题考查真命题,熟记真命题的定义,并熟练掌握平行线的性质,对顶角的性质,三角形外角性质,不等式的性质是解题的关键.7.下列各式不能分解因式的是( )A .224x x -B .214x x ++C .229x y +D .21m - 【答案】C【解析】选项A. 224x x -=2x(x-2) .选项B. 214x x ++=(x+12)2 . 选项C. 229x y + ,不能分.选项D. 21m -=(1-m)(1+m).故选C.8.下列四个互联网公司logo 中,是轴对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形的概念判断即可.【详解】解:A 、不是轴对称图形;B 、不是轴对称图形;C 、不是轴对称图形;D 、是轴对称图形;故选:D .【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 9.如图,将一张含有30︒角的三角形纸片的两个顶点放在直尺的两条对边上,若120∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒【答案】C 【分析】利用平行线的性质,三角形的外角的性质解决问题即可;【详解】解:如图,∵AB∥CD,∴∠3=∠2,∴∠3=∠1+30°,∵∠1=20°,∴∠3=∠2=50°;故选:C .【点睛】本题主要考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 10.菱形ABCD 的对角线AC BD 、的长分别为6,8,则这个菱形的周长为( )A .8B .20C .16D .32【答案】B 【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.【详解】由菱形对角线性质知,AO=12AC=3,BO=12BD=4,且AO ⊥BO ,则22AO BO +=5,故这个菱形的周长L=4AB=1.故选:B . 【点睛】此题考查勾股定理,菱形的性质,解题关键在于根据勾股定理计算AB 的长. 二、填空题11.22233+=,333388+=4441515+=…,9a a b b +=(a ,b 均为实数),ab __________.【答案】522221+-23331+-24441+-29991+-此规律可求得a b 、的值,从而求得结论.222222121+=--2233333131+=--224444141+=--,…, 229999191+=-- 99a a b b += ∴9a =,29180b =-=, 980125ab =⨯=故答案为:125【点睛】本题主要考查的是二次根式的混合运算以及归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.12.某班的一个综合实践活动小组去甲、乙两个超市调查去年和今年“元旦”期间的销售情况,下面是调查后小明与其它两位同学进行交流的情景.小明说:“去年两超市销售额共为150万元,今年两超市销售额共为170万元”,小亮说:“甲超市销售额今年比去年增加10%小颖说:“乙超市销售额今年比去年增加20%根据他们的对话,得出今年甲超市销售额为_____万元【答案】1【分析】设甲超市去年销售额为x 万元,乙超市去年销售额为y 万元,根据题意列出方程组求解后,再求出甲超市今年的销售额即可.【详解】解:设甲超市去年销售额为x 万元,乙超市去年销售额为y 万元,根据题意得150(110%)(120%)170x y x y +=⎧⎨+++=⎩ 解得10050x y =⎧⎨=⎩ 所以今年甲超市销售额为(110%)100110+⨯=(万元).故答案为:1.【点睛】本题主要考查二元一次方程组的应用,根据题意列出方程组是解题的关键.13.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是______元.【答案】15.3【解析】根据加权平均数的计算方法,分别用单价乘以相应的百分比,计算即可得解.【详解】11×60%+18×15%+24×25%=15.1(元),即该店当月销售出水果的平均价格是15.1元,故答案为15.1.【点睛】本题考查扇形统计图及加权平均数,熟练掌握扇形统计图直接反映部分占总体的百分比大小及加权平均数的计算公式是解题的关键.14.20213(4)()3π-+---=_______.【答案】1【分析】根据负整数指数幂,零指数幂,整数指数幂的运算法则计算即可.【详解】原式=19+1-19=1, 故答案为:1.【点睛】本题考查了实数的运算,掌握负整数指数幂,零指数幂,整数指数幂的运算法则是解题关键. 15.如图,在等边ABC 中,D 、E 分别是边AB 、AC 上的点,且AD CE =,则ADC BEA ∠∠+=______.【答案】1【分析】根据等边三角形的性质,得出各角相等各边相等,已知AD =CE ,利用SAS 判定△ADC ≌△CEB ,从而得出∠ACD =∠CBE ,所以∠BCD+∠CBE =∠BCD+∠ACD =∠ACB =60°,进而利用四边形内角和解答即可.【详解】解:ABC 是等边三角形A ACB 60∠∠∴==,AC BC =AD CE =ADC ∴≌()CEB SASACD CBE ∠∠∴=BCD CBE BCD ACD ACB 60∠∠∠∠∠∴+=+==.BOC 120∠∴=,DOE 120∠∴=,ADC BEA 36060120180∠∠∴+=--=,故答案为1.【点睛】此题考查了等边三角形的性质及全等三角形的判定方法,常用的判定方法有SSS ,SAS ,AAS ,HL 等. 16.如图,在Rt ABC ∆中,90ACB ∠=,AD 平分BAC ∠交BC 于点D ,若5AB =,2DC =,则ABD ∆的面积为______.【答案】1【分析】作DH ⊥AB 于H ,如图,根据角平分线的性质得到DH=DC=2,然后根据三角形面积公式计算.【详解】解:作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DH ⊥AB ,DC ⊥AC ,∴DH=DC=2,∴△ABD 的面积= 152=52⨯⨯ 故答案为1.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.17.若249a ka ++是一个完全平方式,则k =__________.【答案】12±【解析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【详解】解:∵4a 2+ka+9=(2a )2+ka+32,∴ka=±2×2a ×3,解得k=±1.故答案为:±1.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.三、解答题18.如图,ACB 和ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.(1)求证:AE =DB ;(2)若AD =2,DB =3,求ED 的长.【答案】(1)见解析;(213【分析】(1)根据两边及夹角对应相等的两个三角形全等即可得证;(2)只要证明∠EAD =90°,AE =BD =3,AD =2,根据勾股定理即可计算.【详解】(1)证明:∵ACB 和ECD 都是等腰直角三角形,∴AC =BC ,CE =CD ,∵90ACB ECD ∠=∠=︒,∴ACB ACD ECD ACD ∠-∠=∠-∠,即BCD ACE ∠=∠. 在ACE 和BCD 中, AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩, ∴ACE △≌()BCD SAS △,∴AE DB =.(2)解∵ACB △是等腰直角三角形,∴45B BAC ∠=∠=︒.∵ACE △≌BCD ,∴45B CAE ∠=∠=︒,∴454590DAE CAE BAC ∠=∠+∠=︒+︒=︒,∴222AD AE DE +=.∵AE DB =,∴222AD DB DE +=.∵2AD =,3DB =, ∴222313DE =+=【点睛】本题考查全等三角形的判定和性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,发现∠EAD=90°是解题的突破口.19.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)作出与△ABC关于y轴对称△A1B1C1,并写出三个顶点的坐标为:A1(_____),B1(______),C1(_______);(2)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标;【答案】(1)﹣1,1;﹣4,2;﹣3,4;(2)作图见解析;点P坐标为(2,0).【分析】(1)分别作出点A,B,C关于y轴的对称点,再首尾顺次连接即可得;(2)作出点A关于x轴的对称点A′,再连接A′B,与x轴的交点即为所求.【详解】解:(1)如图所示,△A1B1C1即为所求,由图知,A1(﹣1,1),B1(﹣4,2)C1(﹣3,4),故答案为:﹣1,1;﹣4,2;﹣3,4;(2)如图所示,作出点A关于x轴的对称点A′,再连接A′B,与x轴的交点即为所求点P,其坐标为(2,0).【点睛】本题考查了轴对称作图、对称点的坐标特征及距离最短问题,利用对称点的坐标特征作图是关键.20.在等腰三角形ABC中,∠ABC=90度,D是AC边上的动点,连结BD,E、F分别是AB、BC上的点,且DE⊥DF.、(1)如图1,若D为AC边上的中点.(1)填空:∠C=,∠DBC=;(2)求证:△BDE≌△CDF.(3)如图2,D 从点C 出发,点E 在PD 上,以每秒1个单位的速度向终点A 运动,过点B 作BP ∥AC ,且PB =AC =4,点E 在PD 上,设点D 运动的时间为t 秒(0≤1≤4)在点D 运动的过程中,图中能否出现全等三角形?若能,请直接写出t 的值以及所对应的全等三角形的对数,若不能,请说明理由.【答案】(1)45°,45°;(2)见解析;(3)当t =0时,△PBE ≌△CAE 一对,当t =2时,△AED ≌△BFD ,△ABD ≌△CBD ,△BED ≌△CFD 共三对,当t =4时,△PBA ≌△CAB 一对.【分析】(1)利用等腰直角三角形的性质得出答案;(2)利用等腰直角三角形的性质结合ASA 进而得出答案;(3)当t =0时,t =2时,t =4时分别作出图形,得出答案.【详解】(1)解:∵在等腰三角形ABC 中,∠ABC =90度,D 为AC 边上的中点,∴∠C =45°,BD ⊥AC ,∴∠DBC =45°;故答案为45°;45°;(2)证明:在等腰直角三角形ABC 中,∠ABC =90°,D 为AC 边上的中点,∴BD ⊥AC ,又∵ED ⊥DF ,∴∠BDE+∠BDF=∠CDF+∠BDF=90°,∴∠BDE =∠CDF ,∵∠C =∠DBC =45°,∴BD =DC ,∠EBD=90°-∠DBC=45°,在△BDE 和△CDF 中,EBD C BD DCBDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BDE ≌△CDF (ASA );(3)解:如图①所示:当t =0时,△PBE ≌△CAE 一对;理由:∵BP ∥AC∴∠P=∠ACE在△PBE 和△CAE 中,PEB CEA P=ACEPB=CA ∠=∠⎧⎪∠∠⎨⎪⎩∴△PBE ≌△CAE (AAS )如图②所示:当t =2时,△AED ≌△BFD ,△ABD ≌△CBD ,△BED ≌△CFD 共三对;理由:在△ABD 和△CBD 中,AD=CD BD=BD BA=BC ⎧⎪⎨⎪⎩∴△ABD ≌△CBD (SSS )由(2)可知∠ADE+∠BDE=∠BDF+∠BDE ,∴∠ADE=∠BDF在△AED 和△BFD 中,A DBF=45AD=BDADE=BDF ⎧∠=∠⎪⎨⎪∠∠⎩∴△AED ≌△BFD (ASA )同理可证△BED ≌△CFD.如图③所示:当t =4时,△PBA ≌△CAB 一对.理由:∵PB ∥AC ,∴∠PBA=∠CAB ,在△PBA 和△CAB 中,PB=CA PBA=CAB BA=AB ⎧⎪∠∠⎨⎪⎩∴△PBA ≌△CAB (SAS )综上所述,答案为:当t =0时,△PBE ≌△CAE 一对,当t =2时,△AED ≌△BFD ,△ABD ≌△CBD ,△BED ≌△CFD 共三对,当t =4时,△PBA ≌△CAB 一对.【点睛】本题考查全等三角形的判定和性质,利用等腰直角三角形的性质推出∠BDE=∠CDF 是解决本题的关键. 21.甲、乙两个工程队完成某项工程,首先是甲队单独做了10天,然后乙队加入合作,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系.(1)求甲、乙两队合作完成剩下的全部工程时,工作量y 与天数x 间的函数关系式;(2)求实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少多少天?