中考数学易错题精讲精练

合集下载

2021年中考数学易错题复习题及答案详解:易错题综合专题四(附答案详解)

2021年中考数学易错题复习题及答案详解:易错题综合专题四(附答案详解)

一.选择题(共4小题)1.(2005•乌兰察布)如图:把△ABC沿AB 边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB =,则此三角形移动的距离AA′是()A.﹣1 B.C.1D.2.(2007•临沂)如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x、y应分别为()A.x=10,y=14 B.x=14,y=10 C.x=12,y=15 D.x=15,y=123.某电脑用户计划使用不超过530元的资金购买单价为70元的单片软件和80元的盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,不相同的选购方式共有()A.4种B.5种C.6种D.7种4.(2021•河北)如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.二.填空题(共2小题)5.二次函数y=ax2+bx+c若满足a﹣b+c=0,则其图象必经过点_________.6.(2021•重庆)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了_________朵.2021年5月402969905的初中数学组卷参考答案与试题解析一.选择题(共4小题)1.(2005•乌兰察布)如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA′是()A.﹣1 B.C.1D.考点: 相似三角形的判定与性质;平移的性质.分析:利用相似三角形面积的比等于相似比的平方先求出A′B,再求AA′就可以了.解答:解:设BC与A′C′交于点E,由平移的性质知,AC∥A′C′∴△BEA′∽△BCA∴S△BEA′:S△BCA=A′B2:AB2=1:2∵AB=∴A′B=1∴AA′=AB﹣A′B=﹣1故选A.点评:本题利用了相似三角形的判定和性质及平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.2.(2007•临沂)如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x、y应分别为()A.x=10,y=14 B.x=14,y=10 C.x=12,y=15 D.x=15,y=12考点: 二次函数的应用.专题: 应用题.分析:由直角三角形相似得,得x=•(24﹣y),化简矩形面积S=xy的解析式为S=﹣(y﹣12)2+180,再利用二次函数的性质求出S 的最大值,以及取得最大值时x、y的值.解答:解:以直角梯形的下底直角边端点为原点,两直角边方向为x,y轴建立直角坐标系,过点D作DE⊥x轴于点E,∵NH∥DE,∴△CNH∽△CDE,∴=,∵CH=24﹣y,CE=24﹣8,DE=OA=20,NH=x,∴,得x=•(24﹣y),∴矩形面积S=xy=﹣(y﹣12)2+180,∴当y=12时,S有最大值,此时x=15.故选D.点评:本题考查的是直角梯形以及矩形的性质的相关知识点.3.某电脑用户计划使用不超过530元的资金购买单价为70元的单片软件和80元的盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,不相同的选购方式共有()A.4种B.5种C.6种D.7种考点: 一元一次不等式组的应用.专题: 应用题.分析:本题先由题意找出不等关系列出不等式组为得:,解出即可.解答:解:设买软件x片,磁盘y盒,x取正整数,得:70x+80y≤530,不相同的选购方式有(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),共6种方案.故选C.点评:解决本题的关键是根据总价钱得到相应的关系式,易错点是得到整数解的个数.4.(2011•河北)如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.考点: 一次函数综合题;正比例函数的定义.专题: 数形结合.分析:从y ﹣等于该圆的周长,即列方程式,再得到关于y的一次函数,从而得到函数图象的大体形状.解答:解:由题意即,所以该函数的图象大约为A中函数的形式.故选A.点评:本题考查了一次函数的综合运用,从y ﹣等于该圆的周长,从而得到关系式,即解得.二.填空题(共2小题)5.二次函数y=ax2+bx+c若满足a﹣b+c=0,则其图象必经过点(﹣1,0).考点: 二次函数图象上点的坐标特征.专题: 计算题.分析:把x=﹣1代入y=ax2+bx+c得到y=a﹣b+c=0,即过(﹣1,0)点,即可得到答案.解答:解:把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c=0,∴图象必过点:(﹣1,0),故答案为:(﹣1,0).点评:本题主要考查对二次函数图象上点的坐标特征的理解和掌握,能根据已知a﹣b+c=0得出过(﹣1,0)是解此题的关键.6.(2021•重庆)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了4380朵.考点: 三元一次方程组的应用.专题: 应用题.分析:题中有两个等量关系:甲种盆景所用红花的朵数+乙种盆景所用红花的朵数+丙种盆景所用红花的朵数=2900朵,甲种盆景所用紫花的朵数+丙种盆景所用紫花的朵数=3750朵.据此可列出方程组,设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆,用含x的代数式分别表示y、z,即可求出黄花一共用的朵数.解答:解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580③,由②得,x+z=150④,把④代入③,得x+2y=280,∴2y=280﹣x⑤,由④得z=150﹣x⑥.∴4x+2y+3z=4x+(280﹣x)+3(150﹣x)=730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故黄花一共用了4380朵.点评:本题考查了三元一次方程组在实际生活中的应用.解题的关键是发掘等量关系列出方程组,难点是将方程组中的其中一个未知数看作常数,用含有一个未知数的代数式表示另外两个未知数,然后代入所求黄花的代数式.。

初三数学易错题集锦

初三数学易错题集锦

初三数学易错题代数第一章∶一元二次方程1、解方程1112-=+-x m x x 的过程中若会产生增根,则m=____2.关于x 的方程m 2x 2+(2m +1)x +1=0有两个不相等的根,求m 的取值范围__ 3,若关于x 的方程ax 2-2x +1=0有实根,那a 范围____4,已知方程3x 2-4x -2=0,则x 1-x 2=___,大根减小根为____ 5,以251+-和251--的一元二次方程是____6,若关于x 的方程(a+3)x 2-(a 2-a -6)x +a=0的两根互为相反数,则a=___7,已知a,b 为不相等的实数,且a 2-3a +1=0,b 2-3b+1=0则a b +ba=___8,方程ax 2+c=0(a ≠0)a,c 异号,则方程根为_____ 9,若方程3x 2+1=mx 的二次项为3x 2,则一次项系数为_____ 23,分解因式4x 2+8x +1=_____24,若方程2x 2+3x -5=0的两根为x 1 ,x 2 则x 12+x 22=_____ 25,方程组有两组相同的实数解,则k=___方程组的解为___43,若x 是锐角,cosA 是方程2x 2-5x +2=0的一个根,则∠A=___1、已知:Rt △ABC 中,∠C=900,斜边c 长为 5 ,两条直角边a,b 的长分别是x 2-(2m-1)x+4(m-1)=0的两根,则m 的值等于 ( ) A. –1 B. 4 C.-4或1 D. –1或4. 2、已知关于x 的方程012)32(2=+--x m x m 有两个不相等的实数根,则m 的范围是:( ) A .m<3 B. 233≠<m m 且 C. 0,233≠≠<m m m 且 D. 2330≠<≤m m 且 3、已知方程①01222=+-x x ,②041x =+-,③1122=++++x x x x ,④0x 12x =---,⑤01)12(2=-+++k x k x 其中一定有...实数解的方程有 A 、1个 B 、2个 C 、3个 D 、4个5、已知 ,012=-+m m 那么代数式2001223-+m m 的值是 ( ) (A)2000 (B)-2000 (C)2001 (D)-2001 6,下面解答正确的是( )A , 分式的值是零,x=-2或x=1B, 实数范围内分解因式2x 2+x -2=)4171)(4171(+-----x x C, x=-1是无理方程22-2x +7x =-x的根D, 代数式x 2+2x -1通过配方法知x=-1时,它有最小值是-27,关于x 的方程x 2-mx +n=0有一正一负的两实根,且负根绝对值较大,则( ) A , n >0, m <0 B,n>0, m >0, C, n<0 m>0 D,n <0 m<0 8,若x =-b+b 2+4ac 2a则有( )A ,ax 2+bx+c=0 B,ax 2+bx-c=0 C,ax 2-bx+c=0 D, ax 2-bx-c=09、在Rt △ABC 中,∠C=900,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )(A ) 23 (B )25(C ) 5 (D )220,已知关于x 的方程x 2+px +q=0的两根为x 1=-3 x 2=4,则二次三项式x 2-px +q=( ) A.(x +3)(x -4) B, (x -3)(x +4) C,(x +3)(x +4)D,(x -3)(x -4)三, 解答题1,甲乙二人合作一项工程,4天可完成,若先有甲单独做3天,剩下的由乙独做,则以所用的时间等于甲单独完成这项工程的时间,求甲乙二人单独完成此项工程各需几天?2,解方程mnx 2-(m 2+n 2)x +mn=0 (mn ≠0)3,在⊿ABC 中,∠A ∠B ∠C 的对边分别为a,b,c 且a,b 是关于x 的方程∶x 2-(c +4)x+4c +8=0的两根,若25asinA=9c,求⊿ABC 的面积第二章∶函数第一节∶平面直角坐标系22,平面直角坐标系中,点A (1-2a,a-2)位于第三象限且a 为整数,则点A 的坐标是_____10、已知点()2,1+-a a M 在第二象限,则a 的取值范围是( )(A )2->a (B )12<<-a (C )2-<a (D )1>a14、若点M (x -1,1-y )在第一象限,则点N (1-x ,y -1)关于x 轴的对称点在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限第二节∶函数 11、函数321+=x y 中,自变量x 的取值范围是____12、函数x x y -+=0的自变量的取值范围是_____1,锐角三角形ABC 内接于⊙O ,∠B=2∠C ,∠C 所对圆弧的度数为n ,则n 的取值范围是 ( )A, 0°<n <45° B, 0°<n <90° C, 30°<n <45° D,60°<n <90° 第三节∶一次函数15,当___时,函数y=(m +3)x2m +3+4x -5(x ≠0)是一个一次函数。

中考数学高频错题集锦

中考数学高频错题集锦

易错点 12:对平行四边形的判定方法把握不准导致漏解
例题:四边形 ABCD 中,对角线 AC,BD 相交于点 O,给
出下列四个条件:①AD∥BC;②AD=BC;③O ABCD 为平行四边形的选
法有( )
A.3 种
B.4 种
C.5 种
D.6 种
分析:从一组对边平行且相等(①②),对角线互相平分(③ ④),以及条件组合(①③、①④),通过判定三角形全等进一步 判定四边形为平行四边形,仅仅满足条件②③或者是②④不能 证明三角形全等,故选法有 4 种.
面积越来越大,并且增大的速度越来越快;②直线 l 经过DC
段时,阴影部分的面积越来越大,并且增大的速度保持不变;
③直线 l 经过DC 段时,阴影部分的面积越来越大,并且增大
的速度越来越小.故选A.
正解:A
失误与防范:错误的原因是忽略对阴影部分的面积增加的 速度进行细节分析,从而选择错误的选项 C.防范这种错误的方 法是仔细观察图形的变化细节,才能更准确地得出函数图象的 变化特点.
易错点10:对平行线判定不准确
例题:如图 G-4,在下列条件中,能判断 AD∥BC 的是( )
A.∠DAC=∠BCA
B.∠DCB+∠ABC=180°
C.∠ABD=∠BDC D.∠BAC=∠ACD
图 G-4
分析:∠DAC 和∠BCA 是直线 AD 和直线 BC 被 AC 所截
形成的内错角,又∵∠DAC=∠BCA,∴AD∥BC.
时,如果方程的两边同时除以一个代数式,一定要注意它是否
会等于 0.
易错点 6:注意反比例函数的图象有两支 例题:反比例函数 y=—2x ,当 x≤3 时,y 的取值范围是( )
A.y≤
2 3

