2019全国各地中考数学一元一次方程试题语文

合集下载

2019全国中考一元一次方程专题

2019全国中考一元一次方程专题

2019全国中考一元一次方程专题一、选择题1.(2019·襄阳)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .5x-45=7x-3B .5x+45=7x+3C .545x +=73x +D .545x -=73x - 2.(2019·台州)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km ,平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地需54min ,从乙地到甲地需42min .甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x ,y ,已经列出一个方程+=,则另一个方程正确的是( ) A .+=B .+=C .+=D .+= 3.(2019·福建)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A.x +2x +4x =34685B.x +2x +3x =34685C.x +2x +2x =34685D.x +21x +41x =34685 4.(2019·荆门)欣欣服装店某天用相同的价格a (a >0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( )A .盈利B .亏损C .不盈不亏D .与售价a 有关5.(2019·安徽)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是( )A .2019年B .2020年C .2021年D .2022年6.(2019·杭州)已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设男生有x 人,则( )A. 2x +3(72-x )=30B. 3x +2(72-x )=30C. 2x +3(30-x )=72D. 3x +2(30-x )=727.(2019·怀化)一元一次方程x -2=0的解是( )A .x =2B .x =-2C .x =0D .x =18.(2019·南充)如果6a=1,那么a 的值为( )A.6 B .61 C.-6 D.61- 9.(2019·南充)关于x 的一元一次方程422=+-m x a 的解为1=x ,则m a +的值为( )A.9B.8C.5D.4二、填空题10.(2019·岳阳)我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布 尺.11.(2019·毕节)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是 元.12.(2019·湘西)若关于x 的方程3x -kx +2=0的解为2,则k 的值为 .13.(2019·株洲)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走 步才能追到速度慢的人.三、解答题14.(2019·黄石)(8分)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?15.(2019·安徽)(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?16.(2019·甘肃)(6分)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?参考答案1.B2.【解答】解:设未知数x ,y ,已经列出一个方程+=,则另一个方程正确的是:+=. 故选:B .3.A4.【解答】解:设第一件衣服的进价为x 元,依题意得:x (1+20%)=a ,设第二件衣服的进价为y 元,依题意得:y (1-20%)=a ,∴x (1+20%)=y (1-20%),整理得:3x =2y ,该服装店卖出这两件服装的盈利情况为:0.2x -0.2y =0.2x -0.3x =-0.1x , 即赔了0.1x 元,故选:B .5.【解答】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿), 2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年,故选:B .6. D7.A8. B9.C10.【解答】解:x+2x+4x+8x+16x=5 x=315 11.200012.413.25014.【解答】解:(1)设当走路慢的人再走600步时,走路快的人的走x 步,由题意得 x :600=100:60∴x =1000∴1000-600-100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y 步才能追上走路慢的人,由题意得y =200+10060y ∴y =500答:走路快的人走500步才能追上走路慢的人.15.【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x-2)米,由题意,得2x+(x+x-2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.16.【分析】设共有x人,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设共有x人,根据题意得:+2=,去分母得:2x+12=3x-27,解得:x=39,∴=15,则共有39人,15辆车.。

2019年全国各地市中考数学模拟试题分类汇编7一元一次方程

2019年全国各地市中考数学模拟试题分类汇编7一元一次方程

一元一次方程一、选择题1、若x =3是方程x -3mx +6m =0的一个根,则m 的值为 ( )A .1B . 2C .3D .4 答案:A2、(2019年4月韶山市初三质量检测)若2x =是关于x 的方程2310x m +-=的解,则m的值为 .答案:—13、 (2019年广东模拟)若mx 1=是方程023=+-m mx 的根,则m x -的值为 ( ) (改编)A .0B .1C .-1D .2答案A4、(盐城市亭湖区2019年第一次调研考试)如图2,请根据图中给出的信息,可得正确的方程是( )A 、π×282⎛⎫⎪⎝⎭x =π×262⎛⎫ ⎪⎝⎭×(x+5) B 、π×282⎛⎫ ⎪⎝⎭x =π×262⎛⎫ ⎪⎝⎭×(x -5) C 、π×82×x =π×62×(x+5) D 、π×82×x =π×62×5答案A二、填空题1、(杭州市2019年中考数学模拟)“节能减排,低碳经济”是我国未来发展的方向,某汽车生产商生产有大、中、小三种排量的轿车,正常情况下的小排量的轿车占生产总量的30%,为了积极响应国家的号召,满足大众的消费需求准备将小排量轿车的生产量提高,受其产量结构调整的影响,大中排量汽车生产量只有正常情况下的90%,但生产总量比原来提高了7.5%,则小排量轿车生产量应比正常情况增加 %. 答案:48.32.(盐城市第一初级中学2018-2019学年期中考试)某种商品的标价为200元,为了吸引 顾客,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是 ▲ 元.答案128 8㎝ 老乌鸦,我喝不到大量筒中的x ㎝ 小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了! 图2=的根是.3、(2019年金山区二模)xx=答案:1三、解答题1、。