【答案】(1)y=116x-38;(2)实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少18天 【分析】(1)根据函数图象可以设出y 与x 的函数解析式,然后根据图象中的数据即可求得工作量y 与天数x 间的函数关系式;(2)将y=1代入(1)中的函数解析式,即可求得实际完成的天数,然后根据函数图象可以求得甲单独完成需要的天数,从而可以解答本题.【详解】(1)设甲、乙两队合作完成剩下的全部工程时,工作量y 与天数x 间的函数关系式为:y=kx+b , 110k b 4114k b 2⎧+=⎪⎪⎨⎪+=⎪⎩,得1k 163b 8⎧=⎪⎪⎨⎪=-⎪⎩, 即甲、乙两队合作完成剩下的全部工程时,工作量y 与天数x 间的函数关系式是y=116x-38; (2)令y=1,则1=116x-38,得x=22, 甲队单独完成这项工程需要的天数为:1÷(14÷10)=40(天),∵40-22=18,∴实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少18天.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.22.如图,在ABC ∆中,AD 平分BAC ∠交BC 于点D ,AE BC ⊥,垂足为E ,且CF AD .若记ABC x ∠=,ACB y ∠=(不妨设y x ≥),求CFE ∠的大小(用含,x y 的代数式表示).【答案】∠CFE=12(y x -). 【分析】利用角平分线和两角互余的性质求出∠DAE ,再利用平行线的性质解决问题即可.【详解】∵∠BAC=180°-∠B-∠ACB=180°-x y -,AD 平分∠BAC ,∴∠CAD=12∠BAC=90°()12x y -+, ∵AE ⊥BC ,∴∠AEC=90°,∴∠EAC=90°y -,∴∠DAE=∠CAD -∠EAC =90°()()()119022x y y y x -+-︒-=-, ∵AD ∥CF ,∴∠CFE=∠DAE=()12y x -. 【点睛】本题考查三角形内角和定理,角平分线的定义,平行线的性质等知识,解题的关键是熟练掌握基本知识. 23.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=+.请根据阅读材料解决下列问题: (1)填空:分解因式244a a -+=_____;(2)若2|1|690a b b ++-+=,求+a b 的值;(3)若a 、b 、c 分别是ABC ∆的三边,且222426240a b c ab b c ++---+=,试判断ABC ∆的形状,并说明理由.【答案】(1)()22a -;(2)2;(3)等边三角形.【分析】(1)根据完全平方公式即可因式分解;(2)根据非负性即可求解;(3)把原式化成几个平方和的形式,根据非负性即可求解.【详解】(1)244a a -+=()22a -.故答案为:()22a -;(2)21690a b b ++-+=()2130a b ∴++-=10,30a b ∴+=-=1,3a b ∴=-=132a b ∴+=-+=(3)∵a 2+4b 2+c 2﹣2ab ﹣6b ﹣2c+4=0,∴(a 2-2ab+b 2)+(c 2﹣2c+1)+(3b 2﹣6b+3)=0即(a 2-2ab+b 2)+(c 2﹣2c+1)+3(b 2﹣2b+1)=0,∴(a-b)2+(c-1)2+3(b-1)2=0,∴a-b=0,c-1=0,b-1=0,∴a=b ,c=1,b=1,∴a=b=c∵a 、b 、c 分别是△ABC 的三边,∴△ABC 是等边三角形.【点睛】 此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的特点与非负性的应用.24.计算(1)(2)(【答案】(1)(1)1.【解析】(1)先利用二次根式的性质化简每一项,再合并同类二次根式即可. (1)利用二次根式的性质化简后,根据混合运算法则计算即可.【详解】(1)原式(1)原式=(92+2-12)÷42=82÷42=1【点睛】本题考查的是二次根式的混合运算,能根据二次根式的性质对二次根式进行化简是关键.25.方格纸中的每个小方格都是边长为1个单位的正方形,建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(3,1).(1)画出△ABC关于y轴对称的△A1B1C1(2)将△A1B1C1向下平移3个单位后得到△A2B2C2,画出平移后的△A2B2C2,并写出顶点B2的坐标.【答案】(1)见解析;(2)见解析,B2(-1,-3)【分析】(1)利用关于y轴对称点的性质:纵坐标不变,横坐标互为相反数,得出对应点位置即可得出答案;(2)分别作出点A1、B1、C1向下平移3个单位后的点,然后顺次连接,且B2的坐标即为点B1纵坐标减3即可.【详解】解:(1)如图△A1B1C1,即为所求;(2)如图△A2B2C2,即为所求,B2(-1,-3).【点睛】本题考查了根据轴对称变换和平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,并顺次连接.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.点(﹣1,2)关于x 轴对称的点的坐标是( )A .(1,2)B .(1,﹣2)C .(﹣1,﹣2)D .(2,﹣1)【答案】C【解析】根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】点(﹣1,2)关于x 轴对称的点的坐标为(﹣1,﹣2),故选C .【点睛】本题考查了关于x 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图,在ABC ∆中,AC BC =,D 是BA 延长线上一点,E 是CB 延长线上一点,F 是AC 延长线上一点,131DAC ∠=︒,则ECF ∠的度数为( )A .49︒B .88︒C .98︒D .131︒【答案】C 【分析】根据等腰三角形的两个底角相等和三角形的内角和解答即可.【详解】解:∵∠DAC=131°,∠DAC+∠CAB=180°,∴∠CAB=49°,∵AC=BC ,∴∠CBA=49°,∠ACB=180°-49°-49°=82°,∴∠ECF=180°-∠ACB=180°-82°=98°,故选:C .【点睛】此题考查等腰三角形的性质和三角形内角和,关键是根据等腰三角形的性质和三角形的内角和解答. 3.如图,边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长 为3,则另一边长是()A .m+3B .m+6C .2m+3D .2m+6【答案】C 【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【详解】设拼成的矩形一边长为x ,则依题意得:(m+3)2-m 2=3x ,解得,x=(6m+9)÷3=2m+3,故选C.4.如图,在ABC ∆中,4AC =,BC 边上的垂直平分线DE 分别交BC 、AB 于点D 、E ,若AEC ∆的周长是11,则AB =( )A .28B .18C .10D .7【答案】D 【分析】利用垂直平分线的性质和已知的三角形的周长计算即可.【详解】解:∵DE 是BC 的垂直平分线,∴BE=EC ,∴AB=EB+AE=CE+EA ,又∵△ACE 的周长为11,4AC =,故AB=11-4=7,故选:D .【点睛】本题考查线段垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.5.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m≤6C .5≤m≤6D .6<m≤7【答案】B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围. 【详解】解不等式x ﹣m <0,得:x <m , 解不等式7﹣2x≤2,得:x≥52, 因为不等式组有解, 所以不等式组的解集为52≤x <m , 因为不等式组的整数解有3个, 所以不等式组的整数解为3、4、5, 所以5<m≤1. 故选:B . 【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键. 6.蝴蝶标本可以近似地看做轴对称图形.如图,将一只蝴蝶标本放在平面直角坐标系中,如果图中点A 的坐标为()5,3,则其关于y 轴对称的点B 的坐标为( )A .()5,3-B .()5,3-C .()5,3-- D .()3,5【答案】B【分析】根据轴对称图形的性质,横坐标互为相反数,纵坐标相等,即可得解. 【详解】由题意,得 点B 的坐标为()5,3- 故选:B. 【点睛】此题主要考查平面直角坐标系中轴对称图形坐标的求解,熟练掌握,即可解题.7.如图所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且S △ABC =4cm 2,则S 阴影等于…( )A .2cm 2B .1cm 2C .12cm 2 D .14cm 2 【答案】B【分析】根据三角形的中线将三角形面积平分这一结论解答即可. 【详解】∵在△ABC 中,点D 是BC 的中点, ∴12ABD ACD ABC S S S ∆∆∆===2cm 2, ∵在△ABD 和△ACD 中,点E 是AD 的中点, ∴12BED ABD S S ∆∆==1 cm 2,12CED ACD S S ∆∆==1 cm 2, ∴BEC S ∆=2 cm 2,∵在△BEC 中,点F 是CE 的中点, ∴12BEF BEC S S ∆∆==1 cm 2,即S 阴影=1 cm 2故选:B . 【点睛】本题考查三角形的中线与三角形面积的关系,熟知三角形的中线将三角形面积平分这一结论是解答的关键.8.等腰三角形一腰上的高与另一腰的夹角为40︒,则这个等腰三角形的顶角度数为( ) A .40︒ B .50︒C .130︒D .50︒或130︒【答案】D【分析】首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况所以舍去不计,我们可以通过画图来讨论剩余两种情况. 【详解】解:①当为锐角三角形时可以画图,高与另一边腰成40°夹角,由三角形内角和为180°可得,三角形顶角为50° ②当为钝角三角形时可以画图,此时垂足落到三角形外面,因为三角形内角和为180°, 由图可以看出等腰三角形的顶角的补角为50°,则三角形的顶角为130°.综上,等腰三角形顶角度数为50︒或130︒故选:D.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.9.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.240120420x x-=-B.240120420x x-=+C.120240420x x-=-D.120240420x x-=+【答案】D【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【详解】解:设他第一次买了x本资料,则这次买了(x+20)本,根据题意得:120240420x x-=+.故选:D.【点睛】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.10.下列各图中,能表示y是x的函数的是()A.B.C.D.【答案】C【分析】根据函数的定义逐一判断即可.【详解】A选项,当自变量x取定一个值时,对应的函数值y不唯一,不符合题意;B选项,当自变量x取定一个值时,对应的函数值y不唯一,不符合题意;C选项,当自变量x取定一个值时,对应的函数值y唯一确定,符合题意;D选项,当自变量x取定一个值时,对应的函数值y不唯一,不符合题意.故选:C.【点睛】本题主要考查函数的定义,掌握函数的定义是解题的关键.二、填空题11.某校随机抽查了8名参加2019年成都市初中学业水平考试学生的体育成绩,得到的结果如下表:则这8名同学的体育成绩的众数为_____.【答案】1【分析】结合表格根据众数的概念求解即可.【详解】10名学生的体育成绩中1分出现的次数最多,众数为1;故答案为:1.【点睛】本题考查了众数的知识,掌握知识点的概念是解答本题的关键.12.已知一个三角形的三条边长为2、7、x,则x的取值范围是_______.【答案】5<x<9【解析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和得:7−2<x<7+2,即5<x<9.13.已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.