浙教版七年级数学上期末综合培优(一)
浙教版2020-2021学年第一学期七年级数学上册期末试卷(培优)
浙教版2020第一学期数学七年级上册期末试卷(培优)一.选择题1.x、y、z在数轴上的位置如图所示,则化简|x﹣y|+|z﹣y|的结果是()A.x+z﹣2y B.2y﹣x﹣z C.z﹣x D.x﹣z2.将正整数按如图所示的位置顺序排列:根据排列规律,则2015应在()A.A处 B.B处C.C处D.D处3.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.则其中男生人数比女生人数多()A.11人B.12人C.3人D.4人4.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28 B.29 C.30 D.315.若3a-b-2=0,则代数式-9a+3b-7的值是( )A. -13B. 13C. -1D. 16.如图,点A,P,Q,B在一条不完整的数轴上,点A表示数-3,点B表示数3,若动点P 从点A出发以每秒1个单位长度向终点B匀速运动,同时动点Q从点B出发以每秒2个单位长度向终点A匀速运动,其中一点到达终点时,另一个点也随之停止运动,当BP=3AQ时,点P在数轴上表示的数是( )A. 2.4B. -1.8C. 0.6D. -0.67.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( )A .2B .22C. 2 D .328.已知线段AB a =,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A.9a π B .a 8π C. a89π D .94a π9. 已知a ,b ,c 三个数,a 为1+7,b 为3+5,c 为5+3,则这三个数的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .a =b =c10.将一张长方形纸片(如图1)进行折叠操作.第一次折叠后(如图2),使得∠DAE 1=4∠E 1AF 1,再沿着AE 1将纸片剪开,取△DAE 1部分继续折叠;第二次折叠后(如图3),使得∠DAE 2=4∠E 2AF 2,再沿着AE 2将纸片剪开,取△DAE 2部分继续折叠;……按此操作,若将纸片沿着AE n 剪开,此时∠DAE n 小于20°,则n 的最小值是( )A .2B .3C .4D .5图3图2图1DCB AE 2F 2E 1'E 1B'F 1DC DAA二.填空题11.已知关于x的方程kx=5﹣x,有正整数解,则整数k的值为.12.小明和小慧两位同学在数学活动课中,把长为30cm,宽为10cm的长方形白纸条粘合起来,小明按如图甲所示的方法粘合起来得到长方形ABCD,粘合部分的长度为6cm,小慧按如图乙所示的方法粘合起来得到长方形A1B1C1D1,黏合部分的长度为4cm.若长为30cm,宽为10cm的长方形白纸条共有100张,则小明应分配到张长方形白纸条,才能使小明和小慧按各自要求黏合起来的长方形面积相等(要求100张长方形白纸条全部用完).13.如图,直线AB,CD相交于点O,OE平分∠BOD,若∠AOE=144°,则∠AOC的度数是.14.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为20cm,宽为16cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是.15.如图,大正方形内有两个大小一样的长方形ABCD和长方形EFGH,且AB,AD,EF,EH 分别在大正方形的四条边上,大正方形内有个小正方形与两长方形有重叠(图中两个长方形形状的阴影部分),若B两正方形的周长分别为44与30,且AB=EH=6,AD=EF=3,则两阴影部分的周长和为________。
【浙教版】七年级数学上期末试卷含答案(1)
一、选择题1.育才学校学生来自甲、乙、丙三个地区,其人数比为7:3:2,如图所示的扇形图表示其分布情况.如果来自丙地区的学生为180人,则这个学校学生的总人数和表示乙地区扇形的圆心角度数分别为( )A .1080人、90B .900人、210C .630人、90D .270人、60 2.下列说法正确..的是( ) A .一个数,如果不是正数,必定是负数B .所有有理数都能用数轴上的点表示C .调查某种灯泡的使用寿命采用普查D .两点之间直线最短3.为响应习总书记“绿水青山,就是金山银山”的号召,某校今年3月开展了植树活动.按班级顺序领取树苗,七(1)班先领取全部的110,七(2)班领取100棵后,再领取余下部分的110,且两班领取的树苗相等,则树苗总棵数为( ) A .6400B .8100C .9000D .4900 4.3x =-是下列哪个方程的解( )A .35210x x -+=+B .123x x -=C .()32x x x +=-D .2633x -+= 5.某商店在某一时间以200元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店在这次交易中( )A .亏了10元钱B .亏了20元钱C .盈利20元钱D .不盈不亏 6.有下列调查:①了解地里西瓜的成熟程度;②了解某班学生完成20道素质测评选择题的通过率;③了解一批导弹的杀伤范围;④了解成都市中学生睡眠情况.其中不适合普查而适合抽样调查的是( )A .①②B .①②④C .①③④D .②③④ 7.已知点A ,B ,C 在同一条直线上,线段10AB =,线段8BC =,点M 是线段AB 的中点.则MC 等于( )A .3B .13C .3或者13D .2或者18 8.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条9.如图,点C 、D 是线段AB 上任意两点,点M 是AC 的中点,点N 是DB 的中点,若AB a ,MN b =,则线段CD 的长是( )A .2b a -B .()2a b -C .-a bD .1()2a b + 10.如图,用火柴棍分别搭一排三角形组成的图形和一排正方形组成的图形,三角形、正方形的每一边用一根火柴棒.如果搭这两个图案一共用了2030根火柴棒,且正方形的个数比三角形的个数的少4个,则搭成的三角形的个数是( )A .429B .409C .408D .40411.5的相反数的倒数是( )A .5-B .5C .15- D .1512.若一个几何体的表面展开图如图所示,则这个几何体是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥二、填空题13.某中学七年级甲、乙、丙三个班中,每班的学生人数都为40名.某次数学考试的成绩统计如下:(如图,每组分数含最小值,不含最大值)根据图、表提供的信息,则80~90分这一组人数最多的班是_____班.14.如今,中学生睡眠不足的问题正愈演愈烈,“缺觉”已是全国中学生们的老大难问题.教育部规定,初中生每天的睡眠时间应为9个小时.鹏鹏记录了他一周的睡眠时间,并将统计结果绘制成如图所示的折线统计图,则鹏鹏这一周的睡眠够9个小时的有______天.15.有四个大小完全相同的小长方形和两个大小完全相同的大长方形按如图所示的位置摆放,按照图中所示尺寸,小长方形的长与宽的差是__________.(用含m ,n 的式子表示)16.若0a b =≠,则下列式子中正确的是(填序号)______①22a b -=-,②1132a b =,③3344a b -=-,④551a b =-. 17.已知线段AC 和线段BC 在同一直线上,若12cm AC =,8cm BC =,线段AC 的中点为M ,线段BC 的中点为N ,试求M 、N 两点之间的距离.18.在新冠疫情某隔离区域,张护士负责A ,B ,C ,D 四个区域隔离病人的身体状况的观察与日常生活的联络服务,每天张护士都按照A B C D C B A B C →→→→→→→→→⋅⋅⋅的路线来回巡察,从A 隔离区域开始数连续的正整数1,2,3,…当张护士第()21n -次在C 隔离区域巡察时(n 为正整数),恰好数到的数是______(用含n 的代数式表示).19.如果收入80元记作80+元,那么支出90元记作______元.20.一张长50cm ,宽40cm 的长方形纸板,在其四个角上分别剪去一个小正方形(边长相等且为整厘米数)后,折成一个无盖的长方体形盒子,这个长方体形盒子的容积最大为_____cm 3.三、解答题21.为了了解某中学学生的身高情况,随机对该校男、女生的身高进行抽样调查.抽取的样本中,男、女生的人数相同,根据所得数据绘制成如图所示的统计图表.组别男女生身高(cm)A150155x<B155160x<C160165x<D165170x<E170175x<根据图表中提供的信息,回答下列问题:(1)在样本中,组距是__________,女生身高在B组的有__________人;(2)在样本中,身高在170175x<之间的共有__________人,人数最多的是__________组(填组别序号);(3)已知该校共有男生500人,女生480人,请估计身高在160170x<之间的学生有多少人?22.解方程:(1)5+3x=8+2x;(2)12x-=1﹣325x+.23.如图,线段AB的中点为M,C点将线段MB分成MC,CB两段,且:1:3MC CB=,若20AC=,求AB的长.24.用火柴棒按下面的方式搭图形(1)把下表填完整:图形编号①②③火柴棒根数7s=n的代数式表示)(3)是否存在一个图形共有117根火柴棒?若存在,求出是第几个图形,如不存在,请说明理由.25.计算:(1)2151 ()() 32624+-÷-;(2)(﹣2)3×(﹣2+6)﹣|﹣4|.26.下面是由些棱长1cm的正方体小木块搭建成的几何体的主视图、俯视图和左视图,①请你观察它是由多少块小木块组成的;②在俯视图中标出相应位置立方体的个数;③求出该几何体的表面积(包含底面).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】用丙地区的人数除以该地区人数所占的比即可求出总人数,用360°去乘乙地区人数所占的比即可得出相应的圆心角度数,【详解】解:180÷2732++=1080人,360°×3732++=90°, 故选:A .【点睛】 本题考查了扇形统计图,理解各个部分所占整体的百分比,以及各个扇形的圆心角度数实际是这一部分所占周角的百分比即可.2.B解析:B【分析】根据有理数的定义,数轴、普查、线段的定义进行解答即可.【详解】解:A 、一个数,如果不是正数,可能是负数,也可能是0,故A 选项错误;B 、所有的有理数都能用数轴上的点表示,故B 正确;C 、调查某种灯泡的使用寿命,利用普查破坏性较强,应采用抽样调查,故此选项错误; D、两点之间,线段最短,故原题说法错误.故选B.【点睛】本题考查了有理数的定义、数轴、普查、线段的定义,掌握相关知识是解题的关键. 3.C解析:C【分析】设树苗总数为x 棵,根据各班的树苗数都相等,可得出七(1)班和七(2)班领取的树苗数相等,由此可得出方程.【详解】解:设树苗总数x 棵,根据题意得:111100(100)101010x x x =+--, 解得:x=9000,∴树苗总数是9000棵.故选:C .【点睛】本题考查了一元一次方程的应用,解答本题的关键是得出各班的树苗数都相等,这个等量关系,因为七(1),七(2)班领取数量好表示,所以我们就选取这两班建立等量关系. 4.B解析:B【分析】根据方程的解的定义,把x =-3代入方程进行检验即可.【详解】x=-代入方程,左边=14,右边=4,左边≠右边,故不符合题意;解:A、把3x=-代入方程,左边=-3,右边=-3,左边=右边,故符合题意;B、把3x=-代入方程,左边=0,右边=6,左边≠右边,故不符合题意;C、把3x=-代入方程,左边=4,右边=3,左边≠右边,故不符合题意.D、把3故选:B.【点睛】本题主要考查了方程解的定义,解题关键是将x的值代入方程左右两边进行验证.5.A解析:A【分析】设盈利服装的进价为x元,亏损服装的进价为y元,根据利润=售价﹣进价,即可得出关于x(y)的一元一次方程,解之即可求出x(y)的值,再利用总利润=总售价﹣总进价即可得出结论.【详解】解:设盈利服装的进价为x元,亏损服装的进价为y元,依题意得:200﹣x=25%x,200﹣y=﹣20%y,解得:x=160,y=250,∴200+200﹣160﹣250=﹣10(元),即商店在这次交易中亏了10元钱.故选择:A.【点睛】本题考查销售问题,掌握利润=售价﹣进价,抓住售价﹣进价=进价×利润率(盈利为正,亏损为负)构造方程是解题关键.6.C解析:C【分析】根据普查适用的范围小,具有适用性,抽样调查具有代表性,机会均等的原则,不具破坏性的特点依次判断即可.【详解】①了解地里西瓜的成熟程度,不适合普查而适合抽样调查;②了解某班学生完成20道素质测评选择题的通过率,适合普查;③了解一批导弹的杀伤范围,不适合普查而适合抽样调查;④了解成都市中学生睡眠情况,不适合普查而适合抽样调查;故选:C.【点睛】此题考查普查与抽样调查的定义,正确理解两者的关系及各自的特点是解题的关键. 7.C解析:C【分析】由于点C的位置不能确定,故应分点C在线段AB外和点C在线段AB之间两种情况进行解答.【详解】解:当A、B、C的位置如图1所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC=BM+BC=5+8=13;当A、B、C的位置如图2所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC= BC-BM =8-5=3.综上所述,线段MC的长为3或13.故选:C【点睛】本题考查的是两点间的距离,在解答此题时要注意进行分类讨论,不要漏解.8.D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A、射线AB和射线BA是不同的射线,故本选项不符合题意;B、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C、两点之间,线段最短,故本选项不符合题意;D 、七边形的对角线一共有7(73)142条,正确故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.9.A解析:A先由AB MN a b -=-,得AM BN a b +=-,再根据中点的性质得22AC BD a b +=-,最后由()CD AB AC BD =-+即可求出结果.【详解】解:∵AB a ,MN b =,∴AB MN a b -=-,∴AM BN a b +=-,∵点M 是AC 的中点,点N 是DB 的中点,∴AM MC =,BN DN =,∴()()2222AC BD AM MC BN DN AM BN a b a b +=+++=+=-=-, ∴()()222CD AB AC BD a a b b a =-+=--=-.故选:A .【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.10.C解析:C【分析】根据搭建三角形和正方形一共用了2030根火柴,且三角形的个数比正方形的个数多4个,即可得搭建三角形的个数.【详解】解:∵搭建三角形和正方形一共用了2030根火柴,且三角形的个数比正方形的个数多4个,观察图形的变化可知:搭建n 个三角形需要(2n+1)根火柴棍,n 个正方形需要(3n+1)根火柴棍,所以2n+1+3(n-4)+1=2030,解得n=408.故选:C .【点睛】本题考查了规律型-图形的变化类,解决本题的关键是根据图形的变化寻找规律. 11.C解析:C【分析】只有符号不同的两个数互为相反数,两数相乘为1的数互为倒数.【详解】解:5的相反数为5-,5-的倒数为15-,故5的相反数的倒数是15-.故答案为:C .本题考查倒数和相反数.熟练掌握倒数和相反数的求法是解题的关键.12.A解析:A【分析】由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.【详解】解:由图得,这个几何体为三棱柱.故选:A.【点睛】本题考查了几何体的展开图,有两个底面的为柱体,有一个底面的为锥体.二、填空题13.甲【分析】根据题意和统计图表中的信息可以得到甲乙丙三个班中80~90分这一组人数然后比较大小即可解答本题【详解】解:甲班80~90分这一组有40﹣2﹣5﹣8﹣12=13(人)乙班80~90分这一组有解析:甲【分析】根据题意和统计图表中的信息,可以得到甲、乙、丙三个班中80~90分这一组人数,然后比较大小,即可解答本题.【详解】解:甲班80~90分这一组有40﹣2﹣5﹣8﹣12=13(人),乙班80~90分这一组有40×(1﹣5%﹣10%﹣35%﹣20%)=12(人),丙班80~90分这一组有11人,∵13>12>11,∴80~90分这一组人数最多的是甲班,故答案为:甲.