2019全国数学中考试题汇编之02.一元一次方程及其应用

2019全国数学中考试题汇编之02.一元一次方程及其应用

一元一次方程及其应用一、选择题1.(2019·台湾,第19题3分)桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3︰4︰5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()底面积(平方公分)甲杯60乙杯80丙杯100A.5.4 B.5.7 C.7.2 D.7.5分析:根据甲、乙、丙三杯内水的高度比变为3︰4︰5,设后来甲、乙、丙三杯内水的高度为3x、4x、5x,由表格中的数据列出方程,求出方程的解得到x的值,即可确定出甲杯内水的高度.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选C.点评:此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.2.(2019•滨州,第4题3分)方程2x﹣1=3的解是()A.﹣1 B.C.1D.2考点:解一元一次方程分析:根据移项、合并同类项、系数化为1,可得答案.解答:解:2x﹣1=3,移项,得2x=4,系数化为1得x=2.故选:D.点评:本题考查了解一元一次方程,根据解一元次方程的一般步骤可得答案.二、填空题1.(2019•浙江湖州,第11题4分)方程2x﹣1=0的解是x=.分析:此题可有两种方法:(1)观察法:根据方程解的定义,当x=时,方程左右两边相等;(2)根据等式性质计算.即解方程步骤中的移项、系数化为1.解:移项得:2x=1,系数化为1得:x=.点评:此题虽很容易,但也要注意方程解的表示方法:填空时应填x=,不能直接填.2. (2019•湘潭,第15题,3分)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为2x+56=589﹣x.考点:由实际问题抽象出一元一次方程.分析:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589﹣x)人,根据到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.列方程即可.解答:解:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589﹣x)人,由题意得,2x+56=589﹣x.故答案为:2x+56=589﹣x.点评:本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,列出方程.三、解答题1. (2019•益阳,第18题,8分)“中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BAD=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.(第1题图)考点:解直角三角形的应用.分析:设AD=x米,则AC=(x+82)米.在Rt△ABC中,根据三角函数得到AB=2.5(x+82),在Rt△ABD中,根据三角函数得到AB=4x,依此得到关于x的方程,进一步即可求解.解答:解:设AD=x米,则AC=(x+82)米.在Rt△ABC中,tan∠BCA=,∴AB=AC•tan∠BCA=2.5(x+82).在Rt△ABD中,tan∠BDA=,∴AB=AD•tan∠BDA=4x.∴2.5(x+82)=4x,解得x=.∴AB=4x=4×≈546.7.答:AB的长约为546.7米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.2. (2019•益阳,第19题,10分)某电器超市销售每台进价分别为200元、170元的A、B 两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.考点:二元一次方程组的应用;一元一次方程的应用;一元一次不等式的应用.分析:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B 型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.解答:解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a>10,∴在(2)的条件下超市不能实现利润1400元的目标.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.3. (2019•株洲,第20题,6分)家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?考点:一元一次方程的应用.分析:由(1)得v下=(v上+1)千米/小时.由(2)得S=2v上+1由(3)、(4)得2v上+1=v下+2.根据S=vt求得计划上、下山的时间,然后可以得到共需的时间为:上、下上时间+山顶游览时间.解答:解:设上山的速度为v,下山的速度为(v+1),则2v+1=v+1+2,解得v=2.即上山速度是2千米/小时.则下山的速度是3千米/小时,山高为5千米.则计划上山的时间为:5÷2=2.5(小时),计划下山的时间为:1小时,则共用时间为:2.5+1+1=4.5(小时),所以出发时间为:12:00﹣4小时30分钟=7:30.答:孔明同学应该在7点30分从家出发.点评:本题考查了应用题.该题的信息量很大,是不常见的应用题.需要进行相关的信息整理,只有理清了它们的关系,才能正确解题.4. (2019年江苏南京,第25题)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?(第4题图)考点:一次函数的解析式的运用,一元一次方程的运用分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.5. (2019•泰州,第20题,8分)某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.(1)该运动员去年的比赛中共投中多少个3分球?(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.考点:一元一次方程的应用;概率的意义分析:(1)设该运动员共出手x个3分球,则3分球命中0.25x个,未投中0.75x个,根据“某篮球运动员去年共参加40场比赛,平均每场有12次3分球未投中”列出方程,解方程即可;(2)根据概率的意义知某事件发生的概率,就是在大量重复试验的基础上事件发生的频率稳定到的某个值;由此加以理解即可.解答:解:(1)设该运动员共出手x个3分球,根据题意,得=12,解得x=640,0.25x=0.25×640=160(个),答:运动员去年的比赛中共投中160个3分球;(2)小亮的说法不正确;3分球的命中率为0.25,是相对于40场比赛来说的,而在其中的一场比赛中,虽然该运动员3分球共出手20次,但是该运动员这场比赛中不一定投中了5个3分球.点评:此题考查了一元一次方程的应用及概率的意义.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程及正确理解概率的含义.6.(2019·浙江金华,第20题8分)一种长方形餐桌的四周可坐6 从用餐,现把若干张这样的餐桌按如图方式拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?【答案】(1)18,34;(2)22.【解析】7.(2019•浙江宁波,第24题10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?考点:一元一次方程的应用;列代数式.分析:(1)由x张用A方法,就有(19﹣x)张用B方法,就可以分别表示出侧面个数和底面个数;(2)由侧面个数和底面个数比为3:2建立方程求出x的值,求出侧面的总数就可以求出结论.解答:解:(1)∵裁剪时x张用A方法,∴裁剪时(19﹣x)张用B方法.∴侧面的个数为:6x+4(19﹣x)=(2x+76)个,底面的个数为:5(19﹣x)=(95﹣5x)个;(2)由题意,得,解得:x=7,∴盒子的个数为:=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,列代数式的运用,解答时根据裁剪出的侧面和底面个数相等建立方程是关键.8.(2019•滨州,第19题3分)(1)解方程:2﹣=考点:解一元一次方程.专题:计算题.