二次根式 教师用书

合集下载

北师大版数学八年级上册7《二次根式》教学设计4

北师大版数学八年级上册7《二次根式》教学设计4

北师大版数学八年级上册7《二次根式》教学设计4一. 教材分析《二次根式》是北师大版数学八年级上册第七章的内容,本章主要让学生了解二次根式的概念、性质和运算方法。

通过本章的学习,学生能理解二次根式的实际意义,掌握二次根式的基本性质和运算规律,为后续学习更高深的数学知识打下基础。

二. 学情分析学生在七年级时已经学习了实数和分数,对数的运算有一定的基础。

但是,对于二次根式这一概念,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。

此外,学生对于抽象的数学概念,有时难以理解其内涵,需要教师通过具体例子和生活中的实际问题来进行引导。

三. 教学目标1.了解二次根式的概念和性质。

2.掌握二次根式的运算方法。

3.能运用二次根式解决实际问题。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算方法。

3.二次根式在实际问题中的应用。

五. 教学方法采用讲授法、案例分析法、问题驱动法、小组讨论法等,结合多媒体教学,引导学生通过观察、思考、讨论、实践等方式,掌握二次根式的概念、性质和运算方法。

六. 教学准备1.教材、教案、课件。

2.相关的生活实例和练习题。

3.多媒体教学设备。

七. 教学过程1. 导入(5分钟)教师通过引入实际问题,如“一个物体从地面上抛出,上升到最高点后再落下,求物体上升的最大高度。

”让学生思考如何用数学方法来解决这个问题。

2. 呈现(10分钟)教师通过讲解和展示课件,介绍二次根式的概念和性质,如“二次根式是一个形如√a的数学表达式,其中a是一个非负实数。

”并通过实例来引导学生理解二次根式的实际意义。

3. 操练(10分钟)教师给出一些二次根式的运算题目,如“计算√8 + √2”,让学生独立完成,然后进行讲解和解析。

4. 巩固(10分钟)教师通过一些练习题,让学生运用二次根式的运算方法,如“计算(√2 + √3)^2”,并引导学生理解二次根式的运算规律。

5. 拓展(10分钟)教师引导学生思考二次根式在实际问题中的应用,如“一个物体从地面上抛出,上升到最高点后再落下,求物体上升的最大高度。

北师大版八年级上册数学《二次根式》说课稿

北师大版八年级上册数学《二次根式》说课稿
次根式的概念和性质,并掌握二次根式的运算法则。
2. 学法:学生在课堂上要认真听讲,积极思考,勤
于练习,在老师的指导下,逐步掌握二次根式的概念、
性质和运算法则,并能够熟练地应用到实际问题中。
06
说教学过程
导入
首先,我会通过引导学生回顾有理数的概念,让他
们了解有理数是可以表示为分数的数,例如

1
2

说教学目标、说教学重难点、说教法与学
法、说教学过程、说板书设计以及说教学
反思这八个方面进行详细的介绍。
01
说教材
说教材
本节课是初中数学中比较重要的一节,主要讲解了
二次根式的概念、性质和运算法则。在学习本节课
的过程中,学生将会掌握二次根式的基本概念和运
算方法,并能够应用到实际问题中。
02
说学情
说学情
根式的概念
根式的运算
地应用二次
和性质;
法则;
根式到实际
问题中。
04
说教学重难点
说教学重难点
1. 理解二次
根式的概念
和性质;
2. 掌握二次
根式的运算
法则;
3. 能够灵活
运用二次根
式进行计算。
05
说教法与学法
说教法与学法
1. 教法:本节课采用讲授与练习相结合的教学方法,
通过讲解、举例和练习等方式,引导学生深入理解二
2.计算 5 · 20
解: 5 · 20 = 5 · 20 = 100 = 10
拓展
一块长方形的面积是16 2平方厘米,它的长和宽分别是
2厘米和 8厘米。求这个长方形的周长。
解:设长为a,宽为b,则有ab=16 2, = 2, =

