发电厂电气主接线课程设计

合集下载

【VIP专享】发电厂主接线课程设计

【VIP专享】发电厂主接线课程设计

前言电气主接线表明电气一次设备的连接关系,是发电厂、变电站电气部分设计、运行、检修、操作和事故处理的一个平台,其设计对电气设备选择、配电装置布置、继电保护及自动控制方式的拟定,以及防雷接地等产生决定性影响。

作为电气主接线中最重要的一部分——发电厂电气主接线是由多种电气设备通过连接线,按其功能要求组成的汇集和分配电能的电路,又称一次接线或电气主系统。

发电厂电气主接线系统的安全性、可靠性、经济性是电力系统运行及维护的重要内容,主接线的质量将直接关系到系统供电任务的完成情况。

随着国内发电厂机组容量的不断升级,主接线的连接形式也在不断变化,系统运行的能力已经成为发电厂远行与维护中至关重要的环节。

本课程设计将通过给定的设计原始材料,根据设计给定的要求,通过不同的接线方式设计出几种不同的发电厂电气主接线的设计方案,根据给定的电路参数,再进行不同方案的线路电流保护计算,根据计算得到的线路保护电流参数来设计线路电流保护的装置。

几种不同方案的可行性是不一样的,要进一步通过分析原理、方案可行性以及经济预算,确定最后可以采用的方案,完成本次的课程设计。

目录一.发电厂主接线概述一、发电厂主接线概述1、发电厂发电厂是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济。

发电厂的作用是将其他形式的能量转化成电能。

按能量转化形式大体分为火力发电厂,水力发电厂,核能发电厂,风力发电场等。

考虑发电厂中的地位和作用,电力系统中的发电厂有大型主力发电厂、中小型地区电厂及企业自备电厂三种类型。

无论是那种形式的电厂它们的电气部分设计的主要内容及基本思想都是相通的。

2、主接线主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。

它表明了变压器、线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。

它的设计,直接关系着全站电气设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。

火力发电厂电气主接线设计

火力发电厂电气主接线设计

火力发电厂电气主接线设计一、背景介绍火力发电厂是以燃煤、燃气等化石能源为原料,通过燃烧产生高温高压蒸汽驱动汽轮机发电的设施。

电气主接线设计是火力发电厂中非常重要的一环,它直接关系到整个发电系统的运作效率和安全稳定性。

二、电气主接线设计的作用1. 保证电气系统的安全稳定运行;2. 实现各个部分之间的协调配合,确保整个系统的高效运转;3. 优化设计,降低成本。

三、电气主接线设计流程1. 确定负荷特性:根据负荷特性确定变压器容量和数量。

2. 设计配电方案:根据变压器容量和数量,设计相应的配电方案。

3. 编制单线图:根据配电方案编制单线图,并进行检查、修改。

4. 设计系统保护:根据单线图确定各种保护装置及其参数。

5. 设计接地系统:根据国家规范和标准,确定接地方式及其参数。

6. 制定施工方案:制定施工方案,并进行现场勘察和技术交底。

7. 安装调试:按照施工方案进行安装调试,并进行验收。

四、电气主接线设计要点1. 各部分之间的协调配合;2. 保证电气系统的安全稳定运行;3. 设计合理,降低成本;4. 确定负荷特性,根据变压器容量和数量设计相应的配电方案;5. 编制单线图,并进行检查、修改;6. 设计系统保护及接地系统;7. 制定施工方案,并进行现场勘察和技术交底;8. 安装调试,并进行验收。

五、电气主接线设计注意事项1. 严格按照国家规范和标准进行设计;2. 考虑负荷特性,避免过载或欠载情况发生;3. 合理安排变压器容量和数量,确保整个系统的高效运转;4. 设计保护措施,防止电气故障和事故发生。

六、总结火力发电厂电气主接线设计是整个发电系统中非常重要的一环。

它直接关系到整个系统的运作效率和安全稳定性。

在设计过程中,需要考虑负荷特性、变压器容量和数量、保护措施等因素,严格按照国家规范和标准进行设计,确保整个系统的高效运转和安全稳定。

发电厂电气部分课程设计

发电厂电气部分课程设计

❏发电厂容量的确定与国家经济发展规划、电力负 荷增长速度、系统规模和电网结构以及备用容量等 因素有关。发电厂装机容量标志着发电厂的规模和 在电力系统中的地位和作用。在设计时,对发展中 的电力系统,可优先选用较为大型的机组。但是, 最大单机容量不宜大于系统总容量的10%,以保证 在该机检修或事故情况下系统的供电可靠性。
三、主变压器容量的确定原则
29
2.具有发电机电压母线接线的主变压器
容台容数确定原则:量数 ②③为当接在发电压机发对电在保接若确当
机电母电母电压
线压电上有负的2接线母压
台最荷及大供以上电一可主变压器时,或修检组机的台者当靠其供容于最大热发量接中性因负母线退出限需故而动荷运制行
不应,主少时他应其力不器出压厂变本行于2台压器。应器其能应总能输容从送量电除母满剩统述几功点的率送倒余上系足线力7要0求%,
❏方案比较常用的方法有最小费用法、净现值法、 内部收益率法、抵偿年限法。
❏在课程设计中,主要采用抵偿年限法。
四、主接线方案的经济比较
如:发电机容量容50量MW确,定功原率则因:数
量0压.8为负,荷厂最用小电15率MW 1投①有负率在母压主剩系在电最扣后应电剩0,%当入统发荷。发线母要余满压小除能压余,则,发运。电 和主电和线 作功足供负厂将母有主主发电行机剩变机升之用率发电荷用发线功变变电机时电余连电高间是送电的负电上和压,压机全,压功接压电将入,机日荷机的无器并器电部容 功容量送人系
❏主变压器和发电机中性点接地方式是一个综合性 问题。它与电压等级、单相接地短路电流、过电压 水平、保护配置等有关,直接影响电网的绝缘水平、 系统供电的可靠性和连续性、主变压器和发电机的 运行安全以及对通信线路的干扰等。
一、对原始资料分析