【答案】x1<x1【解析】由k=-1-a1,可得y随着x的增大而减小,由于1>-1,所以x1<x1.【详解】∵y=(-1-a1)x+1,k=-1-a1<0,∴y随着x的增大而减小,∵1>-1,∴x1<x1.故答案为:x1<x1【点睛】本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.14.根据数量关系:x的5倍加上1是正数,可列出不等式:__________.x+>【答案】510【分析】问题中的“正数”是关键词语,将它转化为数学符号即可.x+【详解】题中“x的5倍加上1”表示为:51>“正数”就是0.x的5倍加上1是正数,可列出不等式:510x+>x+>.故答案为510【点睛】用不等式表示不等关系是研究不等式的基础,在表示时,一定要抓住关键词语,弄清不等关系,把文字语言和不等关系转化为用数学符号表示的不等式.15.甲、乙两人同时从同一地点出发,已知甲往东走了4km ,乙往南走了3km ,此时甲、乙两人相距______km . 【答案】5【解析】试题解析:如图,在Rt △OAB 中,90AOB ∠=, ∵OA=4千米,OB=3千米, ∴225AB AO BO =+=千米.所以甲、乙两人相距5千米. 故答案为5.16.己知点(01)P ,,4(5)Q ,,点M 在x 轴上运动,当MP MQ +的值最小时,点M 的坐标为___________.【答案】(1,0)【分析】作P 点关于x 轴对称点P ₁,根据轴对称的性质PM =P ₁M ,MP +MQ 的最小值可以转化为QP ₁的最小值,再求出QP ₁所在的直线的解析式,即可求出直线与x 轴的交点,即为M 点. 【详解】如图所示,作P 点关于x 轴对称点P ₁,∵P 点坐标为(0,1)∴P ₁点坐标(0,﹣1),PM =P ₁M连接P ₁Q ,则P ₁Q 与x 轴的交点应满足QM +PM 的最小值,即为点M 设P ₁Q 所在的直线的解析式为y =kx +b 把P ₁(0,﹣1),Q (5,4)代入解析式得:145b k b ⎧⎨+⎩-== 解得: 11k b ⎧⎨⎩==-∴y =x -1 当y =0时,x =1 ∴点M 坐标是(1,0) 故答案为(1,0) 【点睛】本题主要考查轴对称-最短路线问题,关键是运用轴对称变换将处于同侧的点转换为直线异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短来确定方案,使两条线段之和转化为一条线段.17.一次函数y=kx+b 的图象如图所示,则不等式0≤kx+b <5的解集为 .【答案】0<x≤1.【分析】从图象上得到直线与坐标轴的交点坐标,再根据函数的增减性,可以得出不等式0≤kx+b <5的解集.【详解】函数y=kx+b 的图象如图所示,函数经过点(1,0),(0,5),且函数值y 随x 的增大而减小, ∴不等式0≤kx+b <5的解集是0<x≤1.故答案为0<x≤1. 三、解答题 18.计算:(1)(3)(3)m n m n --- (2)222()(2)(4)x x xy -÷•-(3011(3----+ (4)解分式方程:23133x x x --=+- 【答案】(1)229n m -;(2)3-x y ;(3)0;(4)34x =是该方程的根. 【分析】(1)适当变形后,利用平方差公式(22()()a b a b a b +-=-)计算即可; (2)首先计算积的乘方(()n n n ab a b =)和幂的乘方(()n m mna a=),然后从左到右依次计算即可;(3)分别化简二次根式、绝对值,计算零指数幂(01(0)a a =≠)和负指数幂(1nn a a-=(a≠0,n 为整数)),然后进行二次根式的加减运算;(4)去分母后将分式方程化为整式方程,然后求解整式方程,验根,写出答案.【详解】解:(1)原式2222(3)(3)(3)9n m n m n m n m =-+--=--=-;(2)原式=42(4)(4)x x xy ÷⋅-=21()(4)4x xy ⋅- =3-x y ;(3)原式=1)122---+11-+ =0;(4)去分母得:2(3)(2)3(3)9x x x x ---+=-,去括号得:2256399x x x x -+--=-, 移项,合并同类项得:86x -=-,解得34x =. 经检验34x =是该方程的根.。
山西省太原市2017-2018学年八年级上学期期末考试数学试题(WORD版)
太原市2017~2018 学年第一学期期末考试八年级数学一、选择题(本大题共10 个小题,每小题 3 分,共30 分)1. )A.±2 B.2 C.-2 D.2. 已知正比例函数y=kx 的图象经过点(1,-2),则此函数的关系式为()A.y=-2x B.y=2x C.y= -12x D.y=12x3. 在平面直角坐标系中,与点P(3,-2)关于y 轴对称的点的坐标是()A.(3,2)B.(-3,-2)C.(-3,2)D.(-2,3)4. 如图,在Rt△ABC 中,∠ACB=90°,∠A=55°,点D 是AB 延长线上得一点.∠CBD 的度数是()A.125°B.135° C.145° D.155°5. 若x,y 满足方程组2x-y=54x+7y=13⎧⎨⎩,则x+y 的值为()A.3 B.4 C.5 D.66. 如图,已知一次函数y=kx+b 的图象与x 轴,y 轴分别交于点(2,0),点(0,3)。
有下列结论:①关于x 的方程kx+b=0 的解为x=2,;②关于x 的方程kx+b=3 的解为x=0;③当x>2 时,y<0;④当x<0 时,y<3.其中正确的是()A.①②③B.①③④ C.②③④ D.①②④7. 某单位要购买一批直径为10mm 的螺丝,先从甲、乙、丙、丁四个加工厂生产的同类螺丝中各随机抽取20 个进行测量。
下表记录了这些螺丝直径的平均数和方差:根据表中数据,应选择购买的厂家是()A.甲B.乙C.丙D.丁8. 如图,在△ABC 中,点M 是AC 边上一个动点。
若AB=AC=10,BC=12,则BM 的最小值为()A.8 B.9.6 C.10 D.4 59.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息可得,下列结论正确的是( )A .甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D .甲队员成绩的方差比乙队员的大10.从 A 地到 B 地有一段上坡路和一段平路,如果车辆保持上坡每小时行驶 30km ,平路每小时行驶 50km ,下坡每小时行驶 60km ,那么车辆从 A 地到 B 地需要 48 分钟,从 B 地到 A 地需要 27 分钟,问 A ,B 两地之间的坡路和平路各有多少千米?若设 A ,B 两地之间的坡路为 xkm ,平路为 ykm,根据题意可列方程组为( )二、 填空题(本大题含 5 个小题,每小题 2 分,共 10 分)把答案写在题中横线上。
┃精选3套试卷┃2018届太原市八年级上学期期末学业质量检查模拟数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列图形中是轴对称图形的个数是( )A .4个B .3个C .2个D .1个 【答案】C【解析】根据轴对称图形的概念解答即可.【详解】第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,第五个图形不是轴对称图形.综上所述:是轴对称图形的是第一、四共2个图形.故选C .【点睛】本题考查了中对称图形以及轴对称图形,掌握中心对称图形与轴对称图形的概念是解决此类问题的关键.2.下列多项式能用平方差公式分解因式的是( )A .﹣x 2+y 2B .﹣x 2﹣y 2C .x 2﹣2xy+y 2D .x 2+y 2 【答案】A【解析】试题分析:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.根据平方差公式的特点可得到只有A 可以运用平方差公式分解,故选A .考点:因式分解-运用公式法.3.已知线段 a =2cm ,b =4cm ,则下列长度的线段中,能与 a ,b 组成三角形的是( ) A .2cmB .4cmC .6cmD .8cm 【答案】B【分析】利用三角形三边关系判断即可,两边之和>第三边>两边之差.【详解】解:2a cm =,4b cm =,2cm ∴<第三边6cm <∴能与a ,b 能组成三角形的是4cm ,故选B .【点睛】考查了三角形三边关系,利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和>较大的边,则能组成三角形,否则,不可以.4.点A(-2,5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,-5)C .(2,-5)D .(5,-2) 【答案】B【解析】分析:关于x 轴对称的两点的横坐标相等,纵坐标互为相反数.详解:根据题意可得:点A(-2,5)关于x 轴对称的点的坐标为(-2,-5),故选B.点睛:本题主要考查的是关于x 轴对称的点的性质,属于基础题型.关于x 轴对称的两个点横坐标相等,纵坐标互为相反数;关于y 轴对称的两个点纵坐标相等,横坐标互为相反数;关于原点对称的两个点横坐标和纵坐标都互为相反数.5.下列计算正确的是( )A .0(5)0-=B .235x x x +=C .2325()ab a b =D .22a ·12a a -=【答案】D【分析】直接利用零指数幂、合并同类项、积的乘方、同底数幂的乘除、负整数指数幂的运算法则分别化简进而得出答案.【详解】A 、0(5)1-=,错误,该选项不符合题意;B 、23x x +不能合并,该选项不符合题意;C 、2362()ab a b =,错误,该选项不符合题意;D 、22a ·12a a -=,正确,该选项符合题意;故选:D .【点睛】本题主要考查了负整数指数幂,同底数幂的乘除,积的乘方,合并同类项,零指数幂,正确应用相关运算法则是解题关键.6.4张长为a 、宽为()b a b >的长方形纸片,按如图的方式拼成一个边长为()a b +的正方形,图中空白部分的面积为1S ,阴影部分的面积为2S .若122S S =,则a 、b 满足( )A .25a b =B .23a b =C .3a b =D .2a b =【答案】D 【分析】先用a 、b 的代数式分别表示2212S a b =+,222S ab b =-,再根据122S S =,得22222(2)a b ab b +=-,整理,得2(2)0a b -=,所以2a b =. 【详解】解:222111()22()222S b a b ab a b a b =+⨯+⨯+-=+, 2222221()()(2)2S a b S a b a b ab b =+-=+-+=-,∵122S S =,∴22222(2)a b ab b +=-,整理,得2(2)0a b -=,∴20a b -=,∴2a b =.故选D .【点睛】本题考查了整式的混合运算,熟练运用完全平方公式是解题的关键.7.为参加“爱我家园”摄影赛,小明同学将参与植树活动的照片放大为长acm ,宽34acm 的形状,又精心在四周加上了宽2cm 的木框,则这幅摄影作品所占的面积是( )A .237442a a -+ B .237164a a -+ C .237442a a ++ D .237164a a ++ 【答案】D【分析】此题涉及面积公式的运用,解答时直接运用面积的公式求出答案.【详解】根据题意可知,这幅摄影作品占的面积是34a 2+4(a +4)+4(34a +4)−4×4=237164a a ++ 故选:D .【点睛】列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系列出式子.8.如图,正五边形ABCDE ,BG 平分∠ABC ,DG 平分正五边形的外角∠EDF ,则∠G =( )A .36°B .54°C .60°D .72°【答案】B【分析】先求出正五边形一个的外角,再求出内角度数,然后在四边形BCDG 中,利用四边形内角和求出∠G.【详解】∵正五边形外角和为360°,∴外角360==725∠EDF ,∴内角18072108∠=∠=∠=-=ABC C CDE ,∵BG 平分∠ABC ,DG 平分正五边形的外角∠EDF∴1=ABC=542∠∠CBG , 1==362∠∠EDG EDF在四边形BCDG 中,G=360∠+∠+∠+∠+∠CBG C CDE EDF∴()()G=360=3605410810836=54∠-∠+∠+∠+∠-+++CBG C CDE EDF故选B.【点睛】本题考查多边形角度的计算,正多边形可先计算外角,再计算内角更加快捷简便.9.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是() A .含30°角的直角三角形 B .顶角是30的等腰三角形C .等边三角形D .