特殊三角形(等腰三角形与直角三角形)2024年中考数学一轮复习之核心考点精讲精练(原卷版)

 特殊三角形(等腰三角形与直角三角形)2024年中考数学一轮复习之核心考点精讲精练(原卷版)

考点16.特殊三角形(等腰三角形与直角三角形)(精讲)【命题趋势】特殊的三角形重在掌握基本知识的基础上灵活运用,也是考查重点,年年都会考查,分值为10分左右,预计2024年各地中考还将出现,并且在选择、填空题中考查等腰(等边)三角形性质与判定和勾股(逆)定理、直角三角形的性质、尺规作图等知识点结合考查,这部分知识需要学生扎实地掌握基础,并且会灵活运用。

在解答题中会出现等腰三角形与直角三角形的性质和判定,这部分知识主要考查基础。

【知识清单】1:等腰(等边)三角形的性质与判定(☆☆☆)1)等腰三角形的定义:有两边相等的三角形角等腰三角形。

2)等腰三角形的性质:(1)等腰三角形的两个底角相等(简称“等边对等角”)。

(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简称“三线合一”)。

3)等腰三角形的判定:若某三角形有两个角相等,那这两个角所对的边也相等(简称“等角对等边”)。

4)等边三角形的定义:三条边都相等的三角形叫等边三角形,它是特殊的等腰三角形。

5)等边三角形的性质:(1)等边三角形的三条边相等;(2)三个内角都相等,且每个内角都是60°;(3)等边三角形(边长为a6)等边三角形的判定:(1)三边相等或三个内角都相等的三角形是等边三角形;(2)有一个角是60°的等腰三角形是等边三角形。

2:垂直平分线的性质与判定(☆☆)1)垂直平分线的定理:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)。

2)垂直平分线的性质:线段的垂直平分线上的点到这条线段两个端点的距离相等。

3)垂直平分线的判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

3:勾股定理与逆定理及其应用(☆☆)1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.2)勾股定理的逆定理:若三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.4:直角三角形的性质及计算(☆☆☆)1)直角三角形的定义:有一个角是直角的三角形叫做直角三角形.2)直角三角形的性质:(1)直角三角形两个锐角互余;(2)直角三角形斜边上的中线等于斜边的一半;(3)在直角三角形中,30°角所对的直角边等于斜边的一半。

(完整)初三数学易错题集锦及答案

(完整)初三数学易错题集锦及答案

初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( D ) A 、300 B 、450 C 、550 D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是(C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D ) A 、300 B 、600 C 、1500 D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 AB45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B ) A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。

中考数学 一元一次不等式易错压轴解答题(含答案)100

中考数学 一元一次不等式易错压轴解答题(含答案)100

中考数学一元一次不等式易错压轴解答题(含答案)100一、一元一次不等式易错压轴解答题1.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(1)求A、B两种型号的电风扇的销售单价;(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.2.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:总利润单件利润销售量商品价格A B进价元件12001000售价元件13501200B两种商品各多少件?(2)商场第2次以原进价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品按原售价打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?3.对非负实数x“四舍五入”到个位的值记作<x>,即:当n为非负整数时,若n-≤x<n+,则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…. (1)填空:①<π>=________;②如果<2x-1>=3,则实数x的取值范围为________;(2)举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>= x的所有非负实数x的值.4.某服装厂生产一种西装和领带,西装每套定价400元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20)(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算出此种方案的付款金额.5.(1)①如果 a-b<0,那么 a________b;②如果 a-b=0,那么 a________b;③如果 a-b>0,那么 a________b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.6.某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元. (1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?7.在一次知识竞赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得a分,回答错误或放弃回答扣b分.当甲、乙两人恰好都答完12个题时,甲答对了8个题,得分为64分;乙答对了9个题,得分为78分. (1)求a和b的值;(2)规定此环节得分不低于120分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级?8.某小区准备新建60 个停车位,以解决小区停车难的问题。

中考数学 二元一次方程组易错压轴解答题专题练习(含答案)

中考数学 二元一次方程组易错压轴解答题专题练习(含答案)

中考数学二元一次方程组易错压轴解答题专题练习(含答案)一、二元一次方程组易错压轴解答题1.某商场经销A,B两款商品,若买20件A商品和10件B商品用了360元;买30件A 商品和5件B商品用了500元.(1)求A、B两款商品的单价;(2)若对A、B两款商品按相同折扣进行销售,某顾客发现用640元购买A商品的数量比用224元购买B商品的数量少20件,求对A、B两款商品进行了几折销售?(3)若对A商品进行5折销售,B商品进行8折销售,某顾客同时购买A、B两种商品若干件,正好用完49.6元,问该顾客同时购买A、B两款商品各几件?2.某地新建了一个企业,每月将生产1 960 t污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:污水处理器型号 A型 B型处理污水能力(t/月) 240 180B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么至少要支付多少钱?3.已知关于x,y的方程满足方程组.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.4.为了防治“新型冠状病毒”,我市某小区准备用5400元购买医用口罩和洗手液发放给本小区住户.若医用口罩买800个,洗手液买120瓶,则钱还缺200元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完.(1)求医用口罩和洗手液的单价;(2)由于实际需要,除购买医用口罩和洗手液外,还需增加购买单价为6元的N95口罩.若需购买医用口罩,N95口罩共1200个,其中N95口罩不超过200个,钱恰好全部用完,则有几种购买方案,请列方程计算.5.在平面直角坐标系中,已知点A(a,0),B (b,0),a、b满足方程组,C 为y轴正半轴上一点,且 .(1)求A、B、C三点的坐标;(2)是否存在点D(t,-t)使?若存在,请求出D点坐标;若不存在,请说明理由.(3)已知E(-2,-4),若坐标轴上存在一点P,使,请求出P的坐标.6.学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m人去两处支援,其中,若要使甲处植树的人数仍然是乙处植树人数的3倍,则应调往甲,乙两处各多少人?7.某自行车制造厂开发了一款新式自行车,计划6月份生产安装600辆,由于抽调不出足够的熟练工来完成新式自行车的安装,工厂决定招聘一些新工人:他们经过培训后也能独立进行安装.调研部门发现:1名熟练工和2名新工人每日可安装8辆自行车;2名熟练工和3名新工人每日可安装14辆自行车。