发电厂电气主接线课程设计

发电厂电气主接线课程设计

发电厂电气主接线课程设计————————————————————————————————作者:————————————————————————————————日期:发电厂电气主接线课程设计题目:2*300MW火电厂主接线设计学生姓名:学号:专业:班级:指导教师:摘要随着我国经济发展,对电的需求也越来越大。

电作为我国经济发展最重要的一种能源,主要是可以方便、高效地转换成其它能源形式。

电力工业作为一种先进的生产力,是国民经济发展中最重要的基础能源产业。

而火力发电是电力工业发展中的主力军,截止2006年底,火电发电量达到48405万千瓦,越占总容量77.82%。

由此可见,火力电能在我国这个发展中国家的国民经济中的重要性。

电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。

主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。

并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。

本文将针对某火力发电厂的设计,主要是对电气方面进行研究。

对配有2台300MW汽轮发电机的火电厂一次部分的初步设计,主要完成了电气主接线的设计。

包括电气主接线的形式的比较、选择;主变压器、启动/备用变压器和高压厂用变压器容量计算、台数和型号的选择;短路电流计算和高压电气设备的选择与校验; 并作了变压器保护。

通过对本次的设计设计,掌握了一些基本的设计方法,在设计过程中更加稳固了理论知识。

关键词:发电厂;火电厂;电气主接线;目录摘要 (2)发电厂课程设计任务书 (4)第一章引言 (5)1.1研究背景及意义 (5)1.2电气主接线的基本要求及形式 (6)第二章电气主接线设计 (8)2.1设计步骤 (8)2.2设计方案 (8)2.3方案分析 (8)第三章厂用电设计 (10)3.1厂用电 (10)3.2厂用电分类 (10)3.3厂用电设计原则 (11)3.4厂用电源选择 (11)3.5厂用电接线形式 (12)第四章电气设备的选择 (13)4.1电气设备选择的一般规则 (13)4.2按正常工作条件选择电器 (13)4.3按短路情况校验 (14)4.4断路器的选择 (15)4.5隔离开关的选择 (15)4.6电流互感器的选择 (15)4.7电缆的选择 (17)第五章设计感想 (18)发电厂课程设计任务书设计题目:2*300MW火电厂主接线设计设计原始资料:1、厂用电为总容量7%2、两台主变3、220KV 5回出线4、110KV 7回出线设计内容:1、对水电站电气主接线进行论述2、选择水电站电气主接线方式,并说明3、对主接线主要电气设备选型计算,校验计算4、主要点短路电流计算5、对主变保护进行论述设计要求:1、主接线论证,方案比较2、主接线设计正确3、设备选型科学并有依据4、图纸规范5、独立完成6、参阅相关资料设计时间安排:1、主接线初步设计1天2、短路电流计算1天3、设备选择2天4、汇制图纸书写说明书2天第一章引言1.1研究背景及意义电力工业是国民经济的重要部门之一,是一种将煤、石油、天然气、水能、核能、风能等一次能源转换成电能这个二次能源的工业,作为国民经济的其他各部门的快速,稳定发展提供足够的动力,其发展水平是反映国家经济发达程度的重要标志,又和广大人民群众的日常生活有着密切的关系。

发电厂电气课程设计二电气主接线教学教材

发电厂电气课程设计二电气主接线教学教材

(2)双母线分段接线方式
不分段的双母线接线在母联断路器故障或一组母线检修,另一组运行母 线故障时,有可能造成严重的或全厂停电事故。
结构特点:用分段断路器将工作母线Ⅰ分段,ห้องสมุดไป่ตู้每段用母联断路器与备用母线Ⅱ相连。
缺点: ➢ 当一段母线或母线隔离开关故障或检修时,必须断开接在
该分段上的全部电源和出线,这样就减少了系统的发电量, 并使该段单回路供电的用户停电; ➢ 任一出线断路器检修时,该回路必须停止工作。 适用:中、小容量发电厂和变电所的6~10KV配电装
置出线一般不超过6回及以上,35~60KV出线回路数 不超过4~8回,和110~220KV出线回路数3~4回。
(3)单母线带旁路母线接线


结构特点: 增加了旁路母线、专用旁路断路器 及旁路回路隔离开关。 各出线回路除通过断路器与汇流母 线连接外,还通过旁路隔离开关与 旁路母线相连接。 优点: 检修任一进出线断路器
时,不中断对该回路的供电, 供电可靠,运行灵活,适用于 向重要用户供电,出线回路较 多的变电所尤为适用。 缺点: 旁路断路器在同一时间 只能代替一个线路断路器的工 作。但母线出现故障或检修时, 仍会造成整个主母线停止工作。
缺点:可靠性和灵活性都较差
➢ 母线和母线隔离开关检修时,全部回路均需停运; ➢ 母线故障时,继电保护会切除所有电源,全部回路均需停运。 ➢ 任一断路器检修时,其所在回路也将停运 ➢ 只有一种运行方式,电源只能并列运行,不能分列运行。
适用:出线回路少(6~10kV出线一般不超过5回,35~60kV出线不
2、双母线接线及双母线分段接线 (1)双母线接线
结构特点: ➢ 双母线接线,它有两组母线,一组为工作母线,一组为备