分析:(1)方程去分母,去括号,移项合并,将x系数化为1,即可求出解;解答:解:(1)去分母得:12﹣2(2x+1)=3(1+x),去括号得:12﹣4x﹣2=3+3x,移项合并得:﹣7x=﹣7,解得:x=1;点评:此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.(2019•德州,第20题8分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?考点:一次函数的应用;一元一次方程的应用分析:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200﹣a)只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.解答:解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800只.答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200﹣a)只,商场的获利为y元,由题意,得y=(30﹣25)a+(60﹣45)(1200﹣a),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45(1200﹣a)]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.点评:本题考查了单价×数量=总价的运用,列了一元一次方程解实际问题的运用,一次函数的解析式的运用,解答时求出求出一次函数的解析式是关键.10.(2019•菏泽,第17题7分)(1)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输,某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?一元一次方程及其应用一、选择题1. (2014年湖北咸宁2.(3分))若代数式x+4的值是2,则x等于()A. 2 B.﹣2 C. 6 D.﹣6考点:解一元一次方程;代数式求值.分析:根据已知条件列出关于x的一元一次方程,通过解一元一次方程来求x的值.解答:解:依题意,得x+4=2移项,得x=﹣2故选:B.点评:题实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.二、填空题1. (2019•娄底13.(3分))已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为1.解答:解:把x=2代入方程,得:4+a﹣5=0,解得:a=1.故答案是:1.点评:本题考查了方程的解的定义,理解定义是关键.三、解答题1.(2019•江西抚州,第19题,8分)情景:试根据图中的信息,解答下列问题:⑴购买6根跳绳需元,购买12根跳绳需元.⑵小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.解析:(1)25×6=150, 25×0.8×12=240.(2)有这种可能.设小红买了x根跳绳,则25×0.8·x=25(x-2)-5 ,解得x=11.∴小红买了11根跳绳.2.(2019•山东淄博,第21题8分)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于200 0.55第二档大于200小于400 0.6第三档大于等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?考点:一二元一次方程的应用.菁优网分析:某户居民五、六月份共用电500度,就可以得出每月用电量不可能都在第一档,分情况讨论,当5月份用电量为x度≤200度,6月份用电(500﹣x)度,当5月份用电量为x度>200度,六月份用电量为(500﹣x)度>x度,分别建立方程求出其解即可.解答:解:当5月份用电量为x度≤200度,6月份用电(500﹣x)度,由题意,得0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6月份用电500﹣x=310度.当5月份用电量为x度>200度,六月份用电量为(500﹣x)度,由题意,得0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,分类讨论思想的运用,解答时由总价=单价×数量是关键.一元一次方程及其应用一、选择题1.(2019•海南,第2题3分)方程x+2=1的解是()A.3B.﹣3 C.1D.﹣1考点:解一元一次方程.分析:根据等式的性质,移项得到x=1﹣2,即可求出方程的解.解答:解:x+2=1,移项得:x=1﹣2,x=﹣1.故选:D.点评:本题主要考查对解一元一次方程,等式的性质等知识点的理解和掌握,能根据等式的性质正确解一元一次方程是解此题的关键.2.(2019•无锡,第5题3分)某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87 B.1.2×0.8x+2×0.9(60﹣x)=87C.2×0.9x+1.2×0.8(60+x)=87 D.2×0.9x+1.2×0.8(60﹣x)=87考点:由实际问题抽象出一元一次方程.分析:设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60﹣x)支圆珠笔的售价=87,据此列出方程即可.解答:解:设铅笔卖出x支,由题意,得1.2×0.8x+2×0.9(60﹣x)=87.故选B.点评:考查了由实际问题抽象出一元一次方程,根据根据描述语找到等量关系是解题的关键.3.(2019•浙江绍兴,第8题4分)如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为()A.10克B.15克C.20克D.25克考点:一元一次方程的应用.分析:根据天平仍然处于平衡状态列出一元一次方程求解即可.解答:解:设左、右侧秤盘中一袋玻璃球的质量分别为m克、n克,根据题意得:m=n+40;设被移动的玻璃球的质量为x克,根据题意得:m﹣x=n+x+20,x=(m﹣n﹣20)=(n+40﹣n﹣20)=10.故选A.点评:本题考查了一元一次方程的应用,解题的关键是找到等量关系.二.填空题1.(2019•黑龙江绥化,第7题3分)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多120元.考点:一元一次方程的应用.分析:设这款服装每件的进价为x元,根据利润=售价﹣进价建立方程求出x的值就可以求出结论.解答:解:设这款服装每件的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.∴标价比进价多300﹣180=120元.故答案为:120.点评:本题考查了列一元一次方程解实际问题的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.2. (2019•黑龙江哈尔滨,第14题3分)不等式组的解集是﹣1<x≤1.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≤1,由②得,x>﹣1,故此不等式组的解集为:﹣1<x≤1.故答案为:﹣1<x≤1.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2019•湖北荆门,第15题3分)我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.考点:一元一次方程的应用.分析:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.解答:解:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,解方程得:x=.故答案为.点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.4.(2019•宁夏,第14题3分)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是200元.考点:一元一次方程的应用分析:设这款服装每件的进价为x元,根据利润=售价﹣进价建立方程求出x的值就可以求出结论.解答:解:设这款服装每件的进价为x元,由题意,得300×0.8﹣x=20%x,解得:x=200.故答案是:200.点评:本题考查了列一元一次方程解实际问题的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.5.。