中考数学重难点易错题汇总含答案解析

中考数学重难点易错题汇总含答案解析

精品基础教育教学资料,仅供参考,需要可下载使用!最新初三九年级中考数学易错题集锦汇总学校:__________ 姓名:__________ 班级:__________ 考号:__________ 题号 一 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分 一、选择题1.如图,能判定 AB ∥CD 的条件是( )A .∠1=∠2B .∠1+∠2= 180°C .∠3=∠4D .∠3+∠1=180°2.下列各式中从左到右的变形,是因式分解的是( )A .(a+3)(a-3)=a 2-9;B .x 2+x-5=(x-2)(x+3)+1;C .a 2b+ab 2=ab (a+b )D .x 2+1=x (x+x1) 3.用科学记数方法表示0000907.0,得( )A .41007.9-⨯B .51007.9-⨯C .6107.90-⨯D .7107.90-⨯ 4.小马虎在下面的计算中只做对了一道题,则他做对的题目是 ( )A .222)(b a b a -=-B .6234)2(a a =-C .5232a a a =+D .1)1(--=--a a5.方程x 3=22-x 的解的情况是( ) A .2=x B .6=xC .6-=xD .无解 6.已知235x x ++的值为 3,则代数式2391x x +-的值为( )A .-9B .-7C .0D .37.下列事件中,届于不确定事件的是( )A .2008年奥运会在北京举行B .太阳从西边升起C .在1,2,3,4中任取一个教比 5大D .打开数学书就翻到第10页8.下列长度的三条线段能组成三角形的是( )A .5cm,3cm,1cmB .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm9.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是( )A .B .C .D .10.下列说法中,正确的是( )A .一颗质地均匀的骰子已连续抛掷了 2000次,其中抛掷出 5点的次数最少,则第2001次一定抛掷出 5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等11.某地区10户家庭的年消费情况如下:年消费l0万元的有2户,年消费5万元的有l 户,年消费1.5万元的有6户,年消费7千元的有1户.可估计该地区每户年消费金额的一般水平为()A.1.5万元 B.5万元 C.10万元 D.3.47万元12.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.属于哪一类不能确定13.下列图形中,由已知图形通过平移变换得到的是()14.在同一平面内垂直于同一条直线的两条直线必然()A.互相平行B.互相垂直C.互相重合D.关系不能确定15.△ABC和△DEF都是等边三角形,若△ABC的周长为24 cm ,△DEF的边长比△ABC 的边长长3 cm,则△DEF的周长为()A.27 cm B.30 cm C.33 cm D.无法确定16.下列命题不正确的是()A.在同一三角形中,等边对等角B.在同一三角形中,等角对等边C.在等腰三角形中与顶角相邻的外角等于底角的2倍D.等腰三角形是等边三角形17.在△ABC中,∠A:∠B:∠C=2:3:5,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定18.等腰三角形的“三线合一”是指()A.中线、高、角平分线互相重合B.腰上的中线、腰上的高、底角的平分线互相重合C.顶角的平分线、中线、高线三线互相重合D . 顶角的平分线、底边上的高及底边上的中线三线互相重合19.在△ABC 中,已知AC AB = ,DE 垂直平分AC ,50=∠A °,则DCB ∠的度数是( )A . 15°B .30°C . 50°D . 65°20.将如图1所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )21.画一个物体的三视图时,一般的顺序是( )A .主视图、左视图、俯视图B .主视图、俯视图、左视图C .俯视图、主视图、左视图D .左视图、俯视图、主视图22.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( )A .个体B .总体C .样本容量D .总体的一个样本23.济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S (吨)与时间t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )A .4小时B .4.4小时C .4.8小时D .5小时 24.若分式3242x x +-有意义,则字母x 的取值范围是( ) A .12x = B .23x =- C .12x ≠ 23x ≠-25.把图中的角表示成下列形式:①∠AP0;②∠P;③∠0PC;④∠0;⑤∠CP0;⑥∠AOP.其中正确的有()A.6个B.5个C.4个D.3个26.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()A.90个B.24个C.70个D.32个27.如图所示的 6 个数是按一定规律排列的,根据这个规律,括号内的数应是()A.27 B.56 C.43 D.3028.现有两个有理数 a、b,它们的绝对值相等,则这两个有理数()A.相等 B.相等或互为相反数 C.都是零 D.互为相反数29.某天股票A 开盘价 19 元,上午 11:30 跌1. 5 元,下午收盘时又涨了 0. 5 元,则投票A 这天收盘价为()A.0.3 元B.l6.2 元C.16.8 元D.18 元30.蜗牛在井里距井口 lm 处,它每天白天向上爬行 30 cm,每天夜晚又下滑 20 cm,则蜗牛爬出井口需要的天数是()A.11 天B.10 天C.9 天D.8 天31.小红妈妈的 2 万元存款到期了,按规定她可以得到 2 的利息,但同时必须向国家缴 纳 20% 的利息所得税,则小红妈妈缴税的金额是( )A .80 元B .60 元C .40 元D .20 元32.求0.0529的正确按键顺序为( )A .B .C .D .33.下列方程中,是一元一次方程的为( )A .x+y=1B .2210x x -+=C .21x =D .x=034.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(36)(9)4-÷-=-.其中正确的有( )A . 1个B . 2个C .3个D .4个35.一个五次多项式,它的任何一项的次数( )A .都小于5B .都等于5C .都不大于5D .都不小于536.⎩⎨⎧==21y x 是方程3=-y ax 的解,则a 的值是( ) A .5 B .5- C .2 D .137.下列说法中正确的是 ( )A .直线大于射线B .连结两点的线段叫做两点的距离C .若AB=BC ,则B 是线段AC 的中点D .两点之间线段最短38. 在△ABC 中,∠A =30°,∠B =50°,则∠C 的外角=( )A .60°B .80°C .100°D .120°39.如图,∠AOC=∠BOD=90°,下列结论中正确的个数是( )①∠AOB=∠COD ;②∠AOD=3∠B0C ;③∠AOD+∠BOC=∠AOC+∠BODA .0个B .l 个C .2个D .3个40.若两个角互为补角,则这两个角( )A .都是锐角B .都是钝角C .一个是锐角,另一个是钝角D .以上结论都不全对41.下列说法中,错误的是( )A .经过一点可以画无数条直线B .经过两点可以画一条直线C .两点之间线段最短D .三点确定一条直线42.12-的绝对值是( ) A .2- B .12- C .2 D .1243.下列说法中正确的是( )A .从三角形一个顶点向它对边所在直线画垂线,此垂线就是三角形的高B .三角形的角平分线是一条射线C.直角三角形只有一条高D.钝角三角形的三条高所在的直线的交点在此三角形的外部44.如图所示,是轴对称图形的个数有()A.4个B.3个C.2个D.1个45.将如图所示的图形按照顺时针方向旋转90°后所得的图形是()46.如图,已知 6.75r=,则图中阴影部分的面积为(结果保留π)()R=, 3.25A.35π⋅B.12.25πC.27πD.35π47.如图,由△ABC平移而得的三角形有()A. 8个B. 9个C. 10个D. 16个48.下列各式中不是不等式的为()A.25x=D.610x+≤C.58-<B.92y+> 49.关于单项式322-的系数、次数,下列说法中,正确的是()2x y zA.系数为-2,次数为 8B.系数为-8,次数为 5C.系数为-23,次数为 4D .系数为-2,次数为 750.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A . 43B . 34C . 53D . 5451.下列说法中,正确的个数是( )①样本的方差越小,波动性越小,说明样本稳定性越好;②一组数据的方差一定是正数;③一组数据的方差的单位与原数据的单位是一致的;④一组数据的标准差越大,则这组数据的方差一定越大.A .1个B .2个C .3个D .4个52.如图,在两半径不同的圆心角中,∠AOB=∠A ′O ′B ′=60°,则( )A .AB=A ′B ′ B .AB<A ′B ′C .AB 的度数=A ′B ′的度数D .AB 的长度=A ′B ′的长度53.△ABC 中,A = 47°,AB = 1.5 cm ,AC=2 cm ,△DEF 中,E = 47°,ED =2.8 cm ,EF=2. 1 cnn ,这两个三角形( )A . 相似B .不相似C . 全等D . 以上都不对54.在△ABC 中,AB=AC ,∠A=36°.以点A 为位似中心,把△ABC 放大2倍后得△A ′B ′C ′,则∠B 等于( )A .36°B .54°C .72°D .144°55.如图,∠APD =90°,AP =PB =BC =CD ,则下列结论成立的是( )A .ΔPAB ∽ΔPCA B .ΔPAB ∽ΔPDAC .ΔABC ∽ΔDBAD .ΔABC ∽ΔDCA56.如图,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC ∆∽ADE ∆的是( )A .AE AC AD AB = B .DE BC AD AB = C .D B ∠=∠ D .AED C ∠=∠57.若正比例函数2y x =-与反比例函数k y x=的图象交于点A ,且A 点的横坐标是1-,则此反比例函数的解析式为( )A .12y x =B .12y x =-C .2y x =D .2y x=- 58.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是( )A .6cmB .10cmC .32cmD .52cm59.等腰三角形的腰长为32,底边长为6,那么底角等于( )A . 30°B . 45°C . 60°D .120°60.下列事件,是必然事件的是( )A .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1B .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数C .打开电视,正在播广告D .抛掷一枚硬币,掷得的结果不是正面就是反面61.如图,扇形 OAB 的圆心角为 90°,分别以 OA 、OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么 P 和Q 的大小关系是( )A .P=QB .P>QC .P<QD . 无法确定62.某飞机于空中 A 处探测到平面目标 B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC= 1200 m,那么飞机到目标B 的距离AB为()A.2400m B.1200m C.4003 m D.12003 m 63.已知二次函数22(21)1y x a x a=+++-的最小值为 0,则a的值为()A.34B.34-C.54D.54-64.一箱灯泡有 24 个,灯泡的合格率是87.5%,则从中任意拿出一个是次品的概率是()A.0 B.124C.78D.1865.设有 10 个型号相同的杯子,其中一等品 7个、二等品 2个、三等品 1 个,从中任取一个杯子是一等品的概率等于()A.310B.70lC.37D.1766.书架的第一层放有 2 本文艺书、3 本科技书,书架的第二层放有 4 本文艺书、1 本科技书,从两层各取 1 本书,恰好都是科技书的概率是()A.325B.49C.1720D.2567.在一个有 10 万人的小镇,随机调查了 2000人,其中有 250 人看中央电视台的早新闻,在该镇随机问一个人,他看早新闻的概率大约是()A.0.75 B. 0.5 C. 0.25 D. 0.12568.有左、中、右三个抽屉,左边的抽屉里放有 2个白球,中间和右边的抽屉里各放一个红球和一个白球,从三个抽屉里任选一个球是红球的概率是()A.14B.13C.16D.2569.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。

中考数学复习高频考点精讲精练(全国通用):专题03 代数式(原卷版)

中考数学复习高频考点精讲精练(全国通用):专题03 代数式(原卷版)

专题03代数式一、同类项及合并同类项【高频考点精讲】1.同类项判定(1)定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项。

(2)注意事项:①所含字母相同并且相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项。

2.合并同类项(1)定义:把多项式中的同类项合成一项,叫做合并同类项。

(2)法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

【热点题型精练】1.(2022•湘潭中考)下列整式与ab2为同类项的是()A.a2b B.﹣2ab2C.ab D.ab2c2.(2022•永州中考)若单项式3x m y与﹣2x6y是同类项,则m=.3.(2022•定西模拟)已知3x2y+x m y=4x2y,则m的值为()A.0B.1C.2D.34.(2022•西藏中考)下列计算正确的是()A.2ab﹣ab=ab B.2ab+ab=2a2b2C.4a3b2﹣2a=2a2b D.﹣2ab2﹣a2b=﹣3a2b25.(2022•玉林中考)计算:3a﹣a=.6.(2022•荆州模拟)单项式x m+1y2﹣n与2y2x3的和仍是单项式,则m n=.二、列代数式及求值【高频考点精讲】1.列代数式(1)在同一个式子或具体问题中,每一个字母只能代表一个量。

(2)要注意书写的规范性,用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“•”或者省略不写。

(3)在数和表示数的字母乘积中,一般把数写在字母的前面。

(4)含有字母的除法,一般不用“÷”,而是写成分数的形式。

2.代数式求值(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

(2)代数式求值步骤:①代入;②计算。

如果给出的代数式可以化简,要先化简再求值。

【热点题型精练】7.(2022•长沙中考)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为()A.8x元B.10(100﹣x)元C.8(100﹣x)元D.(100﹣8x)元8.(2022•杭州中考)某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y元.已知10张A票的总价与19张B票的总价相差320元,则()A.||=320B.||=320C.|10x﹣19y|=320D.|19x﹣10y|=3209.(2022•嘉兴中考)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为(N)(用含n,k的代数式表示).10.(2022•六盘水中考)已知(x+y)4=a1x4+a2x3y+a3x2y2+a4xy3+a5y4,则a1+a2+a3+a4+a5的值是()A.4B.8C.16D.3211.(2022•广西中考)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是.12.(2022•苏州中考)已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.三、数字及图形变化规律【高频考点精讲】1.数字变化规律(1)探寻数列规律:将数字与序号建立数量关系或者与前后数字进行简单运算,从而得出通项公式。

查补易混易错点02 因式分解(解析版)--中考数学重难点题型专项训练

查补易混易错点02 因式分解(解析版)--中考数学重难点题型专项训练

查补易混易错02因式分解--中考数学重难点题型专项训练因式分解在初中数学中是整式乘除以及分式化简求值的过渡章节,起到承上启下的连接作用,所以因式分解的掌握程度也直接影响分式这个章节。