等腰直角三角形【答案】C【解析】试题分析:∵P 为∠AOB 内部一点,点P 关于OA 、OB 的对称点分别为P 1、P 2,∴OP=OP 1=OP 2且∠P 1OP 2=2∠AOB=60°,∴故△P 1OP 2是等边三角形.故选C .考点:轴对称的性质10.下列条件中,不能..判断一个三角形是直角三角形的是 ( )A .三个角的比是2∶3∶5B .三条边,,a b c 满足关系222a c b =-C .三条边的比是2∶4∶5D .三边长为1,2,3【答案】C【分析】根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.【详解】A 、三个角的比为2:3:5,设最小的角为2x ,则2x+3x+5x=180°,x=18°,5x=90°,能组成直角三角形,故不符合题意;B 、三条边满足关系a 2=c 2-b 2,能组成直角三角形,故不符合题意;C 、三条边的比为2:4:5,22+42≠52,不能组成直角三角形,故正确;D 、12+2=22,能组成直角三角形,故此选项不符合题意;故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可;若已知角,只要求得一个角为90°即可.二、填空题11.已知函数|3|(2)m y m x +=+,当m =____________时,此函数为正比例函数.【答案】-1【分析】根据正比例函数的定义得到20m +≠且31+=m ,然后解不等式和方程即可得到满足条件的m 的值.【详解】解:根据题意得20m +≠且31+=m ,解得m=-1,即m=-1时,此函数是正比例函数.故答案为:-1.【点睛】本考查了正比例函数的定义:一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.12.若函数y=(a-3)x |a|-2+2a+1是一次函数,则a= .【答案】-1.【详解】∵函数y=(a-1)x |a|-2+2a+1是一次函数,∴a=±1,又∵a≠1,∴a=-1.13.已知,y =(m+1)x 3﹣|m|+2是关于x 的一次函数,并且y 随x 的增大而减小,则m 的值为_____.【答案】﹣1.【分析】根据一次函数定义可得3﹣|m|=1,解出m 的值,然后再根据一次函数的性质可得m+1<0,进而可得确定m的取值.【详解】解:∵y=(m+1)x3﹣|m|+1是关于x的一次函数,∴3﹣|m|=1,∴m=±1,∵y随x的增大而减小,∴m+1<0,∴m<﹣1,∴m=﹣1,故答案为:﹣1.【点睛】此题主要考查了一次函数的性质和定义,关键是掌握一次函数的自变量的次数为1,一次函数的性质:k >0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.14.如图,在等边△ABC中,D、E分别是AB、AC上的点,且AD=CE,则∠BCD+∠CBE= 度.【答案】1.【解析】试题分析:根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定△ADC≌△CEB,从而得出∠ACD=∠CBE,所以∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=1°.解:∵△ABC是等边三角形∴∠A=∠ACB=1°,AC=BC∵AD=CE∴△ADC≌△CEB∴∠ACD=∠CBE∴∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=1°.故答案为1.考点:等边三角形的性质;全等三角形的判定与性质.15.如图,等边△ABC的周长为18cm,BD为AC边上的中线,动点P,Q分别在线段BC,BD上运动,连接CQ,PQ,当BP长为_____cm时,线段CQ+PQ的和为最小.【答案】1.【分析】连接AQ,依据等边三角形的性质,即可得到CQ=AQ,依据当A,Q,P三点共线,且AP⊥BC 时,AQ+PQ的最小值为线段AP的长,即可得到BP的长.【详解】如图,连接AQ,∵等边△ABC中,BD为AC边上的中线,∴BD垂直平分AC,∴CQ=AQ,∴CQ+PQ=AQ+PQ,∴当A,Q,P三点共线,且AP⊥BC时,AQ+PQ的最小值为线段AP的长,此时,P为BC的中点,又∵等边△ABC的周长为18cm,∴BP=12BC=12×6=1cm,故答案为1.【点睛】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.16.如图,BD垂直平分线段AC,AE⊥BC,垂足为E,交BD于P点,AE=7cm,AP=4cm,则P点到直线AB的距离是_____.【答案】3cm.【分析】由已知条件,根据垂直平分线的性质得出AB=BC,可得到∠ABD=∠DBC,再利用角平分线上的点到角两边的距离相等得到答案.【详解】解:过点P作PM⊥AB与点M,∵BD 垂直平分线段AC ,∴AB =CB ,∴∠ABD =∠DBC ,即BD 为角平分线,∵AE =7cm ,AP =4cm ,∴AE ﹣AP =3cm ,又∵PM ⊥AB ,PE ⊥CB ,∴PM =PE =3(cm ).故答案为:3cm .【点睛】本题综合考查了线段垂直平分线的性质及角平分线的性质,线段垂直平分线上的点到线段两端的距离相等,角平分线上的点到角两边的距离相等,灵活应用线段垂直平分线及角平分线的性质是解题的关键. 17.多项式4x 2+1加上一个单项式,使它成为一个整式的完全平方,则这个单项式可以是__________________.(填写符合条件的一个即可)【答案】44x 或4x ±或24x -或1-【分析】由于多项式1x 2+1加上一个单项式后能成为一个整式的完全平方,那么此单项式可能是二次项、可能是常数项,可能是一次项,还可能是1次项,分1种情况讨论即可.【详解】解:∵多项式1x 2+1加上一个单项式后能成为一个整式的完全平方,∴此单项式可能是二次项,可能是常数项,可能是一次项,还可能是1次项,①∵1x 2+1-1x 2=12,故此单项式是-1x 2;②∵1x 2+1±1x=(2x±1)2,故此单项式是±1x ;③∵1x 2+1-1=(2x )2,故此单项式是-1;④∵1x 1+1x 2+1=(2x 2+1)2,故此单项式是1x 1.故答案是-1x 2、±1x 、-1、1x 1.三、解答题18.如图,在△ABC 中,D 为BC 的中点,过D 点的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,DE ⊥GF ,并交AB 于点E ,连接EG ,EF .(1)求证:BG =CF .(2)请你猜想BE +CF 与EF 的大小关系,并说明理由.【答案】(1)见解析;(2)BE+CF >EF ,理由见解析【分析】(1)求出∠C=∠GBD ,BD=DC ,根据ASA 证出△CFD ≌△BGD 即可.(2)根据全等得出BG=CF ,根据三角形三边关系定理求出即可.【详解】解:(1)证明:∵BG ∥AC ,∴∠C=∠GBD ,∵D 是BC 的中点,∴BD=DC ,在△CFD 和△BGD 中C GBD CD BDCDF BDG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CFD ≌△BGD ,∴BG=CF .(2)BE+CF >EF ,理由如下:∵△CFD ≌△BGD ,∴CF=BG ,在△BGE 中,BG+BE >EG ,∵△CFD ≌△BGD ,∴GD=DF ,ED ⊥GF ,∴EF=EG ,∴BE+CF >EF .【点睛】本题考查了全等三角形的性质和判定,平行线的性质,线段垂直平分线性质,三角形三边关系定理的应用,主要考查学生的推理能力.19.解方程2133x x x x =-- 【答案】x =1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:3x 2﹣3x =2x 2﹣2x ,整理得:x 2﹣x =1,即x (x ﹣1)=1,解得:x =1或x =1,经检验x =1是增根,∴分式方程的解为x =1.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.计算(1))(12112-⨯--⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值. 【答案】(1)28-;(2)1.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦(()1475452=⨯+---230=+28=-;(2)(1119,22x y ==,1122x y ∴+=+= ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-, 22=-,192=-,17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.21.对于两个不相等的实数心a 、b ,我们规定:符号(),Max a b 表示a 、b 中的较大值,如:()2,44Max =.按照这个规定,求方程()21,3x Max a x -=(a 为常数,且3a ≠)的解. 【答案】x =﹣1或12x a=- 【分析】利用题中的新定义,分a <3与a >3两种情况求出方程的解即可.【详解】当a <3时, (),33Max a =,即213x x -= 去分母得,2x -1=3x解得:x =﹣1经检验x =﹣1是分式方程的解;当a >3时,(),3Max a a =,即21x a x-= 去分母得,2x -1=ax 解得:12x a=- 经检验12x a =-是分式方程的解. 【点睛】本题主要考查解分式方程,关键是掌握解分式方程的步骤:去分母、解方程、验根、得出结论. 22.如图,在平面直角坐标系中,A (2,4),B (3,1),C (﹣2,﹣1).(1)在图中作出△ABC 关于x 轴的对称图形△A 1B 1C 1,并写出点A 1,B 1,C 1的坐标;(2)求△ABC 的面积.【答案】(1)见解析,A 1(2,﹣4),B 1(3,﹣1),C 1(﹣2,1).(2)172【分析】(1)利用关于x 轴对称点的性质得出对应点位置,进而得出答案;(2)直接利用△ABC 所在矩形面积减去周围三角形面积,进而得出答案.【详解】(1)如图所示:△A 1B 1C 1即为所求,A 1(2,﹣4),B 1(3,﹣1),C 1(﹣2,1).(2)S△ABC=5×5﹣12×4×5﹣12×1×3﹣12×2×5=172.【点睛】本题考查了轴对称变换、三角形的面积等知识,解题的关键是正确得出对应点的位置.23.知识背景我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题问题初探如图(1),△ABC中,∠BAC=90°,AB=AC,点D是BC上一点,连接AD,以AD为一边作△ADE,使∠DAE =90°,AD=AE,连接BE,猜想BE和CD有怎样的数量关系,并说明理由.类比再探如图(2),△ABC中,∠BAC=90°,AB=AC,点M是AB上一点,点D是BC上一点,连接MD,以MD 为一边作△MDE,使∠DME=90°,MD=ME,连接BE,则∠EBD=.(直接写出答案,不写过程,但要求作出辅助线)方法迁移如图(3),△ABC是等边三角形,点D是BC上一点,连接AD,以AD为一边作等边三角形ADE,连接BE,则BD、BE、BC之间有怎样的数量关系?(直接写出答案,不写过程).拓展创新如图(4),△ABC是等边三角形,点M是AB上一点,点D是BC上一点,连接MD,以MD为一边作等边三角形MDE,连接BE.猜想∠EBD的度数,并说明理由.【答案】问题初探:BE=CD,理由见解析;类比再探:∠EBD=90°,辅助线见解析;方法迁移:BC=BD+BE;拓展创新:∠EBD=120°,理由见解析【分析】问题初探:根据余角的性质可得∠BAE=∠CAD,然后可根据SAS证明△BAE≌△CAD,进而可得结论;类比再探:过点M作MF∥AC交BC于点F,如图(5),可得△BMF是等腰直角三角形,仿问题初探的思路利用SAS证明△BME≌△FMD,可得∠MBE=∠MFD=45°,进而可得结果;方法迁移:根据等边三角形的性质和角的和差关系可得∠BAE=∠CAD,然后可根据SAS证明△BAE≌△CAD,进而可得结论;拓展创新:过点M作MG∥AC交BC于点G,如图(6),易证△BMG是等边三角形,仿方法迁移的思路利用SAS证明△BME≌△GMD,可得∠MBE=∠MGB=60°,进而可得结论.【详解】解:问题初探:BE=CD.理由:如图(1),∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,AE=AD,∴△BAE≌△CAD(SAS),∴BE=CD;类比再探:在图(2)中过点M作MF∥AC交BC于点F,如图(5),则∠BMF=∠A=90°,∠BFM=∠C=45°,∴MB=MF,∵∠DME=∠BMF=90°,∴∠BME=∠DMF,∵MB=MF,ME=MD,∴△BME≌△FMD(SAS),∴∠MBE=∠MFD=45°;∴∠EBD=∠MBE+∠ABC=90°.