2019年全国部分地区中考数学试题分类解析汇编第4章一元一次方程

2019年全国部分地区中考数学试题分类解析汇编第4章一元一次方程

2019年全国部分地区中考数学试题分类解析汇编第4章一元一次方程及其应用一、选择题1.(2018铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=考点:由实际问题抽象出一元一次方程。

解答:解:设原有树苗x 棵,由题意得5(211)6(1)x x +-=-.故选A .2.(2018•重庆)已知关于x 的方程2x+a ﹣9=0的解是x=2,则a 的值为( )A .2B .3C .4D .5考点: 一元一次方程的解。

专题: 常规题型。

分析: 根据方程的解的定义,把x=2代入方程,解关于a 的一元一次方程即可. 解答: 解;∵方程2x+a ﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D .点评: 本题考查了一元一次方程的解,把解代入方程求解即可,比较简单.二、填空题1.(2018•湘潭)湖南省2019年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20000元.设每人向旅行社缴纳x 元费用后,共剩5000元用于购物和品尝台湾美食.根据题意,列出方程为 20000﹣3x=5000 .考点: 由实际问题抽象出一元一次方程。

分析: 根据设每人向旅行社缴纳x 元费用后,共剩5000元用于购物和品尝台湾美食,得出等式方程即可.解答: 解:设每人向旅行社缴纳x 元费用,根据题意得出:20000﹣3x=5000,故答案为:20000﹣3x=5000.点评: 此题主要考查了由实际问题抽象出一元一次方程,根据全家3人去台湾旅游,计划花费20000元得出等式方程是解题关键.2.(2018山西)图1是边长为30的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.考点:一元一次方程的应用。

2019年全国各地中考数学试题分类汇编(第三期) 专题4 一元一次方程及其应用(含解析)

2019年全国各地中考数学试题分类汇编(第三期) 专题4 一元一次方程及其应用(含解析)

一元一次方程及其应用一.选择题1.(2019•湖北省荆门市•3分)欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.盈利B.亏损C.不盈不亏D.与售价a有关【分析】设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,得出x(1+20%)=y(1﹣20%),整理得:3x =2y,则两件衣服总的盈亏就可求出.【解答】解:设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,∴x(1+20%)=y(1﹣20%),整理得:3x=2y,该服装店卖出这两件服装的盈利情况为:0.2x﹣0.2y=0.2x﹣0.3x=﹣0.1x,即赔了0.1x元,故选:B.【点评】本题考查了一元一次方程的应用,解决本题的关键是根据题意,列方程求出两件衣服的进价故选,进而求出总盈亏.二.填空题1.1.(2019湖北荆门)(3分)欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.盈利B.亏损C.不盈不亏D.与售价a有关【分析】设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,得出x(1+20%)=y(1﹣20%),整理得:3x =2y,则两件衣服总的盈亏就可求出.【解答】解:设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,∴x(1+20%)=y(1﹣20%),整理得:3x=2y,该服装店卖出这两件服装的盈利情况为:0.2x﹣0.2y=0.2x﹣0.3x=﹣0.1x,即赔了0.1x元,故选:B.【点评】本题考查了一元一次方程的应用,解决本题的关键是根据题意,列方程求出两件衣服的进价故选,进而求出总盈亏.三.解答题1.2.3.4.5.6.7.8.9.10.。

2019全国中考数学真题分类汇编之03:一次方程(组)(含答案)

2019全国中考数学真题分类汇编之03:一次方程(组)(含答案)

一、选择题1.(2019年天津市)方程组⎩⎨⎧=-=+1126723y x y x ,的解是( )A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【考点】二元一次方程组的解法 【解答】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x 代入2=x 到①中,726=+y 则21=y ,故选D. 2. (2019年乐山市)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。