因式分解在中考数学中的考察主要是前两步,即:“一提”、“二套”,个别应用型问题中会考察“分组分解因式”和“十字相乘分解因式”,需要在复习中都清楚掌握对应方法。

中考五星高频考点,在全国各地中考试卷中属于必考考点,难度中等偏下。

易错01:因式分解的形式:整式加减的关系写成整式乘法的关系叫因式分解,左右关系千万不要记反了。

如:()2222b ab a b a ---=+-不是因式分解易错02:因式分解的一般步骤⎪⎪⎩⎪⎪⎨⎧“十字”十字相乘:二次三项想因式式,再利用前两步分解三分组:先分组分解因二套:套用乘法公式一提:提取公因式特别注意:①提取公因式这一步必须把所有公因式一次提取完;若没有公因式则跳过这一步②套用乘法公式时,两项式想平方法公式,三项式想完全平方公式③十字相乘法基本原理公式:()()()q x p x pq x q p x ++=+++2④因式分解的结果必须分解彻底,不能存在再因式分解的部分【中考真题练】1.(2022•济宁)下面各式从左到右的变形,属于因式分解的是()A .x 2﹣x ﹣1=x (x ﹣1)﹣1B .x 2﹣1=(x ﹣1)2C .x 2﹣x ﹣6=(x ﹣3)(x +2)D .x (x ﹣1)=x 2﹣x【分析】根据因式分解的定义判断即可.【解答】解:A 选项不是因式分解,故不符合题意;B选项计算错误,故不符合题意;C选项是因式分解,故符合题意;D选项不是因式分解,故不符合题意;故选:C.2.(2022•绵阳)因式分解:3x3﹣12xy2=3x(x+2y)(x﹣2y).【分析】先提取公因式,再套用平方差公式.【解答】解:原式=3x(x2﹣4y2)=3x(x+2y)(x﹣2y).故答案为:3x(x+2y)(x﹣2y).3.(2022•黔东南州)分解因式:2022x2﹣4044x+2022=2022(x﹣1)2.【分析】原式提取公因式2022,再利用完全平方公式分解即可.【解答】解:原式=2022(x2﹣2x+1)=2022(x﹣1)2.故答案为:2022(x﹣1)2.4.(2022•巴中)因式分解:﹣a3+2a2﹣a=﹣a(a﹣1)2.【分析】先提公因式﹣a,再用完全平方式分解因式即可.【解答】解:原式=﹣a(a2﹣2a+1)=﹣a(a﹣1)2.故答案为:﹣a(a﹣1)2.5.已知a+b=1,则代数式a2﹣b2+2b+9的值为10.【分析】方法一:直接将a2﹣b2进行因式分解为(a+b)(a﹣b),再根据a+b=1,可得a2﹣b2=a﹣b,由此可得原式=a+b+9=10.方法二:将原式分为三部分,即a2﹣(b2﹣2b+1)+10,把前两部分利用平方差进行因式分解,其中得到一因式a+b﹣1=0.从而得出原式的值.【解答】方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.6.(2022•台湾)多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?()A.﹣12B.﹣3C.3D.12【分析】根据十字相乘法可以将多项式39x2+5x﹣14分解因式,然后再根据多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),即可得到a、b、c的值,然后计算出a+2c的值即可.【解答】解:∵39x2+5x﹣14=(3x+2)(13x﹣7),多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),∴a=2,b=13,c=﹣7,∴a+2c=2+2×(﹣7)=2+(﹣14)=﹣12,故选:A.7.(2022•常州)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是2022;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.【分析】(1)根据已知,从个位数字起,将八进制的每一位数分别乘以80,81,82,83,再把所得结果相加即可得解;(2)根据n进制数和十进制数的计算方法得到关于n的方程,解方程即可求解.【解答】解:(1)3746=3×83+7×82+4×81+6×80=1536+448+32+6=2022.故八进制数字3746换算成十进制是2022.故答案为:2022;(2)依题意有:n2+4×n1+3×n0=120,解得n1=9,n2=﹣13(舍去).故n的值是9.8.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.9.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m 整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.【分析】(1)根据“和倍数”的定义依次判断即可;(2)根据“和倍数”的定义表示F(A)和G(A),代入中,根据为整数可解答.【解答】解:(1)∵357÷(3+5+7)=357÷15=23……12,∴357不是“和倍数”;∵441÷(4+4+1)=441÷9=49,∴441是9的“和倍数”;(2)由题意得:a+b+c=12,a>b>c,由题意得:F(A)=,G(A)=,∴===,∵a+c=12﹣b,为整数,∴====7+(1﹣b),∵1<b<9,∴b=3,5,7,∴a+c=9,7,5,①当b=3,a+c=9时,(舍),,则A=732或372;②当b=5,a+c=7时,,则A=516或156;③当b=7,a+c=5时,此种情况没有符合的值;综上,满足条件的所有数A为:732或372或516或156.【中考模拟练】1.(2023•蚌山区校级二模)下列因式分解中,正确的是()A.2a3﹣4a2+2a=2a(a2﹣2a)B.C.a3﹣9a=a(a2﹣9)D.﹣a2﹣b2=﹣(a+b)(a﹣b)【分析】A、先提取公因式,再用完全平方公式因式分解;B、用完全平方公式因式分解;C、先提取公因式,再用平方差公式因式分解;D、提取负号后不能再因式分解.【解答】解:A、原式=2a(a﹣1)2,不符合题意;B、原式=,符合题意;C、原式=a(a+3)(a﹣3),不符合题意;D、原式=﹣(a2+b2),不符合题意;故选:B.2.(2023•保定一模)对于①(x+1)(x﹣1)=x2﹣1,②x﹣2xy=x(1﹣2y),从左到右的变形,表述正确的是()A.都是乘法运算B.都是因式分解C.①是乘法运算,②是因式分解D.①是因式分解,②是乘法运算【分析】根据整式的混合运算,结合整式乘法与因式分解定义对题中运算进行判定即可得到答案.【解答】解:①(x+1)(x﹣1)=x2﹣1属于整式乘法,是利用平方差公式进行计算;②x﹣2xy=x(1﹣2y)属于因式分解,是利用提公因式法进行因式分解;故选:C.3.(2023•宿州模拟)下列各式中,可以在有理数范围内进行因式分解的是()A.x2+2x﹣1B.x2﹣2x+3C.x2﹣4y D.x2﹣4y2【分析】根据因式分解的定义,能化为几个因式的积的形式的多项式即可因式分解.【解答】解:A、x2+2x﹣1在有理数范围内不能化成几个因式积的形式,不能进行因式分解,故本选项错误,不符合题意;B、x2﹣2x+3在有理数范围内不能化成几个因式积的形式,不能进行因式分解,故本选项错误,不符合题意;C、x2﹣4y在有理数范围内不能化成几个因式积的形式,不能进行因式分解,故本选项错误,不符合题意;D、x2﹣4y2=(x﹣2y)(x+2y),在有理数范围内能进行因式分解,故本选项正确,符合题意;故选:D.4.(2023•路北区模拟)在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.a2+b2=(a+b)2D.(a﹣b)2=a2﹣2ab+b2【分析】分别求两图形的面积,可得出平方差公式.【解答】解:如图,从左图到右图的变化过程中,解释的因式分解公式是:a2﹣b2=(a+b)(a﹣b),故选:B.5.(2023•白塔区校级一模)分解因式:x4﹣16x2y2=x2(x+4y)(x﹣4y).【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:x4﹣16x2y2=x2(x2﹣16y2)=x2(x+4y)(x﹣4y),故答案为:x2(x+4y)(x﹣4y).6.(2023•天门校级模拟)分解因式:a2(a﹣b)+25(b﹣a)=(a﹣b)(a+5)(a﹣5).【分析】先把原式变形,再提取公因式,利用平方差公式分解即可.【解答】解:原式=a2(a﹣b)﹣25(a﹣b)=(a﹣b)(a2﹣25)=(a﹣b)(a+5)(a﹣5).故答案为:(a﹣b)(a+5)(a﹣5).7.(2023•安丘市模拟)分解因式:3x2﹣3x+=3(x﹣)2.【分析】先提取公因式,再利用完全平方公式.【解答】解:原式=3(x2﹣x+)=3(x﹣)2.故答案为:3(x﹣)2.8.(2023•合川区校级模拟)若一个四位正整数满足:a+c=b+d,我们就称该数是“交替数”,则最小的“交替数”是1001;若一个“交替数”m满足千位数字与百位数字的平方差是15,且十位数字与个位数的和能被5整除.则满足条件的“交替数”m的最大值为8778.【分析】根据最小的正整数是1,最大的一位数是9解答;根据题意得到:a2﹣b2=15,c+d=5k(k是正整数),a+c=b+d,联立方程组,解答即可.【解答】解:a取最小的正整数1,c取最小的整数0,则a+c=b+d,b=0,d=1.∴最小的“交替数”是1001;根据题意知:a2﹣b2=15,c+d=5k(k是正整数),a+c=b+d.∵a2﹣b2=(a+b)(a﹣b)=15=15×1=5×3,且0≤a≤9,0≤b≤9,∴或,解得或,∵a+c=b+d.∴c﹣d=b﹣a,∴c﹣d=﹣1或c﹣d=﹣3,∵c+d=5k(k是正整数),∴c+d=5或10或15,∴或或或或或,解得或或(舍去)或(舍去)或或,∴a=8,b=7,c=2,d=3,即8723;或a=4,b=1,c=1,d=4,即4114;或a=8,b=7,c=7,d=8,即8778;或a=4,b=1,c=6,d=9,即4169.故所有的“交替数”是8723或4114或8778或4169,最大的“交替数”为8778,故答案为:1001,8778.9.(2023•黑龙江一模)已知a+b=2,ab=2,求a3b+a2b2+ab3的值.【分析】先把代数式化简变形,再把a+b=2,ab=2代入进行计算即可.【解答】解:原式=a3b+a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,∵a+b=2,ab=2,∴原式=×2×4=4.10.(2023•襄垣县一模)(1)计算:﹣(﹣2)3×()﹣;(2)下面是小颖对多项式因式分解的过程,请认真阅读并完成相应任务.分解因式:(3x+y)2﹣(x+3y)2.解:原式=(3x+y+x+3y)(3x+y﹣x﹣3y)……第一步=(4x+4y)(2x﹣2y)……第二步=8(x+y)(x﹣y)……第三步=8(x2﹣y2).……第四步任务一:以上变形过程中,第一步依据的公式用字母a,b表示为a2﹣b2=(a+b)(a﹣b);任务二:以上分解过程第四步出现错误,具体错误为进行乘法运算,分解因式的正确结果为8(x+y)(x﹣y).【分析】(1)直接利用算术平方根的定义、有理数的运算法则解答即可;(2)直接利用提取公因式法以及公式法分解因式得出答案.【解答】解:(1)原式=4﹣(﹣8)×()﹣2=4﹣2+8×()=2+4﹣2=2+2;(2)原式=(3x+y+x+3y)(3x+y﹣x﹣3y)……第一步=(4x+4y)(2x﹣2y)……第二步=8(x+y)(x﹣y)……第三步=8(x2﹣y2).……第四步任务一:以上变形过程中,第一步依据的公式用字母a,b表示为a2﹣b2=(a+b)(a﹣b);任务二:以上分解过程第四步出现错误,具体错误为进行乘法运算,分解因式的正确结果为8(x+y)(x ﹣y).故答案为:a2﹣b2=(a+b)(a﹣b),进行乘法运算,8(x+y)(x﹣y).11.(2023•郑州一模)如果一个正整数能够表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.例如:因为4=22﹣02,12=42﹣22,20=62﹣42,故4,12,20都是神秘数.(1)写出一个除4,12,20之外的“神秘数”:28;(2)设两个连续偶数为2k和2k+2(k为非负整数),则由这两个连续偶数构造的“神秘数”能够被4整除吗?为什么?(3)两个相邻的“神秘数”之差是否为定值?若为定值,求出此定值;若不是定值,请说明理由.【分析】(1)根据新定义求解;(2)根据新定义证明;(3)根据(2)中的结论进行证明.【解答】解:(1)∵82﹣62=28,∴28是神秘数,故答案为28;(2)这两个连续偶数构造的“神秘数”能够被4整除,理由:∵(2k+2)2﹣(2k)2=(4k+2)•2=4(2k+1),∴这两个连续偶数构造的“神秘数”能够被4整除;(3)两个相邻的“神秘数”之差为定值,理由:因为:4[2(k+1)+1]﹣4(2k+1)=8,所以两个相邻的“神秘数”之差是定值.12.(2022•重庆模拟)阅读理解:若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.迁移应用:(1)若x满足(2020﹣x)2+(x﹣2022)2=10,求(2020﹣x)(x﹣2022)的值;(2)如图,点E,G分别是正方形ABCD的边AD、AB上的点,满足DE=k,BG=k+1(k为常数,且k>0),长方形AEFG的面积是,分别以GF、AG作正方形GFIH和正方形AGJK,求阴影部分的面积.【分析】(1)利用题干中所给的方法解答即可;(2)设正方形ABCD的边长为x,则AE=x﹣k,AG=x﹣k﹣1,可得AE﹣AG=1,AE•AG=;利用题干中的方法可求得AE+AG,利用阴影部分的面积等于正方形GFIH与正方形AGJK的面积之差即可求得结论.【解答】解:(1)设a=2020﹣x,b=x﹣2022,则:a+b=﹣2,a2+b2=10.∵(a+b)2=a2+2ab+b2,∴10+2ab=(﹣2)2.∴ab=﹣3.∴(2020﹣x)(x﹣2022)=﹣3.(2)设正方形ABCD的边长为x,则AE=x﹣k,AG=x﹣k﹣1,∴AE﹣AG=1.∵长方形AEFG的面积是,∴AE•AG=.∵(AE﹣AG)2=AE2﹣2AE•AG+AG2,∴AE2+AG2=1+=.∵(AE+AG)2=AE2+2AE•AG+AG2,∴(AE+AG)2=,∴AE+AG=.∴S阴影部分=S正方形GFIH﹣S正方形AGJK=AE2﹣AG2=(AE+AG)(AE﹣AG)=×1=.。