发电厂电气课程设计二电气主接线

发电厂电气课程设计二电气主接线
优点:调度灵活,电源和负荷可自由 调配,安全可靠,有利于扩建。当变 压器故障时,和它连接于同一母线上 的断路器跳闸,由隔离开关隔离故障, 使变压器退出运行后,该母线即可恢 复运行。
适用:超高压远距离大容量输电系统 中,对系统稳定性和供电可靠性要求 较高的变电所主接线。
5、单元接线
结构特点:发电机和变压器直接连接, 中间不设置母线。
优点:结构简、便操作、不易误操作,投资省、占地小, 易扩建。
缺点:可靠性和灵活性都较差
➢ 母线和母线隔离开关检修时,全部回路均需停运; ➢ 母线故障时,继电保护会切除所有电源,全部回路均需停运。 ➢ 任一断路器检修时,其所在回路也将停运 ➢ 只有一种运行方式,电源只能并列运行,不能分列运行。
适用:出线回路少(6~10kV出线一般不超过5回,35~60kV出线不
(3)单母线带旁路母线接线


结构特点: 增加了旁路母线、专用旁路断路器 及旁路回路隔离开关。 各出线回路除通过断路器与汇流母 线连接外,还通过旁路隔离开关与 旁路母线相连接。 优点: 检修任一进出线断路器
时,不中断对该回路的供电, 供电可靠,运行灵活,适用于 向重要用户供电,出线回路较 多的变电所尤为适用。 缺点: 旁路断路器在同一时间 只能代替一个线路断路器的工 作。但母线出现故障或检修时, 仍会造成整个主母线停止工作。
缺点: ➢ 当母线故障或检修时,需使用隔离开关进行倒闸操作,容
易造成误操作; ➢ 工作母线故障时,将造成短时(切换母线时间)全部进出
线停电; ➢ 在任一线路断路器检修时,该回路仍需停电或短时停电; ➢ 使用的母线隔离开关数量较大,同时也增加了母线的长度,
使得配电装置结构复杂,投资和占地面积增大。 适用: 这种接线方式适用于供电要求比较高,出线回路较多的 变电站中,一般6~10kV 出线回路为12回及以上,35kV 出线回路超过8回, 110 ~220kV出线为5回及以上。

水力发电厂电气主接线设计

水力发电厂电气主接线设计

水力发电厂电气主接线设计
概述
电气主接线设计是指将水力发电厂各个电气设备连接起来,以
形成完整的电力系统。

电气主接线设计需要考虑以下几个方面:
1. 电气设备的布置和位置:根据水力发电厂的具体布置和要求,确定各个电气设备的位置,包括主变压器、断路器、开关等。

2. 电气设备的容量和参数:根据水力发电厂的负荷需求和发电
能力,确定各个电气设备的容量和参数,包括额定电压、额定电流等。

3. 电缆和导线的选型和敷设:根据水力发电厂的电气主接线设计,选择合适的电缆和导线类型,并进行敷设和连接。

4. 接地系统的设计:设计合理的接地系统,确保电气设备的安
全运行,防止电气设备发生漏电、电弧等事故。

注意事项
在进行水力发电厂电气主接线设计时,需要注意以下几个重要事项:
1. 遵循相关法律法规:水力发电厂电气主接线设计必须符合当地的法律法规,并遵循相关的电气安全标准。

2. 考虑电力系统的可靠性:设计电气主接线时,要确保电力系统的可靠性,避免单点故障和电力中断的发生。

3. 考虑电气设备的兼容性:各个电气设备之间的连接和配合要兼容,确保电力系统的稳定运行。

4. 灵活应对变化:在设计电气主接线时,要考虑到未来可能的扩容和升级需求,保证电力系统的可持续发展。

总结
水力发电厂电气主接线设计是电力系统中至关重要的环节,合理的设计能够确保电力系统的正常运行和安全性。

在设计过程中,需要综合考虑电气设备的布置、容量和参数、电缆和导线的选型敷设,以及接地系统的设计。

同时,也要遵循相关法律法规,并考虑电力系统的可靠性和未来的变化。

电气主接线课程设计

电气主接线课程设计

电气主接线课程设计一、课程目标知识目标:1. 理解电气主接线的概念、组成及作用;2. 掌握电气主接线的基本原理和设计方法;3. 了解电气主接线中涉及的电气设备及其参数;4. 掌握电气主接线系统的保护、控制和自动化原理。

技能目标:1. 能够阅读和理解电气主接线图;2. 能够分析电气主接线系统中的故障及其原因;3. 能够运用所学知识进行简单电气主接线的设计;4. 能够使用相关软件对电气主接线进行模拟和分析。

情感态度价值观目标:1. 培养学生严谨、细致的学习态度,激发对电气工程领域的兴趣;2. 培养学生团队协作能力,提高沟通表达和解决问题的能力;3. 增强学生的环保意识,认识到电气主接线在节能和环保方面的重要性;4. 培养学生的创新意识,鼓励对电气主接线技术进行研究和探索。