问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( ) ()A 1,11()B 7,53 ()C 7,61 ()D 6,50【考点】二元一次方程组的解法与应用 【解答】解:设人数人,物价y 钱. ⎩⎨⎧=+=-yx yx 4738解得:⎩⎨⎧==537y x ,故选B. 3. (2019年重庆市)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为,乙的钱数为y ,则可建立方程组为( )A.B.C.D.【考点】二元一次方程组的解法与应用【解答】解:设甲的钱数为,乙的钱数为y,依题意,得:.故选:A.4.(2019年山东省德州市)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长尺,木长y尺,则可列二元一次方程组为()A. B. C D【考点二元一次方程组的解法与应用【解答】解:设绳长尺,长木为y尺,依题意得,故选:B.5. (2019年山东省菏泽市)已知是方程组的解,则a+b的值是()A.﹣1B.1C.﹣5D.5【考点】二元一次方程组的解法【解答】解:将代入,可得:,两式相加:a+b=﹣1,故选:A.6. (2019年广西贺州市)已知方程组,则2+6y的值是()A.﹣2B.2C.﹣4D.4【考点】二元一次方程组的解法【解答】解:两式相减,得+3y=﹣2,∴2(+3y)=﹣4,即2+6y=﹣4,故选:C.7.(2019年湖北省襄阳市)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为人,所列方程正确的是()A.5﹣45=7﹣3 B.5+45=7+3 C.=D.=【考点】一元一次方程的应用【解答】解:设合伙人数为人,依题意,得:5+45=7+3.故选:B.8. (2019年黑龙江省伊春市)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种【考点】二元一次方程的整数解【解答】解:设一等奖个数个,二等奖个数y个,根据题意,得6+4y=34,使方程成立的解有,,,∴方案一共有3种;故选:B.二、填空题1.(2019年北京市)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为_______.【考点】二元一次方程组的解法、菱形的性质【解答】设图1中小直角三角形的两直角边分别为a ,b (b >a ),则由图2,图3可列方程组,15⎩⎨⎧=-=+a b b a 解得⎩⎨⎧==32b a ,所以菱形的面积.126421=⨯⨯=S 故答案为12. 2. (2019年上海市)《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛 . 斛米.(注:斛是古代一种容量单位) 【考点】二元一次方程组的解法【解答】解:设1个大桶可以盛米斛,1个小桶可以盛米y 斛, 则,故++y +5y =5, 则+y =56.答:1大桶加1小桶共盛56斛米.故答案为:56.3. (2019年湖北省鄂州市)若关于、y 的二元一次方程组的解足+y ≤0,则m 的取值范围是 .【考点】二元一次方程组的解法、解一元一次不等式 【解答】解:, ②得2+2y =4m +8, 则+y =2m +4, 根据题意得2m +4≤0, 解得m ≤﹣2. 故答案是:m ≤﹣2.图3图2图14. (2019年浙江省杭州市)已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,则男生有____人。

2019届中考数学试题分类汇编:一元一次方程(含解析)

2019届中考数学试题分类汇编:一元一次方程(含解析)

(2019,永州)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一.以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二.个人所得税纳税税率如下表所示纳税级数个人每月应纳税所得额纳税税率1 不超过1500元的部分3%2 超过1500元至4500元的部分10%3 超过4500元至9000元的部分20%4 超过9000元至35000元的部分25%5 超过35000元至55000元的部分30%6 超过55000元至80000元的部分35%7 超过80000元的部分45%(1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?(2019?株洲)一元一次方程2x=4的解是()A.x=1 B.x=2 C.x=3 D.x=4考点:解一元一次方程.分析:方程两边都除以2即可得解.解答:解:方程两边都除以2,系数化为1得,x=2.故选B.点评:本题考查了解一元一次方程,是基础题.(2019凉山州)购买一本书,打八折比打九折少花2元钱,那么这本书的原价是元.考点:一元一次方程的应用.专题:经济问题.分析:等量关系为:打九折的售价﹣打八折的售价=2.根据这个等量关系,可列出方程,再求解.解答:解:设原价为x元,由题意得:0.9x ﹣0.8x=2 解得x=20.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.(2019?绵阳)朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还3个,如果每人2个又多2个,请问共有多少个小朋友?()A .4个 B.5个 C.10个 D.12个(2019?潜江)某文化用品商店用 1 000元购进一批“晨光”套尺,很快销售一空;商店又用 1 500元购进第二批该款套尺,购进时单价是第一批的45倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?(2019?宜昌)【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花a 元的标准支付雇工工资,雇工每天工作8小时.【问题解决】(1)一个雇工手工采摘棉花,一天..能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a 的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家雇人手工采摘,王家所雇的人中有32的人自带采棉机采摘,31的人手工采摘.两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少?(2019?苏州)苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游.已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?(2019山东滨州,3,3分)把方程12x=1变形为x=2,其依据是A.等式的性质 1 B.等式的性质 2C.分式的基本性质 D.不等式的性质 1【答案】B.(2019济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多()A.60元B.80元C.120元D.180元考点:一元一次方程的应用.分析:设这款服装的进价为x元,就可以根据题意建立方程300×0.8﹣x=60,就可以求出进价,再用标价减去进价就可以求出结论.解答:解:设这款服装的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.300﹣180=120,∴这款服装每件的标价比进价多120元.故选C.点评:本题时一道销售问题.考查了列一元一次方程解实际问题的运用,利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.(2019济宁)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有盏灯.考点:一元一次方程的应用.分析:根据题意,假设顶层的红灯有x盏,则第二层有2x盏,依次第三层有4x盏,第四层有8x盏,第五层有16x盏,第六层有32x盏,第七层有64x盏,总共381盏,列出等式,解方程,即可得解.解答:解:假设尖头的红灯有x盏,由题意得:x+2x+4x+8x+16x+32x+64x=381,127x=381,x=3(盏);答:塔的顶层是3盏灯.故答案为:3.点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.(2019?日照)甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是A.8B.7C.6D.5答案:A解析:假设每天工作量是1,甲单独工作x天完成。

2019年全国中考数学真题分类汇编:一次方程 组 含答案)

2019年全国中考数学真题分类汇编:一次方程 组 含答案)

2019年全国中考数学真题分类汇编:一次方程(组)一、选择题1.(2019年天津市)方程组⎩⎨⎧=-=+1126723y x y x ,的解是( )A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【考点】二元一次方程组的解法【解答】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x 代入2=x 到①中,726=+y 则21=y ,故选D. 2. (2019年乐山市)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。