湘教版八年级数学上册第五章《二次根式》教案

湘教版八年级数学上册第五章《二次根式》教案

第5章二次根式5.1 二次根式第1课时二次根式的概念及性质1.了解二次根式的概念.2.掌握二次根式的基本性质.3.会判断二次根式,能求简单的二次根式中的字母的取值范围.4.经历二次根式的基本性质、运算法则的探究过程,培养学生从具体到抽象的概括能力.5.经历观察、比较、总结和应用数学等活动,感受数学活动充满了探索性与创造性.体会发现的快乐,并提高应用的意识.【教学重点】二次根式的概念及意义.【教学难点】利用“a(a≥0)”解决具体问题.一、情景导入,初步认知1.什么叫做一个数的平方根?如何表示?2.什么是一个数的算术平方根?如何表示?3.16的平方根是什么? 算术平方根是什么?4.0的平方根是什么?算术平方根是什么?5.-7有没有平方根?有没有算术平方根?【教学说明】评价学生与本节课相关的旧知识的掌握情况.二、思考探究,获取新知1.说一说:(1)5的平方根是什么?正实数a的平方根是什么?(2)运用运载火箭发射航天飞船时,火箭必须达到一定的速度,才能克服地球引力,从而将飞船送入环地球运行的轨道,而第一宇宙速度u与地球半径R之间存在如下关系:u 2=gR ,其中重力加速度常数g ≈9.5m/s 2.如已知地球半径R ,则第一宇宙速度v 是多少?我们已经知道:每一个正实数a 有且只有两个平方根,一个记作a ,称为a 的算术平方根,另一个是-a . 【归纳结论】我们把形如a 的式子叫作二次根式,根号下的数叫作被开方数.2.思考二次根式“a ”中被开方数a 能取任意实数吗?【归纳结论】只有当被开方数是非负实数时,二次根式才在实数范围内有意义.对于非负实数a,由于a 是a 的一个平方根,因此(a )2=a(a ≥0)3.做一做:填空.22272 1.25,(),===⋯⋯根据上述结果猜想,当a ≥0时,2a = . 【归纳结论】2a =a(a ≥0) 4.议一议:当a<0时,2a =a 是否依然成立?为什么?【归纳结论】二次根式的性质:【教学说明】学生小组交流期间师巡回指导,引导学生小结形成新知,理解新知;引导学生对二次根式的性质做出合理的解释.三、运用新知,深化理解1.教材P155例1、P156例2、例3.2.已知一个正方形的面积是5,那么它的边长是(B )A .5B .5C .15D .以上皆不对 3.()25x --x 有(B )个.A .0B .1C .2D .无数4.下列式子,哪些是二次根式,哪些不是二次根式:5.当x 是多少时,31x - 在实数范围内有意义?【分析】由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,31x -才能有意义.6.当x 是多少时,223x x x++ 在实数范围内有意义?7.当x 1231x x ++在实数范围内有意义? 【分析】1231x x +++在实数范围内有意义,23x + 中的2x+3≥0和11x +中的x+1≠0.8.已知a 、b 为实数,且521024a a b -+-=+ ,求a 、b 的值.答案:a=5,b=-4【教学说明】检测本节课学生对新知识的掌握情况,了解不足,以便查缺补漏,个别辅导.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材第159页“习题5.1”中第1 、2 题.学生已学过平方根、立方根、实数等概念及求法,对实数运算与性质有初步感受,为本节知识打下了基础.本节知识是前面相关内容的发展,同时是后面学习的直接基础,起到了承上启下的作用.通过复习引入新知,注重将新知识与旧知识进行联系与对比.随后从学生熟悉的四个实际问题出发,用已有的知识写出这四个问题的答案,并分析所得的结果在表达式上的特点,由此引入二次根式的概念,对于二次根式的一些结论,让学生参与思考、探索、学会分类讨论的方法,在教学过程中让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密,以此充分调动学生学习的兴趣.第2课时二次根式的化简1.了解最简二次根式的意义,并能作出准确判断.2.能熟练地把二次根式化为最简二次根式.3.了解把二次根式化为最简二次根式在实际问题中的应用.4.进一步培养学生运用二次根式的性质进行二次根式化简的能力,提高运算能力.5.通过多种方法化简二次根式,渗透事物间相互联系的辩证观点.【教学重点】会把二次根式化简为最简二次根式.【教学难点】准确运用化二次根式为最简二次根式的方法.一、情景导入,初步认知1.什么叫二次根式?使二次根式有意义的条件是什么?2.当a≥0时,a叫什么?当a<0时,a有意义吗?【教学说明】复习上节课的内容,为本节课的教学作铺垫.二、思考探究,获取新知1.计算下列各式,观察计算结果,你发现了什么?2.化简下列二次根式(118(220(372【教学说明】化简二次根式时,可以直接把根号下的每一个平方因子去掉平方号以后移到根号外.(注意:从根号下直接移到根号外的数必须是非负数)3.化简下列二次根式4.观察上面几个二次根式化简的结果,它们有什么特点?【归纳结论】我们把被开方数中不含开方开得尽方的因数(因式),被开方数不含分母的二次根式,叫作最简二次根式.在二次根式的运算中,一般要把最后的结果化为最简二次根式.【教学说明】引导学生计算,观察计算结果,总结规律.三、运用新知,深化理解1.下列二次根式中哪些是最简二次根式?哪些不是?为什么?【分析】判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.,不是最简二次根式.因为解:最简二次根式有1545=⨯=⨯=,45595935被开方数中含能开得尽方的因数9,所以它不是最简二次根式.2.化简216x(x>0)6.化简:7.一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10cm的铁桶中,当铁桶装满水时,玻璃容器中的水面下降了20cm,铁桶的底面边长是多少厘米?【分析】根据倒出的水的体积等于铁桶的体积,列出方程求解即可.解:设正方形铁桶的底面边长为x,则10x2=30×30×20,x2=1800,解得x=302(厘米).答:正方形铁桶的底面边长是302厘米.【教学说明】检测本节课学生对新知识的掌握情况,了解不足,以便查缺补漏,个别辅导.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P160“习题5.1”中第4、5、8 题.学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动.正是在这一教育思想的指导下,促进学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动.互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振.5.2 二次根式的乘法和除法第1课时二次根式的乘法⨯=(a≥0,b≥0).1.使学生掌握二次根式乘法法则a b ab2.使学生掌握2a=a(a≥0),并能加以初步应用以化简二次根式.3.通过猜想,体验探究二次根式的乘法法则,实践应用,巩固法则.4.培养良好的学习习惯,体验成功的喜悦.【教学重点】会利用积的算术平方根的性质及简单的二次根式的乘法运算公式对一些式子进行化简.【教学难点】二次根式中乘法与积的算术平方根的性质的关系及应用.一、情景导入,初步认知一块正方形的木板面积为200cm22=1.414,你能不用计算器以最快的速度求出正方形木板的边长吗?【教学说明】通过实际问题引入新课.二、思考探究,获取新知1.积的算术平方根的性质是什么?a b a b=a≥0,b≥0)··2.试一试:并观察结果,你能发现什么规律?⋅⋅()与;()与14949216251625【教学说明】让学生计算,由学生总结,(1)(2)两式均相等.【教学说明】组织学生计算,验证猜想.让学生自主探究,通过类比得到规律,让学生体验到成功的喜悦,激发学生学习的兴趣.⨯=(a≥0,b≥0),老师【归纳结论】二次根式乘法的运算公式:a b ab应引导学生关注a≥0,b≥0这个条件,若没有这个条件,上述法则不能成立.因a b在实数范围内却没有意义,乘为当a<0,b<0时,虽然ab有意义,而,法法则显然不能成立.3.计算.三、运用新知,深化理解1.教材P161例1、例2.2.下列各式正确的是(D)8.已知正方形A,矩形B,圆C的面积均为628cm2,其中矩形B的长是宽的2倍,如果π取3.14,试比较它们的周长L A,L B,L C解完本题后,你能得到什么启示?解:略.【教学说明】训练学生对待计算题也要认真分析,找出合理快捷的方法解决问题.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P165“习题5.2”中第1、4 题.这一堂课的教学对我的启发很大,好像又回到了初一年级,学生对数的认识是一个很难的问题,很多同学在数的认识中有着很大的欠缺.对根式的认识,特别是对根式的性质的认识总是转换不过来,没有办法只有花上很大的一段时间进行巩固学习,少数同学对负数中的符号问题容易出现错误.今后,应充分给学生训练时间,合理利用学案,让学生把知识掌握好.第2课时二次根式的除法1.会利用二次根式的除法法则进行二次根式的除法运算.2.经历探索二次根式除法以及商的算术平方根的过程,掌握其应用方法.3.培养学生分析问题和逆向思维的能力,体会合作交流的乐趣,感悟数学的应用价值.【教学重点】二次根式除法运算.【教学难点】探索二次根式除法法则.一、情景导入,初步认知1.积的算术平方根的性质是什么?2.二次根式乘法法则是什么?用语言怎样表达?用式子怎样表示?【教学说明】复习旧知,为学习新知做准备.二、思考探究,获取新知1.计算下列各式,观察计算结果,你发现了什么?【教学说明】发现规律,归纳出二次根式的除法公式.三、运用新知,深化理解1.教材P163例4、P164例5、例6.【教学说明】巩固提高.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P165“习题5.2”中第2、3、4 题.这节课原本希望学生能在一节课内就体会到先局部化简再计算起来比较简洁.但这节课并没有实现这个目的,而且没有想到学生竟然给出多种方法.我想应当把这个问题延伸到下一节课,可以在下一节课中把学生的课后作业的解法对比,让学生去体会哪种方法更好,更简洁.不要急于在这一节课中去解决,这一节课只要能用自己的方法解决就可以.5.3二次根式的加法和减法第1课时二次根式的加减运算1.知道二次根式加减运算的步骤,2.会用合并同类二次根式正确进行二次根式的计算.3.经历探究二次根式加减法法则的过程,体会类比的思想方法.4.通过学习二次根式加减法运算培养学生简洁解题的能力,体会数学的简洁美.【教学重点】二次根式的加减法运算.【教学难点】被开方数是分数(式)或含字母的二次根式加减运算.一、情景导入,初步认知1.下列根式中,哪些是最简二次根式?2.计算下列各式:(1)2x+3x (2)3x-2y+y【教学说明】复习整式加减法的内容,为下面探究二次根式加减法的解法做铺垫.二、思考探究,获取新知1.二次根式的加减运算能否依据整式的加减法运算进行?【教学说明】在此过程中,使学生理解掌握二次根式加减法的解法,并体会类比的思想方法.2.如图,是由面积分别为8和18的正方形ABCD和正方形CEGH拼成,求BE的长.3.你能根据上面的计算过程总结二次根式加减法运算的步骤吗?【归纳结论】二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【教学说明】通过例题由浅入深,层层深入,激发学生求知的欲望.在二次根式加减法的整个教学环节中,要及时纠正学生的错误认识.三、运用新知,深化理解1.教材P168例1、例2.2.下列二次根式中,能与127合并的二次根式是(B)7.有一艘船在点O处测得一小岛上的电视塔A在北偏西60°的方向上,船向西航行20海里到达B处,测得电视塔在船的西北方向.问再向西航行多少海里,船离电视塔最近?(结果保留根号)答案:()1031+【教学说明】独立完成,之后相互交流,纠错.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P172“习题5.3”中第1、2 题.将法则的教学与整式的加减比较学习.在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣.巩固本节内容,作业分层布置,使不同层次学生都有发展和提高.通过学习二次根式加减法运算培养学生简洁解题的能力,体会数学的简洁美,通过题目练习,复习同类二次根式的概念,温故而知新.第2课时二次根式的混合运算1.使学生会熟练地进行二次根式的加、减、乘、除混合运算.2.讲练结合,通过例题由浅入深,层层深入,从例题的讲解中帮助学生寻找解题的方法、规律及注意点.3.培养学生进行类比的学习思想和理解运算律的广泛意义.【教学重点】二次根式的混合运算.【教学难点】由整式运算知识迁移到含二次根式的运算.一、情景导入,初步认知1.二次根式有哪些性质?2.已学过的整式的乘法公式和法则有哪些?3.怎样化简二次根式?【教学说明】进一步梳理和巩固已学过的知识,为本节课的教学作准备.二、思考探究,获取新知1.甲、乙两个城市间计划修建一条城际铁路,其中有一段路基的横截面设计为上底宽42m,下底宽62m,高6m的梯形,这段路基长500 m,那么这段路基的土石方大小为多少立方米呢?路基的土石方大小等于路基横截面面积乘以路基的长度,所以,这段路基的土石方为:【教学说明】从上面的解题过程可以看到,二次根式的混合运算是根据实数的运算律进行的.2.计算:【教学说明】引导学生类比实数的运算进行计算.从上面的运算可以看到,二次根式相乘,与多项式的乘法相类似,我们可以利用多项式的乘法公式,对某些二次根式的乘法教学简便运算.三、运用新知,深化理解1. 教材P170例4、P171例5.4.下面的三个大三角形中各有三个小三角形,每个大三角形中的四个数都有规律,请按左、右每个大三角形内填数的规律,在中间的大三角形的中间,填上恰当的数.432【教学说明】学生先做,教师之后挑选部分进行点评.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P172“习题5.3”中第3、4、6题.本节课是二次根式加减的第二节课,它是在二次根式加减的基础上的进一步学习,利用二次根式加减法解决一些实际问题.在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则.2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力.本节课秉着以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.章末复习1.了解二次根式的概念和意义、理解并掌握二次根式的性质和混合运算法则.2.用二次根式的意义和性质进行求取值范围、化简和运算.3.会初步运用二次根式的性质及运算解决简单的实际数学问题.4.经历梳理本章所学内容,形成知识体系,培养学生归纳和概括能力.5.通过本章的复习过程,进一步让学生体会数学知识(二次根式)来源于实际又应用于实际的辩证唯物主义思想.【教学重点】运用二次根式的意义和性质进行求取值范围、化简和运算;梳理整章知识,形成二次根式知识体系.【教学难点】运用分类讨论数学思想解决本节的有关问题,是本节复习课的难点,这就要求学生有严密的数学思维.一、知识结构【教学说明】揭示知识之间的内在联系,将所学的零散的知识连接起来,形成一个完整的知识结构,有助于学生对知识的理解和运用.二、释疑解惑,加深理解1.二次根式的概念:我们把形如a的式子叫作二次根式,根号下的数叫作被开方数.2.二次根式的意义:只有当被开方数是非负实数时,二次根式才在实数范围内有意义.3.二次根式的性质:4.最简二次根式的概念:我们把被开方数中不含开方开得尽方的因数(因式),被开方数不含分母的二次根式,叫作最简二次根式.在二次根式的运算中,一般要把最后结果化为最简二次根式.5.二次根式乘法的运算公式:6.二次根式的除法运算公式:7.二次根式的加减运算方法:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.三、典例精析,复习新知1.下列式子一定是二次根式的是(C)m 有意义,则m能取的最小整数值是(B)2.31A.m=0 B.m=1 C.m=2 D.m=33.下列二次根式中属于最简二次根式的是(A)4.化简:【教学说明】使学生通过二次根式的化简及化简依据的说明,引导学生回忆二次根式的性质.进而让学生明白二次根式的化简的依据和二次根式的计算的依据一样,源自二次根式的性质.四、复习训练,巩固提高【教学说明】进一步加深对知识的理解,体会本节课所涉及的数学思想和数学规律.同时,学会归纳概括和总结,积累学习经验,为今后的学习奠定基础.五、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P174和P175“复习题5”中第4、5、6、8、12题.从整堂课来看,效果比较好,学生从未知到已知,并且进行了消化.整堂课始终把学生摆在第一位,让他们主动去学习.真正把课堂交给学生,让他们变成学习的主体.层层问题给学生提供自主探索的机会,让学生的学习过程成为一个再探索、再发现的过程.在这种学习过程中,学生的创新意识和主动探求知识的兴趣得到了培养,同时使所有学生都能在数学学习中获得发现的乐趣、成功的愉悦,树立了自信心,增强了克服困难的勇气和毅力.当然本节课也有不足之处,在处理某些题的时候没有能注意学生能力的差异,基础比较薄弱的学生可能没有真正的把握.因此通过这节课,我要在以后的教学过程中注意分层作业,让每一个同学都能体验成功的喜悦.31 / 31。