【点睛】本题考查频数分布直方图、扇形统计图、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答.14.2【分析】根据折线统计图可以得到鹏鹏这一周的睡眠够9个小时的有2天【详解】由统计图可知周五周六两天的睡眠够9个小时故答案为:2【点睛】本题考查折线统计图解题的关键是明确题意利用数形结合的思想解答问题解析:2【分析】根据折线统计图可以得到鹏鹏这一周的睡眠够9个小时的有2天.【详解】由统计图可知,周五、周六两天的睡眠够9个小时,故答案为:2.【点睛】本题考查折线统计图,解题的关键是明确题意,利用数形结合的思想解答问题. 15.【分析】设小长方形的长为x 宽为y 根据图形列得m+y-x=n+x-y 整理即可得到答案【详解】设小长方形的长为x 宽为y 根据题意得:m+y-x=n+x-y ∴x-y=故答案为:【点睛】此题考查图形类列代数式 解析:2m n - 【分析】设小长方形的长为x ,宽为y ,根据图形列得m+y-x=n+x-y ,整理即可得到答案.【详解】设小长方形的长为x ,宽为y ,根据题意得:m+y-x=n+x-y ,∴x-y=2m n -, 故答案为:2m n -. 【点睛】此题考查图形类列代数式,正确理解图形中的数量关系是解题的关键.16.①③【分析】根据等式的性质进行逐一判断即可【详解】解:①若根据等式基本性质1则故①正确;②若根据等式基本性质2则故②错误;③若根据等式基本性质2则故③正确;④若根据等式基本性质2则故④错误故答案为:解析:①③【分析】根据等式的性质进行逐一判断即可.【详解】解:①若0a b =≠,根据等式基本性质1,则22a b -=-,故①正确;②若0a b =≠,根据等式基本性质2,则111332a b b =≠,故②错误; ③若0a b =≠,根据等式基本性质2,则3344a b -=-,故③正确; ④若0a b =≠,根据等式基本性质2,则5551a b b =-≠,故④错误.故答案为:①③.【点睛】本题考查了等式的性质,解决本题的关键是掌握等式的性质.17.或【分析】分两种情况解答:当点B 位于AC 的延长线上当点B 位于AC 之间根据线段中点把线段分成相等的两部分以及线段的和差关系即可解答【详解】解:∵点M 是线段的中点∴同理(1)当点B 位于AC 外如图1所示( 解析:10cm 或2cm【分析】分两种情况解答:当点B 位于AC 的延长线上,当点B 位于AC 之间,根据线段中点把线段分成相等的两部分,以及线段的和差关系即可解答【详解】解:∵点M 是线段AC 的中点,∴12MC AC =,同理12NC BC =. (1)当点B 位于AC 外,如图1所示,1122MN MC NC AC BC =+=+ ()()()1112810cm 22AC BC =+=+=.(2)当点B 位于AC 之间,如图2所示,1122MN MC NC AC BC =-=- ()()()111282cm 22AC BC =-=⨯-=. 综上,M 、N 两点间的距离为10cm 或2cm .【点睛】本题考查了线段中点的定义,解题关键是分情况确定点B 的位置,进行解答. 18.6n-3【分析】根据题意可以发现六个为一个循环每个循环中字母C 出现两次从而可以解答本题【详解】解:按照A→B→C→D→C→B→A→B→C→…的方式进行每6个字母ABCDCB 一循环每一循环里字母C 出现解析:6n-3【分析】根据题意可以发现六个为一个循环,每个循环中字母C 出现两次,从而可以解答本题.【详解】解:按照A→B→C→D→C→B→A→B→C→…的方式进行,每6个字母ABCDCB 一循环,每一循环里字母C 出现2次,当循环n 次时,字母C 第2n 次出现时(n 为正整数),此时数到最后一个数为6n ,当字母C 第(2n-1)次出现时(n 为正整数),再数3个数恰好一个循环,∴恰好数到的数是6n-3.故答案为:6n-3.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.19.【分析】根据正负数的含义可得:收入记住+则支出记作-据此判断即可【详解】解:如果收入80元记作+80元那么支出90元记作:-90元故答案为:-90【点睛】本题考查了正负数在实际生活中的应用要熟练掌握解析:90-【分析】根据正负数的含义,可得:收入记住“+”,则支出记作“-”,据此判断即可.【详解】解:如果收入80元记作+80元,那么支出90元记作:-90元.故答案为:-90.【点睛】本题考查了正负数在实际生活中的应用,要熟练掌握,解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.6552三、解答题21.(1)5、12;(2)10、C;(3)541人【分析】(1)根据组距的定义结合表格可得组距,求出男生总人数,再用女生总人数乘以B组的百分比可得;(2)将位于这一小组内的频数相加,分别计算出各组人数之和即可求得结果;(3)分别用男、女生的人数乘以对应的百分比,相加即可得解.【详解】解:(1)在样本中,组距是5,男生共有2+4+8+12+14=40人,∵男、女生的人数相同,女生身高在B组的人数有40×(1-35%-20%-15%-5%)=12人,故答案为:5、12;(2)在样本中,身高在170≤x<175之间的人数共有8+40×5%=10人,∵A组人数为2+40×20%=10人,B组人数为4+12=16人,C组人数为12+40×35%=26人,D 组人数为14+40×10%=18人,E组人数为8+40×5%=10人,∴C组人数最多,故答案为:10、C;(3)500×121440++480×(35%+10%)=541(人),故估计身高在160≤x<170之间的学生约有541人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(1)x =3;(2)x =1【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)移项,可得:3x ﹣2x =8﹣5,合并同类项,可得:x =3.(2)去分母,可得:5(x ﹣1)=10﹣2(3x +2),去括号,可得:5x ﹣5=10﹣6x ﹣4,移项,可得:5x +6x =10﹣4+5,合并同类项,可得:11x =11,系数化为1,可得:x =1.【点睛】本题考查一元一次方程的求解,熟练掌握一元一次方程的解法是解题关键.23.32【分析】本题需先设MC x =,根据已知条件C 点将线段MB 分成:1:3MC CB =的两段,求出MB=4x ,利用M 为AB 的中点,列方程求出x 的长,即可求出AB 的长;【详解】解:∵ :1:3MC CB =,设MC x =,则3CB x =,∴4AM MB MC CB x ==+=,∴4520AC AM MC x x x =+=+==,解得4x =.∵M 为AB 的中点∴832AB x ==.【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,求出线段的长是解本题的关键;24.(1)见解析;(2)52s n =+;(3)存在,见解析,第23个图形【分析】(1)观察图形与表格发现,后一个图形比前一个图形多用5根火柴棒,由此得出第三个图形比第二个图形多用5根火柴棒,第四个图形比第三个图形多用5根火柴棒;(2)由后一个图形比前一个图形多用5根火柴棒,而第一个图形用了7根火柴;即7=5×1+2,即可求出第n 个图形需要(5n+2)根小棒;(3)将s=117代入计算,即可求出答案.【详解】解:(1)根据题意,把下表填完整:7=5×1+2;第二个图形用了12根火柴;即12=5×2+2;第三个图形用了17根火柴;即17=5×3+2;…∴第n 个图形需要(5n+2)根小棒;∴52s n =+;故答案为:52s n =+. (3)根据题意,当117s =时,则52117n +=,解得:23n =,第23个图形共有117根火柴棒.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出发生变化的位置,并且观察变化规律,进而用式子表示一般规律.25.(1)-8;(2)-36【分析】(1)除法转化为乘法,再利用乘法分配律展开,进一步计算即可;(2)先计算乘方和绝对值、括号内的减法,再计算乘法,最后计算减法即可.【详解】解:(1)原式=215()(24)326+-⨯- =﹣16﹣12+20=﹣8;(2)(﹣2)3×(﹣2+6)﹣|﹣4|=(﹣8)×4﹣4=﹣32﹣4=﹣36.【点睛】本题考查了有理数的混合运算,解题关键是熟练的运用有理数的运算法则进行计算. 26.①共有10个正方体小木块组成;②详见解析;③240cm .【解析】【分析】①由俯视图可得该组合几何体最底层的小木块的个数,由主视图和左视图可得第二层和第三层小木块的个数,相加即可;②根据上题得到的正方体的个数在俯视图上标出来即可;③将几何体的暴露面(包括底面)的面积相加即可得到其表面积.【详解】解:①∵俯视图中有6个正方形,∴最底层有6个正方体小木块,由主视图和左视图可得第二层有3个正方体小木块,第三层有1个正方体小木块,∴共有10个正方体小木块组成.②根据①得:③表面积为:2+++++++=.6665563340cm【点睛】本题考查了由三视图判断几何体的知识,解决本类题目不但有丰富的数学知识,而且还应有一定的空间想象能力.。
浙教版七年级数学上册 期末综合培优考试卷(含答案)
浙教版七年级数学上册 期末模拟考试卷一、擦亮眼睛选一选(每小题只有一个正确答案,每小题2分,共20分)1.4的平方根是―――――――――――――――――――――――――― ( ) A .±2 B .2 C .—2 D .±22.零是―――――――――――――――――――――――――――――――( ) A .最小的有理数 B .最小的正整数 C .最小的自然数 D .最小的整数3.已知∠A 与∠B 互余,如果∠A=25°,则∠B 的度数是―――――――――( ) A .75° B .65° C .155° D .175°4.下列四个数中,无理数是―――――――――――――――――――――――( ) A .2.020020002 BC .17-D5.若a 与b 互为相反数,c 与d 互为倒数,则a -cd +b 的值等于――――――( ) A .2 B .-1 C .1 D .无法确定 6.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( ) A 、106元 B 、105元 C 、118元 D 、108元7.下图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是――――――――――――――――――――――( ) A 、甲户比乙户多 B 、乙户比甲户多 C 、甲、乙两户一样多 D 、无法确定哪一户多8.已知:n 20是整数,则满足条件的最小正整数n 为――――――――― ( ) A 、2B 、3C 、4D 、59.如果012=-+x x ,那么代数式7223-+x x 的值为―――――― ( ) A 、6B 、8C 、6-D 、8-其他衣着食品教育其他教育食品衣着乙甲24%19%23%34%21%23%25%31% ABC D E O 第7题 第10题10.如图,点O 在直线AE 上,OB 平分∠AOC ,∠BOD=900,则∠DOE 和∠COB 的关系是―――――――――――――――――――――――――――――――( ) A 、互余 B 、互补 C 、相等 D 、和是钝角二、想清楚了再下手(每小题3分,共30分)11.32-的绝对值是 .12.在对某同学一天24小时支配方式的扇形统计图中,如果休息时间为30%,学习时间占40%,休闲娱乐占20%,剩下的为上学、放学时的走路时间,则走路时间为 小时. 13.在数轴上与表示3的点的距离最近的整数点所表示的数是 . 14.将近似数23460保留两个有效数字,并用科学记 数法表示 .15.写出一个以4-为解的一元一次方程: _______________________.16.已知A 、B 是数轴上两点,AB=2,如果A 表示 –1,则B 表示 .17.如图,∠AOC 和∠BOD 都是直角,若∠AOD=130°,则∠COB= .18.下列一组按规律排列的数:1,2,4,8,16,…,第2019个数是 . 19.如果代数式75-x 与x 39-的值互为相反数,则x =________. 20.对于任意两个有理数43*ba b a +=,则方程64*3=x 的解是=x .三、注重过程不丢分(本题有7小题,共50分)21.计算(6分)])3(1[31)5.01(124--⨯⨯---22.化简并求值(7分)当3=a ,32-=b 时,求代数式)(2)(22ba ab ab b a ---的值.OACBD23.解方程(6分)131=--x x24.小周测得班里五名同学的身高并把它绘制成统计图(如右图)(8分) (1)哪个同学最高?哪个同学最矮? (2)最高的同学的身高是最矮的同学身高的几倍?(结果保留二个有效数字)(3)为了更为直观、清楚地反映这5名同学的身高状况,这个图应做怎样的改动?25.(7分)如图,不在同一直线上的三点A 、B 、C ,读句画图 (1) 画线段AC ,射线AB ,直线BC .(2) 若点A 代表集镇,直线BC 表示一段河道,现要从河BC 向集镇A 引水,应按怎样的路线开挖水渠,才能使长度最短?请在图中画出这条路线,并说明理由。
浙教版七年级数学上综合培优
浙教版七年级数学上综合培优20181 .已知x=y ,则下面变形不一定成立的是(A. x+a=y+aB. x - a=y - aC. ■-D. 2x=2ya aA. 一33 .某块手表每小时比准确时间慢3分钟,若在清晨4点午该手表指示时间为 10点50分时,准确时间应该是(A. 11 点 10 分B. 11 点 9 分C. 11 点 8 分D. 11 4 .一队学生去校外参加劳动,以 4km/h 的速度步行前往,走了半小时,学校有紧急通知要传给队长,通讯员以 14km/h 的速度按原路追上去, ( )A. 10mi nB. 11minC. 12mi nD.3 3 35 .收费标准如下:用水每月不超过6m ,按0.8元/m 收费,如果超过6m ,超过部分按331.2元/m 收费.已知某用户某月的水费平均 0.88元/m ,那么这个用户这个月应交水费为( )A. 6.6 元B. 6 元C. 7.8 元D. 7.2 元6 .某商场五一期间举行优惠销售活动,采取满一百元送二十元,并且连环赠送 ”的酬宾方式,即顾客每消费满 100元(100元可以是现金,也可以是购物券,或二者合计)就送 20 元购物券,满200元就送40元购物券,依次类推,现有一位顾客第一次就用了 16 000元购 物,并用所得购物券继续购物,那么他购回的商品大约相当于它们原价的()A. 90%B. 85%C. 80%D. 77 .根据下面的两个统计图,下列说确的是()A. —中的学生喜欢运动,三中的学生喜欢学习B. —中喜欢足球的人数与三中喜欢数学的人数相等C. 三中喜欢自然的学生与一中喜欢排球的人数相等D. 以上答案都不正确&甲、乙两户居民家庭全年支出的费用都设计成扇形统计图.且知甲、乙两户食品支出费 用分别占全年支出费用的 31% 34%下面对食品支出费用判断正确的是()A.甲户比乙户多 B .乙户比甲户多 C.甲、乙两户一样多 D .无法确定哪一户多2 .如果关于x 的方程是一元一次方程,则 m 的值为(B . 3C .- 3D .不存在30分与准确时间对准,则当天上 ) 点7分则通讯员追上学生队伍所需的时间是13mi9•某出版局2004年在图书、杂志和报纸出版物中,杂志数目占总数目的 年,该出版局三类刊物出版印数如图.关于 2004年杂志数与2003年的杂志数相比,下列说确的是( )A.扩大B.减少C.相等D .不能判定10. 如图,共有线段( )-----C ~D —A. 3条B. 4条C. 5条D. 6条11. 平面有三条直线,它们的交点个数可能有(A. 2B. 3C. 4D. 512.在下列说法中,正确的是( )①两条射线组成的图形叫做角;②角的大小与边的长短无关; ③角的两边可以一样长,也可以一长一短;④角的两边是两条射线.A.①②B.②④C.②③D .③④8B. 延长一个角的两边D.反向延长射线OM 得到一个平角)B. 23°2' 36” =25.48 °D . 22.25 °22 °5 '10% 而在 2003)种情形.14.下列说法中正确的是()A .角是两条射线组成的图形 C .周角是一条射线15. 下列各式中,正确的角度互化是(A . 63.5 °63 °0 '冬,"7?0 4%16. 如图,/ AOB=130 °射线 0C是/ AOB部任意一条射线, 0D、OE分别是/ AOC、/BOC的平分线,下列叙述正确的是()B. Z AOD+ / BOE=Z EOC+ / COD= / DOE=65C. Z B0E=2 / CODD.Z AOD=-/jT0C217. 已知/ AOB=60 °其角平分线为 OM,/ BOC=20 °其角平分线为 ON,则/ MON的大小为()A. 20 °B. 40°C. 20° 或 40 °D . 30 或 10 °18. 已知/ AOC=2 / BOC,若/ BOC=30 °,/ AOB 等于()A. 90 °B. 30°C. 90° 或 30 °D . 120。