故答案为:90°;方法迁移:BC=BD+BE.理由:如图(3),∵△ABC和△ADE是等边三角形,∴∠DAE=∠BAC=60°,∴∠BAE=∠CAD,∵AB=AC,AE=AD,∴△BAE≌△CAD(SAS),∴BE=CD,∴BC=BD+CD=BD+BE;拓展创新:∠EBD=120°.理由:在图(4)中过点M作MG∥AC交BC于点G,如图(6),则∠BMG=∠A=60°,∠BGM=∠C=60°,∴△BMG是等边三角形,∴BM=GM,∵∠DME=∠BMG=60°,∴∠BME=∠DMG,∵ME=MD,∴△BME≌△GMD(SAS),∴∠MBE=∠MGB=60°,∴∠EBD=∠MBE+∠MBG=120°.【点睛】本题是几何变换综合题,主要考查了等边三角形的判定和性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,添加辅助线构造全等三角形、灵活应用上述知识和类比的思想是解题的关键. 24.如图,点F C 、在BD 上,//AB DE ,,A E BF DC ∠=∠=.求证:ABC EDF ∆≅∆.【答案】见解析【分析】由BF=DC 得出BC=DF ,由//AB DE 得出∠B=∠D ,结合∠A=∠E 即可证出ABC EDF ∆≅∆.【详解】解:证明:∵BF=DC ,即BC+CF=DF+FC ,∴BC=DF ,∵AB ∥DE ,∴∠B=∠D ,在△ABC 和△EDF 中,A EB D BC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EDF (AAS ).【点睛】本题考查了全等三角形的判定,平行线的性质等知识点,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,全等三角形的对应角相等,两直线平行,内错角相等.25.解方程:(1)3731x y x y +=⎧⎨-=-⎩ (2)12325x y x y ⎧-=⎪⎨⎪+=-⎩ 【答案】(1)21x y =⎧⎨=⎩;(2)13x y =⎧⎨=-⎩ 【分析】(1)把①×3+②消去y ,求出x 的值,再把x 的值代入①求出y 的值即可;(2)用②-①消去x ,求出y 的值,,再把y 的值代入②求出x 的值即可.【详解】(1)3731x y x y +=⎧⎨-=-⎩①②, ①×3+②,得10x=20,∴x=2,把x=2代入①,得6+y=7,∴y=1,∴21x y =⎧⎨=⎩; (2)12325x y x y ⎧-=⎪⎨⎪+=-⎩①②, ②-①,得1273y y +=-, y=-3,把y 的值代入②,得x-6=-5,x=1,∴13x y =⎧⎨=-⎩. 【点睛】本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在ABC ∆中,AB AC =,AB 边的垂直平分线DE 交AC 于点D .已知BDC ∆的周长为14,6BC =,则AB 的值为( )A .14B .6C .8D .20【答案】C 【分析】根据线段垂直平分线的性质,可知AD BD =,然后根据BDC ∆的周长为14BC CD BD ++=,可得14AC BC +=,再由6BC =可得8AC =,即8AB =. 【详解】解:边DE 垂直平分线ABAD BD ∴= 又BDC ∆的周长=14BC CD BD ++=14BC CD AD ++=∴14AC BC =∴+,6BC =∴8AC =即8AB =.故选C【点睛】此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出BD AD =,然后根据三角形的周长互相代换,即可其解.2.如图,在ABC 中,90,ACB ∠=︒过点C 作CD AB ⊥于,30D A ∠=︒,1,BD =则AD 的长是( )A .1B .2C .3D .4【答案】C 【分析】由余角性质可知∠BCD=∠A,根据BD=1可以得到CD 的长度,进一步得到AD 的长度.【详解】由题意,∠BCD和∠A都与∠B互余,∴∠BCD=∠A=30∴BC=2BD=2,CD=3BD=3,AC=2CD=23,AD=3CD=3×3=1.故选C.【点睛】本题考查直角三角形的性质,熟练掌握30角的对边、邻边与斜边的关系是解题关键.3.现有甲,乙两个工程队分别同时开挖两条600 m 长的隧道,所挖遂道长度y(m)与挖掘时间x(天)之间的函数关系如图所示.则下列说法中,错误的是()A.甲队每天挖100 mB.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务x 时,甲、乙两队所挖管道长度相同D.当3【答案】D【分析】从图象可以看出甲队完成工程的时间不到6天,故工作效率为100米,乙队挖2天后还剩300米,4天完成了200米,故每天是50米,当x=4时,甲队完成400米,乙队完成400米,甲队完成所用时间是6天,乙队是8天,通过以上的计算就可以得出结论.【详解】解:由图象,得600÷6=100米/天,故A正确;(500-300)÷4=50米/天,故B正确;由图象得甲队完成600米的时间是6天,乙队完成600米的时间是:2+300÷50=8天,∵8-6=2天,∴甲队比乙队提前2天完成任务,故C正确;当x=3时,甲队所挖管道长度=3×100=300米,乙队所挖管道长度=300+(3-2)×50=350米,故D错误;故选:D.【点睛】本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,但难度不大,读懂图象信息是解题的关键.4.函数111y k x b =+与222y k x b =+的部分自变量和对应函数值如下:当12y y >时,自变量x 的取值范围是( )A .2x >-B .2x <-C .1x >-D .1x <- 【答案】B【分析】根据表格可确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表格可得y 1=k 1x+b 1中y 随x 的增大而减小,y 1=k 1x+b 1中y 随x 的增大而增大. 且两个函数的交点坐标是(-1,-3).则当x <-1时,y 1>y 1.故选:B .【点睛】本题考查了函数的性质,正确确定增减性以及两函数交点坐标是关键.5.平面直角坐标系内,点A (-2,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【分析】根据各象限内点的坐标特征进一步解答即可.【详解】由题意得:点A 的横坐标与纵坐标皆为负数,∴点A 在第三象限,故选:C .【点睛】本题主要考查了直角坐标系中点的坐标特征,熟练掌握相关概念是解题关键. 6.把322m n m n mn ++分解因式正确的是( )A .()22mn m m +B .()221mn m m ++C .()221m n m ++D .()21mn m + 【答案】D【分析】先提取公因式mn ,再对余下的多项式利用完全平方公式继续分解.【详解】322m n m n mn ++=()221mn m m ++=()21mn m +.故选:D .【点睛】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于要进行二次分解因式. 7.已知a +b =﹣3,a ﹣b =1,则a 2﹣b 2的值是( )A .8B .3C .﹣3D .10 【答案】C【分析】利用平方差公式22()()a b a b a b -=+-求解即可.【详解】3,1a b a b +=--=22)(313()a b a b a b ∴+-=-⨯==--故选:C .【点睛】本题考查了利用平方差公式求整式的值,熟记公式是解题关键.另一个同样重要的公式是,完全平方公式222()2a b a ab b ±=±+,这是常考知识点,需重点掌握.8.下列图形中,正确画出AC 边上的高的是( )A .B .C .D .【答案】D【分析】根据高的对应即可求解.【详解】根据锐角三角形和钝角三角形的高线的画法,可得BE 是△ABC 中BC 边长的高,故选D.【点晴】此题主要考查高的作法,解题的关键是熟知高的定义.9.在实数0、0.2、3π、227、6.1010010001、1311127( )个 A .1B .2C .3D .4 【答案】C【分析】根据无理数的定义即可得.【详解】在这些实数中,无理数为3π,6.1010010001,27,共有3个,故选:C.【点睛】本题考查了无理数,熟记定义是解题关键.10.如图点P按A B C M→→→的顺序在边长为1的正方形边上运动,M是CD边上的中点.设点P 经过的路程x为自变量,APM△的面积为y,则函数y的大致图象是().A.B.C.D.【答案】C【分析】分类讨论,分别表示出点P位于线段AB上、点P位于线段BC上、点P位于线段MC上时对应的APM△的面积,判断函数图像,选出正确答案即可.【详解】由点M是CD中点可得:CM=12,(1)如图:当点P位于线段AB上时,即0≤x≤1时,y=12AP BC⋅=12x;(2)如图:当点P位于线段BC上时,即1<x≤2时,BP=x -1,CP=2-x ,y=ABP MCP ABCM S S S --梯形=11111(1)11(1)(2)22222xx ⨯+⨯-⨯⨯--⨯⨯-=1344x -+; (3)如图:当点P 位于线段MC 上时,即2<x≤52时,MP=52x , y=12MP AD ⋅=15()122x ⨯-⨯=1524x -+. 综上所述:1(01)213y=(12)44155(2)242x x x x x x ⎧≤≤⎪⎪⎪-+<≤⎨⎪⎪-+<≤⎪⎩. 根据一次函数的解析式判断一次函数的图像,只有C 选项与解析式相符.故选:C .【点睛】本题主要考查一次函数的实际应用,分类讨论,将APM △分别表示为一次函数的形式是解题关键.二、填空题11.如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P ,则这个正比例函数的表达式是______【答案】y=-2x【解析】首先将点P 的纵坐标代入一次函数的解析式求得其横坐标,然后代入正比例函数的解析式即可求解.解:∵正比例函数图象与一次函数y=-x+1的图象相交于点P ,P 点的纵坐标为2,∴2=-x+1解得:x=-1∴点P 的坐标为(-1,2),∴设正比例函数的解析式为y=kx ,∴2=-k解得:k=-2∴正比例函数的解析式为:y=-2x ,故答案为y=-2x12.把多项式因式分解22a b ab b -+的结果是__________.【答案】2(1)b a -【分析】先提取公因式,再利用公式法因式分解即可.【详解】()()2222211a b ab b b a a b a -+=-+=-. 故答案为: ()21b a -.【点睛】本题考查因式分解的计算,关键在于熟练掌握基本的因式分解方法.13.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =43cm ,动点P 从点B 出发沿射线BC 方向以2cm/s 的速度运动.设运动的时间为t 秒,则当t =_____秒时,△ABP 为直角三角形.【答案】3或1【分析】分两种情况讨论:①当∠APB 为直角时,点P 与点C 重合,根据t s v =÷ 可得;②当∠BAP 为直角时,利用勾股定理即可求解.【详解】∵∠C =90°,AB =3,∠B =30°,∴AC =3cm ,BC =6cm .①当∠APB 为直角时,点P 与点C 重合,BP =BC =6 cm ,∴t =6÷2=3s . ②当∠BAP 为直角时,BP =2tcm ,CP =(2t ﹣6)cm ,AC =3,在Rt△ACP中,AP2=()2+(2t﹣6)2,在Rt△BAP中,AB2+AP2=BP2,∴(2+[(2+(2t﹣6)2]=(2t)2,解得t=1s.综上,当t=3s或1s时,△ABP为直角三角形.故答案为:3或1.【点睛】本题考查了三角形的动点问题,掌握t s v=÷以及勾股定理是解题的关键.14.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_____.【答案】1.【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,3n=0.03,解得,n=1,故估计n大约是1,故答案为1.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.15.已知x,y满足方程组31038x yx y-=⎧⎨+=⎩,则9x2﹣y2的值为_____.【答案】80【分析】利用平方差公式将9x2﹣y2进行转换成(3x+y)(3x﹣y)的形式,再将方程组代入原式求值即可.【详解】由方程组得:3x﹣y=10,3x+y=8,则原式=(3x+y)(3x﹣y)=80,故答案为:80【点睛】本题考查了方程组的问题,掌握平方差公式是解题的关键.16.