北师大版八年级数学上册:2.7《二次根式》教案2

北师大版八年级数学上册:2.7《二次根式》教案2

北师大版八年级数学上册:2.7《二次根式》教案2一. 教材分析《二次根式》是北师大版八年级数学上册第2章第7节的内容,本节课的主要目的是让学生理解二次根式的概念,掌握二次根式的性质和运算方法。

教材通过引入二次根式,让学生在已有的一次根式知识基础上,进一步拓展对根式的认识。

本节课的内容对于学生来说是一个新的知识点,也是后续学习更高阶根式的基础。

二. 学情分析学生在学习本节课之前,已经学习过一次根式的相关知识,对根式的概念和运算方法有一定的了解。

但二次根式与一次根式在概念和运算上有很大的区别,学生可能需要一定的时间来消化和理解。

此外,学生可能对二次根式的实际应用场景还不够了解,需要在课堂上进行引导和拓展。

三. 教学目标1.理解二次根式的概念,掌握二次根式的性质。

2.学会二次根式的运算方法,能够进行二次根式的化简和计算。

3.能够运用二次根式解决实际问题,提高解决问题的能力。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算方法。

3.二次根式在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题引导学生思考,通过案例让学生理解二次根式的应用,通过小组合作学习法让学生在讨论中巩固知识。

六. 教学准备1.PPT课件。

2.相关案例和练习题。

3.小组合作学习的相关材料。

七. 教学过程导入(5分钟)通过一个实际问题引入二次根式的概念:某立方体体积为8立方厘米,求该立方体的棱长。

解决这个问题需要用到二次根式,从而引出本节课的主题。

呈现(15分钟)1.介绍二次根式的概念,讲解二次根式的性质。

2.通过PPT展示二次根式的各种形式,让学生对二次根式有一个直观的认识。

3.通过案例讲解二次根式的运算方法,让学生学会如何进行二次根式的化简和计算。

操练(10分钟)1.让学生进行一些二次根式的化简和计算练习,巩固所学知识。

2.引导学生发现二次根式运算的规律,提高运算速度和准确性。

巩固(5分钟)通过一些实际问题,让学生运用二次根式进行解决问题,巩固二次根式的应用。

16章 二次根式(教师用书)

16章 二次根式(教师用书)

八下数学第16章二次根式单元测试1班级: 姓名: 成绩:一、选择题(每小题6分,共36分) 1.下列各式成立的是( ) A.2=- B.5=- C.x = D.6=2.如果a 是任意实数,下列各式中一定有意义的是( ) A.B.C.D.3.计算的结果是( )A. 32B. 16C. 8D. 4= ) A. x ≥1- B. x ≤3 C. 1-≤x ≤3 D. 1x -<≤35.有下列算式:(1=(2)= (37=+=;(4)= ) A.(1)和(3) B.(2)和(4) C.(3)和(4) D.(1)和(4) 6.实数a ,b)A. 2b -B. 2a -C. 2()b a -D. 0 二、填空题(每小题6分,共24分)7.写出一个包含对字母x 进行加法、除法和开平方运算的代数式 。

(只要写出一个即可)8.当1x =时,代数式222x x ++的值是 。

9.自由落体的公式为212S gt =(g 为重力加速度,29.8/g m s =)。

若物体下落的高度为88.2m ,则下落的时间是 。

10.先化简再求值:当9a =时,求a 的值。

甲、乙两人的解答如下:甲:原式=(1)1a a a +=+-=; 乙:原式=(1)2117a a a a +=+-=-= 其中, 的解答是错误的,错误的原因是 。

三、解答题(共40分) 11.(12分)计算: (1)(2)-÷(3)2-(4)747a12.(8分)如图,用一个面积为x的正方形和四个相同的长方形拼成一个面积为8x的正方形图案,求长方形的周长。

13.(10+。

(结果保留小数点后两1.414≈1.732≈)14.(10分)a,b分别是6(1)分别写出a,b的值(2)求23a b-的值八下数学第16章二次根式单元测试1参考解答1.D.本题主要考查二次根式的性质2.C.本题主要考查二次根式的概念3.C.本题主要考查二次根式的运算4.D.本题主要考查二次根式的性质5.B.本题主要考查二次根式的运算6.A.本题主要考查二次根式的概念、性质、化简.本题主要考查代数式的概念8..24.本题主要考查二次根式的运算9..本题主要考查二次根式的运算10.甲,忽视二次根式化简的条件.本题主要考查二次根式的性质、化简11.(1)(2)3;(3)37-+(4)20本题主要考查二次根式的运算12..提示:,于是长方形的周长为+-=本题主要考查二次根式的运算13.4.20.+2--+2-=13 1.7321 4.20≈⨯-≈.本题主要考查二次根式的化简、运算,以及乘法法则的运用14.(1)3a=,633b==(2)22333(39(95)5a b-=⨯-=--=.本题主要考查估算、二次根式的运算、乘法公式的运用。

北师大版数学八年级上册7《二次根式》教案5

北师大版数学八年级上册7《二次根式》教案5

北师大版数学八年级上册7《二次根式》教案5一. 教材分析《二次根式》是北师大版数学八年级上册第七章的内容。

本节内容是在学生已经掌握了有理数的乘除法、平方根的基础上进行的。

二次根式是数学中的基本概念,它在几何、物理等领域有广泛的应用。

本节课的主要内容是二次根式的定义、性质和运算规则,旨在培养学生的逻辑思维能力和数学运算能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对平方根的概念和运算有一定的了解。

但二次根式相对于平方根来说,其概念和运算更为复杂,需要学生进行一定的抽象和推理。

因此,在教学过程中,需要关注学生的学习情况,引导学生理解二次根式的本质,掌握其运算规则。

三. 教学目标1.理解二次根式的定义和性质。

2.掌握二次根式的运算规则。

3.能够运用二次根式解决实际问题。

四. 教学重难点1.二次根式的定义和性质。

2.二次根式的运算规则。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探索;通过案例分析,让学生了解二次根式的应用;通过小组合作学习,培养学生的团队协作能力。

六. 教学准备1.PPT课件。

2.相关案例材料。

3.练习题。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如计算物体体积、求解方程等,引导学生思考这些实例与二次根式的关系。

2.呈现(10分钟)介绍二次根式的定义和性质,通过PPT展示相关公式和定理。

让学生初步了解二次根式的基础知识。

3.操练(10分钟)让学生进行一些简单的二次根式运算,如化简、求值等。

教师在这个过程中要注意引导学生掌握运算规则,并及时解答学生的问题。

4.巩固(10分钟)让学生运用二次根式解决一些实际问题,如计算物体体积、求解方程等。

教师在这个过程中要注意引导学生将所学知识运用到实际问题中,提高学生的解决问题的能力。

5.拓展(10分钟)让学生探讨二次根式在实际生活中的应用,如物理、化学等领域。

教师在这个过程中要注意引导学生思考和探索,培养学生的创新能力。

北师大版数学八年级上册7《二次根式》说课稿3

北师大版数学八年级上册7《二次根式》说课稿3

北师大版数学八年级上册7《二次根式》说课稿3一. 教材分析北师大版数学八年级上册7《二次根式》是初中数学的重要内容,它既是对实数系统的完善,也是进一步学习代数、几何等知识的基础。

本节课主要介绍二次根式的概念、性质和运算。

通过学习,学生能够理解二次根式的实际意义,掌握二次根式的基本性质,提高解决实际问题的能力。

二. 学情分析八年级的学生已经掌握了实数的基本概念,具有一定的代数基础。

他们对实数的认识有助于理解二次根式。

然而,学生对二次根式的理解可能仍停留在表面,对其内在联系和应用可能不够深入。

因此,在教学过程中,需要关注学生的认知水平,引导学生深入理解二次根式。

三. 说教学目标1.知识与技能:学生能够理解二次根式的概念,掌握二次根式的性质,学会进行二次根式的运算。

2.过程与方法:通过观察、思考、交流,学生能够发现二次根式的性质,提高分析问题和解决问题的能力。

3.情感态度与价值观:学生能够体验数学与实际生活的联系,培养学习数学的兴趣和自信心。

四. 说教学重难点1.重点:二次根式的概念、性质和运算。

2.难点:二次根式的性质的发现和证明,二次根式在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动、合作学习、探究发现的教学方法,引导学生主动参与,培养学生的思维能力和创新能力。

2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学,提高教学效果。

六. 说教学过程1.导入:通过实际问题引入二次根式的概念,激发学生的兴趣。

2.新课导入:介绍二次根式的概念,引导学生探究二次根式的性质。

3.例题讲解:通过典型例题,讲解二次根式的运算方法。

4.实践环节:学生自主探究,发现二次根式的性质。

5.应用拓展:结合实际问题,引导学生运用二次根式解决实际问题。

6.总结:对本节课的内容进行总结,强调二次根式的概念、性质和运算。

7.作业布置:布置巩固二次根式的练习题,提高学生的应用能力。

七. 说板书设计板书设计要清晰、简洁,能够突出二次根式的关键信息。

沪科版数学八年级下册16.1《二次根式》教学设计1

沪科版数学八年级下册16.1《二次根式》教学设计1

沪科版数学八年级下册16.1《二次根式》教学设计1一. 教材分析《二次根式》是沪科版数学八年级下册第16章的第一节内容。

本节内容主要介绍二次根式的概念、性质和运算。

二次根式在数学中占有重要的地位,它是学习更高阶数学的基础。

本节内容的教学目标是使学生理解二次根式的概念,掌握二次根式的性质,能进行二次根式的运算。

二. 学情分析学生在学习本节内容前,已经学习了实数、有理数、无理数等基础知识,对数学中的运算有一定的理解。

但二次根式作为一个新的概念,对学生来说还是较为抽象,需要通过实例和练习来理解和掌握。

三. 教学目标1.了解二次根式的概念,能正确识别二次根式。

2.掌握二次根式的性质,能进行二次根式的运算。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算方法。

五. 教学方法1.采用实例教学法,通过具体的例子来引导学生理解和掌握二次根式的概念和性质。

2.采用归纳法,让学生通过自主探究和合作交流,总结出二次根式的性质和运算方法。

3.采用练习法,通过大量的练习来巩固学生的知识和提高解题能力。

六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。

2.准备教学工具,如黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)通过一个实际问题引入二次根式的概念,如“一个正方形的对角线长为8,求正方形的面积。