(完整)初三数学易错题集锦及答案

(完整)初三数学易错题集锦及答案

初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( D ) A 、300 B 、450 C 、550 D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是(C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D ) A 、300 B 、600 C 、1500 D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 AB45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B ) A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。

中考数学易错题综合专题三附答案详解

中考数学易错题综合专题三附答案详解

易错题错题二一.选择题共11小题1.2010 武汉如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于点E,交BD于点H,EN∥DC交BD于点N.下列结论:①BH=DH;②CH=;③.其中正确的是A.①②③B.只有②③C.只有②D.只有③2.2006 武汉北师大版如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE交AC于F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DE B;③△CFD与△ABG;④△ADF与△CFB.其中相似的为A.①④B.①②C.②③④D.①②③3.2008 齐齐哈尔如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且EF=AB;②∠BAF=∠CAF;③S四边形ADFE=AF DE;④∠BDF+∠FEC=2∠BAC,正确的个数是A.1B.2C.3D.44.2007 黑龙江如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=BC,CE=AC,BE、AD相交于点F,连接DE,则下列结论:①∠AFE=60°;②DE⊥AC;③CE2=DFDA;④AFBE=AEAC,正确的结论有A.4个B.3个C.2个D.1个5.2000山西已知:如图,在ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于C、H.请判断下列结论:1BE=DF;2AG=GH=HC;3EG=BG;4S△ABE=3S△AGE.其中正确的结论有A.1个B.2个C.3个D.4个6.在课外活动课上,某同学做了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450 cm2,则两条对角线共用的竹条至少需A.30cm B.40cm C.60cm D.80cm7.2011 兰州如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为A.B.C.D.8.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为1,0,点D的坐标为0,2.延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,正方形A2011B2011C2011C2010的面积为A.5×B.5×C.5×D.5×9.2007佳木斯如图,已知ABCD中,∠BDE=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是A.①②③④B.①②③C.①②④D.②③④10.2010 鸡西在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD.则以下结论中一定正确的个数有①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,BE=DE.A.2个B.3个C.4个D.5个11.如图,ABCD、CEFG是正方形,E在CD上,直线BE、DG交于H,且HEHB=,BD、AF交于M,当E在线段CD不与C、D重合上运动时,下列四个结论:①BE⊥GD;②AF、GD所夹的锐角为45°;③GD=;④若BE平分∠DBC,则正方形ABCD的面积为4.其中正确的结论个数有A.1个B.2个C.3个D.4个二.填空题共10小题12.如图△ABC中,∠ACB=90°,BC=6cm,AC=8cm,动点P从A出发,以2cm/s的速度沿AB移动到B,则点P出发_________ s时,△BCP为等腰三角形.13.如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN= _________ .14.2010 眉山如图,已知梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=3,则下底BC的长为_________ .15.在半径为5的⊙O中,有两平行弦AB.CD,且AB=6,CD=8,则弦AC的长为_________ .16.如图,在平面直角坐标系上有个点P1,0,点P第1次向上跳动1个单位至点P11,1,紧接着第2次向左跳动2个单位至点P2﹣1,1,第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是_________ .17.2011 锦州如图,在平面直角坐标系上有点A1,0,点A第一次跳动至点A1﹣1,1,第四次向右跳动5个单位至点A43,2,…,依此规律跳动下去,点A第100次跳动至点A100的坐标是_________ .18.2010 牡丹江开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为_________ 元.19.⊙O的弦AB的长等于半径,那么弦AB所对的圆周角等于_________ 度.20.如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且;②∠BAF=∠CAF ;③;④∠BDF+∠FEC=2∠BAC,正确结论的序号是___ .21.2008 江西如图,已知点F的坐标为3,0,点A,B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点.设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5﹣x0≤x≤5,给出以下四个结论:①AF=2;②BF=5;③OA=5;④OB=3.其中正确结论的序号是_________ .三.解答题共4小题22.在平面直角坐标系中,点A、B分别在x轴、y 轴上,线段OA、OB的长OA<OB是关于x 的方程x2﹣2m+6x+2m2=0的两个实数根,C是线段AB的中点,OC=3,D在线段OC上,OD=2CD.1求OA、OB的长;2求直线AD的解析式;3P是直线AD上的点,在平面内是否存在点Q,使以O、A、P、Q为顶点的四边形是菱形若存在,求出点Q的坐标;若不存在,请说明理由.23.2009 朝阳如图①,点A′,B′的坐标分别为2,0和0,﹣4,将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.1写出A,B两点的坐标,并求出直线AB的解析式;2将△ABO沿着垂直于x轴的线段CD折叠,点C在x轴上,点D在AB上,点D不与A,B重合如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为x,0,△CDE与△ABO重叠部分的面积为S.①试求出S与x之间的函数关系式包括自变量x的取值范围;②当x为何值时,S的面积最大,最大值是多少③是否存在这样的点C,使得△ADE为直角三角形若存在,直接写出点C的坐标;若不存在,请说明理由.24.如图所示,在平面直角坐标系中,四边形OABC是等腰梯形.BC∥OA,∠COA=60°,OA、ABOA >AB是方程x2﹣11x+28=0的两个根.1求点B的坐标;2求线段AC的长;3在x轴上是否存在一点P,使以点P、A、C为顶点的三角形为等腰三角形若存在,请接写出点P的坐标;若不存在,请说明理由.25.2010 山西在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.1求点B的坐标;2已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE的解析式;3点M是2中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形若存在,请求出点N的坐标;若不存在,请说明理由.2013年5月29龙江易错题错题二参考答案与试题解析一.选择题共11小题1.2010 武汉如图,在直角梯形A BCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于点E,交BD于点H,EN∥DC交BD于点N.下列结论:①BH=DH;②CH=;③.其中正确的是A.①②③B.只有②③C.只有②D.只有③考点:直角梯形.分析:①如图,过H作HM⊥BC于M,根据角平分线的性质可以得到DH=HM,而在Rt△BHM中BH>HM,所以容易判定①是错误的;②设HM=x,那么DH=x,由于∠ABC=90°,BD⊥DC,BD=DC,由此得到∠DBC=45°,而AD∥CB,由此可以证明△ADB是等腰直角三角形,又CE平分∠BCD,∠BDC=∠ABC=90°,由此可以证明△DCH∽△EBC,再利用相似三角形的性质可以推出∠BEH=∠DHC,然后利用对顶角相等即可证明∠BHC=∠BEH,接着得到BH=BE,然后即可用x分别表示BE、EN、CD,又由EN∥DC可以得到△DCH∽△NEH,再利用相似三角形的性质即可结论②;③利用2的结论可以证明△ENH∽△CBE,然后利用相似三角形的性质和三角形的面积公式即可证明结论③.解答:解:①如图,过H作HM⊥BC于M,∵CE平分∠BCD,BD⊥DC∴DH=HM,而在Rt△BHM中BH>HM,∴BH>HD,∴所以容易判定①是错误的;②∵CE平分∠BCD,∴∠DCE=∠BCE,而∠EBC=∠BDC=90°,∴∠BEH=∠DHC,而∠DHC=∠EHB,∴∠BEH=∠EHB,∴BE=BH,设HM=x,那么DH=x,∵BD⊥DC,BD=DC,∴∠DBC=∠ABD=45°,∴BH=x=BE,∴EN=x,∴CD=BD=DH+BH=+1x,即=+1,∵EN∥DC,∴△DCH∽△NEH,∴=+1,即CH=+1EH;③由②得∠BEH=∠EHB,∵EN∥DC,∴∠ENH=∠CDB=90°,∴∠ENH=∠EBC,∴△ENH∽△CBE,∴EH:EC=NH:BE,而,∴.所以正确的只有②③.故选B.点评:此题比较复杂,综合性很强,主要考查了梯形的性质,相似三角形的判定和性质以及等腰直角三角形的性质.2.2006 武汉北师大版如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE交AC于F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DEB;③△CFD与△ABG;④△ADF与△CFB.其中相似的为A.①④B.①②C.②③④D.①②③解答:解:根据题意得:∠BAE=∠ADC=∠AFE=90°∴∠AEF+∠EAF=90°,∠DAC+∠ACD=90°∴∠AEF=∠ACD∴①中两三角形相似;容易判断△AFE∽△BAE,得=,又∵AE=ED,∴=而∠B ED=∠BED,∴△FED∽△DEB.故②正确;∵AB∥CD,∴∠BAC=∠GCD,∵∠ABE=∠DAF,∠EBD=∠EDF,且∠ABG=∠ABE+∠EBD,∴∠ABG=∠DAF+∠EDF=∠DFC;∵∠ABG=∠DFC,∠BAG=∠DCF,∴△CFD∽△ABG,故③正确;所以相似的有①②③.故选D.点评:此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.3.2008 齐齐哈尔如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且EF=AB;②∠BAF=∠CAF;③S四边形ADFE=AF DE;④∠BDF+∠FEC=2∠BAC,正确的个数是A.1B.2C.3D.4分析:根据对折的性质可得AE=EF,∠DAF=∠DFA,∠EAF=∠AFE,∠BAC=∠DFE,据此和已知条件判断图中的相等关系.解答:解:①由题意得AE=EF,BF=FC,但并不能说明AE=EC,∴不能说明EF是△ABC的中位线,故①错;②题中没有说AB=AC,那么中线AF也就不可能是顶角的平分线,故②错;③易知A,F关于D,E对称.那么四边形ADFE是对角线互相垂直的四边形,那么面积等于对角线积的一半,故③对;④∠BDF=∠BAF+∠DFA,∠FEC=∠EAF+∠AFE,∴∠BDF+∠FEC=∠BAC+∠DFE=2∠BAC,故④对.正确的有两个,故选B.点评:翻折前后对应线段相等,对应角相等.4.2007 黑龙江如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=BC,CE=AC,BE、AD相交于点F,连接DE,则下列结论:①∠AFE=60°;②DE⊥AC;③CE2=DFDA;④AFBE=AEAC,正确的结论有A.4个B.3个C.2个D.1个分析:本题是开放题,对结论进行一一论证,从而得到答案.①利用△ABD≌△BCE,再用三角形的一个外角等于与它不相邻的两个内角和,即可证∠AFE=60°;②从CD上截取CM=CE,连接EM,证△CEM是等边三角形,可证明DE⊥AC;③△BDF∽△ADB,由相似比则可得到CE2=DF DA;④只要证明了△AFE∽△BAE,即可推断出AFBE=AEAC.解答:解:∵△ABC是等边三角形∴AB=BC=AC,∠BAC=∠ABC=∠BCA=60°∵BD=BC,CE=AC∴BD=EC∴△ABD≌△BCE∴∠BAD=∠CBE,∵∠ABE+∠EBD=60°∴∠ABE+∠CBE=60°∵∠AFE是△ABF的外角∴∠AFE=60°∴①是对的;如图,从CD上截取CM=CE,连接EM,则△CEM是等边三角形∴EM=CM=EC∵EC=CD∴EM=CM=DM∴∠CED=90°∴DE⊥AC,∴②是对的;由前面的推断知△BDF∽△ADB∴BD:AD=DF:DB∴BD2=DF DA∴CE2=DF DA∴③是对的;在△AFE和△BAE中,∠BAE=∠AFE=60°,∠AEB是公共角∴△AFE∽△BAE∴AFBE=AEAC∴④是正确的.故选A.点评:本题主要应用到了三角形外角与内角的关系,直角三角形的判定,全等三角形和相似三角形的判定及性质,内容较多,较为复杂.5.2000山西已知:如图,在ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于C、H.请判断下列结论:1BE=DF;2AG=GH=HC;3EG=BG;4S△ABE=3S△AGE.其中正确的结论有A.1个B.2个C.3个D.4个分析:1根据BF∥DE,BF=DE可证BEDF为平行四边形;2根据平行线等分线段定理判断;3根据△AGE∽△CGB可得;4由3可得△ABG的面积=△AGE面积×2.解答:解:1∵ ABCD,∴AD=BC,AD∥BC.E、F分别是边AD、BC的中点,∴BF∥DE,BF=DE.∴BEDF为平行四边形,BE=DF.故正确;2根据平行线等分线段定理可得AG=GH=HC.故正确;3∵AD∥BC,AE=AD=BC,∴△AGE∽△CGB,AE:BC=EG:BG=1:2,∴EG=BG.故正确.4∵BG=2EG,∴△ABG的面积=△AGE面积×2,∴S△ABE=3S△AGE.故正确.故选D.点评:此题考查了平行四边形的判定及性质、相似三角形的判定及性质等知识点,难度中等.6.在课外活动课上,某同学做了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450 cm2,则两条对角线共用的竹条至少需A.30cm B.40cm C.60cm D.80cm考点:等腰梯形的性质.专题:应用题.分析:设对角线的长是x,根据面积公式可求得对角线的长,从而可得到两条对角线所用的竹条至少需要多少.解答:解:等腰梯形的对角线互相垂直且相等,可以设对角线的长是x,则x2=450,则x=30cm,两条对角线所用的竹条至少需要60cm.故选C点评:对角线互相垂直的四边形的面积的计算方法是需要注意记忆的问题,两对角线长若是a,b则面积是ab.7.2011 兰州如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为A.B.C.D.分析:过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.解答:解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.