如图,AB=DB,∠1=∠2,请你添加一个适当的条件,使△ABC≌△DBE,则需添加的条件是____(只要写一个条件).【答案】BC=BE(答案不唯一)【分析】由∠1=∠2利用角的和差可得∠DBE=∠ABC,现在已知一个角和角的一边,再加一个边,运用SAS可得三角形全等.【详解】解:∵∠1=∠2∴∠DBE=∠ABC,又∵AB=DB,∴添加BC=BE,运用SAS即可证明△ABC≌△DBE.故答案为:BC=BE(答案不唯一).【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.根据已知条件选择适当的判定方法是解答本题的关键.17.用反证法证明命题“在一个三角形中至少有一个内角小于或等于60°”时,应假设________.【答案】在一个三角形中三个角都大于60°【分析】根据反证法的第一步是假设结论不成立进行解答即可.【详解】由反证法的一般步骤,第一步是假设命题的结论不成立,所以应假设在一个三角形中三个角都大于60°,故答案为:在一个三角形中三个角都大于60°.【点睛】本题考查反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.三、解答题18.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.【答案】(4)A 文具为4只,B 文具60只;(4)各进50只,最大利润为500元.【解析】试题分析:(4)设A 文具为x 只,则B 文具为(400﹣x )只,根据题意列出方程解答即可; (4)设A 文具为x 只,则B 文具为(400﹣x )只,根据题意列出函数解答即可.试题解析:(4)设A 文具为x 只,则B 文具为(400﹣x )只,可得:40x+45(400﹣x )=4400,解得:x=4.答:A 文具为4只,则B 文具为400﹣4=60只;(4)设A 文具为x 只,则B 文具为(400﹣x )只,可得:(44﹣40)x+(44﹣45)(400﹣x )≤4%[40x+45(400﹣x )],解得:x≥50,设利润为y ,则可得:y=(44﹣40)x+(44﹣45)(400﹣x )=4x+800﹣8x=﹣6x+800,因为是减函数,所以当x=50时,利润最大,即最大利润=﹣50×6+800=500元.考点:4.一次函数的应用;4.一元一次方程的应用;4.一元一次不等式的应用.19.在如图所示的方格纸中,每个方格都是边长为1个单位的小正方形,ABC ∆的三个顶点都在格点上(每个小正方形的顶点叫做格点).(1)画出ABC ∆关于直线l 对称的图形111A B C ∆.(2)画出ABC ∆关于点O 中心对称的图形222A B C ∆,并标出M 的对称点M '.(3)求出线段MM '的长度,写出过程.【答案】(1)详见解析;(2)详见解析;(3)210【分析】(1)根据网格结构找出点A 、B 、C 关于直线l 的对称点A 1、B 1、C 1的位置,然后顺次连接即可; (2)根据网格结构找出点A 、B 、C 关于点O 中心对称的点A 2、B 2、C 2的位置,然后顺次连接即可; (3)利用勾股定理列式计算即可得解.【详解】(1)如图:。
2017-2018学年山西省太原市八年级第一学期期末数学试卷带答案
2017-2018 学年山西省太原市初二(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30 分)1.(3 分)等于()A.2 B.﹣C.2 D.﹣ 22.(3 分)已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则正比例函数的解析式为()A.y=2x B.y=﹣2x C.y= x D.y=﹣x 3.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)4.(3分)如图,在Rt△ABC中,∠ ACB=90°,∠ A=55°,点D是AB延长线上的一点.∠ CBD的度数是()A.125°B.135°C.145°D.155°5.(3分)若x,y满足方程组,则x+y的值为()A.3 B.4 C.5 D.66.(3 分)如图,已知一次函数y=kx+b 的图象与x 轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x 的方程kx+b=3 的解为x=0;③当x>2 时,y<0;④当x<0 时,y<3.其中正确7.(3 分)某单位要购买一批直径为10mm 的螺丝,先从甲、乙、丙、丁四个加工厂生产的同类螺丝中各随机抽取20 个进行测量.下表记录了这些螺丝直径的平均数和方差:根据表中数据,应选择购买的厂家是()甲乙丙丁平均数(mm)9.96 10.07 9.96 10.07方差0.016 0.058 0.008 0.023A.甲B.乙C.丙D.丁8.(3 分)如图,在△ ABC中,点M 是AC 边上一个动点.若AB=AC=10,BC=12,则BM 的最小值为()9.(3 分)下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大10.(3分)从A地到B地有一段上坡路和一段平路,如果车辆保持上坡每小时行驶30km,平路每小时行驶50km,下坡每小时行驶60km,那么车辆从 A 地到B地需要48分钟,从B地到A地需要A.①②③B.①③④C.②③④D.①②④B.9.6 C.10 D.4 5 据统计图中的信息可得,列结论正确的是(A.827分钟,问A,B两地之间的坡路和平路各有多少千米?若设A,B 两地之间的坡路为xkm,平路为ykm,根据题意可列方程组为(B.C.D.二、填空题(本大题含5个小题,每小题 2 分,共10分)把答案写在题中横线上.11.( 2 分)把化成最简二次根式为.12.(2 分)如图是一块四边形绿地,其中AB=4m,BC=13m,CD=12m,DA=3m,∠A=90°,这块绿地的面积为m2.13.(2 分)如图,一次函数y=kx+b 与y=x+2 的图象相交于点P (m,4),则方程组的解是.14.(2 分)某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示,若该公司用户月上网流量超过500 兆以后,每兆流量的费用为0.28 元,则图中 a 的值为.15.(2 分)△ ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为三、解答题(本大题含8 个小题,共60 分)解答应写出必要的文字说明、演算步骤或推理过程.16.(8 分)计算:(1);(2)(2 + )× ﹣12 .17.(5 分)解方程组:.18.(6 分)如图,在△ABC中,∠BAC=40°,∠C=70°,BD平分∠ ABC,且∠ADB=35°,19.( 6 分)某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?20.(6分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔和 3 个 B 种魔方共需95 元;购买 3 个 A 种魔方所需款数恰好等于购买 5 个 B种魔方所需款数,求这两种魔方的单价.21.(8 分)甲骑自行车从 A 地出发前往B地,同时乙步行从B地出发前往 A 地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A 地的距离y 甲、y 乙与他们所行时间x(h)之间的函数关系,且OP与EF相交于点M.(1)求线段OP对应的y 甲与x 的函数关系式(不必注明自变量x 的取值范围);(2)求y 乙与x 的函数关系式以及A,B 两地之间的距离;(3)请从A,B 两题中任选一题作答,我选择题.A.直接写出经过多少小时,甲、乙两人相距3km;B.设甲、乙两人的距离为s(km),直接写出s与x 的函数关系式,并注明x 的取值范围.22.(9分)问题情境:已知:如图1,直线AB∥CD,现将直角三角板△ PMN放入图中,其中∠ MPN=9°0 ,点P始终在直线MN 右侧.PM 交AB于点E,PN 交CD于点F,试探究:∠ PFD与∠ AEM的数量关系.(1)特例分析:如图2,当点P 在直线AB上(即点E与点P重合)时,直接写出∠ PFD与∠ AEM的数量关系,不必证明;(2)类比探究:如图1,当点P在AB与CD之间时,猜想∠ PFD与∠AEM的数量关系,并说明理由;(3)拓展延伸:如图3,当点P在直线AB的上方时,PN交AB于点H,其他条件不变,猜想∠ PFD与∠AEM 的数量关系,并说明理由.23.(12分)如图1,平面直角坐标系中,直线y=kx+b 与x 轴交于点A(6,0),与y 轴交于点B,与直线y=2x 交于点C(a,4).1)求点 C 的坐标及直线AB的表达式;2)如图2,在(1)的条件下,过点E作直线l⊥x轴于点E,交直线y=2x于点F,交直线y=kx+b 于点G,若点 E 的坐标是(4,0).①求△ CGF的面积;②直线l 上是否存在点P,使OP+BP的值最小?若存在,直接写出点P 的坐标;若不存在,说明理由;(3)若(2)中的点E是x 轴上的一个动点,点E的横坐标为m(m>0),当点E在x 轴上运动时,探究下列问题:请从A,B 两题中任选一题作答,我选择题:A.当m取何值时,直线l上存在点Q,使得以A,C,Q为顶点的三角形与△ AOC全等?请直接写出相应的m 的值.B.当△ BFG是等腰三角形时直接写出m 的值.2017-2018 学年山西省太原市初二(上)期末数学试卷参考答案与试题解析一、选择题(本大题共 10个小题,每小题 3分,共 30 分) 1.(3 分) 等于( )A .2B .﹣C .2D .﹣ 2【解答】 解:∵ 2的立方等于 8,∴8 的立方根等于 2,即 等于 2.故选: C .2.(3 分)已知正比例函数 y=kx (k ≠0)的图象经过点( 1,﹣ 2),则正比例函数的解析式为( )【解答】 解:把点( 1,﹣2)代入 y=kx 得 k=﹣2, 所以正比例函数解析式为 y=﹣ 2x .故选: B .3.(3分)在平面直角坐标系中, 点(3,﹣2)关于 y 轴对称的点的坐标是 ( )B .(3,﹣ 2)C .(﹣3,2)D .(﹣ 3,﹣ 2)【解答】解:点( 3,﹣ 2)关于 y 轴对称的点的坐标是(﹣ 3,﹣ 2), 故选: D .A .y=2xB .y=﹣2xC .y= xD .y=﹣ xA .(3,2)4.(3分)如图,在Rt△ABC中,∠ ACB=90°,∠ A=55°,点D是AB延长线上的点.∠ CBD 的度数是( )解答】 解:∵∠ CBD 是△ ABC 的外角, ∴∠ CBD=∠A+∠ ACB , ∵∠ A=55°,∠ ACB=9°0, ∴∠ CBD=5°5+90°=145°, 故选: C .,,①+②得, 6x+6y=18,解得 x+y=3.故选: A .6.(3 分)如图,已知一次函数 y=kx+b 的图象与 x 轴, y 轴分别交于点( 2,0),点(0,3).有下列结论:①关于 x 的方程 kx+b=0的解为 x=2;②关于 x 的方程 kx+b=3 的解为 x=0;③当 x >2 时, y <0;④当 x <0 时, y <3.其中正确B .135°C .145°D .155°5.(3 分)若 x ,y 满足方程组 A .3B .4,则 x+y 的值为( )C .5D .6解答】 解: A .125C.②③④D.①②④【解答】解:由图象得:①关于x 的方程kx+b=0 的解为x=2,正确;②关于x的方程kx+b=3 的解为x=0,正确;③当x>2 时,y< 0,正确;④当x<0 时,y> 3,错误;故选:A.7.(3 分)某单位要购买一批直径为10mm 的螺丝,先从甲、乙、丙、丁四个加工厂生产的同类螺丝中各随机抽取20 个进行测量.下表记录了这些螺丝直径的平均数和方差:根据表中数据,应选择购买的厂家是()甲乙丙丁平均数(mm)9.96 10.07 9.96 10.07方差0.016 0.058 0.008 0.023A.甲B.乙C.丙D.丁【解答】解:由根据方差越小越稳定可知,丙的质量误差小,故选:C.8.(3 分)如图,在△ ABC中,点M 是AC 边上一个动点.若AB=AC=10,BC=12,则BM 的最小值为()B.9.6 C.10 D.4 5解答】解:作AD⊥ BC于D,如图所示:A.8则∠ ADB=9°0,∵AB=AC,∴ BD= BC=6,由勾股定理得:AD= =8,当BM⊥AC时,BM 最小,此时,∠ BMC=9°0 ,∵△ ABC的面积= AC?BM= BC?AD,即×10× BM= ×12×8,解得:BM=9.6,故选:B.9.