课程性质:本课程为电气工程及相关专业的一门专业核心课程,具有较强的理论性和实践性。

学生特点:学生已具备一定的电气基础知识,但电气主接线方面的知识相对薄弱,需要通过本课程的学习来提高。

教学要求:结合理论教学与实践操作,注重培养学生的实际操作能力和创新能力,使学生在掌握电气主接线基本知识的基础上,能够独立分析和解决实际问题。

通过课程目标的分解和教学设计,确保学生能够达到预定的学习成果,为后续学习和工作打下坚实基础。

二、教学内容1. 电气主接线基本概念:包括电气主接线定义、分类及其在电力系统中的作用。

教材章节:第一章2. 电气主接线设备:介绍断路器、隔离开关、负荷开关、接地开关等设备的功能、结构及参数。

教材章节:第二章3. 电气主接线设计原则:讲解电气主接线设计的基本原则、方法和步骤。

教材章节:第三章4. 电气主接线保护与控制:分析电气主接线系统的保护、控制原理及设备配置。

教材章节:第四章5. 电气主接线自动化:介绍电气主接线自动化技术及其在电力系统中的应用。

教材章节:第五章6. 电气主接线实例分析:分析典型电气主接线工程案例,提高学生实际应用能力。

电气主接线课程设计

电气主接线课程设计

电气主接线课程设计一、课程目标知识目标:1. 学生能够理解电气主接线的基本概念,掌握电气主接线的组成和功能。

2. 学生能够描述不同类型的电气主接线方式,并解释其工作原理和应用场景。

3. 学生能够掌握电气主接线中常用电气设备的选择原则和参数计算方法。

技能目标:1. 学生能够运用电气主接线的知识,分析和解决简单的电气系统接线问题。

2. 学生能够运用相关工具和软件,进行电气主接线的模拟设计和电路图的绘制。

3. 学生能够运用团队合作和沟通技巧,参与电气主接线项目的讨论和实施。

情感态度价值观目标:1. 学生培养对电气工程学科的兴趣和热情,树立电气工程的专业意识。

2. 学生培养工程伦理意识,认识到电气主接线在工程实践中的重要性,关注电气安全与环境保护。

3. 学生通过团队协作和问题解决过程,培养自信心、责任感和合作精神。

分析课程性质、学生特点和教学要求:本课程为电气工程专业的一门核心课程,旨在培养学生对电气主接线的理论知识和实际应用能力。

学生处于大学本科二年级,具备一定的电气基础知识和动手能力。

教学要求注重理论与实践相结合,强调学生的主动参与和实际操作。

二、教学内容1. 电气主接线的基本概念与组成- 介绍电气主接线的定义、作用及其在电力系统中的重要性。

- 解释电气主接线的组成部分,包括电源、负载、导线、开关设备等。

2. 常见电气主接线方式及工作原理- 分析直接接线、母线接线、配电盘接线和环形接线等不同方式的优缺点。

- 探讨各种接线方式的工作原理及其在电力系统中的应用。

3. 电气主接线设备选择与参数计算- 讲解常用电气设备(如断路器、接触器、电缆等)的选择原则。

- 演示电气设备参数的计算方法和步骤。

4. 电气主接线设计方法与案例分析- 介绍电气主接线设计的基本流程和考虑因素。

- 分析实际工程案例,使学生了解电气主接线设计的实际应用。

5. 电气主接线模拟设计与电路图绘制- 教授使用相关软件(如AutoCAD、EPLAN等)进行电气主接线模拟设计和电路图绘制。

发电厂电气主接线的设计原则和步骤

发电厂电气主接线的设计原则和步骤
设计规模
该大型发电厂设计容量为1000MW, 采用燃煤发电技术。
主接线方案
采用3/2接线方式,每条母线配置两 回进线和一回出线,共三条母线。
设备选择
断路器、隔离开关、电流互感器等设 备均按照大容量、高可靠性的原则进 行选择。
保护和控制
采用分层分布式结构,配置独立的继 电保护和控制系统,实现自动化控制 和智能监测。
应确保主接线设计能够使 发电厂在任何情况下都能 提供可靠的电力,避免因 电源故障导致供电中断。
保证负荷的可靠性
主接线设计应能满足用户 对电力可靠性的要求,确 保在任何情况下都能提供 稳定的电力供应。
设备选型可靠性
设备选型应优先考虑可靠 性高、稳定性好的产品, 以确保主接线运行的稳定 性和可靠性。
灵活性原则
某小型发电厂电气主接线设计案例
设计规模
该小型发电厂设计容量为50MW,采用燃气 轮机发电技术。
主接线方案
采用单母线分段接线方式,每段母线配置一 回进线和一回出线。
设备选择
断路器、隔离开关等设备按照中小容量、高 可靠性的原则进行选择。
保护和控制
配置简单的继电保护和控制系统,实现基本 的控制和监测功能。
发电厂电气主接线的 设计原则和步骤
• 引言 • 设计原则 • 设计步骤 • 案例分析
目录
01
引言Biblioteka 发电厂电气主接线的定义发电厂电气主接线是发电厂中最重要的组成部分之一,它负责将发电机、变压器 、断路器、隔离开关等电气设备按照一定的方式连接起来,形成一个完整的电力 系统。
电气主接线的设计需要考虑到发电厂的规模、容量、运行方式、设备选型等多个 因素,以确保发电厂的稳定、安全、经济运行。
电气主接线在发电厂中的重要性