点评:本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.8.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为1,0,点D的坐标为0,2.延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,正方形A2011B2011C2011C2010的面积为A.5×B.5×C.5×D.5×分析:先利用ASA证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1B,所以正方形A1B1C1C的边长等于正方形ABCD边长的以此类推,后一个正方形的边长是前一个正方形的边长的然后即可求出第2011个正方形的边长与第1个正方形的边长的关系,从而求出第2011个正方形的面积.解答:解:∵四边形ABCD是正方形,∴∠ABC=∠BAD=90°,AB=BC,∴∠ABA1=90°,∠DAO+∠BAA1=180°﹣90°=90°,又∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠ADO=∠BAA1,在△AOD和A1BA中,∵,∴△AOD∽△A1BA,∴==2,∴BC=2A1B,∴A1C=BC,以此类推A2C1=A1C,A3C2=A2C1即后一个正方形的边长是前一个正方形的边长的倍,∴第2011个正方形的边长为2011BC,∵A的坐标为1,0,D点坐标为0,2,∴BC=AD==,∴正方形A2011B2011C2011C2010的面积为2011BC2=5×4022=5×2011.故选D.点评:本题考查的是一次函数综合题,涉及到正方形的性质及直角三角形的性质、相似三角形的判定与性质,属规律性题目.9.2007佳木斯如图,已知ABCD中,∠BDE=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是A.①②③④B.①②③C.①②④D.②③④分析:根据已知及相似三角形的判定方法对各个结论进行分析从而得到最后答案.解答:解:∵∠BDE=45°,DE⊥BC∴DB=BE,BE=DE∵DE⊥BC,BF⊥CD∴∠BEH=∠DEC=90°∵∠BHE=∠DHF∴∠EBH=∠CDE∴△BEH≌△DEC∴∠BHE=∠C,BH=CD∵ ABCD中∴∠C=∠A,AB=CD∴∠A=∠BHE,AB=BH∴正确的有①②③故选B.点评:此题考查了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.相似三角形的对应边成比例,对应角相等.10.2010 鸡西在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD.则以下结论中一定正确的个数有①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,BE=DE.A.2个B.3个C.4个D.5个分析:①EF、FD是直角三角形斜边上的中线,都等于BC的一半;②可证△ABD∽△ACE;③证明∠EFD=60°;④假设结论成立,在BC上取满足条件的点H,证明其存在性;⑤当∠ABC=45°时,EF不一定是BC边的高.解答:解:①∵BD、CE为高,∴△BEC、△BDC是直角三角形.∵F是BC的中点,∴EF=DF=BC.故正确;②∵∠ADB=∠AEC=90°,∠A公共,∴△ABD∽△ACE,得AD:AB=AE:AC.故正确;③∵∠A=60°,∴∠ABC+∠ACB=120°.∵F是BC的中点,∴EF=B F,DF=CF.∴∠ABF=∠BEF,∠ACB=∠CDF.∴∠BFE+∠CFD=120°,∠EFD=60°.又EF=FD,∴△DEF是等边三角形.故正确;④若BE+CD=BC,则可在BC上截取BH=BE,则HC=CD.∵∠A=60°,∴∠ABC+∠ACB=120°.又∵BH=BE,HC=CD,∴∠BHE+∠CHD=120°,∠EHD=60°.所以存在满足条件的点,假设成立,但一般情况不一定成立,故错误;⑤当∠ABC=45°时,在Rt△BCE中,BC=BE,在Rt△ABD中,AB=2AD,由B、C、D、E四点共圆可知,△ADE∽△ABC,∴==,即=,∴BE=DE,故正确;故此题选C.点评:此题考查了相似三角形的判定和性质,综合性很强.11.如图,ABCD、CEFG是正方形,E在CD上,直线BE、DG交于H,且HE HB=,BD、AF 交于M,当E在线段CD不与C、D重合上运动时,下列四个结论:①BE⊥GD;②AF、GD所夹的锐角为45°;③GD=;④若BE平分∠DBC,则正方形ABCD的面积为4.其中正确的结论个数有A.1个B.2个C.3个D.4个分析:①由已知条件可证得△BEC≌△DGC,∠EBC=∠CDG,因为∠BDC+∠DBH+∠EBC=90°,所以∠BDC+∠DBH+∠CDG=90°,即BE⊥GD,故①正确;②若以BD为直径作圆,那么此圆必经过A、B、C、H、D五点,根据圆周角定理即可得到∠AHD=45°,所以②的结论也是正确的.③此题要通过相似三角形来解;由②的五点共圆,可得∠BAH=∠BDH,而∠ABD=∠DBG=45°,由此可判定△ABM∽△DBG,根据相似三角形的比例线段即可得到AM、DG的比例关系;④若BE平分∠DBC,那么H是DG的中点;易证得△ABH∽△BCE,得BDBC=BEBH,即BC2=BEBH,因此只需求出BEBH的值即可得到正方形的面积,可先求出BE、EH的比例关系,代入已知的乘积式中,即可求得BEBH的值,由此得解.解答:解:①正确,证明如下:∵BC=DC,CE=CG,∠BCE=∠DCG=90°,∴△BEC≌△DGC,∴∠EBC=∠CDG,∵∠BDC+∠DBH+∠EBC=90°,∴∠BDC+∠DBH+∠CDG=90°,即BE⊥GD,故①正确;②由于∠BAD、∠BCD、∠BHD都是直角,因此A、B、C、D、H五点都在以BD为直径的圆上;由圆周角定理知:∠DHA=∠ABD=45°,故②正确;③由②知:A、B、C、D、H五点共圆,则∠BAH=∠BDH;又∵∠ABD=∠DBG=45°,∴△ABM∽△DBG,得AM:DG=AB:BD=1:,即DG=AM;故③正确;④过H作HN⊥CD于N,连接EG;若BH平分∠DBG,且BH⊥DG,易知:BH垂直平分DG;得DE=EG,H是DG中点,HN为△DCG的中位线;设CG=x,则:HN=x,EG=DE=x,DC=BC=+1x;∵HN⊥CD,BC⊥CD,∴HN∥BC,∴∠NHB=∠EBC,∠ENH=∠ECB,∴△BEC∽△HEN,则BE:EH=BC:HN=2+2,即EH=;∴HEBH=BH=4﹣2,即BE BH=4;∵∠DBH=∠CBE,且∠BHD=∠BCE=90°,∴△DBH∽△CBE,得:DBBC=BEBH=4,即BC2=4,得:BC2=4,即正方形ABCD的面积为4;故④正确;因此四个结论都正确,故选D.点评:本题主要考查三角形相似和全等的判定及性质、正方形的性质以及圆周角定理等知识的综合应用,能够判断出A、B、C、D、H五点共圆是解题的关键.二.填空题共10小题12.如图△ABC中,∠ACB=90°,BC=6cm,AC=8cm,动点P从A出发,以2cm/s的速度沿AB移动到B,则点P出发2,, s时,△BCP为等腰三角形.分析:根据∠ACB=90°,BC=6cm,AC=8cm,利用勾股定理求出AB的长,再分别求出BC=BP,BP=PC时,AP的长,然后利用P点的运动速度即可求出时间.解答:解;∵△ABC中,∠ACB=90°,BC=6cm,AC=8cm,∴AB===10,∵当BC=BP时,△BCP为等腰三角形,即BC=BP=6cm,△BCP为等腰三角形,∴AP=AB﹣BP=10﹣6=4,∵动点P从A出发,以2cm/s的速度沿AB移动,∴点P出发=2s时,△BCP为等腰三角形,当点P从A出发,以2cm/s的速度沿AB移动到AB的中点时,此时AP=BP=PC,则△BCP为等腰三角形,点P出发=时,△BCP为等腰三角形,当BC=PC时,过点C作CD⊥AB于点D,则△BCD∽△BAC,∴,解得:BD=,∴BP=2BD=,∴AP=10﹣=,∴点P出发时,△BCP为等腰三角形.故答案为:2;;.点评:此题主要考查勾股定理和等腰三角形的判定,解答此题的关键是首先根据勾股定理求出AB的长,然后再利用等腰三角形的性质去判定.13.如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC 上,PM⊥BD于M,PN⊥BC于N,则PM+PN= .分析:连接BP,作EF⊥BC于点F,由正方形的性质可知△BEF为等腰直角三角形,BE=1,可求EF,利用面积法得S△BPE+S△BPC=S△BEC,将面积公式代入即可.解答:解:连接BP,作EF⊥BC于点F,则∠EFB=90°,由正方形的性质可知∠EBF=45°,∴△BEF为等腰直角三角形,又根据正方形的边长为1,得到BE=BC=1,在直角三角形BEF中,sin∠EBF=,即BF=EF=BEsin45°=1×=,又PM⊥BD,PN⊥BC,∴S△BPE+S△BPC=S△BEC,即BE×PM+×BC×PN=BC×EF,∵BE=BC,PM+PN=EF=;故答案为:.点评:解决本题的关键是作出辅助线,构造矩形和全等三角形,把所求的线段转移到正方形的对角线上.14.2010 眉山如图,已知梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=3,则下底BC的长为10 .分析:过A作AE∥CD,把梯形分成平行四边形和直角三角形,利用平行四边形的对边相等得到CE=AD,所以BE可以求出,在直角三角形中,根据∠B=30°,利用勾股定理求出BE,BC的长也就可以求出了.解答:解:如图,过A作AE∥CD交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD=4,∵∠B=30°,∠C=60°,∴∠BAE=90°,∴AE=BE直角三角形30°角所对的直角边等于斜边的一半,在Rt△ABE中,BE2=AB2+AE2,即BE2=32+BE2,BE2=27+BE2,BE2=36,解得BE=6,∴BC=BE+EC=6+4=10.故答案为:10.点评:通过作腰的平行线,把梯形分成平行四边形和直角三角形,再利用直角三角形30°角所对的直角边等于斜边的一半和勾股定理求解,考虑本题的突破口在于两个已知角的和是90°.15.在半径为5的⊙O中,有两平行弦AB.CD,且AB=6,CD=8,则弦AC的长为或5.解答:解:利用垂径定理和勾股定理可知:OE=3,OF=4,①如图,∵4﹣3=1,8﹣6÷2=1,∴AC==;②如图,∵4+3=7,8﹣6÷2=1,∴AC==5.点评:本题综合考查了垂径定理和勾股定理的运用.16.如图,在平面直角坐标系上有个点P1,0,点P第1次向上跳动1个单位至点P11,1,紧接着第2次向左跳动2个单位至点P2﹣1,1,第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是26,50 .分析:解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到P100的横坐标.解答:解:经过观察可得:以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到:P n的横坐标为n÷4+1n是4的倍数.故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是26,50.故答案填26,50.点评:本题的关键是分析出题目的规律,找出题目中点的坐标的规律,总结规律是近几年出现的常见题目.17.2011 锦州如图,在平面直角坐标系上有点A1,0,点A第一次跳动至点A1﹣1,1,第四次向右跳动5个单位至点A43,2,…,依此规律跳动下去,点A第100次跳动至点A100的坐标是51,50 .考点:坐标与图形性质;规律型:图形的变化类.专题:规律型.分析:根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.解答:解:观察发现,第2次跳动至点的坐标是2,1,第4次跳动至点的坐标是3,2,第6次跳动至点的坐标是4,3,第8次跳动至点的坐标是5,4,…第2n次跳动至点的坐标是n+1,n,∴第100次跳动至点的坐标是51,50.故答案为:51,50.点评:本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.18.2010 牡丹江开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为210或200 元.分析:根据题意读懂商场的活动规则,应该分两种情况:让其先买120元的运动鞋,得50元购物券,再用购物券去买那两样东西,依此计算实际花费;若先购买120元和80元,可得到100元的购物券,那么60元的就不用再掏钱了.所以应该是200或210.解答:解:他的实际花费=120+60﹣50+80=210元或若现购买120元和80元,可得到100元的购物券,那么60元的就不用再掏钱了,即120+80=200元.点评:本题旨在学生养成仔细读题的习惯.19.⊙O的弦AB的长等于半径,那么弦AB所对的圆周角等于30或150 度.分析:一条弦所对的圆周角有两种情况:当圆周角的顶点在优弧上,圆周角应是一个锐角;当圆周角的顶点在劣弧上,圆周角是一个钝角.解答:解:∵弦AB的长等于半径,∴当把圆心分别与点A,B连接,可得等边三角形,等边三角形的内角是60°,∴弦AB所对的圆心角是60°,∴弦AB把圆分成60°和300°的两段弧,根据弧的度数等于它所对的圆心角的度数,而一条弧所对的圆周角的度数等于所对圆心角度数的一半,∴弦AB所对的圆周角等于30°或150°.故弦AB所对的圆周角等于30°或150°.点评:一条弦非直径把圆分成两条弧,两条弧对应两个不同度数的圆周角.20.如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且;②∠BAF=∠CAF;③;④∠BDF+∠FEC=2∠BAC,正确结论的序号是③④.分析:根据折叠得到DE垂直平分AF,再根据对角线互相垂直的四边形的面积等于两条对角线的乘积的一半即可证明③,根据三角形的外角的性质即可证明④.解答:解:①要使EF∥AB且,则需EF是△ABC的中位线,根据折叠得AE=EF,显然本选项不一定成立;②要使∠BAF=∠CAF,则需AD=AE,显然本选项不一定成立;③根据折叠得到DE垂直平分AF,故本选项正确;④根据三角形的外角的性质,得∠BDF=∠DAF+∠AFD,∠CEF=∠EAF+∠AFE,又∠BAC=∠DFE,则∠BDF+∠FEC=2∠BAC,故本选项成立.故答案为③④.点评:此题综合考查了折叠的性质、对角线互相垂直的四边形的面积等于两条对角线的乘积的一半、三角形的外角的性质.21.2008 江西如图,已知点F的坐标为3,0,点A,B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点.设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5﹣x0≤x≤5,给出以下四个结论:①AF=2;②BF=5;③OA=5;④OB=3.其中正确结论的序号是①②③.分析:一次函数与正比例函数动点函数图象的问题.解答:解:此题由解析式求点的坐标,再求线段长,是数形结合的典范.当x=5时,d=2=AF,故①正确;当x=0时,d=5=BF,故②正确;OA=OF+FA=5,故③正确.当x=0时,BF=5,OF=3,OB=4,故④错误.故答案为①②③.点评:本题是今年出现的一种新题型,以多选题的形式出现,从考生所填的项中,能看出学生思维层次上的差异,弥补了填空题的不足.答题时,不少学生选择④,有的考生甚至填入⑤,说明学生对这类新题型的缺乏答题策略,对没有把握的结论宁可少选,也不可乱选;即宁缺勿滥.三.解答题共4小题22.在平面直角坐标系中,点A、B分别在x轴、y 轴上,线段OA、OB的长OA<OB是关于x 的方程x2﹣2m+6x+2m2=0的两个实数根,C是线段AB的中点,OC=3,D在线段OC上,OD=2CD.1求OA、OB的长;2求直线AD的解析式;3P是直线AD上的点,在平面内是否存在点Q,使以O、A、P、Q为顶点的四边形是菱形若存在,求出点Q的坐标;若不存在,请说明理由.分析:1求出AB=2OC=6,根据OA+OB=2m+6,OA×OB=2m2,得出方程2m+62﹣4m2=180,求出m的值,代入方程,求出方程的解即可;2过C作CM⊥OA于M,过D作DN⊥OA于N,求出C、D的坐标,设直线AD的解析式是y=kx+b,把A、D的坐标代入求出即可;3求出AD与y轴的交点F的坐标,求出AF,①以OA为一边时,共有4个点,根据A坐标和OP=OA即可求出R、T的坐标,K3,﹣3,同理求出G、K的坐标;②以OA为对角线,作OA的垂直平分线交AD于P,交OA于M,在OA的下方作MP=MQ,把x=3代入y=﹣x+6求出y,即可得出此时Q的坐标.解答:解:1∵AB=2OC=6,∴OA2+OB2=AB2==180,∵OA+OB=2m+6,OA×OB=2m2,。