期末模拟试题(一)- 2022-2023学年七年级上册数学同步培优题库(浙教版)(解析卷)
2022-2023学年七年级上期期末模拟试题(一)注意事项:本试卷满分120分,考试时间120分钟,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·四川成都·七年级期末)目前,成都市已累计改造的老旧小区惠及居民约45万户,大力促进了人居环境有机更新,提升了市民幸福指数.将数据45万用科学记数法表示为()A.4.5×105B.4.5×104C.45×104D.0.45×1062.(2022·浙江·七年级期末)在实数−1,0,1中,最小的实数是()5A.−1 B.C.0 D.153.(2022·山东威海·期末)小明在设计黑板报时,想在黑板上画出一条笔直的参照线,由于尺子不够长,他想出了如下方法:①在一根长度合适的毛线上涂满粉笔末;②由两个同学分别按住毛线两端,并绷紧;③捏起毛线后松开,便可在黑板上弹出一条笔直的参照线.上述方法的数学依据是() A.两点之间,线段最短B.两点确定一条直线C.线段中点的定义D.两点间距离的定义【答案】B【分析】直接利用直线的性质分析得出答案.【详解】解:这种画法的数学依据是:两点确定一条直线.故选:B.【点睛】此题主要考查了直线的性质,正确把握直线的性质是解题关键.4.(2022·江西南昌·二模)已知一种户外帐篷的几何体及其主视图如图所示,则它的左视图为( )A .B .C .D .【答案】A 【分析】根据左视图的定义即从物体左边看到的平面图形进行选择即可.【详解】解:由左视图的定义得,形状为矩形,且中间分割线为虚线.故选:A【点睛】本题考查了三视图,左视图是从物体左边看到的视图.要注意左视图为矩形,中间线段看不到,故为虚线.5.(2022·浙江·七年级期末)下列说法正确的是( )A .2mn 与212n m -是同类项B .单项式x 没有系数C .33x y 的次数是3D .多项式2321x x --的项是23x ,2x ,1 【答案】A【分析】根据单项式、多项式及同类项的定义判断各选项即可.【详解】A.2mn 与212n m -是同类项,故A 正确;B.单项式x 的系数为1,故B 错误;C.33x y 的次数是4,故C 错误;D.多项式3x 2−2x −1的项是3x 2,-2x ,-1,故D 错误.故选:A .【点睛】本题主要考查了单项式、多项式及同类项的定义,熟练掌握单项式是数或字母的积组成的式子;单项式和多项式统称为整式,是解题的关键.6.(2022·河南南阳·七年级期末)已知等式325m n =+,则下列等式变形不正确的是( ) A .3126m n +=+B .352m n -=C .645m n =+D .2533m n =+ 【答案】C【分析】利用等式的性质逐项分析即可得出答案.【详解】解:等式325m n =+两边同时加1可得3126m n +=+,A 选项正确,不合题意;等式325m n =+两边同时减5可得352m n -=,B 选项正确,不合题意;等式325m n =+两边同时乘以2可得6410m n =+,C 选项不正确,符合题意;等式325m n =+两边同时除以3可得2533m n =+,D 选项正确,不合题意;故选:C . 【点睛】本题考查等式的变形,熟练掌握等式的性质是解题的关键.等式两边同时加上(或减去)同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.7.(2022·浙江金华·七年级期末)将一副三角尺按下列三种位置摆放,其中能使α∠和∠β相等的摆放方式是( )A .B .C .D .【答案】A 【分析】根据图形以及三角板中的角度分别计算,αβ∠∠即可【详解】A.904545,45αβ∠=︒-︒=︒∠=︒,符合题意;B. 45,30αβ∠=︒∠=︒,不符合题意;C. 18045135,3090=120αβ∠=︒-︒=︒∠=︒+︒︒,不符合题意;D. 604515,30αβ∠=︒-︒=︒∠=︒,不符合题意;故选A【点睛】本题考查了三角板中角度的计算,掌握几何图形中角度的计算是解题的关键.8.(2022·广东广州·七年级期末)下列结论:①射线OP 和射线PO 是同一条射线;②如果线段AM =MC ,则M 是线段AC 的中点;③在同一平面内,已知∠AOB =60°,∠AOC =30°,则∠BOC =30°;④等角的余角相等.其中正确的结论有( )A .4个B .3个C .2个D .1个【答案】D【分析】根据射线定义,确定①错误;根据线段中点定义,只有三点共线结论才成立,折线不行,故②错误;根据角的定义及角度计算,若OC 在∠AOB 内部,则∠BOC =30°,若OC 在∠AOB 外部,则∠BOC =90°,故③错误;根据余角的性质,等角的余角相等,故④正确,即可得到结论.【详解】解:①根据射线定义,即可确定①错误;②根据线段中点定义,只有A M C 、、三点共线结论才成立,对于折线就不成立,故②错误; ③根据角的定义及角度计算,若OC 在∠AOB 内部,则∠BOC =30°;若OC 在∠AOB 外部,则∠BOC =90°,故③错误;④根据余角的性质,等角的余角相等,故④正确,故选:D .【点睛】本题主要考查射线定义、线段中点定义、角的概念与计算和余角的性质等知识,熟练掌握相关知识点并准确理解题意是解决问题的关键.9.(2022·浙江·七年级专题练习)将连续奇数1,3,5,7,9,…排成如图所示的数表,若将十字形框上下左右移动,可框出另外五个数,则框出的五个数之和可以是( )A .2020B .2022C .2023D .2025【答案】D【分析】先设中间的数为2x +1(x 为整数),进而得到该数上方、下方、左边、右边的数分别为(2x +1)-10、(2x +1)+10、(2x +1)-2、(2x +1)+2,然后求得框出的五个数之和,即可得到答案.【详解】解:设中间的数为2x +1(x 为整数),则该数上方、下方、左边、右边的数分别为(2x +1)-10、(2x +1)+10、(2x +1)-2、(2x +1)+2, ∴框出的五个数之和为(2x +1)+(2x +1)-10+(2x +1)+10+(2x +1)-2+(2x +1)+2=10x +5, ∵x 为整数,∴10x +5是5的倍数,且个位数字为5,故选:D .【点睛】本题考查了代数式的表示,属于数字的变化规律类题型,解题的关键是会用含有未知数的式子表示框出的5个数.10.(2022·江苏·无锡市江南中学七年级期中)如图为甲、乙、丙三根笔直的钢管平行摆放在地面上的情形.已知乙有一部分只与甲重叠,其余部分只与丙重叠,甲没有与乙重叠的部分的长度为3m ,丙没有与乙重叠的部分的长度为4m .若乙的长度最长且甲、乙的长度相差x m ,乙、丙的长度相差y m ,则乙的长度为(用含有x 、y 的代数式表示)( )A .()7m x y -+B .()7m x y ++C .()27m x y +-D .()27m x y +-【答案】B【分析】设乙的长度为a m ,则甲的长度为:()a x -m ;丙的长度为:()a y -m ,甲与乙重叠的部分长度为:(3)a x --m ;乙与丙重叠的部分长度为:(4)a y --m ,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,列出方程(3)(4)a x a y a --+--=,即可解答.【详解】解:设乙的长度为a m ,∵乙的长度最长且甲、乙的长度相差x m ,乙、丙的长度相差y m ,∴甲的长度为:()a x -m ;丙的长度为:()a y -m ,∴甲与乙重叠的部分长度为:(3)a x --m ;乙与丙重叠的部分长度为:(4)a y --m ,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,∴(3)(4)a x a y a --+--=,34a x a y a --+--=,34a a a x y +-=+++,7a x y =++,∴乙的长度为:(7)x y ++m ;故选:B【点睛】本题考查了列代数式,解决本题的关键是根据图形表示出长度,找到等量关系,列方程.二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.(2021·山东·七年级期末七年级期末)如图,把一副七巧板按如图进行1~7编号,1~7号分别对应着七巧板的七块,如果编号5对应的面积等于5cm 2,则由这幅七巧板拼得的“房子”的面积等于______cm 2.【答案】80【分析】将七巧板进行分割,分成16个面积相等的三角形,从而计算即可.【详解】解:如图,将七巧板进行如下分割,可将七巧板分成16个面积相等的三角形,其中编号5对应的面积为5cm 2,∴由这个七巧板拼成的正方形的面积为:16×5=80cm 2, 则拼成的“房子”的面积为80cm 2,故答案为:80.【点睛】本题考查了图形的剪拼,七巧板的性质,解题的关键是明确七巧板的构成,以及每块的面积与整个七巧板的关系. 12.(2022·河北·威县七年级期末)2的算术平方根是_____;2是____的算术平方根.【答案】2;4【分析】一个数的平方根有两个,其中正的根是这个数的算术平方根,由此即可求出答案.【详解】解:∵2的平方根是2± ,4的平方根是4=2±±,∴根据算术平方根的定义得,2 的算术平方根是2;2是4的算术平方根,故答案是:2;4【点睛】本题主要考查算术平方根的定义,理解算术平方根是一个数的平方根中正的那个根是解题的关键.13.(2022·江苏扬州·七年级阶段练习)在数轴上表示a ,0,1,b 四个数的点如图所示,已知=OA OB ,则化简:1a a b a b++++=______.【答案】a -【分析】根据数轴上的点的位置,=OA OB ,根据相反数的意义可得+a b 的符号,根据除法法则判断a b,根据点A 的位置可判断+1a 的符号,进而化简绝对值,即可求解.【详解】解:∵=OA OB ∴=a b ,根据数轴可知10a b <-<<,∴0,1,10a a b a b+==-+<∴1a a b a b ++++=011a a +--=-,故答案为:a - 【点睛】本题考查了根据数轴上的点的位置判断式子的符号,相反数的意义,有理数的除法,绝对值的意义,数形结合是解题的关键.14.(2022·广东茂名·七年级阶段练习)如图,每个小正方形边长都为1的3×3方格纸中,3个白色小正方形已被剪掉,现需在编号为①~⑥的小正方形中,再剪掉一个小正方形,从而使余下的5个小正方形恰好能折成一个棱长为1的无盖正方体,则需要再剪掉的小正方形可能是 _____.(请填写所有可能的小正方形的编号)【答案】①②③【分析】根据正方体的11种展开图的模型即可求解.【详解】解:把图中的①或②或③剪掉,剩下的图形能折成一个棱长为1的无盖正方体,故答案为:①②③.【点睛】本题考查了正方体的展开与折叠,牢记正方体的11种展开图的模型是解决本题的关键.15.(2022·浙江·宁波市七年级期末)点O为直线l上一点,射线OA、OB均与直线l重合,将射线OB绕点O逆时针旋转α(0≤α≤90°),过点O作射线OC、OD、OM、ON,使得∠BOC=90°,∠COD=2α,∠COM=13∠AOC,∠CON=13∠COD(OM在∠AOC内部,ON在∠COD内部),当∠MON=12α时,则α=_____.【答案】20°##20度【分析】由平角的定义可得∠AOC=180°﹣∠BOC﹣α=90°﹣α,由已知条件可得∠CON=23 a,∠COM=30°﹣13a,利用∠COM=∠MON+∠CON,即可求得α.【详解】解:由题意可得:∠AOC=180°﹣∠BOC﹣α=90°﹣α,∵∠COD=2α,∠COM=13∠AOC,∠CON=13∠COD,∴∠CON=23a,∠COM=13(90°﹣α)=30°﹣13a,∵∠COM=∠MON+∠CON,∠MON=12α∴30°﹣13a=12α+23a,解得:α=20°.故答案为:20°.【点睛】此题考查了角的运算问题,解题的关键是掌握角的和差关系以及运用一元一次方程求解.16.(2022·浙江温州·七年级期末)商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、商品代码和校验码”.校验码是用来校验商品条形码中前12位数字代码的正确性,具有特定的算法.如图1是某商品条形码,从左至右偶数位数字为9,2,2,5,0,6,奇数位数字为6,4,7,2,0,1,校验码的算法为:步骤1:计算偶数位数字之和a,即a=9+2+2+5+0+6=24;步骤2:计算奇数位数字之和b,即b=6+4+7+2+0+1=20;步骤3:计算3a与b的和c,即c=3×24+20=92;步骤4:取c的个位数d,d=2;步骤5:计算10与d的差就是校验码X,即X=10-2=8.若某条形码为690128599121M,则校验码M的值为_____;如图2,某条形码中的两位数字被墨水污染了,已知这两个数字相同,则这个数字是_____.【答案】9 5【分析】根据计算步骤直接求出M的值即可,设被污染的数字为x,根据步骤列方程求解即可.【详解】解:根据题意得:从左至右偶数位数字为9,1,8,9,1,1,奇数位数字为6,0,2,5,9,2,∴a=9+1+8+9+1+1=29,b=6+0+2+5+9+2=24,∴c=3×29+24=111,∴d=1,∴校验码M=10-1=9;设被墨水污染的数字为x,则条形码为693188x78899x,步骤1:计算偶数位数字之和a,即a=9+1+8+7+8+9=42,步骤2:计算奇数位数字之和b,即b=6+3+8+x+8+9=34+x,步骤3:计算3a与b的和c,即c=3×42+34+x=160+x,步骤4:取c的个位数d,d=x,步骤5:计算10与d的差就是校验码x,即x=10-x,解得x=5.故答案为:9;5【点睛】本题主要考查一元一次方程的应用,根据题中步骤列出方程并求解是解题的关键.三、解答题(本大题共8小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2022·浙江杭州·七年级期末)计算:(1)()()42015--+--; (3)()()32132232÷---⨯; (4)11632⎛⎫÷- ⎪⎝⎭. 4201524159(2)解:32716347--=--=-93282 1144822(4) 解:11632⎛⎫÷- ⎪⎝⎭236661666366【点睛】本题考查的含乘方的有理数的混合运算,平方根,立方根的含义,掌握混合运算的运算顺序,平方根,立方根的含义18.(2022·江苏·七年级期末)(1)先化简,再求值:4y ﹣(3x 2+5y ﹣3)﹣(﹣2x 2﹣5y +5),其中x =﹣3,y =﹣4;(2)若关于x ,y 的多项式3(x 2﹣2xy +y 2)﹣2(2x 2﹣kxy +2y 2)中不含xy 项,求k 的值. 【答案】(1)−x 2+4y −2,−27;(2)3.【分析】(1)原式去括号,合并同类项进行化简,然后代入求值; (2)原式去括号,合并同类项进行化简,然后令含xy 的项的系数为零,列方程求解.【详解】解:(1)原式=4y −3x 2−5y +3+2x 2+5y −5=−x 2+4y −2,当x =−3,y =−4时,原式=−(−3)2+4×(−4)−2=−9−16−2=−27;(2)原式=3x 2−6xy +3y 2−4x 2+2kxy −4y 2=−x 2−6xy +2kxy −y 2,∵原式的结果中不含xy 项,∴−6+2k =0,解得:k =3,即k 的值为3.【点睛】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“−”号,去掉“−”号和括号,括号里的各项都变号)是解题关键.19.(2022·广东·九年级专题练习)解方程:(1)()319x +=; (2)12123x x -+-=; (3))1(32)1(2121-=⎥⎦⎤⎢⎣⎡--x x x ; (4)3213(1)(32)(1)45102x x x --+=--.20.