电气主接线的课程设计

电气主接线的课程设计

电气主接线的课程设计一、课程目标知识目标:1. 学生能理解电气主接线的定义、作用及重要性。

2. 学生能掌握电气主接线的类型、构成及工作原理。

3. 学生能了解电气主接线在电力系统中的应用及发展趋势。

技能目标:1. 学生能分析电气主接线的电路图,并进行正确的接线操作。

2. 学生能运用所学知识解决电气主接线中的一般故障问题。

3. 学生能通过小组合作,设计简单的电气主接线系统。

情感态度价值观目标:1. 学生对电气主接线产生兴趣,提高学习积极性,培养自主学习能力。

2. 学生树立正确的安全意识,了解电气主接线操作中的安全知识,遵循安全规程。

3. 学生认识到电气主接线在电力行业中的重要性,增强社会责任感和职业使命感。

课程性质:本课程为电气工程及其自动化专业的基础课程,旨在让学生掌握电气主接线的相关知识,为后续专业课程打下基础。

学生特点:学生处于大学二年级,具备一定的电气基础知识,具有较强的学习能力和动手能力。

教学要求:结合学生特点,注重理论与实践相结合,提高学生的实际操作能力和问题解决能力。

在教学过程中,注重启发式教学,引导学生主动探究,培养学生的创新意识。

通过小组合作,培养学生的团队协作能力。

二、教学内容1. 电气主接线基本概念:包括电气主接线的定义、作用、分类及其在电力系统中的应用。

教材章节:第一章 电气主接线概述2. 电气主接线设备与元件:介绍高压开关、断路器、隔离开关、负荷开关、熔断器等设备及其工作原理。

教材章节:第二章 电气主接线设备与元件3. 电气主接线的基本形式:分析桥形接线、单母线接线、双母线接线等电气主接线形式及其优缺点。

教材章节:第三章 电气主接线的基本形式4. 电气主接线设计原则:讲解电气主接线设计的基本原则、设计流程及注意事项。

教材章节:第四章 电气主接线设计原则5. 电气主接线故障分析及处理:分析电气主接线常见故障及其原因,介绍故障处理方法及预防措施。

教材章节:第五章 电气主接线故障分析及处理6. 电气主接线施工与验收:讲解电气主接线施工工艺、验收标准及注意事项。

中型发电厂电气主接线设计

中型发电厂电气主接线设计

中型发电厂电气主接线设计概述:中型发电厂是指发电机容量在200MW至600MW之间的电厂。

电气主接线设计是发电厂电气系统中的一个重要部分,它负责将发电机输出的电能输送到变电站,供应给大型工业企业或居民使用。

电气主接线设计的目标是确保电力传输的安全、可靠和高效。

设计过程:电气主接线设计需要考虑多个因素,如输电距离、线路负载、设备容量、电压等级等。

下面是一个中型发电厂电气主接线设计的一般过程:1.确定输电距离和传输容量:首先需要确定发电厂到变电站的输电距离,并根据预计的负荷需求确定传输容量。

根据这些参数,选择合适的电缆或电线。

2.确定电压等级:根据输电距离和传输容量,选择合适的电压等级。

常见的电压等级有110kV、220kV和500kV。

3.设计电缆或电线的规格:根据电流负载和电压等级,计算所需的电缆或电线的截面积和长度。

还需要考虑电缆或电线的散热能力,以确保安全运行。

4.设计变电站的主接线:根据发电机输出的电压和电流,设计变电站的主接线。

主接线需要考虑电流分布、电压降低和电缆或电线的阻抗。

5.确定保护系统:为了确保电气系统的安全运行,需要设计合适的保护系统,包括过电流保护、接地保护、短路保护等。

6.进行电气主接线布线:根据设计的结果,进行实际的电气主接线布线。

布线需要考虑电缆或电线的敷设方式、距离和阻抗。

7.进行电气主接线的测试和调试:在完成电气主接线布线后,进行必要的测试和调试,包括电气参数的测量、保护系统的测试等。

8.进行电气主接线的运行和维护:电气主接线的运行和维护是确保电力传输安全可靠的关键。

定期检查电气主接线的状态,及时发现和修复潜在问题。

总结:电气主接线设计是中型发电厂电气系统中非常重要的一个环节。

合理的设计可以保证发电厂的电能传输安全、可靠和高效。

设计过程需要考虑多个因素,如输电距离、线路负载、设备容量、电压等级等。

通过合理的设计和维护,可以提高电气系统的可靠性和效率。

厂用电主接线课程设计

厂用电主接线课程设计

厂用电主接线课程设计一、教学目标本课程的教学目标是使学生掌握厂用电主接线的基本原理、接线方式和应用,具备分析和解决实际问题的能力。

具体目标如下:1.知识目标:学生能够理解厂用电主接线的概念、分类和特点,掌握各种接线方式的原理和应用,了解相关设备和元件的功能和结构。

2.技能目标:学生能够运用所学知识分析和解决实际问题,具备设计和优化厂用电主接线的能力。

3.情感态度价值观目标:学生培养对电力系统的兴趣和责任感,增强安全意识和环保意识,树立正确的职业价值观。

二、教学内容本课程的教学内容主要包括厂用电主接线的原理、接线方式和应用。

具体安排如下:1.教材章节:《电力系统自动化技术》第四章:厂用电主接线。

2.教学内容:a)厂用电主接线的概念、分类和特点。

b)各种接线方式的原理和应用,包括单母线接线、双母线接线、母线分段接线等。

c)相关设备和元件的功能和结构,如断路器、隔离开关、接地开关等。

d)厂用电主接线的设计原则和优化方法。

e)案例分析:分析实际工程中的厂用电主接线设计和管理。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:通过教师的讲解,使学生掌握厂用电主接线的理论知识。