”让学生思考如何解决这个问题,从而引出二次根式。

2.呈现(10分钟)讲解二次根式的概念和性质,通过PPT展示相关的例子和性质,让学生理解和掌握二次根式。

3.操练(10分钟)让学生进行二次根式的运算练习,如化简二次根式、求二次根式的值等。

教师及时批改和讲解,帮助学生掌握二次根式的运算方法。

4.巩固(10分钟)通过一些综合性的练习题,让学生运用所学的知识和方法解决问题,巩固二次根式的理解和运用。

5.拓展(10分钟)讲解二次根式的一些应用,如在几何、物理等学科中的应用,让学生了解二次根式的实际意义和价值。

二次根式(说课稿)

二次根式(说课稿)

《二次根式》说课稿一、说教材1、说课内容义务教育课程标准实验教材书数学八年级下册(人民教育出版社)第十六章二次根式第一、二节二次根式及乘除运算2、教材的地位及作用“二次根式”是《课程标准》“数与代数”的重要内容。

本章是在实数的基础上,进一步研究二次根式的概念,性质,和运算。

本章内容与已学内容“实数”“整式的计算与因式分解”联系紧密,同时也是为下一章节要学习的“勾股定理”以后将要学习的“一元二次方程”和“二次函数”“锐角三角函数”等内容的重要基础。

第一部分研究了二次根式的概念和性质。

它是学习本章的关键,它也是学习二次根式的化简和运算的依据,第二部分是二次根式的乘除运算,是二次根式运算的基础,同时也是对分式乘除运算的复习和巩固。

3、教学目标我所教的学生是八年级中等水平的学生。

根据学生的学习特点和心理水平,本节课可确定如下教学目标:(1)知识技能:使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围;了解二次根式的乘除法运算法则,能进行乘除法的混合运算;并能进行二次根式的化简;(2)数学思考:使学生理解二次根式被开方数的取值范围的重要性及乘除运算的特点及规律;(3)解决问题:培养学生根据条件处理问题的能力及分类讨论问题的能力,还有做题的准确率;(4)情感态度:通过简便有效的教学方式,是学生更好的接受本周所学的知识点,并喜欢上我的数学课;4、教学重点难点(1)教学重点:二次根式中被开方数的取值范围,及乘除运算(2)教学难点:二次根式的取值范围及运算二、说教法教学活动的本质是一种合作,一种交流。

所以,在教学过程中以问答及引导为主。

学生在学校已经学习了这部分的内容,所以在教学过程中分三步走:第一步:问答;第二步:各个知识点逐一突破;第三步:综合训练考查学生对各知识点的掌握及灵活运用的能力;说学法在教学中,学生是学习的主体。

要让学生成为真正的主人,在一节课中获得更多的知识及做题技巧。

北师大版数学八年级上册7《二次根式》教案3

北师大版数学八年级上册7《二次根式》教案3

北师大版数学八年级上册7《二次根式》教案3一. 教材分析《二次根式》是北师大版数学八年级上册第七章的内容,本节内容主要介绍二次根式的概念、性质和运算。

二次根式在数学中具有重要地位,是学习更高级数学的基础。

通过本节内容的学习,使学生了解二次根式的相关概念,掌握二次根式的性质和运算方法,培养学生解决实际问题的能力。

二. 学情分析学生在学习本节内容前,已掌握实数、有理数、无理数等相关知识,具备一定的数学基础。

但二次根式较为抽象,学生对其概念和性质的理解可能存在一定的困难。

因此,在教学过程中,要注重引导学生从实际问题中抽象出二次根式的概念,并通过实例分析,使学生掌握二次根式的性质和运算方法。

三. 教学目标1.了解二次根式的概念,掌握二次根式的性质。

2.学会二次根式的运算方法,能够熟练进行二次根式的计算。

3.培养学生的抽象思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.二次根式的概念及其性质。

2.二次根式的运算方法。

五. 教学方法采用启发式教学法、实例教学法和小组合作学习法。

通过实际问题引入二次根式的概念,引导学生自主探索二次根式的性质和运算方法,学生进行小组讨论,培养学生的合作意识和团队精神。

六. 教学准备1.准备相关实际问题,用于导入二次根式的概念。

2.准备PPT课件,展示二次根式的性质和运算方法。

3.准备练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题引入二次根式的概念。

例如:已知一根木料的长度为5√3米,问这根木料可以锯成多少段长度相等的木条?引导学生从实际问题中抽象出二次根式的概念。

2.呈现(10分钟)利用PPT课件,呈现二次根式的性质和运算方法。

通过实例分析,使学生掌握二次根式的性质,如:二次根式具有非负性、同类二次根式可以合并等。

同时,介绍二次根式的运算方法,如:二次根式的乘法、除法、乘方等。

3.操练(10分钟)学生进行小组合作学习,让学生互相练习二次根式的运算。

2017-2018学年北师大版八年级数学上册教师用书(pdf版):2.7二次根式

2017-2018学年北师大版八年级数学上册教师用书(pdf版):2.7二次根式

㊀ 分析:利用 ab =
a ������ b ( a ȡ0ꎬ b ȡ0 ) 和
( aȡ0ꎬb > 0 ) 可以把二次根式化简ꎬ 被开方数较大的时 带分数化简时先要化为假分数. ㊀ 解:( 1) 原式 = 6 2 ꎻ( 2) 原式 = 20ꎻ( 3) 原式 = 归纳:
8 4b 2 ꎻ( 4) 原式 = . 7 3a
4. (1) 已知 y = (2) 已知
x-2 +
18n 是整数ꎬ则最小正整数 n = ㊀ 2㊀ .
9. 化简下列各式: (1)
8.x 是怎样的数时ꎬ下列各式有意义? (1) x 2 + 1 ꎻ (3) (5) -x ꎻ ( x - 1) (2 - x) ꎻ (2) (4) (6)
三. 解答题
棱长为㊀
2 ㊀ dm.
2. 下列各式中属于最简二次根式的是 3. 化简: (1) (3) A. x 2 + 1 B. x 2 y 5 12
3 且 xʂ -1ꎻ( 3) x = 3ꎻ( 4) xɤ2 且 xʂ1. 2
数ꎻ②分母不能为 0ꎻ③0 次方或负指数的底数不能为 0ꎻ
二次根式的化简 ʌ 例 3ɔ 化简下列各式: ㊀ (1) ㊀ (3) 72 ꎻ 1 15 ꎻ 49 (2) (4) ( - 16) ˑ ( - 25) ꎻ 16b 4 9a 2 . a a = b b

号内为非 负 数 的 根 式 即 可ꎬ 从 而㊀ 判定一个代数式是否是二次根式ꎬ 只需比对定义ꎬ 抓 住两个要点:一是二次根号ꎻ二是被开方数非负. 确定字母取值范围 ʌ 例 2ɔ 填空: ㊀ (1) 当 ㊀ ㊀ ㊀ ㊀ ꎻ
3 - x 在实数范围内有意义时ꎬ x 的取值范围为
知识目标 思维目标 重㊁难点

北师大版八年级数学上册:2.7《二次根式》教案

北师大版八年级数学上册:2.7《二次根式》教案

北师大版八年级数学上册:2.7《二次根式》教案一. 教材分析《二次根式》是北师大版八年级数学上册第2章第7节的内容,本节主要让学生了解二次根式的概念、性质和运算。

二次根式在数学中占有重要地位,是学习更高阶数学的基础。

通过学习二次根式,学生可以更好地理解数学的本质和内在联系。

二. 学情分析学生在学习本节内容前,已经掌握了实数、有理数、无理数等基础知识,具备一定的代数运算能力。

但二次根式作为一种新的数学概念,对学生来说较为抽象,需要通过实例和练习来逐步理解和掌握。

三. 教学目标1.让学生了解二次根式的概念和性质。

2.培养学生运用二次根式进行代数运算的能力。

3.提高学生分析问题、解决问题的能力。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算方法。

五. 教学方法采用情境教学法、启发式教学法和小组合作学习法,引导学生主动探索、发现和总结二次根式的性质和运算方法。

六. 教学准备1.PPT课件。

2.相关练习题。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如物理中的速度、面积等问题,引导学生思考如何用数学知识来解决这些问题。