(2022·四川成都·七年级期末)先观察下列各式,再完成题后问题:1112323=-⨯;1113434=-⨯;1114545=-⨯ (1)①请仿照上面各式的结构写出:156=⨯__________; ②1111122334(1)n n +++⋅⋅⋅+=⨯⨯⨯+__________;(其中,n 为整数,且满足1n ≥) (2)运用以上方法思考:求1111111141224406084112144+++++++的值.11n n ++-+115672+++178+++⨯1178++-+【点睛】此题主要考查了数字变化规律,正确将已知分数化简变形是解题关键.21.(2022·云南临沧市·七年级期中)若整数m 的两个平方根为63a -,22a -;b (1)求a 及m 的值;(2)求275m b ++的立方根. 【答案】(1)a =4,m =36;(2)6【分析】(1)根据平方根的性质得到63220a a -+-=,求出a 值,从而得到m ;(2b 值,代入求出275m b ++,从而得到275m b ++的立方根. 【详解】解:(1)∵整数m 的两个平方根为63a -,22a -, ∴63220a a -+-=,解得:4a =,∴222426a -=⨯-=,∴m =36;(2)∵b <910<,∴b =9, ∴275275369216m b ++=+⨯+=,∴275m b ++的立方根为6.【点睛】本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.22.(2022·浙江·七年级期末)“双十一”期间,某电商城销售一种空调和立式风扇,空调每台定价3000元,立式风扇每台定价600元.商场决定开展促销活动,活动期间向客户提供两种优惠方案. 方案一:买一台空调送一台立式风扇;方案二:空调和立式风扇都按定价的90%付款.现某客户要到该卖场购买空调5台,立式风扇x 台(x >5).(1)若该客户按方案一购买,需付款 元,(用含x 的代数式表示)若该客户按方案二购买,需付款 元.(用含x 的代数式表示)(2)若x =10,通过计算说明此时按哪种方案购买较为合算?(3)当x =10时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元? 【答案】(1)(60012000x +),(50013500x +) (2)方案一购买较划算(3)先按方案一购买5台空调,送5台立式风扇,再按方案二购买5台立式风扇,付款17700元【分析】(1)方案一:买5台空调,送5台立式风扇,故费用为:5台空调的费用加上(5)x -台立式风扇的费用方案二:5台空调的90%加上x 台立式风扇的90%,通过计算比较即可 (2)将10x =分别代入(1)中所得的两种方案中并计算即可(3)买空调最多5台,故可先买5台空调,送5台立式风扇,再按第二种方案购买5台立式风扇即可 (1)解:按方案一购买,需付款: 30005(5)600x ⨯+-⨯ (60012000)x =+(元)按方案二购买,需付款:3000590%90%600x ⨯⨯+⨯ (54013500)x =+ (元)故答案为:(60012000)x +,(54013500)x + (2)解:当10x=时,方案一:600101200018000⨯+=(元)方案二:540101350018900⨯+=(元)1800018900<∵∴此时按方案一方案购买较为合算(3)解:先按方案一买5台空调,送5台立式风扇,再按方案二买5台立式风扇53000560090%17700⨯+⨯⨯=(元)答:需付款17700元【点睛】本题考查了列代数式及代数式求值在销售问题中的应用,理清题中的数量关系是解题的关键23.(2022·河北·七年级期末)如图,已知点C在线段AB上,AB=20,BC=13AC,点D,E在射线AB上,点D在点E的左侧.(1)DE在线段AB上,当E为BC中点时,求CE的长;(2)在(1)的条件下,点F在线段AB上,CF=3,求EF的长;(3)若AB=2DE,线段DE在射线AB上移动,且满足关系式4BE=3(AD+CE),求CDAC的值.【答案】(1)CE=2.5;(2)EF的长为0.5或5.5;(3)1930 CDAC=.【分析】(1)根据AC=20,BC=13AC可得BC的长度,再根据线段的中点可得答案;(2)分两种情况:当点F在点E的右侧或当点F在点E的左侧,再根据线段的中点计算即可;(3)根据DE的位置分情况计算即可.(1)解:∵AB=20,BC=13 AC,∴BC=5,AC=15,∵E为BC中点,∴CE=2.5;(2)解:当点F在点E的右侧,如图,EF=CF-CE=3-2.5=0.5,当点F在点E的左侧,如图,EF=CF+CE=3+2.5=5.5,综上:EF的长为0.5或5.5;(3)解:∵BC=13AC,AB=2DE,满足关系式4BE=3(AD+CE),设CE=x,BC=5,AC=15,DE=10,①当DE在线段AC上时,如图,则AD=15-x-10=5-x,BE=5+x,∵4BE=3(AD+CE),即4(5+x)=3(5-x+x),解得x=-1.25,不合题意,舍去;②当点C在DE之间时,如图,∴AD=15+x-10=5+x,BE=5-x,∵4BE=3(AD+CE),即4(5-x)=3(5+x+x),解得x=0.5,∴CD=10-0.5=9.5,∴9.5191530 CDAC==;③线段CB在线段DE上时,如图,则AD=15+x-10=5+x,BE=x-5,即4(x-5)=3(5+x+x),解得x=-17.5,不合题意,舍去;④当D 在CB 之间时,如图,AD =15+x -10=5+x ,BE =x -5, 即4(x -5)=3(5+x +x ), 解得x =-17.5,不合题意,舍去; ⑤当D 在B 的右边时,如图,AD =15+x -10=5+x ,BE =x -5,即 4(x -5)=3(5+x +x ), 解得x =-17.5,不合题意,舍去. 综上,1930CD AC =. 【点睛】本题考查了两点间的距离,熟练掌握线段中点的定义和线段的和差是解题关键,注意分情况计算.24.(2022·浙江宁波·七年级期末)如图①.直线DE 上有一点O , 过点O 在直线DE 上方作射线OC , 将一直角三角板AOB (其中45OAB ∠=)的直角顶点放在点O 处, 一条直角边OB 在射线 OE 上, 另一边OA 在直线DE 的上方,将直角三角形绕着点O 按每秒15的速度顺时针旋转一周,设旋转时间为t 秒.(1)当直角三角板旋转到图②的伩置时, 射线OB 恰好平分COE ∠, 此时, AOC ∠与AOD ∠ 之间的数量关系为____________.(2)若射线OC 的位置保持不变, 且120COD ∠=,①在旋转过程中,是否存在某个时刻,使得射线OB , 射线OC , 射线OE 中的某一条射线是另外两条射线所夹锐角的角平分线? 若存在,请求出t 的值; 若不存在, 请说明理由;②在旋转过程中, 当边AB 与射线OD 相交时, 如图③, 请直接写出BOC AOD ∠∠-的值____________.【答案】(1)AOC AOD∠=∠(2)①2t=;②30︒【分析】(1)根据OB平分∠COE,得出∠COB=∠EOB,根据∠AOB=90°,得出∠BOC+∠AOC =90°,∠BOE+∠AOD =90°,利用等角的余角性质得出∠AOC=∠AOD即可;(2)①存在,根据120COD∠=,得出∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边OB在射线OE上,∠EOB=∠BOC=11603022COE∠=⨯︒=︒,列方程15°t=30°,解得t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∠EOB=2∠EOC=120°>90°,∠EOB不是锐角舍去,当OE 平分∠BOC时,∠EOB=∠EOC=60°,∠BOC=2∠EOC=120°>90°∠BOC不是锐角舍去即可;②如图根据∠COD=120°,可得AB与OD相交时,∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,代入计算即可.(1)解:∵OB平分∠COE,∴∠COB=∠EOB,∵∠AOB=90°,∴∠BOC+∠AOC =90°,∠BOE+∠AOD =90°,∴∠AOC=∠AOD,故答案为:∠AOC=∠AOD;(2)解:①存在,∵120COD∠=,∴∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边OB在射线OE上,∠EOB=∠BOC=11603022COE∠=⨯︒=︒,则15°t=30°,∴t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∴∠EOB=2∠EOC=120°>90°,∴当OC平分∠EOB时,∠EOB不是锐角舍去,当OE 平分∠BOC 时,∠EOB =∠EOC =60°, ∴∠BOC =2∠EOC =120°>90°,当OE 平分∠BOC 时,∠BOC 不是锐角舍去,综上,所有满足题意的t 的取值为2, ②如图∵∠COD =120°, 当AB 与OD 相交时,∵∠BOC=∠COD-∠BOD=120°-∠BOD ,∠AOD=∠AOB-∠BOD=90°-∠BOD , ∴()1209030BOC AOD BOD BOD ∠∠-=︒-∠-︒-∠=︒,故答案为:30°.【点睛】本题考查角平分线定义,三角板中角度计算,图形旋转,角的和差计算,熟练掌握角平分线的性质,分类讨论的思想运用是解答的关键.。
浙教版(2024)数学七年级上册期末综合素质评价(含答案)
期末综合素质评价一、选择题(本题有10小题,每小题3分,共30分)1.若a与1互为相反数,则a的值为( )A.-1B.0C.2D.12.下列说法:①规定了原点、正方向的直线是数轴;②数轴上两个不同的点可以表示同一个有理数;③无理数在数轴上无法表示出来;④任何一个有理数都可以在数轴上找到与它对应的唯一点.其中正确的是( )A.①②③④B.②③C.③④D.④3.据浙江省统计局统计,2023年上半年全省生产总值为3871700000 000元.数3871700000000用科学记数法表示为( ) A.0.38717×1013B.3.8717×1012 C.3.8717×1011D.38.717×1011a2b2+3y是同类项,则x和y 4.[2024·桐庐校级月考]已知2a7x-5b17与-13的值分别为( )A.5,1B.1,5C.-1,5D.-5,1 5.[2024·杭州拱墅区校级月考]已知关于x的方程(k-2)x|k|-1+6=3k是一元一次方程,则k=( )A.±2B.2C.-2D.±16.同一平面内有A,B,C三点,经过任意两点画直线,共可画( )A.1条B.3条C.1条或3条D.不能确定7.下列说法中正确的有( )①过两点有且只有一条直线;②连结两点的线段叫两点间的距离;③有公共端点的两条射线组成的图形叫作角;④若AB=BC,则点B是AC 的中点.A.1个B.2个C.3个D.4个8.如图,1时30分的时候,钟表的时针与分针所组成的小于平角的角的度数是( )A .120°B .125°C .135°D .150°9.一艘船在静水中的速度为20 km /h ,水流速度为4 km /h ,从甲码头顺流航行到乙码头,再返回到甲码头共用5 h .若设甲、乙两码头的距离为x km ,则下列方程正确的是( )A .(20+4)x +(20-4)x =5B .20x +4x =5C . x 20+x 4=5D . x 20+4+x20-4=510.[新视角 新定义题]定义:对于一个有理数x ,我们把[x ]称作x 的伴随数:若x ≥0,则[x ]=x -1;若x <0,则[x ]=x +1.例如:[1]=1-1=0,[-2]=-2+1=-1.现有以下判断:(1)[0]=-1;(2)已知有理数x >0,y <0,且满足[x ]=[y ]+1,则x -y =3;(3)对任意有理数x ,有[x ]-[x +1]=-1或1;(4)方程[3x ]+[x +5]=3的解只有x =0.其中正确的是( )A .(1)(3)B .(1)(2)(3)C .(1)(2)(4)D .(1)(2)(3)(4)二、填空题(本题有6小题,每小题4分,共24分)11.建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是: .12.[2024·丽水校级二模]将实数-π,0,-5和2由小到大用“<”连接起来为 .13.[2024·绍兴越城区期末]如图,在同一平面内,三角尺的直角顶点C 正好在直线DE 上.如果∠BCE =25°,那么∠ACD 的度数为 °.14.[2024·衢州期末]如果x -2y +1=0,那么代数式2 024-2x +4y3= .15.如图是一组有规律的图案,它由若干个大小相同的圆片组成,第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…,依此规律,第n 个图案中有 个白色圆片(用含n 的代数式表示).16.如图,已知数轴上点A 对应的数为8,B 是数轴上一点,且AB =14.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t s (t >0).当t = 时,PB =4.三、解答题(本题有8小题,共66分)17.(6分)计算:(1)(-3)-|-8|-2×(-4);(2)-14-12×[3-(-3)2].18.(6分)解方程:(1)2(x +4)=3x -8;(2)2x +13-x -56=1.19.(6分)先化简,再求值:23(6a -3ab )+(ab -2a )-2(ab +b ),其中a -b =9,ab =-6.20.(8分)如图,已知在平面上有三个点A ,B ,C ,请用尺规按下列要求作图:(1)作直线AB ;(2)作射线AC ;(3)在射线AC 上作线段AD ,使AD =2AB.21.(8分)已知一个正数的平方根分别是a -2和7-2a ,3b +1的立方根是-2,c 是39的整数部分.(1)求a ,b ,c 的值;(2)求5a +2b -c 的平方根.22.(10分)[2023·衢州衢江区期末]如图,直线AB ,CD 相交于点O ,OE 是∠BOC 内一条射线,OC 平分∠AOE .(1)若∠BOE =80°,求∠AOC 的度数;(2)若∠BOE 比∠BOD 大30°,求∠BOD 的度数.23.(10分)[情境题 生活应用]某地天然气收费方案如下:阶梯年用气量价格补充说明第一阶梯0~400 m 3(含400)的部分3元/m 3第二阶梯400~800 m 3(含800)的部分4元/m 3第三阶梯800 m 3以上的部分5元当家庭人口超过3人时,每增加1人,第一、二阶梯年用气量上限将分别增加100 m 3,150 m 3,同时,第二、三阶梯年用气量下限随之调整,每一阶梯的价格保持不变5/m 3(1)某家庭当年用气量为500 m 3.若该家庭人口为3人,则需缴纳燃气费用 元;若该家庭人口为4人,则需缴纳燃气费用 元.(2)甲户家庭人口为3人,乙户家庭人口为4人.某年甲、乙两户年用气量之和为1 000 m 3,甲户年用气量大于乙户年用气量.已知甲、乙两户一共缴纳燃气费用3 200元,求甲、乙两户年用气量分别是多少.(3)某公司共有22名员工,员工宿舍有3人间和4人间两种类型的房间可供选择,且员工所选择的房间必须住满.结算天然气费用时,将每间宿舍视作一户家庭,按上表的收费标准进行收费.假定每名员工的年用气量为250 m 3,要使该公司员工宿舍当年缴纳总天然气费用最低,则3人间的房间数为 .24.(12分)[新视角 动态探究题]如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”.图中点A 表示-12,点B 表示10,点C 表示20,我们称点A 和点C 在“折线数轴”上相距32个单位长度.动点P 从点A 出发,以2个单位长度/秒的速度沿“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q 从点C 出发,以1个单位长度/秒的速度沿“折线数轴”的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t 秒,回答下列问题:(1)动点P 从点A 运动至点C 需要多久?(2)若P ,Q 两点在点M 处相遇,则点M 在“折线数轴”上表示的数是多少?(3)当t 为何值时,P ,O 两点在“折线数轴”上相距的长度与Q ,B 两点在“折线数轴”上相距的长度相等?7参考答案一、1. A 2. D 3. B 4. B 5. C 6. C 7. B 8. C 9. D 10. B二、11.两点确定一条直线 12.-π<-5<0<213.115 14.2 026 15.(2+2n ) 16.2或3.6三、17.【解】(1)原式=-3-8+8=-3.(2)原式=-1-12×(3-9)=-1+3=2.18.【解】(1)2(x +4)=3x -8,2x +8=3x -8,2x -3x =-8-8,-x =-16,x =16.