2.讨论法:学生进行小组讨论,培养学生的思考和表达能力。

3.案例分析法:分析实际工程案例,使学生能够将理论知识应用于实际问题。

4.实验法:安排实验室实践,使学生能够亲手操作,加深对知识的理解和记忆。

四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:《电力系统自动化技术》。

2.参考书:相关领域的专业书籍。

3.多媒体资料:教学PPT、视频、图片等。

4.实验设备:电力系统自动化实验装置。

5.网络资源:相关领域的学术论文、技术报告等。

五、教学评估本课程的教学评估将采用多元化的方式,以全面、客观、公正地评价学生的学习成果。

评估方式包括:1.平时表现:通过课堂参与、提问、讨论等环节,评估学生的学习态度和思考能力。

发电厂电气主接线及设计

发电厂电气主接线及设计

QFd
专用旁路断路器
S1
S2
WL1
WL2
WL3
WL4 WP
检修电源侧断路器 旁路母线通过旁路隔离 开关接至电源,然后断 开电源侧的断路器,出 线不会停电 适用范围: 用于出线较多的110KV 及以上的高压配电装置 中,对35KV以下的有特 殊重要的一、二类用户 时,亦可用这种接线。
QS15 QS12 QF1p QF1 QS11 WI WII QF2p
W2 QF1
QF2
QF3
W1
两条原则: (1)电源线宜与负荷线配对成串,即要求同一个断路器串 中,配置一条电源线和一条出线回路 (2)当初期只有两串时,同名回路宜分别接于不同的母线 侧,当达到三串时,同名线路可接于同侧母线
W2
QF1
W2
交叉接线
QF2
非交叉接线
QF3 W1
W1
缺点: 所用断路器多,投资大,二次控制线和继电保护复杂,断路 器动作频繁,检修次数多 应用范围: 广泛应用于超高压电网中,500kV变电站一般都采用这种接 线方式
三、带旁路母线的单母线和双母线接线
1. 单母线分段带旁路母线接线
WL1 WL2 WL3 WL4 WP QS15 QS13 QF1 QS11 WI WII QFP2
旁路母线的作用: 检修任一接入旁路母线 的进、出线的断路器时, 使该回路不停电 QFP1 检修QF1: 合QFP1两侧的隔离 开关→合QFP1 →合 QS15→断开QF1 → 断开QS13、QS11
倒闸操作程序示意图:
接受调令 通告全值 审核调令 填操作票
审核
危险分析
模拟预演
操作准备
核对设备
唱票复诵
实施操作
操作复查

发电厂电气主接线的设计

发电厂电气主接线的设计
7、12回近区负荷加限流电抗器。
8、两台25MW机组由于给近区负荷供电应该采用有母线的接线形式,采用单母分段或者双母线的接线形式。
9、配电装置的每组接线上,应装设避雷器,单元连接的发电机出线应装一组避雷器直接接地,系统加装避雷器容量为25MW以上的直配发电机,应在每台电机出线处装一组避雷器。
10、互感器的加装,凡装有断路器回路的应装设电流互感器,发电机和变压器的中性点,发电机和变压器的出口加电流互感器,6—220KV电压等级的每组母线的三相上应装设电压互感器,出线侧的一相上应装设电压互感器。
最大电流
发电机G1G2
发电机G3
110kv母线
10kv母线
主变10KV
主变110KV
单元接线变压器110KV
10KV出线
A
110KV出线
25MW机组厂用高压侧
厂备用高压侧
、选择电气设备
根据得到的最大电流表,我们选择以下电气设备
电气设备选择列表
位置
断路器
隔离开关
CT
PT
避雷器
发电G1G2出口
SN10-10Ⅲ
—110GY
JCC—110
FZ—10
单元接线变压器
SW4-110
GW4—110
LCWDL
—110GY
----
FIZ—10
10KV出线
SN1-10
GN1—10
---
-----
----
110KV
出线
SW4-110
GW4—110
----
-----
FIZ—110J
厂用25MW
机组
SN1-10
GN1—10
LFZ1—10
第一章电气主接线的设计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.发电厂电气主接线课程设计题目:2*300MW火电厂主接线设计学生姓名:学号:专业:班级:指导教师:摘要随着我国经济发展,对电的需求也越来越大。

电作为我国经济发展最重要的一种能源,主要是可以方便、高效地转换成其它能源形式。

电力工业作为一种先进的生产力,是国民经济发展中最重要的基础能源产业。

而火力发电是电力工业发展中的主力军,截止2006年底,火电发电量达到48405万千瓦,越占总容量77.82%。

由此可见,火力电能在我国这个发展中国家的国民经济中的重要性。

电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。

主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。

并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。

本文将针对某火力发电厂的设计,主要是对电气方面进行研究。

对配有2台300MW汽轮发电机的火电厂一次部分的初步设计,主要完成了电气主接线的设计。

包括电气主接线的形式的比较、选择;主变压器、启动/备用变压器和高压厂用变压器容量计算、台数和型号的选择;短路电流计算和高压电气设备的选择与校验; 并作了变压器保护。