从而引入二次根式的概念。

2.呈现(15分钟)通过PPT展示二次根式的定义和性质,让学生初步了解二次根式。

同时,给出一些例子,让学生观察和总结二次根式的特点。

3.操练(15分钟)让学生进行一些二次根式的运算练习,巩固所学知识。

教师可引导学生运用二次根式解决实际问题,提高学生的应用能力。

4.巩固(10分钟)通过一些填空题、选择题等,检查学生对二次根式的掌握程度。

教师可适时给予解答和指导。

5.拓展(10分钟)引导学生思考二次根式在实际问题中的应用,如几何中的面积、体积等问题。

同时,可引导学生探讨二次根式与其他数学知识之间的联系,如函数、方程等。

6.小结(5分钟)教师引导学生总结本节课所学内容,让学生明确二次根式的概念、性质和运算方法。

7.家庭作业(5分钟)布置一些有关二次根式的练习题,让学生巩固所学知识。

最新人教版数学八年级下册第16章《二次根式》全章教学案含解析

最新人教版数学八年级下册第16章《二次根式》全章教学案含解析

人教版数学八下第16章《二次根式》全章教案含解析第十六章二次根式1.理解二次根式的概念.2.理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).3.掌握²=(a≥0,b≥0),=²(a≥0,b≥0),=(a≥0,b>0),=(a≥0,b>0).4.了解最简二次根式的概念,并能灵活运用其对二次根式进行加减.1.通过先提出问题,让学生探讨、分析问题,师生共同归纳得出概念,再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.2.让学生用具体数据探究规律,采用不完全归纳法得出二次根式的乘(除)法法则,并运用法则进行计算.3.让学生利用逆向思维,得出二次根式的乘(除)法法则的逆向等式,并运用它们进行化简.4.通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,让学生对被开方数相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.1.培养学生利用二次根式的性质和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.2.经过探索二次根式的重要结论和二次根式的乘除法法则,发展学生观察、分析、发现问题的能力.二次根式是新课标中数与代数领域的重要内容,它是在前面平方根、立方根的基础上进行学习的,是对代数式及实数等内容的延伸与补充.同时,也是后继学习勾股定理、一元二次方程的求根公式及三角形的边角关系等内容的学习基础.因此,本章的相关知识对于整个初中阶段学习数与代数有着承前启后的重要意义.本章内容分为三节,第一节主要学习二次根式的概念和性质;第二节是二次根式的乘法和除法运算,主要研究二次根式的乘除法运算法则和二次根式的化简;第三节是二次根式的加法和减法运算,主要研究二次根式的加减法运算法则和二次根式的化简.【重点】1.对(a≥0)是一个非负数的理解和对()2=a(a≥0),=a(a≥0)的理解及应用.2.二次根式乘除法的法则及其运用.3.最简二次根式的概念.4.二次根式的加减运算.【难点】1.对(a≥0)是一个非负数的理解和对等式()2=a(a≥0),=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.1.通过前面的学习,我们已经知道了平方根、立方根的概念和求法,实数的有关概念和运算,对数的认识已经由有理数的范围扩大到实数范围,并对实数的运算性质和运算法则有了初步的感受.因此,本章应充分注意与已有经验的联系.同时,本章内容与整式也有着密切的联系.由于数式通性,当将二次根式中的实数看成字母时,二次根式的运算实际上就是整式的运算,所以整式的运算法则和公式在二次根式的运算中仍然适用.因此本章强调了与整式相关内容的联系.2.对于一些重要结论,要注意经历观察、思考、讨论等探究活动归纳得出结论的过程.例如,对于二次根式的乘法法则,首先利用二次根式的概念和性质进行具体的计算,并观察所得结果发现二次根式相乘与积的算术平方根之间的关系,并利用发现的规律进行计算,再归纳得出二次根式的乘法运算法则.这个过程实际上就是反映了一个由特殊到一般的认识过程.要通过这样的探究活动来发展我们的思维能力,有效改变学生的学习方式.3.熟练掌握二次根式的概念和运算需要一定的训练,可以适当增加练习,以便较好地理解二次根式的意义,较好地掌握二次根式的性质和运算,为后续学习打下良好的基础.单元概括整合1课时16.1二次根式1.了解二次根式的概念,理解二次根式有意义的条件.2.掌握二次根式的性质,并能将二次根式的性质运用于化简.3.了解最简二次根式的概念,会判断一个二次根式是不是最简二次根式.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】会求二次根式中字母的取值范围,理解和掌握二次根式的性质,熟练化简二次根式.【难点】运用二次根式的双重非负性解决问题,二次根式性质的综合运用.第课时使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】了解二次根式的概念,理解二次根式有意义的条件.【难点】会求二次根式中字母的取值范围.【教师准备】教学所需的习题资料.【学生准备】复习平方根和立方根的有关知识.导入一:唐僧师徒在万寿山五庄观做客.猪八戒来到后花园,看见人参果树上结满了人参果,嘴馋得直流口水.正准备伸手摘时,突然一道金光,在同一个枝头上一大一小的两个果子同时掉了下来,噗的一声同时着地.有爱好数学的电视迷算了人参果下落的时间t与h之间的关系式为t=,你觉得他算的正确吗?要解决这个问题,我们得从二次根式说起.[设计意图]将数学问题融入到学生喜爱的神话故事中,激发学生学习的兴趣,拉近了数学与学生的距离,为探究本节课奠定了基础.导入二:1.教师出示复习题:(1)4的平方根是;0的平方根是;-16的平方根是.(2)5的平方根是;5的算术平方根是.学生口答:(1)4的平方根是±2;0的平方根是0;-16没有平方根.(2)5的平方根是±;5的算术平方根是.2.教师出示教材第2页“思考”题:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为3的正方形的边长为,面积为S的正方形的边长为.(2)一个长方形的围栏,长是宽的2倍,面积为130m2,则它的宽为m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,那么t为.学生思考后回答,教师补充得出答案:(1),;(2);(3).[设计意图]以回顾练习和思考的形式引导学生回忆,巩固所学知识,并引入新课.1.二次根式的概念子表示的非负数)的算术平方根.讨论:你能用一个式子表示一个非负数的算术平方根吗?学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.追问:在二次根式的概念中,为什么要强调“a≥0”?教师引导学生举出例子说明,经过讨论知道二次根式被开方数必须是非负数.[设计意图]让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性,再让学生体会由特殊到一般的过程,培养学生的概括能力,最后通过讨论二次根式中被开方数a≥0,进一步加深学生对二次根式被开方数必须是非负数的理解.思路二像,,,这样的式子有什么共同特点呢?学生观察,交流发现:一是从形式上看,都含有二次根号;二是被开方数的取值范围有限制:被开方数必须是非负数.教师进一步明确:形如(a≥0)的式子叫做二次根式.引导学生说一说对二次根式的认识:(1)表示a的算术平方根;(2)a可以是数,也可以是代数式;(3)从形式上看,含有二次根号;(4)a≥0,≥0.[设计意图]加深对二次根式的理解,进一步明确二次根式的非负性.下列各式中,哪些是二次根式?并指出二次根式中的被开方数,,,(x≥3),(y>-1),,,(xy>0).引导学生观察根指数和被开方数分析发现:显然不是二次根式(因为它的根指数是4,含有四次根号),其余式子都含有二次根号,关键看根号下的被开方数是否为非负数.若根号下是负数,则二次根式没有意义.解:,(x≥3),,(xy>0)是二次根式.其中被开方数依次是7,x-3,(x+1)2,.[解题策略]①当被开方数形式是含有字母的代数式时,可以把这个代数式看成一个整体.如的被开方数是x2+2015.②当被开方数形式比较复杂时,可以将这个被开方数适当化简.如,因为(-3)2-7=9-7=2,所以它的被开方数其实就是2.【变式训练】下列各式中,一定是二次根式的是()A. B.C. D.(其中a<0)〔解析〕的被开方数-9<0,的被开方数m-1可能是负数,的根指数是3,所以选项A,B,C 中的式子都不是二次根式.含有二次根号,并且无论a取什么负数,被开方数a2+8都是正数,所以一定是二次根式.故选D.(教材例1)当x是怎样的实数时,在实数范围内有意义?引导学生从概念出发进行思考:二次根式的被开方数为非负数,则x-2≥0.解:由x-2≥0,得x≥2.当x≥2时,在实数范围内有意义.【变式训练】若式子1+有意义,则x的取值范围是.〔解析〕根据二次根式的性质可知:x+1≥0,即x≥-1;又因为分式的分母不能为0,所以x的取值范围是x≥-1且x≠0.故填x≥-1且x≠0.[易错分析]容易产生只考虑到x+1≥0,而忽略了x≠0的错误.[设计意图]通过变式训练,加深学生对二次根式被开方数为非负数的理解,提高学生对所学知识的迁移能力和应用意识.[知识拓展](1)二次根式的定义是从代数式的结果和形式上界定的,必须含有二次根号“”,如,都是二次根式,而就不是二次根式了.(2)在二次根式中,被开方数可以是具体的数,也可以是含有字母的单项式、多项式、分式等代数式.(3)形如b(a≥0)的式子也是二次根式,其表示的是b与的乘积,如3表示3³,-表示-³,但是不能写成3的形式.(4)当a≥0时,表示a的算术平方根.也就是说,有意义的条件是a≥0.(5)当a是非负数时,(其中a≥0)本身也是一个非负数.1.已知下列各式:,(a≥2),,,其中二次根式的个数是()A.1个B.2个C.3个D.4个解析:的被开方数不是非负数,所以不是二次根式,其余3个都是二次根式.故选C.2.(2014²南通中考)若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥-C.x>D.x≠解析:是二次根式,因此2x-1≥0,在分母上,因此≠0.则解得x>.故选C.3.当x=时,二次根式有最小值,其最小值是.解析:∵二次根式有意义,∴x+3≥0,即x+3的最小值是0,∴x+3=0,解得x=-3.答案:-304.求下列各式中字母a的取值范围:(1);(2);(3);(4).解:(1)由a+1≥0,得a≥-1.∴字母a的取值范围是大于或等于-1的实数. (2)由>0,得1-2a>0,即a<.∴字母a的取值范围是小于的实数. (3)因为无论a取何值,都有(a-3)2≥0,所以字母a的取值范围是全体实数. (4)因为无论a取何值,都有|a|+1>0,所以字母a的取值范围是全体实数.第1课时1.二次根式的概念2.例题讲解例1例2一、教材作业【必做题】教材第3页练习第1,2题;教材第5页习题16.1第1题.【选做题】教材第5页习题16.1第7题.二、课后作业【基础巩固】1.若是二次根式,则下列结论正确的是()A.x≥0,y≥0B.x>0,y>0C.x,y同号D.≥02.已知实数x,y,m满足+=0,且y为负数,则m的取值范围是()A.m>6B.m<6C.m>-6D.m<-63.如果式子+有意义,那么在直角坐标系中点A(a,b)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2015²遵义中考)使二次根式有意义的x的取值范围是.【能力提升】5.当x 时,+在实数范围内有意义.6.(2015²攀枝花中考)若y=++2,则x y=.7.已知x,y为实数,且满足-(y-1)=0,求x2016-y2016的值.8.已知实数a满足+=a,求a-20142的值.【拓展探究】9.若x,y,n满足关系式+=²,试确定m的值.【答案与解析】1.D(解析:依题意得≥0,即≥0.故选D.)2.A(解析:根据题意,结合非负数的性质,得=0,=0,所以解得因为y是负数,所以6-m<0.解得m>6.故选A.)3.A(解析:根据二次根式有意义的条件,易得a>0,b>0.故选A.)4.x≥(解析:要使二次根式有意义,则需满足5x-2≥0,∴x≥.)5.≥-且x≠-1(解析:要使+在实数范围内有意义,必须同时满足的被开方数2x+3≥0和的分母x+1≠0,即由①得x≥-,由②得x≠-1.∴当x≥-且x≠-1时,+在实数范围内有意义.)6.9(解析:由题意得x-3≥0,3-x≥0,得x=3,故y=2,∴x y=9.)7.解:∵-(y-1)=0,∴+(1-y)=0.∴x+1=0,1-y=0.解得x=-1,y=1.∴x2016-y2016=(-1)2016-12016=1-1=0.8.解:由a-2015≥0,得a≥2015,故已知式子可化为a-2014+=a.∴=2014.两边平方并整理,得a-20142=2015.9.解:由等式的右边,根据二次根式有意义的条件得x-2013+y≥0且2013-x-y≥0,得x+y≥2013且x+y≤2013,所以x+y=2013.所以+=0.所以①-②,得x+2y=2.又x+y=2013,两式相加,得2x+3y=2015.所以m=2015.我们经常说过程比结果更重要.我对整节课的设计力求符合学生的认知特点,想方设法创设生动活泼的教学情境,使学生始终处在好奇、好学的高亢的学习情绪当中,同时,整节课努力做到先有框架,中有深化,后有突破.