(初中)九年级数学下学期中考微专题复习典型盘点解分式问题中的常见错误试题详解赏析汇总

(初中)九年级数学下学期中考微专题复习典型盘点解分式问题中的常见错误试题详解赏析汇总

(初中)九年级数学下学期中考微专题复习典型盘点解分式问题中的常见错误试题详解赏析汇总在分式学习过程中,部分同学不能正确理解分式意义,在运算顺序、技巧方法等方面都容易出现错误,本文就教学过程中容易出现的几类错误进行盘点,并运用实例逐一分析,望能够对同学们的学习有所帮助. 一、忽视隐含条件例l 关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是____. 误解 两边同乘(x -1),得m -3=x -l ,解得x =m -2.因为分式方程的解为正数,所以m -2>0,即m>2.分析 这里的错误在于忽视了x -1=0时,分母没有意义的隐含条件,即x -l ≠0,那么x ≠1,即m -2≠1,所以m ≠3. 正确答案是:m >2且m ≠3.例2 已知分式26189x x +-的值为正整数,求整数x 的值.误解()()()26361869333x x x x x x++==-+--值为正整数,则3-x 的值分别是1,2,3,和6.解得x =2,x =1.x =0,x =-3. 分析 此解错误之处在于,忽视了26189x x +-的分母中x 为+3和-3时无意义的隐含条件;而且,在约分时将3+x 约去就更容易出错. 正确答案是:x 的值为2,l ,0只有3个.例3 先化简22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,当b =-l 时,再从-2<a<2的范围内选取一个合适的整数a 代入求值.误解 原式=()()()222a b a b a ab b a a b a+-++÷-=()21a b a a a b a b +•=++ 取a =0时,原式=-1.分析 此解法先化简时进行约分,忽视了题目中分母不能为0,只专注于化简后得到的分式分母不为0.在-2<a<2中,a 可取的整数值为-l ,0,I .当a =-l 时,分式222a b a ab--无意义;a =0时分式,22ab b a +,222a b a ab --均都无意义;当a =l 时,分式1a b+无意义,所以,a 在规定的范围内取整数,原式均无意义,即所求值不存在.评注 分式的定义AB中,隐含B 不为0才有意义的条件,在具体运算时容易忽略甚至遗漏这一条件造成错误,这类开放性的问题是各地中考的热点题目,表面看给了学生很多的自主选择机会,却步步陷阱,不慎即导致错误,同学们只有在学习中不断的总结研究才能减少失误. 二、遗忘显性条件 例4 若m 为正实数,且m -1m=3,则221m m -=_______.误解 由于22111m m m m m m ⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,而22114m m m m ⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,所以2213413m m ⎛⎫+=+= ⎪⎝⎭,m +1m =±13,所以221m m -=±313.分析 此解错误在已知条件明显告诉m 是正整数,m +1m不可能为负数,但很多同学受思维定势的影响,误认为一个正数的平方根有两个,他们互为相反数,导致错误.正确答案是:313评注 初二的学生很容易出现的错误,就是题目中的条件虽然非常清楚,但会受到忽视、忽略,按照固有思维模式来解决分式问题,且缺少解题后检查的学习习惯. 三、计算顺序错误例5 计算221112111x x xx x x x-+-÷•-+-+分析 此解法的错误在于,后面乘法刚好可以约分,所以不按运算顺序计算导致错误.正确答案按从左到右的顺序进行是:例6 计算22111a b a b a b ⎛⎫÷+ ⎪-+-⎝⎭.误解 原式分析 分式乘法分配律不能错误地用到除法中去,而要按照运算顺序,先算括号内的,再算除法.正确解法应为:评注 多数同学虽然熟悉分式混合运算顺序,但在具体运算时有从简心理,想当然自己制造一些看似符合规律的“合理”法则,计算过程混乱.例7 计算111a a --+分析 分式与整式相加减时,多项式整式分母为1的式子,分数线起到括号的作用,不能忽略.正确解答为:评注 我们在准确运用分式的运算法则的同时,运算过程中要正确完成约分通分以及因式分解.分式混合运算是分式一章学习的重点,也是中考命题的热点,关键是在类比已有的分数运算基础上掌握分式运算顺序规律,分式的基本性质,灵活运用交换律、结合律,使运算简便,不能想当然,随心所欲造成不必要的失误. 四、将求分式的值混同于解分式方程例8 先化简,再求值:23111x x x----,其中x =2.分析 当x =2,原式=2×-2=2.上述错误关键是把分式运算当作了解分式方程,去分母时发生混淆.正确解法应该是:当x =2时,原式=23.评注 学习了解分式方程以后,看到分母分式化简运算,也就习惯性的去分母,这就需要不断的积累总结分式运算与解方程区别和联系,减少失误. 五、方程变形未考虑同解性例9 已知a b b c a c k c a b +++===,求21kk +的值. 误解 由已知得a +b =ck ,b +c =ak ,a +c =bk ,三式相加,得2(a +b +c)=k(a +b +c),两边除以(a +b +c ),得k =2.代入21k k +=25. 分析 当a +b +c =0时,2(a +b +c )=k (a +b +c )与k =2就因不是同解方程,导致错误.当a +b +c =0时,a +b =-c .此时a b c+=-1,即k =-1.代入21kk +=-12. 正确答案是:25和-12. 评注 在解分式相关问题时,学生往往只注意与所求最密切相关的条件,或者偏向性地选择条件,从而忽视了部分条件而导致失误.条件分式的求值,要依据题目自身特点,充分利用整体的数学思想和转化的数学思想,才会有事半功倍的效果. 六、解分式方程遗忘检验例10 解方程4525142362x x x x -+=--- 误解 方程两边同乘6(x -2),得3(5x -4)=2(2x +5)-3(x -2),解得x =2. 分析 将分式转化为整式方程,关键是找准最简公分母,这里不能找成(4-2x )(3x -6),而且要注意符号的变化,(x -2)与(2-x)互为相反数,对于常数或者整式也不要漏乘,而解分式方程与整式方程最大的区别是,将求得的解代人最简公分母中检验,分母为零的解不是原方程的解,这里当x =2时,6(x -2)=0,所以x =2不是原方程的解.评注 需要指出的是,检验是解分式方程的一个必不可少的步骤.。