(2)2x +13-x -56=1,2(2x +1)-(x -5)=6,4x +2-x +5=6,4x -x =6-2-5,3x =-1,x =-13.19.【解】原式=4a -2ab +ab -2a -2ab -2b=2a -3ab -2b =2(a -b )-3ab .因为a -b =9,ab =-6,所以原式=2×9-3×(-6)=36.20.【解】(1)如图,连结AB ,并延长AB ,BA ,得到直线AB .(2)如图,连结AC ,并延长AC ,得到射线AC .(3)如图,以点A 为圆心,线段AB 长为半径画弧,交射线AC 于点E,再以点E为圆心,线段AB长为半径画弧,交射线AC于点D,线段AD即为所求.21.【解】(1)因为一个正数的平方根分别是a-2和7-2a,所以a-2+7-2a=0,解得a=5.因为3b+1的立方根是-2,所以3b+1=-8,解得b=-3.因为36<39<49,所以6<39<7,39的整数部分是6,所以c=6,所以a的值为5,b的值为-3,c的值为6.(2)因为a的值为5,b的值为-3,c的值为6,所以5a+2b-c=5×5+2×(-3)-6=13,所以5a+2b-c的平方根为±13.22.【解】(1)因为∠BOE=80°,∠BOE+∠AOE=180°,所以∠AOE=180°-∠BOE=100°.因为OC平分∠AOE,所以∠AOC=1∠AOE=50°.2(2)设∠BOD=x,则∠AOC=x.因为OC平分∠AOE,所以∠AOE=2∠AOC=2x.因为∠BOE比∠BOD大30°,所以∠BOE=x+30°.因为∠AOE+∠BOE=180°,所以2x+x+30°=180°,解得x=50°,即∠BOD=50°.23.【解】(1)1600;1500(2)设甲户的年用气量为x m3,则乙户的年用气量为(1000-x)m3.因为甲户年用气量大于乙户年用气量,所以x>1000-x,所以x>500,所以1000-x<500.当500<x≤800时,3×400+4(x-400)+3(1000-x)=3200.解得x=600.当800<x<1000时,3×400+4×(800-400)+5(x-800)+3(1000-x)=3200.解得x=700(不合题意,舍去).所以x=600,所以1000-x=400.答:甲、乙两户年用气量分别是600m3,400m3.(3)624.【解】(1)动点P从点A运动至点C需要的时间为[0-(-12)]÷2+(20-10)÷2+(10-0)÷1=6+5+10=21(秒).(2)由题意可得P,Q两点在OB上相遇,所以(t-6)+2(t-10)=10,解得t=12.所以点M在“折线数轴”上所表示的数是6.(3)当点P在AO上,点Q在CB上时,OP=12-2t,BQ=10-t,因为OP=BQ,所以12-2t=10-t,解得t=2;当点P在OB上,点Q在CB上时,OP=t-6,BQ=10-t,因为OP=BQ,所以t-6=10-t,解得t=8;当点P在OB上,点Q在OB上时,OP=t-6,BQ=2(t-10),因为OP=BQ,所以t-6=2(t-10),解得t=14;当点P在BC上,点Q在OA上时,OP=10+2(t-16),BQ=10+(t-15),因为OP=BQ,所以10+2(t-16)=10+(t-15),解得t=17.综上所述:当t=2或8或14或17时,P,O两点在“折线数轴”上相距的长度与Q,B两点在“折线数轴”上相距的长度相等.9。
2020-2021学年浙江版七年级上册数学 期末测评培优卷(含解析)(1)
2020-2021学年浙江版七年级上册数学期末测评培优卷(含解析)(一)(测试时间:120分钟,满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•杭州期中)下列运算正确的是()A.(﹣1)2020=﹣1 B.﹣22=4 C.±3 D. 32.(2020秋•瑞安市期中)下列四个实数中,最小的是()A.﹣2 B.C.0 D.23.(2020秋•瑞安市期中)在数轴上到表示﹣1的点的距离是3个单位的点所表示的数为()A.2 B.﹣2或4 C.﹣4 D.﹣4或24.(2020秋•余杭区期中)下列说法正确的是()①一个数的绝对值一定是正数;②绝对值是同一个正数的数有两个,它们互为相反数;③任何有理数小于或等于它的绝对值;④绝对值最小的整数是1.A.②③B.①②③C.①②D.②③④5.(2020春•义乌市期末)下列各组数中,相等的一组是()A.﹣(﹣1)与﹣|﹣1| B.﹣32与(﹣3)2C.(﹣4)3与﹣43D.与()2 6.(2020•温岭市校级期末)已知单项式﹣3a m﹣1b6与ab2n是同类项,则m+n的值是()A.0 B.3 C.4 D.57.(2020•上城区期末)若ax=ay,那么下列等式一定成立的是()A.x=y B.x=|y| C.(a﹣1)x=(a﹣1)y D.3﹣ax=3﹣ay 8.(2020•吴兴区期末)如图,AC⊥BC,AC=4,点D是线段BC上的动点,则A、D两点之间的距离不可能是()A.3.5 B.4.5 C.5 D.5.59.(2020•上城区期末)某商场年收入由餐饮、零售两类组成.已知2018年餐饮类收入是零售类收入的2倍,2019年因商场运营调整,餐饮类收入减少了10%,零售类收入增加了18%,若该商场2019年零售类收入为708万元,则该商场2019的年收入比2018年()A.增加12万元B.减少12万元C.增加24万元D.减少24万元10.(2020•椒江区期末)如图,点C、D为线段AB上两点,AC+BD=a,且AD+BC AB,则CD 等于()A.2a B.a C.a D.a二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2020秋•翠屏区期末)3.(选填“>”、“<”或“=”)12.(2020秋•西湖区校级期中)比较8的立方根和2的平方根的大小:.(结果用<号连接)13.已知关于x的一元一次方程0.5x+1=2x+b的解为x=2,那么关于y的一元一次方程0.5(y﹣1)+1=2(y﹣1)+b的解为.14.(2020秋•垦利区期末)一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折2次后,可以得3条折痕,那么对折5次可以得到条折痕.15.(2020秋•上城区期末)如图,点O在直线AB上,∠AOD=120°,CO⊥AB,OE平分∠BOD,则图中一共有对互补的角.16.(2020秋•上城区期末)如图,一个点表示一个数,不同位置的点表示不同的数,每行各点所表示的数自左向右从小到大,且相邻两个点所表示的数相差1,每行数的和等于右边相应的数字.那么,表示2020的点在第行,从左向右第个位置.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2020春•肇源县期末)计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×();(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.18.(2019秋•吉州区期末)先化简,再求值:xy,其中x =3,y.19.(2020•顺德区模拟)解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)120.(2020春•南岗区校级期中)某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?21.(2019秋•苍南县期末)已知点A,B,C如图所示,根据要求完成下列各题.(1)画直线BC,线段AB和射线CA.(2)过点A画BC的垂线段AD,垂足为D,并量出点A到直线BC的距离为cm.(以答题纸为测量依据,结果精确到0.1cm).22.(2020秋•西湖区校级期中)数学中,运用整体思想方法在求代数式的值中非常重要.例如:已知,a2+2a=1,则代数式2a2+4a+4=2(a2+2a)+4=2×1+4=6.请你根据以上材料解答以下问题:(1)若x2﹣3x=2,则1+3x﹣x2=;(2)已知a﹣b=5,b﹣c=3,求代数式(a﹣c)2﹣3a+2+3c的值;(3)当x=﹣1,y=2时,代数式ax2y﹣bxy2﹣1的值为8,则当x=1,y=﹣2时,求代数式ax2y﹣bxy2﹣1的值.23.(2019秋•义乌市期末)(1)如图(a),将两块直角三角尺的直角顶点C叠放在一起.①若∠DCE=60°,则∠ACB=;若∠ACB=140°,则∠DCE=.②猜想∠ACB与∠DCE的度数有何特殊关系,并说明理由.(2)如图(b),两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的度数有何关系?请说明理由.(3)如图(c),已知∠AOB=α,作∠COD=β(α,β都是锐角且α>β),若OC在∠AOB的内部,请直接写出∠AOD与∠BOC的度数关系.24.(2019秋•吴兴区期末)每年“双十一”购物活动,商家都会利用这个契机进行打折满减的促销活动.某商家平时的优惠措施是按所有商品标价打七折;“双十一”活动期间的优惠措施是:购买的所有商品先按标价总和打七五折,再享受折后每满200元减30元的优惠.如标价为300元的商品,折后为225元,再减30元,即实付:300×0.75﹣30=195(元).(1)该商店标价总和为1000元的商品,在“双十一”购买,最后实付只需多少元?(2)小明妈妈在这次活动中打算购买某件商品,打折满减后,应付金额是507元,求该商品的标价.(3)在(2)的条件下,若该商家出售的商品标价均为整数,小明通过计算后告诉妈妈:通过凑单的办法,只须再多支付元,就可以得到最大的优惠.2020-2021学年浙江版七年级上册数学期末测评培优卷(含解析)(一)(测试时间:120分钟,满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•杭州期中)下列运算正确的是()A.(﹣1)2020=﹣1 B.﹣22=4C.±3 D. 3【分析】依据乘方运算,算术平方根以及立方根的定义,即可得出结论.【解析】A.(﹣1)2020=1,故本选项错误;B.﹣22=﹣4,故本选项错误;C.,故本选项错误;D.,故本选项正确;故选:D.2.(2020秋•瑞安市期中)下列四个实数中,最小的是()A.﹣2 B.C.0 D.2【分析】先根据实数的大小比较法则进行比较,再得出选项即可.【解析】﹣20<2,所以最小的是﹣2,故选:A.3.(2020秋•瑞安市期中)在数轴上到表示﹣1的点的距离是3个单位的点所表示的数为()A.2 B.﹣2或4 C.﹣4 D.﹣4或2【分析】先根据题意列出算式﹣1+3和﹣1﹣3,再求出答案即可.【解析】﹣1+3=2,﹣1﹣3=﹣4,所以在数轴上到表示﹣1的点的距离是3个单位的点所表示的数为是﹣4或2,故选:D.4.(2020秋•余杭区期中)下列说法正确的是()①一个数的绝对值一定是正数;②绝对值是同一个正数的数有两个,它们互为相反数;③任何有理数小于或等于它的绝对值;④绝对值最小的整数是1.A.②③B.①②③C.①②D.②③④【分析】根据绝对值的意义和性质,逐项判断即可.【解析】0的绝对值是0,因此选项A不符合题意;绝对值是同一个正数的数有两个,它们互为相反数,因此选项B符合题意;正数和0的绝对值等于它本身,负数的绝对值等于它的相反数,因此选项C符合题意;绝对值最小生物数是0,因此选项D不符合题意;因此,正确的结论有②③,故选:A.5.(2020春•义乌市期末)下列各组数中,相等的一组是()A.﹣(﹣1)与﹣|﹣1| B.﹣32与(﹣3)2C.(﹣4)3与﹣43D.与()2【分析】根据有理数的乘方的定义,绝对值的性质对各选项分别计算,然后利用排除法求解.【解析】A、﹣|﹣1|=﹣1,﹣(﹣1)=1,﹣(﹣1)≠﹣|﹣1|,故本选项错误;B、(﹣3)2=9,﹣32=﹣9,9≠﹣9,故本选项错误;C、(﹣4)3=﹣64,﹣43=﹣64,(﹣4)3=﹣43,故本选项正确;D、,,,故本选项错误.故选:C.6.(2020•温岭市校级期末)已知单项式﹣3a m﹣1b6与ab2n是同类项,则m+n的值是()A.0 B.3 C.4 D.5【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得m、n的值,再代入所求式子计算即可.【解析】∵单项式﹣3a m﹣1b6与ab2n是同类项,∴m﹣1=1,2n=6,解得m=2,n=3,∴m+n=2+3=5.故选:D.7.(2020•上城区期末)若ax=ay,那么下列等式一定成立的是()A.x=y B.x=|y| C.(a﹣1)x=(a﹣1)y D.3﹣ax=3﹣ay【分析】利用等式的性质对每个式子进行变形即可找出答案.【解析】A、当a=0时,x与y不一定相等,故本选项错误;B、当a=0时,x与|y|不一定相等,故本选项错误;C、当a=0时,x与y不一定相等,故本选项错误;D、等式ax=ay的两边同时乘﹣1,再同时加上3,该等式仍然成立,故本选项正确.故选:D.8.(2020•吴兴区期末)如图,AC⊥BC,AC=4,点D是线段BC上的动点,则A、D两点之间的距离不可能是()A.3.5 B.4.5 C.5 D.5.5【分析】利用垂线段最短得到AD≥AC,然后对各选项进行判断.【解析】∵AC⊥BC,AC=4,∴AD≥AC,即AD≥4.观察选项,只有选项A符合题意.故选:A.9.(2020•上城区期末)某商场年收入由餐饮、零售两类组成.已知2018年餐饮类收入是零售类收入的2倍,2019年因商场运营调整,餐饮类收入减少了10%,零售类收入增加了18%,若该商场2019年零售类收入为708万元,则该商场2019的年收入比2018年()A.增加12万元B.减少12万元C.增加24万元D.减少24万元【分析】设2018年零售类收入为x万元,餐饮类收入为2x万元,由“零售类收入增加了18%,若该商场2019年零售类收入为708万元”,列出方程可求x的值,即可求解.【解析】设2018年零售类收入为x万元,餐饮类收入为2x万元,由题意可得:x(1+18%)=708,解得:x=600,∴2x=1200万元,∴708+1200×(1﹣10%)﹣(600+1200)=﹣12万元,∴该商场2019的年收入比2018年减少了12万元,故选:B.10.(2020•椒江区期末)如图,点C、D为线段AB上两点,AC+BD=a,且AD+BC AB,则CD 等于()A.2a B.a C.a D.a【分析】根据线段的和差定义计算即可.【解析】∵AD+BC AB,∴2(AD+BC)=3AB,∴2(AC+CD+CD+BD)=3(AC+CD+BD),∴CD=AC+BC=a,故选:B.二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2020秋•翠屏区期末)3.(选填“>”、“<”或“=”)【分析】应用放缩法,判断出、3的大小关系即可.【解析】∵3,∴3.故答案为:>.12.(2020秋•西湖区校级期中)比较8的立方根和2的平方根的大小:.(结果用<号连接)【分析】利用立方根的定义和平方根的定义确定出各数,再比较数的大小即可.【解析】8的立方根是2,2的平方根是±,则2,故答案为:2.13.已知关于x的一元一次方程0.5x+1=2x+b的解为x=2,那么关于y的一元一次方程0.5(y﹣1)+1=2(y﹣1)+b的解为.【分析】设y﹣1=m,则方程变形为0.5m+1=2m+b,根据关于x的方程0.5x+1=2x+b的解为x=2,即可得出m=2,进而得出关于y的一元一次方程,解方程即可得出y值,此题得解.【解析】设y﹣1=﹣m,则方程变形为0.5m+1=2m+b,∵关于x的方程0.5x+1=2x+b的解为x=2,∴m=2,即y﹣1=2,解得:y=3,∴关于y的一元一次方程0.5(y﹣1)+1=2(y﹣1)+b的解为y=3.故答案为:y=3.14.(2020秋•垦利区期末)一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折2次后,可以得3条折痕,那么对折5次可以得到条折痕.【分析】对前三次对折分析不难发现每对折1次把纸分成的部分是上一次的2倍,折痕比所分成的部分数少1,求出第4次的折痕即可;再根据对折规律求出对折n次得到的部分数,然后减1即可得到折痕条数.【解析】由图可知,第1次对折,把纸分成2部分,1条折痕,第2次对折,把纸分成4部分,3条折痕,第3次对折,把纸分成8部分,7条折痕,第4次对折,把纸分成16部分,15条折痕,…,依此类推,第n次对折,把纸分成2n部分,2n﹣1条折痕.当n=5时,25﹣1=31,故答案为:31.15.(2020秋•上城区期末)如图,点O在直线AB上,∠AOD=120°,CO⊥AB,OE平分∠BOD,则图中一共有对互补的角.【分析】根据互补的定义进行解答,找到两个角之和为180°角的对数.