学生学有情趣,学有所获,并由衷感到:学习是快乐的事,学会了更是幸福的事.在教学中,我适当增加了有拓展性的练习,层层递进,想使不同的学生得到不同程度的发展和提高,但受到教材中练习题的局限,就当a是非负数时,本身也是一个非负数的练习没有落实到位.根据教学时间多少调整例题教学,适当增加对二次根式非负性的例题的讲解,注重变式练习,以加深对二次根式具有双重非负性的理解.练习(教材第3页)1.解:设长方形的长和宽分别为3a cm,2a cm.由题意,得3a²2a=18,∴a2=3,a=(舍去a=-),∴3a=3,2a=2.故长方形的长取3cm,宽取2cm.2.解:(1)当a-1≥0,即a≥1时,有意义. (2)当2a+3≥0,即a≥-时,有意义. (3)当-a≥0,即a≤0时,有意义. (4)当5-a≥0时,即a≤5时,有意义.若x,y为实数,且满足y=+-3,求x+2y的值.〔解析〕根据二次根式的被开方数不小于0,求得x,y的值,然后将其代入所求的代数式并计算.解:由二次根式有意义的条件得即x2-4=0,所以x=±2.当x=±2时,y=-3.①当x=2,y=-3时,x+2y=2+2³(-3)=-4;②当x=-2,y=-3时,x+2y=-2+2³(-3)=-8.所以x+2y的值是-4或-8.[解题策略]根据已知得出并得到x=±2是解决本题的关键.已知(3a-6)2+=0,求b a的值.〔解析〕根据非负数的性质:若两个非负数的和为0,则这两个非负数的值都为0,解出a,b的值,再代入原式中计算.解:因为(3a-6)2与都是非负数,且它们的和为0,所以3a-6=0,b-3=0,即a=2,b=3.此时b a=32=9.[解题策略]本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们的和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类问题.第课时1.理解()2=a(a≥0)和=a(a≥0),并利用它们进行计算和化简.2.用具体数据结合算术平方根的意义推出()2=a(a≥0)和探究=a(a≥0),会用这个结论解决具体问题.3.了解代数式的概念.在明确()2=a(a≥0)和=a(a≥0)的算理的过程中,感受数学的实用性.通过运用二次根式的性质化简的相关计算,解决一些实际问题,培养学生解决问题的能力.【重点】掌握二次根式的性质,并能将二次根式的性质运用于化简.【难点】能运用二次根式的性质化简.【教师准备】教学所需的习题资料.【学生准备】自学教材第3~4页的内容.导入一:教师出示问题:先化简再求值:当a=9时,求a+值,甲、乙两人的解答如下:甲的解答为:原式=a+=a+(1-a)=a+1-a=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17.两种解答中,谁的解答是错误的呢?本节课,我们一起来学习二次根式的性质,然后就可以解决上面的问题了.[设计意图]以问题设疑,发挥问题导向作用,激发学生的求知欲,为本节课学习打下基础.导入二:1.什么叫二次根式?2.当a≥0时,叫什么?当a<0时,有意义吗?学生口答,老师点评.通过前面的学习,我们知道了二次根式具有双重非负性.今天我们主要学习一些二次根式的其他性质.[设计意图]复习旧知导入新知,让本节课自然过渡,为本节课学习奠定了基础.思路一2()2,()2,,()2.学生口述,教师根据情况评价.()2表示4的算术平方根的平方;()2表示2的算术平方根的平方;表示的算术平方根的平方;()2表示0的算术平方根的平方.追问:根据算术平方根的意义填空,并说出得到结论的依据.()2=;()2=;=;()2=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.教师引导学生说出每一个式子的含义.是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.是2的算术平方根,根据算术平方根的意义,是一个平方等于2的非负数,因此有()2=2. 是的算术平方根,根据算术平方根的意义,是一个平方等于的非负数,因此有=.表示0的算术平方根,因此有()2=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出二次根式的性质:一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).(教材例2)计算:(1)()2;(2)(2)2.学生独立完成,两名学生板演,再集体订正.〔解析〕(1)直接运用()2=a(a≥0)化简即可.(2)运用幂的性质(ab)2=a2b2.解:(1)()2=1.5.(2)(2)2=22³()2=4³5=20.[解题策略]把底数看成根号外因数与二次根式的积,按照积的乘方计算即可.【变式训练】计算:(-2)2.〔解析〕把原式的底数看成是-2与的积,先利用(mn)2=m2n2,再根据()2=a(a≥0)化简.解:(-2)2=(-2)2()2=4³3=12.[知识拓展]形如(x)2的关于二次根式的运算可结合(ab)2=a2b2得到(x)2=x2a.[设计意图]让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力,并通过例题和变式训练及时巩固二次根式的性质1,学会灵活运用.2二次根式的性质2:=(≥0),,,.教师引导学生说出每一个式子的含义.表示2的平方的算术平方根;表示0.1的平方的算术平方根;表示的平方的算术平方根;表示0的平方的算术平方根.追问:根据算术平方根的意义填空,并说出得到结论的依据.=;=;=;=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.∵4=22,∴=2,因此=2;∵0.01=0.12,∴=0.1,因此=0.1;∵=,∴=,因此=;∵0=02,∴=0,因此=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出:一个非负数的平方的算术平方根等于这个数.即=a(a≥0).(教材例3)化简:(1);(2).引导学生根据=a(a≥0)进行分析:(1)因为16=42,所以=,再计算即可得出结果.(2)因为(-5)2=52,所以=.学生独立完成,集体订正.解:(1)==4.(2)==5.[知识拓展](1)中的a的取值范围可以是任意实数,即不论a取何值,一定有意义.(2)化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即=a(a≥0);若a是负数,则等于a的相反数-a,即=-a(a<0).小组讨论:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出: ()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|=[设计意图]让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力,并通过例题练习及时巩固二次根式的性质2.思路二请同学们阅读和自学课本第3~4页的内容,并思考下面的问题:1.(1)填空:()2=;()2=;=;()2=;=;()2=. (2)猜想当a≥0时,()2=.2.(1)观察下列各式的特点,找出各式的共同规律,并用表达式表示你发现的规律.==;==;==;==;….通过观察,你得到的结论是什么?试着说一说.(2)发现:当a≥0时,=,当a<0时,=.学生用充足的时间学习后,交流学习情况,教师分析并讲解.1.(1)根据算术平方根与乘方运算的关系,得=2,所以()2=22=4;=4,所以()2=42=16;=,所以==.根据以上规律,可以得出()2=2;=;()2=0.(2)从第(1)问可以发现,一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).2.先计算==2;==2;==3;==3;….可以看出:一个正数的平方的算术平方根等于这个数,一个负数的平方的算术平方根等于这个数的相反数.于是当a≥0时,=a,当a<0时,=-a.归纳并板书:二次根式的性质:1.()2=a(a≥0);2.=a(a≥0).提问:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出: ()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|=[设计意图]在计算的基础上,引导学生观察、猜想、归纳得出二次根式的两个性质,并从式子的意义和结果进行比较,得出二者之间的关系.3.代数式提问:回顾我们学过的式子,如a+b,-ab,,-x3,,(a≥0),这些式子有哪些共同特征?学生概括式子的共同特征,得出代数式的概念.这些式子都是用基本运算符号把数或表示数的字母连接起来的式子,我们称这样的式子为代数式.学生举出一些例子,并书写,教师针对学生书写出现问题的地方进行指导.[设计意图]学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.4.例题讲解(补充)计算:(-5)2,,-.〔解析〕利用()2=a(a≥0)和=a(a≥0)化简,注意被开方数的符号.解:(-5)2=(-5)2³()2=25³2=50.==.-=-=-.(补充)比较2与3的大小.〔解析〕直接比较这两个二次根式的大小不太容易,由于这两个二次根式平方后得到两个有理数,因此可以通过比较这两个二次根式平方的大小来比较它们的大小.解:∵(2)2=22³()2=44,(3)2=32³()2=45,又∵44<45,且2>0,3>0,∴2<3.母也是代数式式1.计算的结果是()A.-3B.3C.-9D.9解析:==3.故选B.2.下列各式:①m2-3;②(a>0);③a-1=6;④3x-5>0;⑤;⑥66.其中代数式的个数是()A.2个B.3个C.4个D.5个解析:③a-1=6是方程,不是代数式;④3x-5>0是一元一次不等式,也不是代数式;其余都是代数式.故选C.3. +的值是.解析:+=2+2=4.故填4.4.(1)当x 时,=2-x成立;(2)计算=.解析:(1)当x-2≤0时,=2-x,所以x≤2;(2)因为3<π,所以3-π<0,因此=π-3.答案:(1)≤2(2)π-35.计算:(1);(2)(2)2;(3);(4)(-)2.解:(1)=0.9. (2)(2)2=22³()2=12. (3)=(-2)2³=2.(4)(-)2=(-1)2³()2=15.第2课时1.二次根式的性质1:()2=a(a≥0)例12.二次根式的性质2:=a(a≥0)例23.代数式4.例题讲解例3例4一、教材作业【必做题】教材第4页练习第1,2题;教材第5页习题16.1第2,3,4,5,6题.【选做题】教材第5页习题16.1第7,8,9,10题.二、课后作业【基础巩固】1.已知二次根式的值为3,那么x的值是()A.3B.9C.-3D.3或-32.若=1-2a,则()A.a<B.a≤C.a>D.a≥3.(2015²杭州中考)若k<<k+1(k是整数),则k等于()A.6B.7C.8D.94.实数a,b在数轴上的位置如图所示,则化简-|a+b|的结果为()A.2a+bB.-2a+bC.bD.2a-b【能力提升】5.若是一个正整数,则正整数m的最小值是.6.在实数范围内分解因式:(1)x2-3=;(2)n5-6n+9n=.7.列出下列代数式:(1)面积为3的圆的半径;(2)面积为S且两条邻边之比为3∶5的长方形的长、宽.8.计算:(1);(2)(3)2;(3);(4)-;(5).9.先化简,再求值:-,其中x=6.【拓展探究】10.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答是:+=+=+-a=-a=;乙的解答是:+=+=+a-=a=.谁的解答是错误的?为什么?【答案与解析】1.D(解析:根据题意得x2=9,解得x=±3.故选D.)2.B(解析:由已知得2a-1≤0,解得a≤.故选B.)3.D(解析:本题主要考查了算术平方根的化简及算术平方根的估算,而<<,即9<<10,所以k=9.)4.C(解析:观察图可知a<0,b>0,且|a|>|b|,那么可知a+b<0,再结合二次根式、绝对值的性质进行化简计算.原式=-a-[-(a+b)]=-a+a+b=b.故选C.)5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22³5,所以正整数m 的最小值为5.)6.(1)(x+)(x-)(2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)7.解:(1). (2)宽:3;长:5.8.解:(1)=. (2)(3)2=32³()2=18. (3)=(-2)2³=. (4)-=-=-3π. (5)==.9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.解:乙的解答是错误的.因为当a=时,=5,a-<0,所以≠a-,而应是=-a.本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.练习(教材第4页)1.解:(1)()2=3. (2)(3)2=32³()2=9³2=18.2.解:(1)=0.3. (2)=. (3)-=-π. (4)=10-1=.习题16.1(教材第5页)1.解:(1)欲使有意义,则必有a+2≥0,∴a≥-2,∴当a≥-2时,有意义. (2)欲使有意义,则必有3-a≥0,∴a≤3,∴当a≤3时,有意义. (3)欲使有意义,则必有5a≥0,∴a≥0,∴当a ≥0时,有意义. (4)欲使有意义,则必有2a+1≥0,∴a≥-,∴当a≥-时,有意义.。