通过对本次的设计设计,掌握了一些基本的设计方法,在设计过程中更加稳固了理论知识。

关键词:发电厂;火电厂;电气主接线;目录摘要 (2)发电厂课程设计任务书 (4)第一章引言 (5)1.1研究背景及意义 (5)1.2电气主接线的基本要求及形式 (6)第二章电气主接线设计 (9)2.1设计步骤 (9)2.2设计方案 (9)2.3方案分析 (10)第三章厂用电设计 (12)3.1厂用电 (12)3.2厂用电分类 (12)3.3厂用电设计原则 (13)3.4厂用电源选择 (14)3.5厂用电接线形式 (15)第四章电气设备的选择 (15)4.1电气设备选择的一般规则 (15)4.2按正常工作条件选择电器 (16)4.3按短路情况校验 (17)4.4断路器的选择 (18)4.5隔离开关的选择 (19)4.6电流互感器的选择 (19)4.7电缆的选择 (20)第五章设计感想 (21)发电厂课程设计任务书设计题目:2*300MW火电厂主接线设计设计原始资料:1、厂用电为总容量7%2、两台主变3、220KV 5回出线4、110KV 7回出线设计内容:1、对水电站电气主接线进行论述2、选择水电站电气主接线方式,并说明3、对主接线主要电气设备选型计算,校验计算4、主要点短路电流计算5、对主变保护进行论述设计要求:1、主接线论证,方案比较2、主接线设计正确3、设备选型科学并有依据4、图纸规范5、独立完成6、参阅相关资料设计时间安排:1、主接线初步设计1天2、短路电流计算1天3、设备选择2天4、汇制图纸书写说明书2天第一章引言1.1研究背景及意义电力工业是国民经济的重要部门之一,是一种将煤、石油、天然气、水能、核能、风能等一次能源转换成电能这个二次能源的工业,作为国民经济的其他各部门的快速,稳定发展提供足够的动力,其发展水平是反映国家经济发达程度的重要标志,又和广大人民群众的日常生活有着密切的关系。

电力是工业的先行,电力工业的发展必须优先于其他的工业部门,整个国民经济才能不断前进。

近几年随着我国工业的高速发展,我国电力工业超常规发展,每年装机容量超过6000万千瓦,30万千瓦、60万千瓦亚临界火电机组成为我国电网的主力机组,百万千瓦的超超临界火电机组已经在建。

目前,我国30万千瓦、60万千瓦的火力发电机组,70万千瓦的水力发电机组,在国际招标中中标成功率大于90%以上。

这几年电力工业之所以能飞速发展,其重要原因是,为中国电力市场提供的火力发电设备主要立足于国内生产。

这一观点得到国内各发电公司以及电厂老总们的认同。

今天电气制造企业的国内用户率已达到75%以上。

但是我国人均用电水平远低于发达国家,与完成其工业化进程国家的电力指标相比,我国经济发展正处于工业化进程的中后期,我国用电远低于国际水平.因此我国电力工业必须持续,稳步地大力发展,一方面要加强电源建设,搞好“西电东送”,确保电力先行,另一方面要深化电力体制改革,实施厂网分家。

本设计要求能运用电机、发电厂、变电所电气部分,高电压技术,电力系统自动化,电力系统继电保护等专业知识解决实际问题,为本次设计做了充分的知识原料准备。

1.2电气主接线的基本要求及形式要求:(1)保证必要的供电可靠性和电能质量安全可靠是电力生产的首要任务,停电不仅使发电厂造成损失,而且对国民经济各部门带来的损失将更严重,往往比少发电能的损失大几十倍,至于导致人身伤亡、设备损坏、产品报废、城市生活混乱等经济损失和政治影响,更是难以估量。

因此,主接线的接线形式必须保证供电可靠。

(2)具有一定的灵活性和方便性主接线不仅正常运行时能安全可靠地供电,而且在系统故障或设备检修及故障时,也能适应调度的要求,并能灵活、简便、迅速地倒换运行方式,使停电时间最短,影响范围最小。

(3)具有经济性在主接线设计时,在满足供电可靠的基础上,尽量使设备投资费和运行费为最少,注意节约占地面积和搬迁费用,在可能和允许条件下应采取一次设计,分期投资、投产,尽快发挥经济效益。

(4)具有发展和扩建的可能性在设计主接线时应留有余地,不仅要考虑最终接线的实现,同时还要兼顾到分期过渡接线的可能和施工的方便。

形式:1)单母线及其分段或带旁路的单母线接线A 单母线:特点是整个配电装置只有一组母线,所有电源和出线都在同一组母线上。

有简单、清晰、设备少、投资少、运行操作且有利于扩建等优点,但可靠性及灵活性较差。

适用于出线较少、电压等级较低6~10kv的配电装置。

B 单母线分段:段数分得越多,故障是造成的停电范围越小,但使用的断路器的数量越多,且配电装置和运行也越复杂,通常以2~3段为宜。

这种接线广泛用于中、小容量发电厂和变电站的6~10kv接线中。

C 单母线带旁路接线:断路器经过长期运行和切断数次短路电流后都需要检修。

为了能使采用单母线分段的配电装置检修断路器时,不至中断该回路供电,可采用单母线分段带有专用旁路断路器的旁路母线接线,这可以极大地提高供电的可靠性,但会增加爱一台旁路断路器的投资。