【解析】∵∠AOD=120°,CO⊥AB于O,OE平分∠BOD,∴∠COD=∠DOE=∠EOB=30°,∴这三个角都与∠AOE互补.∵∠COE=∠DOB=60°,∴这两个角与∠AOD互补.另外,∠AOC和∠COB都是直角,二者互补.因此一共有6对互补的角.故答案为:6.16.(2020秋•上城区期末)如图,一个点表示一个数,不同位置的点表示不同的数,每行各点所表示的数自左向右从小到大,且相邻两个点所表示的数相差1,每行数的和等于右边相应的数字.那么,表示2020的点在第行,从左向右第个位置.【分析】观察不难发现,每一行的数字的个数为连续的奇数,且数字为相应的序数,然后求解即可.【解析】由图可知,前n行数的个数为1+3+5+…+2n﹣1n2,∵452=2025,∴表示2020的点在第45行,从左向右第45×2﹣1﹣(2025﹣2020)=84个位置.故答案为:45;84.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2020春•肇源县期末)计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×();(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.【分析】根据有理数的混合运算顺序和运算法则进行计算便可.【解析】(1)12﹣(﹣6)+(﹣9)=12+6+(﹣9)=18+(﹣9)=9;(2)(﹣48)×()=(﹣48)×()+(﹣48)×()+(﹣48)=24+30﹣28=26;(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3=﹣9÷46+(﹣8)6+(﹣8)=(﹣18)+(﹣8)=﹣26.18.(2019秋•吉州区期末)先化简,再求值:xy,其中x =3,y.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解析】原式=3x2y﹣2xy2+2xy﹣3x2y+3xy2﹣xy=xy2+xy,当x=3,y时,原式1.19.(2020•顺德区模拟)解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)1【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解析】(1)去括号得:x﹣2x+8=3﹣3x,移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4﹣3x+1=6+2x,移项合并得:﹣5x=1,解得:x=﹣0.2.20.(2020春•南岗区校级期中)某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?【分析】(1)先表示出第二车间的人数,再表示出第三车间的人数即可;(2)把表示三个车间的人数的代数式相加即可得到答案;(3)先表示出调动后第一车间的人数,再用调动后第一车间的人数减去第三车间的人数即可.【解析】(1)∵第二车间的人数比第一车间人数的少20人,即人,而第三车间人数是第二车间人数的多10人,∴第三车间的人数为:人;(2)三个车间共有:人;(3)(x+10)﹣(x﹣15)=25(人),答:原第三车间人数比调动后的第一车间人数少25人.21.(2019秋•苍南县期末)已知点A,B,C如图所示,根据要求完成下列各题.(1)画直线BC,线段AB和射线CA.(2)过点A画BC的垂线段AD,垂足为D,并量出点A到直线BC的距离为cm.(以答题纸为测量依据,结果精确到0.1cm).【分析】(1)过点C、B作直线,要向两方延伸;过A、C作射线,向A点方向延伸,C点方向不延伸;作线段AB,不向任何一个方向延伸;(2)利用直角三角三角板过A作垂线AD,利用直尺测量即可.【解析】(1)如图所示:(2)经测量AD=1.8cm,故答案为:1.8.22.(2020秋•西湖区校级期中)数学中,运用整体思想方法在求代数式的值中非常重要.例如:已知,a2+2a=1,则代数式2a2+4a+4=2(a2+2a)+4=2×1+4=6.请你根据以上材料解答以下问题:(1)若x2﹣3x=2,则1+3x﹣x2=;(2)已知a﹣b=5,b﹣c=3,求代数式(a﹣c)2﹣3a+2+3c的值;(3)当x=﹣1,y=2时,代数式ax2y﹣bxy2﹣1的值为8,则当x=1,y=﹣2时,求代数式ax2y﹣bxy2﹣1的值.【分析】(1)根据整体思想代入计算即可求解;(2)根据已知条件先求出a﹣c的值,再整体代入到所求代数式中即可;(3)根据已知可得2a+4b=9,再整体代入到所求代数式中即可.【解析】(1)因为x2﹣3x=2,所以1+3x﹣x2=1﹣(x2﹣3x)=1﹣2=﹣1故答案为:﹣1.(2)∵a﹣b=5,b﹣c=3,∴a﹣b+b﹣c=a﹣c=5+3=8,∴(a﹣c)2﹣3a+2+3c=(a﹣c)2﹣3(a﹣c)+2=(a﹣c﹣2)•(a﹣c﹣1)=(8﹣2)×(8﹣1)=42;(3)∵当x=﹣1,y=2时,代数式ax2y﹣bxy2﹣1的值为8,即2a+4b﹣1=8,可得2a+4b=9,∴当x=1,y=﹣2时,代数式ax2y﹣bxy2﹣1=﹣2a﹣4b﹣1=﹣(2a+4b)﹣1=﹣9﹣1=﹣10.23.(2019秋•义乌市期末)(1)如图(a),将两块直角三角尺的直角顶点C叠放在一起.①若∠DCE=60°,则∠ACB=;若∠ACB=140°,则∠DCE=.②猜想∠ACB与∠DCE的度数有何特殊关系,并说明理由.(2)如图(b),两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的度数有何关系?请说明理由.(3)如图(c),已知∠AOB=α,作∠COD=β(α,β都是锐角且α>β),若OC在∠AOB的内部,请直接写出∠AOD与∠BOC的度数关系.【分析】(1)①先求出∠BCD,再代入∠ACB=∠ACD+∠BCD求出即可;先求出∠BCD,再代入∠DCE=∠BCE﹣∠BCD求出即可;②先计算:∠ACB=90°+∠BCD,再加上∠DCE可得结果;(2)先计算∠DAB=60°+∠CAB,再加上∠CAE可得结果;(3)分情况讨论:①OD在OB上方;OD在∠BOC内部;③OD在∠AOC内部;④OD在OA下方.【解析】(1)①若∠DCE=60°∵∠ACD=90°,∠DCE=60°∴∠ACE=90°﹣60°=30°∵∠BCE=90°∴∠ACB=∠ACE+∠BCE=30°+90°=120°若∠ACB=140°∵∠BCE=90°∴∠ACE=140°﹣90°=50°∵∠ACD=90°∴∠DCE=90°﹣50°=40°.故答案为:120°;40°;②∵∠ACB=∠ACD+∠BCD=90°+∠BCD∴∠ACB+∠DCE=90°+∠BCD+∠DCE=90°+∠BCE=180°;(2)∠DAB+∠CAB=120°.∵∠DAB=∠DAC+∠CAB=60°+∠CAB;∴∠DAB+∠CAB=60°+∠CAB+∠CAE=60°+∠EAB=120°;(3)①OD在OB上方时,如图∠AOD+∠BOC=∠AOB+∠COD=α+β②OD在∠BOC内部,如图∠AOD+∠BOC=∠AOB+∠COD=α+β;③OD在∠AOC内部,如图∠AOD+∠BOC=∠AOB﹣∠COD=α﹣β;④OD在OA下方,如图∠BOC﹣∠AOD=∠AOB﹣∠AOC﹣(∠COD﹣∠AOC)=∠AOB﹣∠AOC ﹣∠COD+∠AOC=∠AOB﹣∠COD=α﹣β.综上所述,∠AOD+∠BOC=α﹣β或∠AOD+∠BOC=α+β或∠BOC﹣∠AOD=α﹣β.24.(2019秋•吴兴区期末)每年“双十一”购物活动,商家都会利用这个契机进行打折满减的促销活动.某商家平时的优惠措施是按所有商品标价打七折;“双十一”活动期间的优惠措施是:购买的所有商品先按标价总和打七五折,再享受折后每满200元减30元的优惠.如标价为300元的商品,折后为225元,再减30元,即实付:300×0.75﹣30=195(元).(1)该商店标价总和为1000元的商品,在“双十一”购买,最后实付只需多少元?(2)小明妈妈在这次活动中打算购买某件商品,打折满减后,应付金额是507元,求该商品的标价.(3)在(2)的条件下,若该商家出售的商品标价均为整数,小明通过计算后告诉妈妈:通过凑单的办法,只须再多支付元,就可以得到最大的优惠.【分析】(1)根据“双十一”活动期间的优惠措施即可求解;(2)根据“双十一”活动期间的优惠措施可知该商品折后应该可以享受两次“满200减30”,设原标价为x元,根据打折满减后,应付金额是507元列出方程即可求解;(3)求出享受三次“满200减30”需要的钱数,减去507即可求解.【解析】(1)打折后:1000×0.75=750(元),“满200减30”再享受优惠:3×30=90(元),最后实付:750﹣90=660(元).故最后实付只需660元;(2)标价总和打七五折后:满200元,不到400元,可减30元,不合题意;满400元,不到600元,可减60元,符合题意;满600元,不到800元,可减90元,不合题意.则该商品折后应该可以享受两次“满200减30”,设原标价为x元,则0.75x﹣60=507,解得x=756.答:该商品原标价为756元;(3)600﹣90﹣507=3(元).答:只须再多支付3元,就可以得到最大的优惠.故答案为:3.。
【浙教版】七年级数学上期末试卷附答案(1)
一、选择题1.下列说法正确..的是( ) A .一个数,如果不是正数,必定是负数 B .所有有理数都能用数轴上的点表示 C .调查某种灯泡的使用寿命采用普查 D .两点之间直线最短2.下列调查中,最适宜采用全面调查(普查)的是( )A .调查一批袋装食品是否含有防腐剂B .对一批导弹的杀伤半径的调查C .了解某校学生的身高情况D .对重庆市居民生活垃圾分类情况的调查3.某超市有线上和线下两种销售方式,去年10月份该超市线下销售额比线上销售额多a 元,与去年相比,该超市今年10月份线上销售额增长35%,线下销售额减少10%,若该超市今年10月份的销售总额比去年10月份的销售总额增加了10%,则今年10月份线上销售额与当月销售总额的比为( )A .12B .611C .59D .474.下列变形错误的是( )A .由x y =得:88x y -=-B .由32x =得:23x =C .由23x -=得:32x =-D .由342x x -=得:324x x =+5.下列等式变形正确的是( ) A .若25x -=,则25x =-B .若()2134x x +-=,则2134x x +-=C .若7235x x -=--,则7352x x +=+D .若1132x x -+=,则()2316x x +-= 6.老师布置10道题作为课堂练习,学习委员将全班同学的答题情况绘制成右图,问答对8道题同学频率是( )A .0.8B .0.4C .0.25D .0.087.若线段122A A =,在线段12A A 的延长线上取一点3A ,使2A 是13A A 的中点;在线段13A A 的延长线上取一点4A ,使3A 是41A A 的中点;在线段41A A 的延长线上取一点5A ,使4A 是15A A 的中点……,按这样操作下去,线段2021A A 的长度为( )A .182B .192C .202D .2128.已知点C 在线段AB 上,点D 在线段AB 的延长线上,若5AC =,3BC =,14BD AB =,则CD 的长为( )A .2B .5C .7D .5或1 9.已知∠'α21=,∠β0.36=︒,则∠α和∠β的大小关系是( ) A .∠α=∠β B .∠α>∠βC .∠α<∠βD .无法确定10.下列运算正确的是( )A .2347a a a +=B .44a a -=C .32523a a a +=D .10.2504ab ab -+= 11.5的相反数的倒数是( ) A .5-B .5C .15-D .1512.如图所示的几何体从正面看,得到的图形是( )A .B .C .D .二、填空题13.甲、乙两家汽车销售公司根据近几年的销售量分别制作如下统计图:从2009-2013年,这两家公司中销售量增长较快的是__________公司.14.为了调查某校中学生对3月12日“植树节”是否了解,从该校全体学生1000名中,随机抽查了40名学生,结果显示有1名学生不了解,由此,估计该校全体学生中对“植树节”不了解的约有________名学生.15.若|2||3|9x x ++-=,则x 的值为________.16.如图在长方形ABCD 的边上有P 、Q 两个动点速度分别为2cm /s ,1cm/s ,两个点同时出发,运动过程中,一个点停止运动时另一个点继续向终点运动,运动时间为t 秒.动点P 从A 点出发沿折线A D C --向终点C 运动,动点Q 从C 点出发,沿折线C D A--向终点A 运动.若8cm AB =,6cm AD =,当APC △和AQC 的面积之和为8平方厘米时,t 的值为_________.17.如图,已知线段AB m =,CD n =,线段CD 在直线AB 上运动(点A 在点B 的左侧,点C 在点D 的左侧),若()21260m n -+-=. (1)求线段AB ,CD 的长;(2)若点M ,N 分别为线段AC ,BD 的中点,4BC =,求线段MN 的长; (3)当CD 运动到某一时刻时,点D 与点B 重合,点P 是线段AB 的延长线上任意一点,下列两个结论:①PA PB PC-是定值,②PA PBPC +是定值,请选择你认为正确的一个并加以说明.18.单项式21315x a b +与38x y a b +-的差仍是单项式,则x y -=______. 19.如图,数轴上点A ,B ,C 对应的有理数分别是a ,b ,c ,2OA OC OB ==,且24a b c ++=-,则a b b c -+-=______.20.如图,用一个平面从正方体的三个顶点处截去正方体的一角变成一个新的多面体,这个多面体共有________ 条棱.三、解答题21.为宣传普及新冠肺炎防控知识,引导学生做好防控,某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为 20道判断题,每道题5分,满分 100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩,已知抽取得到的八年级的数据如下(单位:分):80,95,75,75,90,75,80,65, 80.85.75,65,70,65,85,70,95,80,75.80.为了便于分析数据,统计员对八年级数据进行了整理,得到表1表1:等级分数(单位:分)学生数D60<x≤705C70<x≤80aB80<x≤90bA90<x≤1002年级平均分中位数优秀率八年级78分c分m%九年级76分82.5分50%22.国庆期间,七(1)班的明明、丽丽等同学随家长一同到吉水进士文化园游玩,下面是购买门票时,明明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)明明他们一共去了几个成人,几个学生?(2)请你帮助明明算一算,用哪种方式购票更省钱?说明理由;(3)购完票后,明明发现七(2)班的张小涛等7名同学和他们的9名家长共16人也来购票,请你为他们设计出最省的购票方案,并求出此时的购票费用.23.如图,已知点C在线段AB上,点D、E分别在线段AC、BC上,AB=,则DE=_______;(1)观察发现:若D、E分别是线段AC、BC的中点,且12(2)拓展探究;若2AD DC =,2BE CE =,且10AB =,求线段DE 的长;(3)数学思考:若AD kDC =,BE kCE =(k 为正数),则线段DE 与AB 的数量关系是________. 24.计算(1)()()664 2.50.1-⨯--÷- (2)()()322524-⨯--÷ (3)()()225214382a a a a +---+(4)22135322x x x x ⎡⎤⎛⎫---+⎪⎢⎥⎝⎭⎣⎦25.计算:()2020313121468⎛⎫-+-⨯+- ⎪⎝⎭. 26.如图,用一张长为2π米、宽为2米的铁皮制作一个圆柱形管道,如果制作中不考虑材料损耗,试求可围成管道的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据有理数的定义,数轴、普查、线段的定义进行解答即可. 【详解】解:A 、一个数,如果不是正数,可能是负数,也可能是0,故A 选项错误; B 、所有的有理数都能用数轴上的点表示,故B 正确;C 、调查某种灯泡的使用寿命,利用普查破坏性较强,应采用抽样调查,故此选项错误; D、两点之间,线段最短,故原题说法错误. 故选B. 【点睛】本题考查了有理数的定义、数轴、普查、线段的定义,掌握相关知识是解题的关键.2.C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似. 