(3 分)下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息可得,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【解答】解:甲队员10 次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数=8(环),甲10 次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷ 10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,9,9,10,则中位数是8 环,乙10 次射击成绩的平均数=(6+2×7+3×8+2×9+10)÷9=8(环),甲队的方差= [ (6﹣8)2+3×(7﹣8)2+2×(8﹣8)3+3×(9﹣8)2+(10﹣8)2] =1.4;乙队的方差 = [ (6﹣8)2+2×(7﹣8)2+3×(8﹣8)3+2×(9﹣8)2+(10﹣8)2] = ; ] = ; 则正确的是 D ; 故选: D .10.(3分)从 A 地到 B 地有一段上坡路和一段平路,如果车辆保持上坡每小时 行驶 30km ,平路每小时行驶 50km ,下坡每小时行驶 60km ,那么车辆从 A 地 到 B 地需要 48分钟,从 B 地到 A 地需要 27分钟,问 A ,B 两地之间的坡路和 平路各有多少千米?若设 A ,B 两地之间的坡路为 xkm ,平路为ykm ,根据题 意可列方程组为( A .B .C .D .解答】 解:设 A ,B 两地之间的坡路为 xkm ,平路为 ykm ,由题意可得, 故选: D . 、填空题 本大题含 5个小题,每小题 2 分,共 10分)把答案写在题中横线上.11.(2 分) 把 化成最简二次根式为【解答】 解:原式 = 故答案12.(2 分)如图是一块四边形绿地,其中AB=4m,BC=13m,CD=12m,DA=3m,∠A=90°,这块绿地的面积为36 m2.∵ AB=4m,DA=3m,∠ A=90°,∴ BD=5m,又∵ CD=12m,BC=13m,∴BD2+CD2=BC2,∴∠ BDC=9°0,∴ S四边形ABCD=S△ABD+S△BCD=6+30=36.答:这块绿地的面积是36m2.故答案为:36 13.(2 分)如图,一次函数y=kx+b 与y=x+2 的图象相交于点P(m,4),则方程组的解是【解答】解:∵ y=x+2 的图象经过P(m,4),∴ 4=m+2,∴m=2,∴一次函数y=kx+b 与y=x+2 的图象相交于点P(2,4),∴方程组的解是,故答案为.14.(2 分)某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示,若该公司用户月上网流量超过500 兆以后,每兆流量的费用为0.28 元,则图中 a 的值为58元.【解答】解:由图象可得:a=30+(600﹣500)× 0.28=58(元).故答案为:58 元.15.(2 分)△ ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为14 或 4 .【解答】解:(1)如图,锐角△ ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD 中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴ BC的长为BD+DC=9+5=14;(2)钝角△ ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD 中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴ BC的长为DC﹣BD=9﹣5=4.故答案为14 或 4 .三、解答题(本大题含8 个小题,共60 分)解答应写出必要的文字说明、演算步骤或推理过程.16.(8 分)计算:(1);(1);(2)(2 + )× ﹣12 .解答】(1)原式= ﹣解:﹣﹣2 ﹣;2)原式=2 × + × ﹣12×=6 +6﹣6=6.17.(5 分)解方程组:.【解答】解:,①× 2,得:6x﹣2y=26 ③,② +③,得:11x=33,解得:x=3,将x=3 代入①,得:9﹣y=13,解得:y=﹣4,则方程组的解为.18.(6 分)如图,在△ABC中,∠BAC=40°,∠C=70°,BD平分∠ ABC,且∠ADB=35°,解答】证明:在△ ABC中,∠ ABC=18°0﹣∠BAC﹣∠C=180°﹣40°﹣70°=70°,∵BD平分∠ ABC,∴∠ CBD=∠ABD= ∠ABC=3°5,∵∠ ADB=3°5,∴∠ CBD=∠ADB,∴AD∥BC.19.( 6 分)某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)教学能力科研能力组织能力甲81 85 86 乙 92 80 741)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用? 2)根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2 的 比确定每人的最后成绩, 若按此成绩在甲、 乙两人中录用一人,谁将被录用? 【解答】 解:(1)甲的平均成绩为 =84(分);乙的平均成绩为 =82(分),因为甲的平均成绩高于乙的平均成绩,所以甲被录用;乙的平均成绩为 因为甲的平均成绩低于乙的平均成绩, 所以乙被录用.20.(6分)学校“百变魔方”社团准备购买 A ,B 两种魔方,已知购买 2个 A 种魔 和 3 个 B 种魔方共需 95 元;购买 3 个 A 种魔方所需款数恰好等于购买 5 个 B 种魔方所需款数,求这两种魔方的单价.【解答】 解:设 A 种魔方的单价为 x 元/个,B 种魔方的单价为 y 元/个, 根据题意得: ,2)根据题意,甲的平均成绩为=83.2(分),=84.8(分),解得:.答:A种魔方的单价为25元/个,B种魔方的单价为15 元/个.21.(8 分)甲骑自行车从 A 地出发前往B地,同时乙步行从B地出发前往 A 地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A 地的距离y 甲、y 乙与他们所行时间x(h)之间的函数关系,且OP与EF相交于点M.(1)求线段OP对应的y 甲与x 的函数关系式(不必注明自变量x 的取值范围);(2)求y 乙与x 的函数关系式以及A,B 两地之间的距离;(3)请从A,B 两题中任选一题作答,我选择 B 题.A.直接写出经过多少小时,甲、乙两人相距3km;B.设甲、乙两人的距离为s(km),直接写出s与x 的函数关系式,并注明x 的取值范围.【解答】解:(1)设线段OP对应的函数解析式为y 甲=kx,9=0.5k,得k=18,∴线段OP对应的函数解析式为y 甲=18x;(2)设y 乙与x 的函数关系式是y 乙=mx+n,,得,即y 乙与x 的函数关系式是y 乙=﹣6x+12,当x=0 时,y 乙=12,∴A、B 两地的距离是12km;(3)请从A,B两题中任选一题作答,我选择 B 题,故答案为:B,B题:当0≤x≤0.5 时,s=(﹣6x+12)﹣18x=﹣24x+12,甲到达B 地用的时间为:12÷(9÷0.5)= 小时,当0.5<x≤ 时,s=18x﹣(﹣6x+12)=24x﹣12,当时,s=12﹣(﹣6x+12)=6x.补充:若选A,解答如下,当0≤x≤0.5时,(﹣6x+12)﹣18x=3,解得,x= ,当0.5<x≤ 时,18x﹣(﹣6x+12)=3,得x= .22.(9分)问题情境:已知:如图1,直线AB∥CD,现将直角三角板△ PMN放入图中,其中∠ MPN=9°0 ,点P始终在直线MN右侧.PM交AB于点E,PN 交CD于点F,试探究:∠ PFD与∠ AEM 的数量关系.(1)特例分析:如图2,当点P 在直线AB上(即点E与点P重合)时,直接写出∠ PFD与∠ AEM的数量关系,不必证明;(2)类比探究:如图1,当点P在AB与CD之间时,猜想∠ PFD与∠AEM的数量关系,并说明理由;3)拓展延伸:如图3,当点P在直线AB的上方时,PN交AB于点H,其他条件不变,猜想∠ PFD与∠AEM 的数量关系,并说明理由.【解答】解:(1)∠PFD+∠AEM=9°0 ,理由如下:∵ AB∥CD,∴∠ PFD=∠APF,∵∠ APF+∠AEM=9°0 ,∴∠ PFD+∠AEM=9°0 ;(2)∠ PFD+∠AEM=9°0 ,理由如下:作PQ∥AB交MN于Q,∵AB∥CD,∴PQ∥CD,∴∠AEM=∠QPE,∠PFD=∠QPF,∵∠ QPE+∠QPF=9°0,∴∠ PFD+∠AEM=9°0 ;(3)∠ PFD﹣∠ AEM=9°0 ,理由如下:∵ AB∥CD,∴∠ PFD=∠PHB,∵∠ PHB﹣∠ PEB=90°,∠ AEM=∠PEB,∴∠ PHB﹣∠ AEM=9°0 ,∴∠ PFD﹣∠ AEM=9°0 .23.(12分)如图1,平面直角坐标系中,直线y=kx+b 与x 轴交于点A(6,0),与y 轴交于点B,与直线y=2x 交于点C(a,4).(1)求点 C 的坐标及直线AB的表达式;(2)如图2,在(1)的条件下,过点E作直线l⊥x轴于点E,交直线y=2x于点F,交直线y=kx+b 于点G,若点 E 的坐标是(4,0).①求△ CGF的面积;②直线l 上是否存在点P,使OP+BP的值最小?若存在,直接写出点P 的坐标;若不存在,说明理由;(3)若(2)中的点E是x 轴上的一个动点,点E的横坐标为m (m>0),当点E在x 轴上运动时,探究下列问题:请从A,B 两题中任选一题作答,我选择A(或B)题:A.当m取何值时,直线l 上存在点Q,使得以A,C,Q为顶点的三角形与△ AOC全等?请直接写出相应的m 的值.B.当△ BFG是等腰三角形时直接写出m 的值.【解答】解:(1)将点C(a,4)代入y=2x,可得a=2,∴C(2,4),将C(2,4)和A(6,0)代入y=kx+b,可得,解得,∴直线AB 的解析式为y=﹣x+6;(2)①如图1,∵ l⊥x轴,点E,F,G都在直线l上,且点E的坐标为(4,0),∴点F,G 的横坐标均为4,设点F(4,y1),G(4,y2),分别代入y=2x和y=﹣x+6,可得y1=8,y2=2,∴F(4,8),G(4,2),∴FE=8,GE=2,FG=6,如图2,过点 C 作CH⊥FG于H,∵C(2,4),∴CH=4﹣2=2,∴ S△FCG= FG× CH= ×6×2=6;②存在点P(4,3),使得BP+OP 的值最小.理由:设点O关于直线l 的对称点为D(8,0),设直线BD的解析式为y=mx+n,将B (0,6),D(8,0)代入y=mx+n,可得∴直线BD的解析式为y=﹣x+6,点P 在直线l:x=4 上,令x=4,则y=3,∴P(4,3);(3)A题:m的值为2或6或8.理由:分三种情况讨论:①当△ OAC≌△ QCA,点Q 在第四象限时,∠ ECA=∠EAC,∴ AE=CE=,4 OE=6﹣4=2,②当△ ACO≌△ACQ,Q 在第一象限时,OE=AO=6,∴m=6;③当△ ACO≌△CAQ,点Q在第四象限时,四边形AOCQ是平行四边形,CQ=AO=6,AE=2,∴OE=8,∴m=8;B题:m 的值为3或 6 或或.理由:分四种情况讨论:①如图,当BG=GF时,m=﹣m+6﹣2m,解得m= ;'山旷 X E/匸(9÷ω -) — LU 乙昭 ⅛gs∕⅛9d ζ⅛g=9∈ 床 4HW ® ■ ( ≡Λ÷ε)9"ω 割搦 ζ (9÷ω - ) —ill 乙=IUy ζ⅛9=∈9 床 ζfflW(D附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。
太原市2018-2019学年第一学期八年级期末考试数学试卷