北师大版八年级数学上册:2.7《二次根式》教学设计

北师大版八年级数学上册:2.7《二次根式》教学设计

北师大版八年级数学上册:2.7《二次根式》教学设计一. 教材分析《二次根式》是北师大版八年级数学上册第2章第7节的内容,本节内容是在学生已经掌握了实数、有理数、无理数等知识的基础上进行学习的。

二次根式是数学中的重要概念,它不仅在日常生活中有广泛的应用,而且是学习高中数学的基础。

本节课的主要内容是让学生了解二次根式的概念,学会化简二次根式,并能够运用二次根式解决一些实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于实数、有理数、无理数等概念已经有了一定的了解。

但是,学生对于二次根式这一概念可能还比较陌生,需要通过具体例子和实际应用来理解和掌握。

此外,学生可能对于二次根式的化简和运算还有一定的困难,需要通过大量的练习和老师的引导来逐步掌握。

三. 教学目标1.让学生了解二次根式的概念,能够正确地识别和书写二次根式。

2.让学生学会化简二次根式,能够运用二次根式解决一些实际问题。

3.培养学生的逻辑思维能力和运算能力,提高学生的数学素养。

四. 教学重难点1.二次根式的概念和识别。

2.二次根式的化简和运算。

3.二次根式在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,让学生自主地学习和掌握二次根式的概念和化简方法。

2.通过具体的例子和实际应用,让学生了解二次根式在日常生活中的应用,提高学生的学习兴趣和动力。

3.采用分组讨论和合作学习的方式,让学生在交流和合作中学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关的教学PPT和教学素材,包括图片、实例等。

2.准备一些实际的例子和应用问题,用于引导学生学习和巩固二次根式的知识和技能。

3.准备一些练习题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)通过展示一些实际的例子,如物体的高度、物体的速度等,让学生感受到二次根式在日常生活中的应用,激发学生的学习兴趣。

同时,引导学生思考和探索二次根式的概念和特点。

北师大版数学八年级上册7《二次根式》说课稿5

北师大版数学八年级上册7《二次根式》说课稿5

北师大版数学八年级上册7《二次根式》说课稿5一. 教材分析北师大版数学八年级上册7《二次根式》是学生在学习了实数、有理数、无理数等基础知识后,进一步对根式进行深入研究的内容。

二次根式是中学数学中的重要概念,它不仅在学习后续的代数、几何等知识中占有重要地位,而且也符合学生认知发展的需要。

二. 学情分析八年级的学生已经具备了一定的数学基础,对实数、有理数、无理数等概念有了初步的认识。

但二次根式作为一个新的概念,对于学生来说还是较为抽象的,需要通过实例和练习来逐步理解和掌握。

三. 说教学目标1.让学生理解二次根式的概念,掌握二次根式的性质和运算方法。

2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

3.通过学习二次根式,让学生体会数学的抽象美和逻辑美,激发学生学习数学的兴趣。

四. 说教学重难点1.重点:二次根式的概念、性质和运算方法。

2.难点:二次根式的性质和运算方法的灵活运用,以及解决实际问题。

五. 说教学方法与手段1.采用问题驱动法,引导学生主动探究二次根式的性质和运算方法。

2.利用多媒体课件,生动展示二次根式的图形和变化过程,帮助学生形象理解。

3.小组讨论,让学生在合作交流中解决问题,提高学生的团队协作能力。

六. 说教学过程1.导入:通过复习实数、有理数、无理数等基础知识,引出二次根式。

2.新课讲解:讲解二次根式的概念、性质和运算方法,通过实例让学生加深理解。

3.课堂练习:设计一些有关二次根式的练习题,让学生巩固所学知识。

4.应用拓展:让学生运用二次根式解决实际问题,提高学生的应用能力。

5.课堂小结:总结本节课的主要内容和知识点,提醒学生注意二次根式的运用。

七. 说板书设计板书设计要清晰、简洁,能够突出二次根式的关键信息。

主要包括以下内容:1.二次根式的概念2.二次根式的性质3.二次根式的运算方法八. 说教学评价教学评价主要从学生的学习态度、课堂参与度、练习成果等方面进行。

教师要关注每一个学生的发展,及时发现和纠正学生的错误,激发学生的学习兴趣。

第16章《二次根式》整章(教案)

第16章《二次根式》整章(教案)
针对本节课的教学,我认为在以下几个方面进行改进:
1.加强对二次根式乘除法运算的讲解,通过对比练习,使学生更好地掌握运算规则。
2.增加与实际生活相关的案例,培养学生的数学建模能力。
3.提高小组讨论的参与度,鼓励学生发表自己的观点,提高课堂互动性。
4.设计更多针对难点的练习题,帮助学生突破学习难点。
5.在课堂总结环节,加入互动性游戏或竞赛,提高学生的记忆效果。
3.重点难点解析:在讲授过程中,我会特别强调二次根式的性质和运算规则这两个重点。对于难点部分,如二次根式的乘除法和加减法,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式相关的实际问题,如计算特定图形的面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用几何图形拼凑出$\sqrt{9}$和$\sqrt{16}$,演示二次根式的基本原理。
第16章《二次根式》整章(教案)
一、教学内容
第16章《二次根式》整章,教学内容如下:
1.二次根式的概念及性质;
2.二次根式的乘除法运算;
3.二次根式的加减法运算;
4.最简二次根式;
5.二次根式的化简与证明;
6.二次根式的实际应用。
本章将通过具体实例,引导学生掌握二次根式的性质与运算方法,培养学生运用数学知识解决实际问题的能力。同时,注重提高学生的逻辑思维和运算能力,为后续学习打下坚实基础。
其次,在实践活动和小组讨论中,我发现部分学生在解决实际问题时,将问题抽象为二次根式的数学模型的能力较弱。针对这一问题,我计划在今后的教学中,加入更多与实际生活相关的案例,引导学生学会将实际问题转化为数学模型。
此外,学生在小组讨论中的参与度还有待提高。在今后的教学中,我会更加注重激发学生的讨论兴趣,鼓励他们积极发表自己的观点,提高课堂互动性。

教师招聘初中数学《二次根式》说课稿

教师招聘初中数学《二次根式》说课稿

教师招聘初中数学《二次根式》说课稿中学校老师职业道德规范老师聘请考试试题及答案一、说教材本节课选自人教版九班级数学上册其次十一章二次根式第一节的内容。

"二次根式'是《课程标准》"数与代数'的重要内容。

本章是在第13章实数(13.1平方根;13.2立方根;13.3实数)的基础上,进一步讨论二次根式的概念、性质、和运算。

本章内容与已学内容"实数'"整式'"勾股定理'联系紧密,同时也为以后将要学习的"锐角三角函数'、"一元二次方程'和"二次函数'等内容打下重要基础。

二、说学情同学已经学习了平方根(算术平方根)等有关学问,有了一定的学问基础和认识能力。

本课时及后面的学问的学习,对同学思维的严谨性、分类研究及类比的数学思想等都有了更高的要求,假如同学在此不能很好地理解和正确地认知,将对后续的学习产生很大的影响,所以要求同学主动探索与思量,准时加以教育巩固,克服学习困难,真正"学会'。