【详解】解:A 、调查一批袋装食品是否含有防腐剂,最适宜采用抽样调查,故本选项不合题意; B 、对一批导弹的杀伤半径的调查,最适宜采用抽样调查,故本选项不合题意; C 、了解某校学生的身高情况,最适宜采用全面调查(普查);D 、对重庆市居民生活垃圾分类情况的调查,最适宜采用抽样调查,故本选项不合题意; 故选:C . 【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B解析:B 【分析】设去年10月线上销售额为x 元,则去年总销售额为2x a +()元,今年10月线上销售额为(135%)x +元,线下销售额为(110%)()x a -+元,今年10月份总销售额:135%90%()x x a ++元,根据“今年10月份的销售总额比去年10月份的销售总额增加了10%”列出方程,解方程求出4x a =,从而得出今年10月份线上销售额与当月销售总额,即可求解. 【详解】解:设去年10月线上销售额为x 元,线下销售额为(x +a )元,去年总销售额为2x a +()元,则今年10月线上销售额为(135%)x +元,线下销售额为(110%)()x a -+元,今年10月份总销售额:135%90%()x x a ++元根据题意得:(2)(110%)135%90%()x a x x a ++=++, 解得:4x a =,今年10月线上销售额为4135% 5.4a a ⋅=元, 今年10月总销售额为135%490%(4)9.9a a a a ⋅++=元故5.469.911a a =. 故选B .【点睛】本题考查一元一次方程的应用,根据题意找准等量关系,正确列出一元一次方程是解题的关键.4.C解析:C利用等式的性质将各式进行变形,即可做出判断. 【详解】解:A 、由x y =可以得到88x y -=-,故此选项不符合题意;B 、由32x =得:23x =,故选项不符合题意; C 、由23x -=得:3+2x =-,故选项变形错误,符合题意;D 、由342x x -=得:324x x =+,故选项不符合题意. 故选:C . 【点睛】此题考查了等式的性质运用,灵活掌握等式的性质是解答此题的关键.5.D解析:D 【分析】各项利用等式的性质判断即可. 【详解】解:A 、若25x -=,则52x =-,所以选项A 变形错误,故选项A 不符合题意; B 、若()2134x x +-=,则2234x x +-=,所以选项B 变形错误,故选项B 不符合题意;C 、若7235x x -=--,则7352x x +=-+,所以选项C 变形错误,故选项C 不符合题意;D 、若1132x x -+=,则()2316x x +-=,正确,故选项D 符合题意. 故选:D . 【点睛】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.6.B解析:B 【分析】根据条形统计图,求出答对题的总人数,再求出答对8道题的同学人数,然后利用答对8道题的同学人数÷答对题的总人数即可得出答案. 【详解】解:答对题的总人数:4+20+18+8=50(人) 答对8道题的人数: 20人∴答对8道题的同学的频率:20÷50=0.4 故选:B 【点睛】本题主要考查了条形统计图的应用,利用条形统计图得出答对题的总人数与答对8道题的人数是解题的关键.7.B解析:B【分析】根据线段中点的定义,和两点之间的距离,找出题目中的规律,即可得到结论.【详解】由题意可知:如图写出线段的长,A1A2=2,A2是 A1A3的中点得A1A2=A2A3=2,A1A3=4,A3是 A1A4的中点得A1A3=A3A4=4,A1A4=8,A4是 A1A5的中点得A1A4=A4A5=8,……根据线段的长,找出规律,∵A1A2=2,A2A3=2=21,A3A4=4=22,A4A5=8=23,A5A6=16=24,A7A8=……,总结通项公式,∴线段 A n A n+1=2n-1(n为正整数)∴线段 A20A21=219故此题选:B【点睛】本题考查了两点间的距离,线段中点的定义,找出题目中的规律是解题的关键.8.B解析:B【分析】根据线段的和差关系可求AB,再根据14BD AB=,可求BD,再根据线段的和差关系可求CD的长.【详解】解:如图,∵点C在线段AB上,AC=5,BC=3,∴AB=AC+BC=5+3=8,∴14BD AB==2,∵点D在线段AB的延长线上,∴CD=BC+BD=3+2=5.故选B【点睛】本题考查了线段的和差,根据题意,画出正确图形,是解题关键.9.C解析:C 【分析】一度等于60′,知道分与度之间的转化,统一单位后比较大小即可求解. 【详解】解:∵∠α=21′,∠β=0.36︒=21.6′, ∴∠α<∠β. 故选:C . 【点睛】考查了度分秒的换算,熟练掌握角的比较与运算,能够在度与分之间进行转化.10.D解析:D 【分析】根据合并同类项得法则计算即可. 【详解】解:A.347a a a +=,故A 选项错误; B.43a a a -=,故B 选项错误;C.3a 与22a 不是同类项,不能合并,故C 选项错误;D.10.2504ab ab -+=,故D 选项正确; 故选:D . 【点睛】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.11.C解析:C 【分析】只有符号不同的两个数互为相反数,两数相乘为1的数互为倒数. 【详解】解:5的相反数为5-,5-的倒数为15-,故5的相反数的倒数是15-. 故答案为:C . 【点睛】本题考查倒数和相反数.熟练掌握倒数和相反数的求法是解题的关键.12.A解析:A 【解析】 【分析】根据从正面看得到的图形是主视图和主视图的特点,可得答案.【详解】解:从正面看最下面一层是三个小正方形,上面一层有1个正方形,且位于最右侧,故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.二、填空题13.甲【分析】结合折线统计图求出甲乙各自的增长量即可求出答案【详解】解:从折线统计图中可以看出:甲公司2009年的销售量约为100辆2013年约为500多辆则从2009~2013年甲公司增长了400多辆解析:甲【分析】结合折线统计图,求出甲、乙各自的增长量即可求出答案.【详解】解:从折线统计图中可以看出:甲公司2009年的销售量约为100辆,2013年约为500多辆,则从2009~2013年甲公司增长了400多辆;乙公司2009年的销售量为100辆,2013年的销售量为400辆,则从2009~2013年,乙公司中销售量增长了400-100=300辆;∴甲公司销售量增长的较快.故答案为:甲.【点睛】本题主要考查了折线图,从折线的陡峭情况来判断,很易错选乙公司;但是两幅图中横轴的组距选择不一样,所以就没法比较了,因此还要抓住关键.14.【分析】先通过样本计算对植树节不了解的所占比例然后估计整体中对植树节不了解的人数【详解】解:随机抽查了40名学生中不了解人数占的百分比为×100=25则估计该校全体学生中对植树节不了解的学生人数为1解析:25【分析】先通过样本计算对“植树节”不了解的所占比例,然后估计整体中对“植树节”不了解的人数.【详解】解:随机抽查了40名学生中“不了解”人数占的百分比为140×100%=2.5%,则估计该校全体学生中对“植树节”不了解的学生人数为1000×2.5%=25人.故答案是:25.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.15.或5【分析】根据绝对值的意义及数轴上两点间的距离分析求解【详解】解:表示数轴上x 表示的点到-2的距离;表示数轴上x 表示的点到3的距离∵3-(-2)=5且∴x <-2或x >3当x <-2时解得:当x >3时解析:4-或5【分析】根据绝对值的意义及数轴上两点间的距离分析求解.【详解】解:|2|x +表示数轴上x 表示的点到-2的距离;|3|x -表示数轴上x 表示的点到3的距离 ∵3-(-2)=5且|2||3|9x x ++-=∴x <-2或x >3当x <-2时,|2||3|9x x ++-=239x x ---+=,解得:4x =-当x >3时,|2||3|9x x ++-=239x x ++-=,解得:5x =综上,x 的值为-4或5故答案为:-4或5.【点睛】本题考查一元一次方程的应用,根据数轴上两点间的距离数形结合思想解题是关键. 16.s 或12s 【分析】分四种情况求解即可:点P 在AD 上运动点Q 在CD 上运动时;点P 在CD 上运动时点Q 在CD 上运动时;点P 与点C 重合点Q 在CD 上运动时;点P 与点C 重合点Q 在AD 上运动时【详解】解:①6÷2 解析:811s 或12s 【分析】 分四种情况求解即可:点P 在AD 上运动,点Q 在CD 上运动时;点P 在CD 上运动时,点Q 在CD 上运动时;点P 与点C 重合,点Q 在CD 上运动时;点P 与点C 重合,点Q 在AD 上运动时.【详解】解:①6÷2=3秒,当0<t≤3时,即当点P 在AD 上运动,点Q 在CD 上运动时,如图1, ∵四边形ABCD 是长方形,∴CD=8cm AB =,∵S △APC +S △AQC =1122AP CD CQ AD ⋅+⋅=1128622t t ⨯⨯+⨯⨯ =8t+3t=8, ∴t=811;②(6+8)÷2=7秒,当3<t<7时,即当点P 在DC 上运动时,点Q 在CD 上运动时,如图2,∵S △APC +S △AQC =1122PC AD CQ AD ⋅+⋅ =()111426622t t ⨯-⨯+⨯⨯ =42-3t=8, ∴t=343(舍去);③8÷1=8秒,当7<t≤8时,即当点P 与点C 重合,点Q 在CD 上运动时,如图3, ∵S △APC +S △AQC =102CQ AD +⋅ =162t ⨯⨯ =3t=8, ∴t=83(舍去);④14÷1=14秒,当7<t<14时,即当点P 与点C 重合,点Q 在AD 上运动时,如图4, ∵S △APC +S △AQC =102AQ CD +⋅ =()11482t ⨯-⨯ =56-4t=8,∴t=12;综上可知:t 的值为811s 或12s . 【点睛】 本题考查了一元一次方程的应用,以及分类讨论的数学思想,分类讨论是解答本题的关键.17.(1);(2)9;(3)②正确见解析【分析】(1)利用两个非负数和为0可得每个非负数为0可求即可;(2)分类考虑当点在点的右侧和点在点的左侧时利用中点可求AMDN 利用线段和差求AD 可求MN=AD-A解析:(1)12AB =,6CD =;(2)9;(3)②正确,2PA PB PC +=,见解析 【分析】(1)利用两个非负数和为0,可得每个非负数为0,可求12m =,6n =即可; (2)分类考虑当点C 在点B 的右侧和点C 在点B 的左侧时,利用中点可求AM ,DN ,利用线段和差求AD ,可求MN=AD-AM-DN 即可;(3)利用PA=PC+AC ,PB=PC-BC ,求出PA+PB=2PC 即可.【详解】解:(1)由()21260m n -+-=,()212600m n ≥--≥,,12=06=0m n --,,得12m =,6n =,所以12AB =,6CD =;(2)当点C 在点B 的右侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,4BC =, 所以()()1124118222AM AC AB BC ==+⨯+==,()()111645222DN BD CD BC ===++=, 又因为124622AD AB BC CD =++=++=,所以22859MN AD AM DN =--=--=, 当点C 在点B 的左侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,所以()()1111244222AM MC AC AB BC ===--==,()()111641222BN ND BD CD BC ===--==, 所以126414AD AB CD BC =+-=+-=所以14419MN AD AM DN =--=--=. 综上,线段MN 的长为9;(3)②正确,且2PA PB PC+=.理由如下: 因为点D 与点B 重合,所以BC DC =, 所以6AC AB BC AB DC =-=-=,所以AC BC =,所以()()222PC AC PC BC PA PB PC AC BC PC PC PC PC PC++-++-====.【点睛】本题考查非负数的性质,线段中点,线段和差,线段的比问题,掌握非负数的性质,线段中点,线段和差,线段的比,关键是利用线段和差PA=PC+AC ,PB=PC-BC ,求出PA+PB=2PC .18.-1【分析】根据同类项的定义列方程计算即可;【详解】∵单项式与的差仍是单项式∴单项式与是同类项∴解得:∴;故答案是-1【点睛】本题主要考查了同类项的定义解析:-1【分析】根据同类项的定义列方程计算即可;【详解】∵单项式21315x a b +与38x y a b +-的差仍是单项式, ∴单项式21315x a b +与38x y a b +-是同类项, ∴2133x x y +=+⎧⎨=⎩, 解得:23x y =⎧⎨=⎩, ∴231x y -=-=-;故答案是-1.【点睛】本题主要考查了同类项的定义.19.8【分析】根据得代入即可求出a 和c 的值再根据绝对值的性质化简即可求出结果【详解】解:∵∴∵∴即∴∴故答案是:8【点睛】本题考查数轴的性质和绝对值的性质解题的关键是掌握数轴上的点表示有理数的性质和化简 解析:8【分析】根据2OA OC OB ==得2c a b =-=-,代入24a b c ++=-即可求出a 和c 的值,再根据绝对值的性质化简a b b c -+-,即可求出结果.【详解】解:∵2OA OC OB ==,∴2c a b =-=-,∵24a b c ++=-,∴4a c c -+=-,即4a =-,∴4c =, ∴()448a b b c b a c b c a -+-=-+-=-=--=.故答案是:8.【点睛】本题考查数轴的性质和绝对值的性质,解题的关键是掌握数轴上的点表示有理数的性质和化简绝对值的方法.20.12三、解答题21.无22.(1)明明他们一共去了6个成人,4个学生;(2)买团体票更省钱;(3)购买13张团体票,3张学生票更省钱,购票总费用为372元.【分析】(1)根据题意,可以找出题目中的等量关系,列出相应的方程,从而可以解答本题;(2)根据题意可以算出团购的费用,然后与(1)中320比较大小,即可解答本题;(3)根据题意,可以知道学生按照学生票购买,成人按团体票购买最省钱,然后求出相应的费用即可解答本题.【详解】解:(1)设一共去了x个成人,则学生(10-x)人,40x+0.5×40×(10-x)=320,解得,x=6.∴10-x=10-6=4,答:明明他们一共去了6个成人,4个学生;(2)买团体票更省钱,理由:∵购买团体票时,花费为:40×0.6×13=312(元),∵312<320,∴买团体票更省钱;(3)购买13张团体票,3张学生票更省钱,费用为:40×0.6×13+3×0.5×40=312+60=372(元),答:购票总费用为372元.【点睛】本题考查一元一次方程的应用,解答此类问题的关键是明确题意,找出所题目中的等量关系,列出相应的方程.23.(1)6;(2)103;(3)()1AB k DE=+【分析】(1)根据中点的定义,结合线段的和、差计算即可(2)利用线段之间的和、差关系倍数关系计算即可(3)结合(2)的求解,再利用线段之间的和、差关系倍数关系计算即可【详解】(1)D、E为线段AC,BC的中点11,22DC AC CE BC ∴== ()12DC CE AC BC ∴+=+ ,DE DC CE AB AC BC =+=+12DE AB ∴= 1211262AB DE =∴=⨯= (2)2,2AD DC BE CE == AB AD DC CE BE =+++,()223AB DC DC CE CE DC CE ∴=+++=+10,AB DE DC CE ==+3310103DE ABDE DE ∴=∴=∴=(3),AD kDC BE kCE == AB AD DC CE BE =+++,DE DC CE =+()()1AB kDC DC CE kCE k DC CE ∴=+++=++()1k DE AB ∴+=【点睛】本题考查了线段n 等分点的有关计算,掌握线段之间和、差倍数关系是解题关键. 24.(1)-289;(2)22;(3)23a 3413a -+-;(4)29x 32x -- 【分析】(1)先算乘除,再算加减即可;(2)先算乘方,再算乘除,后算加减即可;(3)去括号合并同类项即可;(4)先去小括号,再去中括号,然后合并同类项即可;【详解】(1)原式=26425--=-289;(2)原式=()4584⨯--÷=()202--=22;(3)原式=2252112328a a a a +--+-=233413a a -+-;(4)原式=22135322x x x x ⎛⎫--++ ⎪⎝⎭=22135322x x x x -+-- =2932x x --. 【点睛】本题考查了有理数的混合运算,整式的加减,熟练掌握运算法则是解答本题的关键.25.1102-. 【分析】 原式利用乘法分配律以及乘方的意义计算即可得到结果.【详解】 解:()2020313121468⎛⎫-+-⨯+- ⎪⎝⎭ =3131212121468-⨯+⨯-⨯+ =99212-+-+ =1102-. 【点睛】 此题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.26.2π【解析】【分析】由2πr =2π,求出r =1,再根据:体积=底面积×高,即可求解.【详解】设围城管道后底面的半径为r ,由题意得:2πr =2π,则r =1,管道的最大体积=底面积×高=πr 2×2=2π.【点睛】本题是一个简单的体积计算问题.。