问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( ) ()A 1,11()B 7,53 ()C 7,61 ()D 6,50【考点】二元一次方程组的解法与应用 【解答】解:设人数x 人,物价y 钱. ⎩⎨⎧=+=-yx yx 4738解得:⎩⎨⎧==537y x ,故选B.3. (2019年重庆市)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A.B.C.D.【考点】二元一次方程组的解法与应用【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:.故选:A.4. (2019年山东省德州市)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为()A. B. C. D.【考点】二元一次方程组的解法与应用【解答】解:设绳长x尺,长木为y尺,依题意得,故选:B.5. (2019年山东省菏泽市)已知是方程组的解,则a+b的值是()A.﹣1 B.1 C.﹣5 D.5【考点】二元一次方程组的解法【解答】解:将代入,可得:,两式相加:a+b=﹣1,故选:A.6. (2019年广西贺州市)已知方程组,则2x+6y的值是()A.﹣2 B.2 C.﹣4 D.4【考点】二元一次方程组的解法【解答】解:两式相减,得x+3y=﹣2,∴2(x+3y)=﹣4,即2x+6y=﹣4,故选:C.7. (2019年湖北省襄阳市)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.=D.=【考点】一元一次方程的应用【解答】解:设合伙人数为x人,依题意,得:5x+45=7x+3.故选:B.8. (2019年黑龙江省伊春市)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种【考点】二元一次方程的整数解【解答】解:设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,使方程成立的解有,,,∴方案一共有3种;故选:B.二、填空题1. (2019年北京市)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为_______.【考点】二元一次方程组的解法、菱形的性质【解答】设图1中小直角三角形的两直角边分别为a ,b (b >a ),则由图2,图3可列方程组,15⎩⎨⎧=-=+a b b a 解得⎩⎨⎧==32b a ,所以菱形的面积.126421=⨯⨯=S 故答案为12. 2. (2019年上海市)《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛 . 斛米.(注:斛是古代一种容量单位) 【考点】二元一次方程组的解法【解答】解:设1个大桶可以盛米x 斛,1个小桶可以盛米y 斛, 则 , 故5x +x +y +5y =5, 则x +y.答:1大桶加1小桶共盛斛米.故答案为:.3. (2019年湖北省鄂州市)若关于x 、y 的二元一次方程组 的解满足x +y ≤0,则m 的取值范围是 .【考点】二元一次方程组的解法、解一元一次不等式 【解答】解:①,①+②得2x +2y =4m +8, 则x +y =2m +4, 根据题意得2m +4≤0, 解得m ≤﹣2.图3图2图1故答案是:m ≤﹣2.4. (2019年浙江省杭州市)已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,则男生有____人。

2019年全国中考数学真题分类 一次方程(组)(印刷版)

2019年全国中考数学真题分类 一次方程(组)(印刷版)