三、说教学目标按照大纲的要求和教材结构内容分析,结合九班级同学的实际水平,考虑到同学已有的认知结构心理特征,本节课可确定如下教学目标:1.学问与技能:控制二次根式的概念,二次根式的取值范围和被开方数的取值范围2.过程与办法:按照条件处理问题的能力及分类研究问题的能力3.情感看法价值观:严谨的科学精神四、说教学重点和难点教学重点:二次根式中被开方数的取值范围教学难点:二次根式的取值范围五、说教法教学活动的本质是一种合作,一种沟通。

同学是数学学习的仆人,老师是数学学习的组织者、引导者与合作者。

依据同学的年龄特点和已有的学问基础,本节课注重加强学问间的纵向联系,拓展同学探究的空间,体现由详细到抽象的认识过程。

为了为后续学习打下坚实的基础,例如在"锐角三角函数'一章中,会遇到无数实际问题,在解决实际问题的过程中,要遇到对二次根式举行条件约束等问题,本课适当加强练习,让同学养成联系和进展的观点学习数学的习惯。

人教版数学八年级下册教案 16.1《 二次根式 》

人教版数学八年级下册教案 16.1《 二次根式 》

人教版数学八年级下册教案 16.1《二次根式》一. 教材分析人教版数学八年级下册第16.1节《二次根式》是初中数学的重要内容,主要让学生了解二次根式的概念、性质和运算。

本节内容为后续学习二次根式的应用和二次方程等知识打下基础。

教材通过引入二次根式,让学生体会数学与实际生活的联系,培养学生的数学应用能力。

二. 学情分析学生在学习本节内容前,已掌握了实数、有理数和无理数的基本知识,具备一定的代数运算能力。

但学生对二次根式这一概念的理解和应用尚存困难,因此,在教学过程中,要注重引导学生通过实例认识二次根式,感悟数学与生活的联系,激发学习兴趣。

三. 教学目标1.理解二次根式的概念,掌握二次根式的性质。

2.学会二次根式的运算,提高学生的数学运算能力。

3.培养学生的数学思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算方法。

五. 教学方法1.情境教学法:通过生活实例引入二次根式,让学生感受数学与生活的联系。

2.启发式教学法:引导学生探究二次根式的性质和运算方法,培养学生的独立思考能力。

3.小组合作学习:学生进行小组讨论,共同解决问题,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示二次根式的概念、性质和运算方法。

2.练习题:准备适量练习题,巩固学生对二次根式的理解和应用。

七. 教学过程1.导入(5分钟)利用生活实例,如求物体长度、面积等,引出二次根式的概念。

2.呈现(10分钟)讲解二次根式的定义,让学生通过实例理解二次根式。

3.操练(15分钟)让学生进行二次根式的基本运算,如加减乘除,巩固学生对二次根式的掌握。

4.巩固(10分钟)出示练习题,让学生独立解答,检查学生对二次根式的理解和运用。

5.拓展(10分钟)讲解二次根式的性质,如二次根式的乘除法、化简等,引导学生运用性质解决问题。

6.小结(5分钟)对本节课的主要内容进行总结,让学生明确二次根式的概念、性质和运算方法。

16.1《二次根式》教案

16.1《二次根式》教案
一、教学内容
16.1《二次根式》教案
二、核心素养目标
1.培养学生的逻辑推理能力,通过二次根式的性质探究,提升数学抽象思维。
2.培养学生的数学运算能力,熟练掌握二次根式的运算规则,并能应用于实际问题。
3.培养学生的数学建模能力,运用二次根式解决实际生活中的数学问题,如几何图形的面积计算等。
4.培养学生的直观想象能力,通过二次根式的图形表示,理解其与平面几何图形的关系。
引导学生总结本节课的学习内容,分享学习心得。
四、课后作业
1.请学生完成课后练习题,巩固二次根式的知识。
2.结合实际生活,运用二次根式解决一个实际问题。
五、教学评价
1.课堂问答,了解学生对二次根式概念和性质的理解。
2.课后作业,评估学生对二次根式运算规则的掌握程度。
3.学生分享实际问题解决方案,评价其数学建模能力。
三、教学过程
1.导入新课
利用
2.知识讲解
①二次根式的定义和性质
②二次根式的简化
③二次根式的乘除法运算规则
④最简二次根式
3.案例分析
通过具体例题,让学生掌握二次根式的运算和应用。
4.练习巩固
设计不同难度的练习题,让学生巩固所学知识。
5.总结反思
16.1《二次根式》教案
一、教学内容
16.1《二次根式》教案
1.理解二次根式的定义,掌握二次根式的性质与运算规则。
2.能够对形如√a(b±c)的二次根式进行简化。
3.掌握二次根式的乘除法运算,并熟练运用运算法则。
4.理解最简二次根式的概念,并能够将二次根式化为最简形式。
5.应用二次根式解决实际问题,如平面几何中的面积计算等。
六、教学资源
1.教材:《数学》八年级下册

优质课评选-北师大版八年级数学上册《二次根式》_学历案老师用

优质课评选-北师大版八年级数学上册《二次根式》_学历案老师用

北师大版八年级数学(上)学历案课题:2.7二次根式(3)【课题与课时】课题:北师大版八年级上册,第二章实数, 2.7 二次根式(共 3课时),第3课时【课标要求】了解二次根式加、减、乘、除运算法则,会用它们进行简单的四则运算.【学习目标】1.通过小组探究,类比整式及有理数的运算,学会正确运用法则进行二次根式的混合运算.(重点)2.通过互助促学,能够较熟练地进行二次根式的化简求值.(难点)3.通过合作交流,学会利用二次根式解决简单的实际问题,提高数学的应用意识.(重点、难点)【评价任务】1. 小组探究完成任务一 (检测目标1);2.互助促学完成任务二 (检测目标2);3. 合作交流完成任务三 (检测目标3).【资源与建议】上节课在学习了二次根式的概念和性质的基础上,对二次根式的运算进行了探究,主要学习了二次根式的乘法法则、除法法则以及二次根式的加减法,为本节二次根式的混合运算做好了铺垫.本课时主要是在此基础上,将加、减、乘、除四则运算综合在一起的混合运算的学习.因此,通过复习回顾之前学过的知识,可以让学生快速进入状态,提高本课的学习效率.在问题的逐步探究过程中,要引导学生用学习过的知识去解决新问题,可以采用分组讨论或者是师生问答互动的方式进行,同时还要针对学生探究过程中出现的问题进行分析讨论,并强调实数的运算法则与有理数的运算法则是相同的.在混合运算的教学中,还要引导学生类比整式的运算法则去学习二次根式的化简及运算,如合并同类二次根式,可类比合并同类项;包含括号的乘除运算,可类比多项式除以单项式,或运用乘法分配律等,总之,在学习的过程中要适时渗透数学思想。

【任务驱动设计】1【学习过程】学前准备:1.化简:4= , 8= , 18= ,32= ; 2.计算:18+8= ,18-8= ,18×8= ,18÷8= .教学建议:通过几道简单的化简及计算,以题带知识点,复习回顾之前学过的概念和运算法则,为例题讲解做好铺垫,也可以让学生快速进入状态,提高本课的学习效率.任务一:二次根式的混合运算(指向目标1)活动 1 例题讲解:计算:81818)1(+-3223)2(-教学建议:在复习回顾的基础上,引出两道例题,并梳理运算公式及法则,规范解题步骤.活动 2 合作探究 计算:3)6124)(1(÷- 1899225)2(-+北师大版八年级数学(上)学历案3教学建议:以小组为单位,探究并交流解法,完成步骤;小组派2名代表板演并讲解;学友互相补充.注意第(1)题的一题多解及算理分析.活动3 对标练习31312)1(+-8)2118)(2(⨯-教学建议:1.独立完成步骤;2.小组互相评分; 3. 师友互助讲解.任务二:二次根式的化简求值(指向目标2)活动1 议一议化简ab b a⋅-)1(,其中a =3,b =2.你是怎么做的?与同伴进行交流.活动2 方法总结:在进行有关二次根式的化简求值运算时,应注意什么问题?◊ 评价标准:每题10分,共20分. 评价结果:________.◊ 评价标准:每题10分,共20分. 评价结果:________. ◊ 评价标准:本题化简正确得5分,计算正确得5分,共计10分. 评价结果:________.答: __________________________________________________教学建议:生思考后口答,师规范解题步骤,并引导归纳解决此类问题的注意问题. 任务三:二次根式的应用(指向目标3)活动1 做一做如图,图中小正方形的边长为1,试求图中梯形ABCD 的面积.你有哪些方法?与同伴交流.活动2 方法总结:通过以上探究,你能总结出哪些数学方法?1.求网格中图形面积的常用方法有__________和____________; 2.求网格中斜线段的长度通常使用__________定理.教学建议:以小组为单位,探究并交流解法,分享不同的做法;师点评归纳.【当堂检测】1.(检测目标1)若最简二次根式3与5a 可以合并,则a 的值是( )A .2B .3C .4D .52. (检测目标2)当a =12时,a aa ⋅-)1(=_________.◊ 评价标准: 本题每想出一种方法得10分. 最高不超过40分. 评价结果:________.北师大版八年级数学(上)学历案53. (检测目标1)计算:(1) 3)1227(⨯- (2)10152-4.(检测目标3)已知:直角三角形的两条直角边长为5.1和6,求此三角形的面积.【学后反思】1.本节课你有哪些数学知识和数学思想方法的收获? 数学知识: 思想方法:2.自主设计本节课的思维导图教学建议:师课件示范思维导图,建议学生课下进行个性设计.范例一: 范例二:【课堂总评与分层作业】◊ 评价标准:第1-2题各5分,第3题10分,第4题10分, 共30分. 评价结果:________.【课外拓展】(检测目标2)已知:若a =53+,b =53-,求222b ab a ++的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档