太原市2018----2019学年第一学期八年级期末考试数学试卷说明:本试卷为闭卷考试,不允许携带计算器,答题时间90分钟.满分100分.题号一二三总分1617181920212223得分一、选择题(本大题含10个小题,每小题3分,共30分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母填入相应的位置.题号12345678910答案1、一次函数23y x =-+的图象与y 轴的交点坐标是().0,3A ().3,0B ().0,3C -().3,0D -2、下列计算正确的是.20210A =.235B +=.236C ⨯=.12223D ÷=3、在平面直角坐标系中,以方程236x y -=的解为坐标的点组成的图形是4、如图,将含30角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知30,40A B ∠=∠=,则2∠的度数为.55A .60B .65C.70D5、如图,数轴上的点,,,,A B C D E 对应的数分别为1,0,1,2,3-,那么与实数112-对应的点在.A 线段AB 上.B 线段BC 上.C 线段CD 上.D 线段DE 上6、在一次训练中,甲、乙、丙三人各射击10次的成绩(单位:环)如图.在这三人中,此次射击成绩最稳定的是.A 甲.B 乙.C 丙.D 无法确定7、图象l 表示的是某植物生长t 天后的高度y (单位:cm )与t 之间的关系.根据图象,下列结论不正确的是.A 该植物初始的高度是3cm .B 该植物10天后的高度是10cm .C 该植物平均每天生长0.7cm .D y 与t 之间的函数关系式是3y t =+8、下列三个命题:①同角的补角相等;②如果//,//b a c a ,那么//b c ;③如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中是真命题的有.0A 个.1B 个.2C 个.3D 个9、我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱.求物品的价格和共同购买该物品的人数”.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是83.74y x A y x -=⎧⎨-=-⎩83.74y x B y x -=⎧⎨-=⎩83.74y x C y x -=-⎧⎨-=-⎩83.74x y D x y -=⎧⎨-=⎩10、请从,A B 两题中任选一题做答.A :在ABC ∆中,,,ABC ∠∠∠的对边分别是,,a b c ,下列命题中的假命题是.A 如果C B A ∠-∠=∠,则ABC ∆是直角三角形,且90C ∠= .B 如果222c b a =-,则ABC ∆是直角三角形,且90C ∠=.C 如果()()2c a c a b +-=,则ABC ∆是直角三角形,且90C ∠= .D 如果::5:2:3A B C ∠∠∠=,则ABC ∆是直角三角形,且90A ∠= B :勾股定理在平面几何中有着不可替代的重要地位.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长均为1的小正方形和Rt ABC ∆构成的,可以利用其面积关系验证勾股定理.将图1按图2所示“嵌入”长方形LMJK ,则该长方形的面积为.120A .110B .100C .90D 二、填空题(本大题共5个小题,每小题3分,共15分)把答案直接写在题中的横线上.11、把命题“对顶角相等”改写成“如果……,那么……”的形式._____________________.12、小明妈妈有健步走的习惯,在她手机的小程序上连续记录了最近16天每天行走的步数(单位:万步).现将她的记录结果绘制成如图所示的条形统计图.在这16天中,她每天行走步数的众数是_________万步.13、如图,已知一次函数31y x =-和3y x =-+的图象交于点P ,则二元一次方程组313y x y x =-⎧⎨=-+⎩的解是___________.14、如图,将ABC ∆纸片沿着平行于BC 的直线DE 折叠,点A 落在点A '处.若135,15C A ∠=∠= ,则A DB '∠的度数为________.15、如图,直线4:3l y x =,点1A 的坐标为()3,0.过点1A 作x 轴的垂线交直线l 于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴正半轴于点2A ;再过点2A 作x 轴的垂线交直线l 于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴正半轴于点3A ;…….按此作法进行下去.请从,A B 两题中任选一题作答..A 点2019A 的坐标为___________..B 点n B 的坐标为______________.三、解答题(本大题共8个小题,共55分)解答应写出必要的文字说明、演算步骤或推理过程.16、计算(本题共2个小题,每小题5分,共10分)(1)()183126÷-+;(2)()232725--.17、(本题5分)解方程组325,517.x y x y -=⎧⎨+=⎩18、(本题6分)如图,在ABC ∆中,4,5AB BC ==,点D 在AB 上,且1,2BD CD ==.(1)求证:CD AB ⊥;(2)求AC 的长.19、(本题6分)某校从期末考试、综合实践、平时作业和课堂表现四个方面对学生本学期的数学学业水平进行综合评价.下面是小明、小李和小王三名同学的成绩(单位:分):姓名期末考试综合实践平时作业课堂表现小明85848082小李80828586小王75908885(1)数学老师将期末考试、综合实践、平时作业、课堂表现四项成绩依次按30%,20%,30%,20%的比例评价学生的数学学业水平,那么小明、小李、小王谁的数学学业水平高?(2)你认为上述四个方面中,哪一个更为重要?请你按自己的想法设计一个评价方案,根据你的评价方案,直接写出谁的数学学业水平高.20、(本题6分)如图,在Rt ABC ∆中,90,40,ACB A ABC ∠=∠=∆的外角CBD ∠的平分线BE 交AC 的延长线于点E ,点F 为AC 延长线上的一点,连接DF .(1)求CBE ∠的度数;(2)若25F ∠=,求证://BE DF .21、(本题5分)汽车出发前油箱有油50L ,行驶若干小时后,在加油站加油若干升.图象表示的是汽车从出发后,油箱中剩余油量()y L 与行驶时间()t h 之间的关系.(1)汽车行驶_______h 后加油,在加油站加油______L ;(2)求加油前油箱中剩余油量y 与行驶时间t 的函数关系式;(3)已知加油前、后汽车都以80/km h 的速度匀速行驶,如果加油站距目的地还有200km ,那么要到达目的地,油箱中的油是否够用(油箱内的油不得少于10L )?请说明理由.22、(本题8分)越来越多的人在用微信付款、转账.把微信账户里的钱转到银行卡叫做提现.自2016年3月1日起,每个微信账户终身享有1000元的免费提现额度.当累计提现金额超过1000元时,超出的部分需支付0.1%的手续费,以后每次提现支付的手续费均为提现金额的0.1%.(1)小颖2018年开始使用微信,她用自己的微信账户第一次提现金额为1800元,需支付手续费________元;(2)小亮自2016年3月1日至今,用自己的微信账户共提现三次,提现金额和手续费如下:第一次第二次第三次提现金额/元ab32a b+手续费/元0.43.4求小亮前两次提现的金额分别为多少元.23、(本题8分)如图1,在平面直角坐标系中,点D 的横坐标为4,直线1:2l y x =+经过点D ,与x 轴,y 轴分别交于,A B 两点.直线2:l y kx b =+经过点()1,0C ,点D 两点.(1)求直线2l 的表达式;(2)请从,A B 两题中任选一题作答.:A 在图1中,点P 为直线2l 上一动点,连接BP ,一动点H 从点B 出发,沿线段BP 以每P 运动.求点H 在运动过程中所用的最短时间.:B 如图2,点P 为线段AD 上一动点,连接CP ,一动点H 从点C 出发,沿线段CP 以每秒2个单位长度的速度运动到点P 后,再沿线段PD 以每秒个单位长度的速度运动到终点D .求点H 在整个运动过程中所用的最短时间.。
山西省太原市八年级上学期数学期末考试试卷
山西省太原市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七下·金乡期中) 的算术平方根是()A . ±B . ﹣C .D .2. (2分)若式子在实数范围内有意义,则x的取值范围是()A . x≥3B . x≤3C . x>3D . x<33. (2分)分式的值为零时,则x的值为()A . x=3B . x=﹣3C . x=±3D . 以上都不对4. (2分) (2018七上·十堰期末) 下面图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A .B .C .D .5. (2分)在根式①,②,③,④中,最简二次根式是()A . ①②B . ②④C . ①③D . ①④6. (2分)计算÷ ÷ 的结果是()A .B .C .D .7. (2分)投一个均匀的正六面体骰子(6个面上分别刻有1点至6点),有下述说法:①朝上一面的点数是奇数;②朝上一面的点数是整数;③朝上一面的点数是3的倍数;④朝上一面的点数是5的倍数.将上述事件按可能性大小,从小到大排列为()A . ①②③④B . ②①③④C . ④①③②D . ④③①②8. (2分) (2019八上·江苏期中) 如图,在△ABC中,已知AB=AC,D,E两点分别在边AB,AC上.若再增加下列条件中的某一个,仍不能判定△ABE≌△ACD,则这个条件是()A . BE⊥AC,CD⊥ABB . ∠AEB=∠ADCC . ∠ABE=∠ACDD . BE=CD9. (2分) (2018八上·武邑月考) 在锐角三角形中,∠A>∠B>∠C,则下列结论中错误的是()A . ∠A>60°B . ∠B>45°C . ∠C<60°D . ∠B+∠C<90°10. (2分)(2018·宜宾模拟) 已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB= .下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+ ;⑤S正方形ABCD=4+ .其中正确结论的序号是()A . ①③④B . ①②⑤C . ③④⑤D . ①③⑤二、填空题 (共6题;共6分)11. (1分) (2019七上·松江期末) 当x________时,分式有意义.12. (1分) (2019八上·陕西月考) 在Rt△ABC中,直角边的长分别为a,b,斜边长c,且a+b=3 ,c=5,则ab的值为________.13. (1分) (2020七下·张掖期末) 从长为3 cm,5cm,7cm,10cm的四根木棒中选出三根组成三角形,共有________种选法.14. (1分)若,则可以表示为________.15. (1分)若a2﹣ab=0(b≠0),则 =________.16. (1分)如图△ABC中,AD平分∠BAC,AB=4,AC=2,且△ABD的面积为3,则△ACD的面积为________ .三、解答题 (共14题;共118分)17. (1分) (2020八上·镇赉期末) 在中,°,,,某线段,,两点分别在和的垂线上移动,则当 ________.时,才能使和全等.18. (20分) (2019八下·洛阳月考) 计算:(1)(2)(3)(4)19. (10分)计算题(1) 4 + ﹣ +4(2)(( + .20. (5分)计算:21. (10分)(2019·大同模拟) 计算:(1)(2)22. (5分)如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.23. (10分) (2017八下·常州期末) 解方程:(1)(2) =8.24. (5分) (2018八上·义乌期中) 如图,AC⊥BC , A D⊥BD , AD=BC ,那么请你判断阴影部分图形的形状,并说明理由.25. (5分)(2019·宁津模拟) 先化简,再求值:(x-1)÷ ,其中x为方程x2+3x+2=0的根.26. (5分) (2019八上·新兴期中) 如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?27. (5分) (2017八下·潍坊开学考) A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.28. (12分)(2019·井研模拟) 阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=________,x3=________;(2)拓展:用“转化”思想求方程的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.29. (10分) (2016八上·鄱阳期中) 如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.30. (15分)(2018·番禺模拟) 如图,在Rt△ABC中,,角平分线交BC于O,以OB为半径作⊙O.(1)判定直线AC是否是⊙O的切线,并说明理由;(2)连接AO交⊙O于点E,其延长线交⊙O于点D,,求的值;(3)在(2)的条件下,设的半径为3,求AC的长.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共14题;共118分)答案:17-1、考点:解析:答案:18-1、答案:18-2、答案:18-3、答案:18-4、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、考点:解析:答案:25-1、考点:解析:答案:26-1、考点:解析:答案:27-1、考点:解析:答案:28-1、答案:28-2、答案:28-3、考点:解析:答案:29-1、答案:29-2、考点:解析:答案:30-1、答案:30-2、答案:30-3、考点:解析:。