第三章 方程与方程组课 标 要 求1. 了解方程(组)的概念.2. 会解一次方程(组)、二次方程、分式方程.3. 掌握根的判别式、根与系数的关系,并能进行简单应用.4. 能列方程(组)解应用题.1. 一次方程(组)一、 选择题1. (2019·怀化)一元一次方程x -2=0的解是( )A. x =2B. x =-2C. x =0D. x =12. (2019·贵阳)数轴上点A ,B ,M 表示的数分别是a ,2a ,9,M 是线段AB 的中点,则a 的值为( )A. 3B. 4.5C. 6D. 183. (2019·天津)方程组⎩⎪⎨⎪⎧3x +2y =7,6x -2y =11的解是( ) A. ⎩⎪⎨⎪⎧x =-1,y =5 B. ⎩⎪⎨⎪⎧x =1,y =2 C. ⎩⎪⎨⎪⎧x =3,y =-1 D. ⎩⎪⎨⎪⎧x =2,y =124. (2019·巴中)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax -y =4,3x +b =4的解是⎩⎪⎨⎪⎧x =2,y =-2,则a +b 的值是( )A. 1B. 2C. -1D. 05. (2019·南通)已知a ,b 满足方程组⎩⎪⎨⎪⎧3a +2b =4,2a +3b =6,则a +b 的值为( ) A. 2B. 4C. -2D. -46. (2019·贺州)已知方程组⎩⎪⎨⎪⎧2x +y =3,x -2y =5,则2x +6y 的值是( )A. -2B. 2C. -4D. 47. (2019·荆门)已知实数x ,y 满足方程组⎩⎪⎨⎪⎧3x -2y =1,x +y =2,则x 2-2y 2的值为( ) A. -1 B. 1 C. 3 D. -38. (2019·孝感)已知二元一次方程组⎩⎪⎨⎪⎧x +y =1,2x +4y =9,则x 2-2xy +y 2x 2-y 2的值是( ) A. -5 B. 5C. -6D. 6二、 填空题9. (2019·湘西州)若关于x 的方程3x -kx +2=0的解为2,则k 的值为________.10. (2019·衢州)已知实数m ,n 满足⎩⎪⎨⎪⎧m -n =1,m +n =3,则代数式m 2-n 2的值为________. 11. (2019·凉山州)方程组⎩⎪⎨⎪⎧x +y =10,2x +y =16的解是________. 12. (2019·常德)二元一次方程组⎩⎪⎨⎪⎧x +y =6,2x +y =7的解为________. 13. (2019·黔东南州)已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧2x +y =6,x +2y =-3的解,则a +b 的值为________. 14. (2019·宿迁)下面3个天平左盘中“”“”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为________(图中单位:g).第14题三、 解答题15. (2019·福建)解方程组⎩⎪⎨⎪⎧x -y =5,2x +y =4.16.(2019·怀化)解二元一次方程组:⎩⎪⎨⎪⎧x +3y =7,x -3y =1.17.(2019·山西)解方程组:⎩⎪⎨⎪⎧3x -2y =-8①,x +2y =0②. 删序号①②18.(2019·丽水)解方程组⎩⎪⎨⎪⎧3x -4(x -2y )=5,x -2y =1.19.(2019·枣庄)对于实数a ,b ,定义关于“⊗”的一种运算:a ⊗b =2a +b.例如:3⊗4=2×3+4=10.(1) 求4⊗(-3)的值;(2) 若x ⊗(-y)=2,(2y)⊗x =-1,求x +y 的值.20.(2019·河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数. 示例:,即4+3=7.(1) 用含x 的代数式表示m ;(2) 当y =-2时,求n 的值.第20题1. 一次方程(组)一、 1. A 2. C 3. D 4. C 5. A 6. C 7. A 8. C二、 9. 4 10. 3 11. ⎩⎪⎨⎪⎧x =6,y =4 12. ⎩⎪⎨⎪⎧x =1,y =5 13. 1 14. 10 g 三、 15. ⎩⎪⎨⎪⎧x -y =5①,2x +y =4②,①+②,得3x =9,解得x =3.把x =3代入①,得y =-2.∴ 方程组的解为⎩⎪⎨⎪⎧x =3,y =-216. ⎩⎪⎨⎪⎧x +3y =7①,x -3y =1②,①+②,得2x =8,解得x =4.把x =4代入①,得4+3y =7,解得y =1.∴ 方程组的解为⎩⎪⎨⎪⎧x =4,y =1 17. ⎩⎪⎨⎪⎧3x -2y =-8①,x +2y =0②.①+②,得4x =-8,解得x =-2.将x =-2代入②,得-2+2y =0,解得y =1.∴ 原方程组的解为⎩⎪⎨⎪⎧x =-2,y =1 18. ⎩⎪⎨⎪⎧3x -4(x -2y )=5①,x -2y =1②,将①化简,得-x +8y =5③.②+③,得6y =6,解得y =1.将y =1代入②,得x -2=1,解得x =3.∴ 方程组的解为⎩⎪⎨⎪⎧x =3,y =1 19. (1) 根据题意,得4⊗(-3)=2×4+(-3)=5 (2) ∵ x ⊗(-y)=2,(2y)⊗x =-1,∴ ⎩⎪⎨⎪⎧2x +(-y )=2,2×2y +x =-1,解得⎩⎨⎧x =79,y =-49.∴ x +y =13 20. (1) m =x +2x =3x (2) 由题意,得n =2x +3,y =m +n.由(1),得m =3x ,∴ y =3x +2x +3=5x +3.当y =-2时,5x +3=-2,解得x =-1.∴ n =2x +3=-2+3=1。

2019年全国各地中考数学模拟试卷精选精练:一元一次方程【含答案】

2019年全国各地中考数学模拟试卷精选精练:一元一次方程【含答案】

一元一次方程一、选择题1、(安徽芜湖一模)芜湖市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=答案:A2、 (河北省一摸)|A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是 ( ).A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-=答案:A二、解答题1、(江苏扬州弘扬中学模拟)综合实践活动课,某数学兴趣小组在学校操场上想测量汽车的速度,利用如下方法:如图,小王站在点处A (点A 处)和公路(l )之间竖立着一块30m 长且平行于公路的巨型广告牌(DE ).广告牌挡住了小王的视线,请在图中画出视点A 的盲区,并将盲区内的那段公路记为BC .已知一辆匀速行驶的汽车经过公路BC 段的时间是3s ,已知小王到广告牌和公路的距离是分别是40m 和80m ,求该汽车的速度?答案:(1)如图,作射线AD 、AE ,分别交L 于点B 、C ,BC 即为视点A 的盲区在公路上的那段.-------2分(2)过点A 作AF⊥BC,垂足为点F ,交DE 于点H .∵DE∥BC.∴∠ADE=∠ABC,∠DAE=∠BAC.∴△ADE∽△ABC, ∴BCDE AF AH =, 由题意.知DE=30,AF=40,HF=80, ∴1204030=BC , ∴BC=90m,∵一辆匀速行驶的汽车经过公路BC 段的时间是3s , ∴该汽车的速度为:90÷3=30m/s =108Km/h ,答:该汽车的速度是30米/秒或108Km/h ------------8分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国各地xx数学一元一次方程试题
一、解一元一次方程
1.(2019重庆,7,4分)已知关于x的方程2x+a一9=0的解是x=2,则a的值为( )
A.2
B.3
C.4
D.5
【解析】把x=2代入方程2x+a一9=0即可求出a.
【答案】D
【点评】能使方程两边相等的未知数的值是方程的解,根据此定义,如果告诉了方程的解,那么这个数代人方程中一定使方程两边相等,由此可求出待定系数,这是解决此类问题的常法。

2.(2019浙江省温州市,9,4分)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元。

小明买20张门票共花了1225元,设其中有张成人票,张儿童票,根据题意,下列方程组正确的是( )
A. B.
C. D.
【解析】本题的数量关系是:成人票的数量+儿童票数量=20;成人票钱数+儿童票钱数=1225.
【答案】B
【点评】本题考查了列方程组解应用题。