2)双母线及其分段或带旁路的双母线接线A 双母线:有两组母线,一组为工作母线,一组为备用,任一电源和出线的电路都经过一台断路器和两组母线隔离开关分别与两组母线连接,提高可靠性和灵活性。

便于扩建,但接线比较复杂,隔离开关数目多,增大投资。

适用于A:35-60KV出线数目超过8回;B:110-220KV出线数目为5回以上。

B 双母线分段:为缩小母线故障的影响范围,用分段断路器将工作母线分段,每段用母联断路器与备用母线相连,有较高的可靠性和灵活性,但投资较多。

适用于配电装置进出线总数达10-14回时,一组母线分段,配电装置进出线总数达15回以上时,两组母线分段。

C 双母线带旁路接线:双母线接线可以用母联断路器临时代替出现断路器工作,但出线数目较多时,母联断路器经常被占用,降低了工作的可靠性和灵活性,为此可以设置旁路母线。

3) 一台半断路器接线每一路经一台断路器接至一组母线,两回路间设一联络断路器,形成一个“串”,两回路共用三台断路器。

接线特点:A:3/2接线兼有旁路环行接线和双母线接线的优点,有高的可靠性和灵活性。

B:与双母线带旁路相比它的配电装置结构简单,占地面积小,土建投资少。

C:隔离开关仅做隔离电源用,不易产生误操作。

第二章电气主接线设计2.1设计步骤电气主接线的一般设计步骤如下:(1)对设计依据和基础资料进行综合分析;(2)选择发电机台数和容量,拟定可能采用的主接线形式;(3)确定主变压器的台数和容量;(4)厂用电源的引接;(5)论证是否需要限制短路电流,并采取什么措施;(6)对选出来的方案进行技术和经济综合比较,确定最佳主接线方案。

2.2设计方案300MW发电机G-1,G-2采用单元接线通过双绕组的变压器与220KV母线相连,220KV电压级出线为5回,因此其供电要充分考虑其可靠性,所以我们采用双母线接线。

这样一来就避免了断路器检修时,不影响对系统的供电,断路器或母线故障以及母线检修时,减少停运的回路数和停运时间,保证了可靠的供电。

有原始资料可知发电机不与110KV的母线相连,且110KV电压出线为7回,故在220KV、110KV及厂用电6KV的三个等级上采用的联络变压器为三相三绕组变压器相连,110KV母线采用双母接线。

2.3方案分析可靠性:1)接线简单,设备本身故障率少;2)故障时,停电时间较长。

灵活性:1)运行方式相对简单,灵活性差;2)各种电压级接线都便于扩建和发展。

经济性:1)设备相对少,投资小。

电气主接线图:第三章厂用电设计3.1厂用电发电厂中为了保证主要设备正常运行设置了许多辅助机械设备,它们大都是由电动机拖动的。

数量多,容量大小不等,这些电动机以及运行、操作、试验、修配、照明等用电设备的总耗电量,统称为厂用电或自用电。

厂用电系统的可靠性,对发电厂乃至整个电力系统的可靠运行都有直接的影响。

任何情况下,厂用电都是最重要的负荷,必须能满足发电厂正常运行、事故处理和检修试验等的需求,尽量缩小厂用电系统发生故障时的影响范围,避免因此造成全厂停电事故。

厂用电耗电量占同一时期发电厂全部发电量的百分数,称为厂用电率。

一般凝汽式火电厂厂用电率为5%~8%,热电厂为8%~10%,水电厂为0.5%~2%。

厂用电率是发电厂的一项重要经济指标。

降低厂用电率即可降低发电成本,增大对系统的售电量,有着巨大的经济效益3.2厂用电分类(1)I 类负荷短时停电会造成人身伤亡或设备安全,机组停运或出力降低的负荷。

如火电厂中的给水泵、凝结水泵、循环水泵、吸风机、送风机、给粉机以及水电厂中的调速器、压油泵、润滑油泵等。

通常设置两套设备,互为备用,分别接到两个独立电源的母线上。

要求有两个电源供电,采取自动投入方式。

(2)II类负荷允许短时停电(几秒至几分钟),但较长时间的停电有可能损坏设备或影响机组的正常运行。

如火电厂中的输煤设备、工业水泵、疏水泵、灰浆泵和化学水处理设备,水电厂中的吊车、整流设备、漏油泵等。

Ⅱ类负荷一般由两段母线供电,采用手动切换。

(3)III类负荷允许较长时间停电而不会直接影响生产。

如试验室、油处理室及中央修配厂的用电设备等。

由一个电源供电。

(4)事故保安负荷在200MW及以上机组的大容量电厂中,自动化程度较高,要求在事故停机过程中及停机后的一段时间内,仍必须保证供电,否则可能引起主要设备损坏、重要的自动控制失灵或危及人身安全的负荷,称为事故保安负荷。

(5)不间断供电负荷在机组运行期间,以及正常或事故停机过程中,甚至在停机后的一段时间内,需要连续供电并具有恒频、恒压特性的负荷,称为不间断供电负荷。

相关文档
最新文档