中考易错题系列数学篇解析容易混淆的几类题型

中考易错题系列数学篇解析容易混淆的几类题型

中考易错题系列数学篇解析容易混淆的几类题型数学作为中考的科目之一,是让许多学生头疼的问题。

在数学考试中,有一些题型容易混淆,掌握不好就会导致错误的答案。

本文将重点讨论中考易错题系列数学篇解析容易混淆的几类题型。

一、十字相乘法十字相乘法是求解两个一位数或两个多位数相乘的乘法运算的方法。

它的基本原理是在个位下面画一条横线,将乘法问题划分为两个简单的乘法运算。

而容易混淆的地方在于,学生在进行十字相乘法时,容易将个位数或进位数填写错位,导致最终结果错误。

因此,在解题过程中,同学们应该仔细填写每个位置的数值,以确保计算准确无误。

示例一:计算78乘以8的结果。

正确方法是首先将78的个位数8填写在个位上,然后将78的十位数填写在十位上,如下所示:78× 8—————624—————二、几何问题几何问题在中考数学中占据重要的比重,而且容易混淆的地方较多。

其中,平行线和垂直线的判断是一个常见的易错题。

同学们在判断平行线和垂直线时,应该准确理解它们的定义,并注意其中的细微差别。

平行线是指在同一个平面上永不相交的直线,而垂直线是指两条直线之间的夹角为90度。

示例二:判断下列各组线段是否平行。

A:AB和CDB:AB和EFC:AC和AD正确答案是A和B。

三、概率问题概率问题是数学中的一个重要知识点,也是容易混淆的题型之一。

在解答概率问题时,需要将问题具体化,理清思路,才能得出正确的答案。

同时,还需要注意独立事件和非独立事件的区别,这对解答概率题非常关键。

示例三:从三个红球、四个白球和五个黑球中任意抽取两个球,求至少有一个黑球的概率。

正确解法是计算不出现黑球的概率,再用1减去该概率即可。

具体步骤如下:1. 计算不出现黑球的概率:选择两个红球的概率加上选择两个白球的概率。

不出现黑球的概率 = (C3^2 / C12^2)+ (C4^2 / C12^2)2. 用1减去不出现黑球的概率,即可得到至少有一个黑球的概率。

四、函数问题函数问题是高中数学中的重要内容之一,也是中考数学中容易混淆的题型之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、直线型 ⑴指代不明,需要分类讨论 25.直角三角形的两条边长分别为 3 和 6 ,则斜边上的高等于________. ⑵相似三角形对应性问题 26.在 △ ABC 中, AB 9 , AC 12 , BC 18 , D 为 AC 上一点, DC : AC 2 : 3 ,在
AB 上取点 E ,得到 △ ADE ,若两个三角形相似,求 DE 的长.

A、a≠1
B、a≠-1
C、a≠2
D、a≠±1 )
14.已知一元二次方程(m-1)x2-4mx+4m-2=0 有实数根,则 m 的取值范围是---(
A、m≤1
B、m≥
1 3
且 m≠1
C、m≥1
D、-1<m≤1
⑵判别式
x1 x2 1, 15. 已知一元二次方程 2 x 2 x 3m 1 0 有两个实数根 x1 ,x 2 , 且满足不等式 x1 x2 4
10.关于 x 的方程 x2+(t-2)x+5-t=0 的两个根都大于 2,则 t 的取值范围是______
11.函数
y=(2m2-5m-3)x
m 2 3m 1
的图象是双曲线,则 m=________________。 和
x x2 , 且 x1,x2 是两个不等的正数, 则 y y2
12. 已知方程组
x x1 x 2 y a 2 0 的两个解为 y y1 x y 1 0
a 的取值范围是___________________。
13.若关于 x 的方程
x 1 2 有解,则 a 的取值范围是--------------- ( xa
bc ca ab 30.若 k ,则 k =________. a b c
五、圆中易错问题 ⑴点与弦的位置关系 31.已知 AB 是⊙O的直径,点 C 在⊙O上,过点 C 引直径 AB 的垂线,垂足为点 D ,点 D 分这条直径成 2 : 3 两部分,如果⊙O的半径等于5,那么 BC = ________. ⑵点与弧的位置关系 32. PA 、 PB 是⊙O的切线, A 、 B 是切点, APB 78 ,点 C 是上异于 A 、 B 的任意一 点,那么 ACB ________.
D、-
a
6.若 a+|a|=0,则 A、2-2a
(a 2)2 a2
等于------------------( C、-2 1 1 2 x 0 x 2 x 1 的值----------------( 7.已知 ,则

A、1
1 B、± 2
1 C、 2
三、函数 ⑴自变量
6 x 19.函数 y 中,自变量 x 的取值范围是_______________. x2
⑵字母系数 20.若二次函数 y mx 3x 2m m 的图像过原点,则 m =______________.
2 2
⑶函数图像 21.如果一次函数 y kx b 的自变量的取值范围是 2 x 6 ,相应的函数值的范围是
a5
C、 0.1x
4.下列计算哪个是正确的----------------( A、 3 2 5 C、 a b a b
2 2

B、 2 5 2 5 D、
1 22 21 22 21
1 5.把 a a
化简,结果为--------( B、
a
) C、a
A、
a
1 D、2
8.计算:a6÷a2=__________,(-2)-4=_________,-22=_________
二、方程与不等式 ⑴字母系数
9.不等式组
x 2, 的解集是 x a ,则 a 的取值范围是( x a.
).
(A) a 2 , (B) a 2 , (C) a 2 , (D) a 2 .
⑶等腰三角形底边问题 27.等腰三角形的一条边为4,周长为10,则它的面积为________. ⑷三角形高的问题 28.等腰三角形的一边长为10,面积为25,则该三角形的顶角等于多少度?
⑸矩形问题 29.有一块三角形 ABC 铁片,已知最长边 BC =12cm,高 AD =8cm,要把它加工成一个矩 形铁片,使矩形的一边在 BC 上,其余两个顶点分别在三角形另外两条边上,且矩形的长 是宽的2倍,求加工成的铁片面积? ⑹比例问题
11 y 9 ,求此函数解析式.
22.在一次函数 y=2x-1 的图象上,到两坐标轴距离相等的点有------------( A、1 个 B、2 个 C、3 个 D、无数个

1 23.若点(-2,y1) 、 (-1,y2) 、 (1,y3)在反比例函数 y 的图像上,则下列结论中正 x
⑥有一个角相等的等腰三角形相似⑦有一个钝角 )
相等的两个等腰三角形相似 ⑧全等三角形相似。正确的个数是--------( A、2 个 B 、3 个 C、4 个 D、5 个
⑶平行弦与圆心的位置关系 33. 半径为5cm的圆内有两条平行弦,长度分别为6cm和8cm,则这两条弦的距离等于 ________. (4)正多边形与圆的位置关系
34.如下图,ABCD 为圆的内接正方形,AD=4,弦 AE 平分 BC 交 BC 于 M,则 CE 的长为______.
六、相似形 35.△ABC 中,AC=6,AB=8,D 为 AC 上一点,AD=2,在 AB 上取一点 E,使△ADE∽ △ABC 相似,则 AE=_____________________。 36.下列命题中,①等边三角形都相似 ②直角三角形都相似 角三角形都相似 ⑤等腰三角形都全等 ③等腰三角形都相似④锐
确的是(

A、y1>y2>y3 B、y1<y2<y3
C、y2>y1>y3
D、y3>y1>y2
⑷应用背景 24.某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高 2元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利 大,每床每晚应提高_________元.
凤台十中:宋智文
一、数与式 1. 4 的平方根是( ). (A)2, (B) 2 , (C) 2 , (D) 2 . )
1 A、-2 ; B、2 ; C、2
2. 1 的倒数的相反数是( 2
1 ;D、 . 2
3.下列根式是最简二次根式的是( A、 8a B、
a 2 b2
) D、
2
求实数的范围.
⑷应用背景例题: 17.某人乘船由 A 地顺流而下到 B 地,然后又逆流而上到 C 地,共乘船 3 小时,已知船在静 水中的速度为 8 千米/时,水流速度为 2 千米/时,若 A 、 C 两地间距离为 2 千米,求 A 、 B 两地间的距离. ⑸失根问题: 18.解方程 x( x 1) x 1 .
相关文档
最新文档