难度较小.
二、一元一次方程的应用
1.(2019山东省潍坊市,题号12,分值3)12、下图是某月的日历表,在此日历表上可以用一个矩形圈出个位置的9个数(如6,7,8,13,14,15,20,21,22)。

若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( )A. 32 B.126 C. 135D.144
【解析】列方程解日历中问题,日历中数据规律.
【答案】不妨设圈出的9个数中,最小的数为x,最大的x+16根据最大数与最小数的积为192得到
解得(负值舍去)
这9个数的和:8+9+10+15+16+17+22+23+24=144,所以本题正确答案是D.
【点评】用字母表示出这9个数是解决本题的基础。

根据题目中的条件列出方程是解决本题的关键.
2.(2019湖南湘潭,15,3分)湖南省2019年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家人去台湾旅游,计划花费元.设每人向旅行社缴纳元费用后,共剩元用于购物和品尝台湾美食.根据题意,列出方程为.
【解析】找出等量关系:每人向旅行社缴纳元费用,加上用于购物和品尝台湾美食的元,等于花费的元.列出方程为3X+5000=20190。

【答案】3X+5000=20190。

【点评】此题考查列方程解应用题的思想方法,要会审题,
找出等量关系。

3.(2019贵州铜仁,4,4分)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是( )
A. B.
C. D.
【解析】两棵树有一个间隔,三棵树有两个间隔,四棵树有三个间隔,以此类推X棵树应有(x-1)个间隔,间隔的个数比树的棵树少1,因此设原有树苗x 棵,则根据题意列出方程
【答案】A
【点评】本题考查一元一次方程的应用,根据题意列出方程的关键是找出等量关系,此题的等量关系是公路长度相等。

表示同一个量的不同式子相等是列方程的一个基本方法。

4. (2019山东省聊城,21,8分)儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元.已知书包标价比文具盒标价的3倍少6元,那么书包和文具盒的标价各是多少元?
【解析】经过审题,可以直接设文具盒标价为x元/个,用一元一次方程可以解决此问题.
【答案】设一个文具盒标价为x元,则一个书包标价为(3x-6)元,依题意,得
(1-80%)(x+3x-6)=13.2
解此方程,得x=18,3x-6=48.
答:书包和文具盒的标价分别是48元/个,18元/个.
【点评】列一元一次方程解应用题得注意一般步骤:审、设元、列方程、解方程、检验是否符合实际、写答案.本题目还可以构建二元一次方程组来解决.
5.(2019,湖北孝感,16,3分)把如图所示的长方体材料切割成一个体积最大的圆柱,则这个圆柱的体积是
___________(结果不做近似计算).
【解析】根据题意,圆柱底面圆的直径为20cm,由圆柱的体积计算公式得10230=3000
【答案】3000cm3.
【点评】本题考查了圆柱的体积计算,解题的关键是正确的理解圆柱底面圆的直径等于长方体底面正方形的边长.
6.(2019湖北黄冈,24,12)某科技开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销
售单价均不低于2600元.
(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?
(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.
(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
【解析】(1)根据题意列一元一次方程即可解决问题的;(2)针对一次购买的数量x取值范围,应分三段来确定y与x的函数关系式,即结果是分段函数.(3)根据(2)中求出的三段函数在保证y应随x的增大而增大的情况下,确定购买数量越大而利润越大但价格越低的x取值范围,最后解决问题.
【答案】解:(1)设商家一次购买该产品x件时,销售单价恰好为2600元,得3000-10(x-10)=2600,
解得x=50答:商家一次购买该种商品50件时,销售单价恰好为2600元.
(2)当010时,y=(3000-2400)x=600x;
当10
当x50时,y=(2600-2400)x=200x;
y=
(3)因为要满足一次购买的数量越多,所获的利润越大,所以y应随x的增大而增大.
而y=600x和y=200x均随着x的增大而增
大;y=-10x2+700x=-10(x-35)2+12250,
当时,y应随x的增大而增大,当时,y应随x的增大而减小.
因此满足x的取值范围应为.即一次购买的数量为35件时的销售单价恰好为最低单价.
【点评】这是一道以商品买卖为情境的方程和函数建模数学问题.(1)、(2)较为基础,第(3)个问题的解决较思维上为综合,要函数的增减性、函数的极值等多方面去考虑.难度较大.
7. (2019云南省,17,6分)某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2019件.已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件.求该企业分别捐给甲、乙两所学校的矿泉水各多少件?
【解析】设该企业分别捐给乙所学校的矿泉水件,则甲所学校的矿泉水是;根据捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件得到解得x =800则甲所学校的矿泉水是
【答案】解:设该企业分别捐给乙所学校的矿泉水件,则甲所学校的矿泉水是;根据题意得:
解得x =800
则甲所学校的矿泉水是
答:该企业分别捐给甲、乙两所学校的矿泉水各1200件、800件。

【点评】本题考查理解题意的能力,关键是设乙所学校的矿泉水件,利用相等关系列方程;列方程解应用题是中考必考查的内容。

首先要认真审题,读懂题意,找出相等的数量关系,弄清楚题目中的关键字、。

然后列出符合要求的方程,本题中要求是一元一次方程;难度中等。

相关文档
最新文档