【浙教版】七年级数学上期末试卷及答案(1)
一、选择题1.某市2014年至2020年国内生产总值年增长率(%)变化情况如统计图,从图上看,下列结论中不正确的是( )A .2014年至2020年,该市每年的国内生产总值有增有减B .2014年至2017年,该市国内生产总值的年增长率逐年减小C .自2017年以来,该市国内生产总值的年增长率开始回升D .2014年至2020年,该市每年的国内生产总值不断增长2.某校为了解学生的身高情况,随机对部分学生进行抽样调查,已知抽取的样本中,男生、女生人数相同,分组情况为(单位:cm ):155,A x <:155160,B x ≤<:160165C x ≤<,:165170,D x ≤<:170,E x ≥利用所得数据绘制如下统计图表:根据图表提供的信息,可知样本数据中下列信息正确的是( )A .身高在155160x ≤<区间的男生比女生多3人B .B 组中男生和女生占比相同C .超过一半的男生身高在165cm 以上D .女生身高在E 组的人数有2人3.将50个数据分成5组列出频数分布表,其中第二组的频数为15,则第二组的频率为( )A .0.28B .0.3C .0.4D .0.24.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律九折;(3)一次性购物超过300元一律八折;兰兰两次购物分别付款80元,252元.如果兰兰一次性购买和上两次相同的物品应付款( )A .288元B .288元和332元C .332元D .288元和316元5.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了85元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款( )元A .284B .308C .312D .3206.使得关于x 的方程44163ax x x -+-=-的解是正整数的所有整数a 的积为( ) A .21- B .12-C .6-D .12 7.下列说法中,正确的是( ).A .a -的相反数是正数B .两点之间线的长度叫两点之间的距离C .两条射线组成的图形叫做角D .两点确定一条直线 8.某一时刻钟表上时针和分针所成的夹角是105°,那么这一时刻可能是( )A .8点30分B .9点30分C .10点30分D .以上答案都不对 9.如图,轮船与灯塔相距120nmile ,则下列说法中正确的是( )A .轮船在灯塔的北偏西65°,120 n mile 处B .灯塔在轮船的北偏东25°,120 n mile 处C .轮船在灯塔的南偏东25°,120 n mile 处D .灯塔在轮船的南偏西65°,120 n mile 处10.求23201312222+++++的值,可令220131222S =++++,则23201422222S =++++,因此2014221S S -=-.仿照以上推理,计算出23201315555+++++的值为( )A .201451-B .201351-C .2014514- D .2013514- 11.关于几个“本身”,下列说法错误的是( ) A .倒数等于它本身的数有2个B .相反数等于它本身的数有1个C .立方(三次方)等于它本身的数有2个D .绝对值等于它本身的数有无数个12.下列哪个图形是正方体的展开图( ) A . B . C . D .二、填空题13.有30个数据,其中最大值为40,最小值为19,若取组距为4,则应该分成____组. 14.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图:互联网行业从业人员年龄分布统计图 90后从事互联网行业岗位分布图对于以下四种说法,你认为正确的是_____ (写出全部正确说法的序号).①在当地互联网行业从业人员中,90后人数占总人数的一半以上②在当地互联网行业从业人员中,80前人数占总人数的13%③在当地互联网行业中,从事技术岗位的90后人数超过总人数的20%④在当地互联网行业中,从事设计岗位的90后人数比80前人数少15.李明同学欲购买一件运动服,打七折比打九折少花30元钱,那么这件运动服的原价为__________元.16.已知多项式()224235x kxy x xy x ---+不含xy 项,则k 的值为________. 17.如图,平面上有A 、B 、C 、D 、F 五个点,请根据下列语句画出图形:(1)直线BC 与射线AD 相交于点M ;(2)连接AB ,并延长线段AB 至点E ,使点B 为AE 中点;(3)在直线BC 上找一点P ,使点P 到A 、F 两点的距离之和最小,作图的依据是: .18.当21x y ++取最小值时,代数式423x y ++的值是________.19.计算:()220423-÷⨯=__________.20.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革--庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.小芳参展之后打算设计一个正方体装饰品,她在正方体的一个平面展开图上写下了“全面深化改革”几个字(如图所示),如果正方体上“深”所对的面为“改”,则“革”所对的面是______.三、解答题21.设中学生体质健康综合评定成绩为x 分,满分为100分,规定85100x 为A 级,7585x <为B 级,6075x <为C 级,60x <为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生;a = ;(2)补全条形统计图;(3)扇形统计图中 C 级对应的圆心角为 度; (4)若该校共有2000名学生,请你估计该校D 级学生有多少名?22.甲、乙二人同时从相距1252千米的A 地去B 地,甲骑车,乙步行.甲每小时的速度比乙每小时的速度的3倍多1千米,甲达到B 地后停留45分,然后从B 地返回A 地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?23.将一副三角板按图甲的位置放置,(1)∠AOD ∠BOC (选填“<”或“>”或“=”);(2) 猜想∠AOC 和∠BOD 在数量上的关系是 .(3)若将这副三角板按图乙所示摆放,三角板的直角顶点重合在点O 处.(1)(2)中的结论还成立吗?请说明理由.24.先化简,再求值:22222(32)43a b a b abc ac ac abc ⎡⎤-----⎣⎦,其中1=1,3,2a b c =-=. 25.一股民在上星期五买进某公司股票1000股,每股27元,下表为本星期内每日该股票相对于前一天(星期一相对于上星期五)的涨跌情况:(比前一天上涨的记为正,比前一天下跌的记为负,股市周末休市)星期一 二 三 四 五 每股涨跌(单位:元) 4+ 4.5+ 1- 2.5- 6- (2)本星期内每股最低价多少元?(3)星期二收盘时,全部股票获利多少元?26.小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分析折线统计图,横轴表示年份,纵轴表示的是增长率,只要增长率是正数,则是增长,若是负数就是减少,根据统计图表示的变化情况即可求出答案.【详解】解:由折线统计图可知:2014年至2017年生产总值的年增长率分别为12.1%,11.0%,5.7%,5.1%,则呈现下降趋势;2018年至2020年的生产总值的年增长率分别为8.2%,11.2%,12.7%,呈现逐年增长趋势;则从2014年至2020年,该市每年的国内生产总值始终在增长,只是长的有快有慢,所以错误的是A .故选:A .【点睛】本题考查的是折线统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.折线统计图表示的是事物的变化情况.2.D解析:D【分析】先根据直方图可知抽取的女生总人数,再乘以375%.,然后与12进行比较即可判断选项A 和B ;根据直方图求出男生身高在165cm 以上的占比即可判断选项C ;利用女生中E 组的人数占比乘以女生总人数即可判断选项D .【详解】抽取的男生总人数为412108640++++=(人),因为抽取的样本中,男生、女生人数相同,所以抽取的女生总人数为40人,由直方图可知,身高在155160x ≤<区间的男生人数为12人,由扇形统计图可知,身高在155160x ≤<区间的女生人数为4037.5%15⨯=(人), 则身高在155160x ≤<区间的男生比女生少3人,选项A 错误;B 组中男生和女生占比不相同,选项B 错误;男生身高在165cm 以上的占比为68100%35%50%40+⨯=<,则选项C 错误;----⨯=(人),则选项D正确;女生中E组的人数为(137.5%17.5%25%15%)402故选:D.【点睛】本题考查了直方图和扇形统计图的信息关联,熟练掌握统计调查的相关知识是解题关键.3.B解析:B【分析】根据频率=频数÷数据总数,列式即可求解.【详解】∵将50个数据分成5组列出频数分布表,其中第二组的频数为15,∴第二组的频率为:15=0.350故选:B.【点睛】本题考查了频数分布表,掌握频率、频数与数据总数的关系是解题的关键.4.D解析:D【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100,即是80元.第二次就有两种情况,一种是超过100元但不超过300元一律9折;一种是购物超过300元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.【详解】解:(1)第一次购物显然没有超过100,即在第一次消费80元的情况下,他的实质购物价值只能是80元.(2)第二次购物消费252元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):①第一种情况:他消费超过100元但不足300元,这时候他是按照9折付款的.设第二次实质购物价值为x,那么依题意有x×0.9=252,解得:x=280.①第二种情况:他消费超过300元,这时候他是按照8折付款的.设第二次实质购物价值为x,那么依题意有x×0.8=252,解得:x=315.即在第二次消费252元的情况下,他的实际购物价值可能是280元或315元.综上所述,他两次购物的实质价值为80+280=360或80+315=395,均超过了300元.因此均可以按照8折付款:360×0.8=288元395×0.8=316元故选D.【点睛】本题考查了一元一次方程的应用,解题关键是第二次购物的252元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种. 5.B解析:B【分析】设第一次购物购买商品的价格为x 元,第二次购物购买商品的价格为y 元,分0<x <100及100≤x <350两种情况可得出关于x 的一元一次方程,解之可求出x 的值,由第二次购物付款金额=0.9×第二次购物购买商品的价格可得出关于y 的一元一次方程,解之可求出y 值,再利用两次购物合并为一次购物需付款金额=0.8×两次购物购买商品的价格之和,即可求出结论.【详解】解:设第一次购物购买商品的价格为x 元,第二次购物购买商品的价格为y 元, 当0<x <100时,x=85;当100≤x <350时,0.9x=85, 解得:8509x =(不符合题意,舍去); ∴85x =; 当100≤y <350时,则0.9y=270,∴y=300.当y>350时,0.8y=270,∴y=337.5(不符合题意,舍去);∴300y =;∴0.8(85300)308⨯+=(元).∴小敏至少需付款308元.故选:B .【点睛】此题主要考查了一元一次方程的应用,解题关键是第一次购物的90元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种. 6.B解析:B【分析】先解该一元一次方程,然后根据a 是整数和x 是正整数即可得到a 的值,从而得到答案.【详解】 解:44163ax x x -+-=- 去分母得,()()64246x ax x --=+-去括号得,64286x ax x -+=+-整理得,()46a x +=∴64x a=+, 当2a =时1x =,当1a =-时2x =,当2a =-时3x =,当3a =-时6x =,这些整数a 的积为()()()212312⨯-⨯-⨯-=-,故选:B .【点睛】本题考查了一元一次方程的解法和代数式求值,熟练掌握解一元一次方程是解题的关键. 7.D解析:D【分析】依据角的概念、直线的性质、相反数的定义以及两点之间的距离的定义进行判断即可;【详解】A 、-a 的相反数不一定是正数,故错误;B 、两点之间的线段的长度叫两点之间的距离,故错误;C 、有公共顶点两条射线组成的图形叫做角,故错误;D 、两点确定一条直线,故正确;故选:D .【点睛】本题主要考查了直线的性质、角的概念、两点之间的距离的定义,掌握相关概念和性质是解题的关键.8.B解析:B【分析】根据时间得到分针和时针所在位置,算出夹角度数,判断选项的正确性.【详解】A 选项,分针指向6,时针指向8和9的中间,夹角是3021575︒⨯+︒=︒;B 选项,分针指向6,时针指向9和10的中间,夹角是30315105︒⨯+︒=︒;C 选项,分针指向6,时针指向10和11的中间,夹角是30415135︒⨯+︒=︒D 选项错误,因为B 是正确的.故选:B .【点睛】本题考查角度求解,解题的关键是掌握钟面角度的求解方法.9.B解析:B【分析】根据方向角的定义作出判断.【详解】解:灯塔在轮船的北偏东25°,120 n mile处.故选B.【点睛】考查方向角的定义.用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南)10.C解析:C【分析】类比题目中所给的解题方法解答即可.【详解】解:设a=1+5+52+53+ (52013)则5a=5(1+5+52+53+…+52013)=5+52+53+…+52013+52014,∴5a-a=(5+52+53+…+52013+52014)-(1+5+52+53+…+52013)=52014-1,即a=2014514.故选:C.【点睛】本题是阅读理解题,类比题目中所给的解题方法是解决问题的基本思路.11.C解析:C【分析】直接利用立方、相反数、倒数、绝对值的性质分别分析得出答案.【详解】解:A、倒数等于它本身的数有2个,正确,不合题意;B、相反数等于它本身的数有1个,正确,不合题意;C、立方等于它本身的数有3个,故原说法错误,符合题意;D、绝对值等于它本身的数有无数个,正确,不合题意;故选:C.【点睛】此题主要考查了相反数、倒数、绝对值等定义,正确掌握相关定义是解题关键.12.B解析:B【分析】根据正方体展开图的11种特征,选项A、C、D不是正方体展开图;选项B是正方体展开图的“1-4-1”型.【详解】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.二、填空题13.6【解析】40-19=2121÷4=525故应分成6组解析:6【解析】40-19=21,21÷4=5.25,故应分成6组.14.①③【分析】观察比较扇形统计图和条形统计图获取相关信息然后再进行分析即可【详解】解:①从扇形统计图中可发现互联网行业从业人员中90后占56占一半以上即①正确;②互联网行业中从事技术岗位的80前人数占解析:①③【分析】观察、比较扇形统计图和条形统计图获取相关信息,然后再进行分析即可【详解】解:①从扇形统计图中可发现互联网行业从业人员中90后占56%,占一半以上,即①正确;②互联网行业中从事技术岗位的80前人数占总人数1-56%-41%=3%,故②错误;.③B互联网行业中从事技术岗位的90后人数占总人数的0.56×0.41=0.2296 >0.2,故③正确;④从事设计岗位的90后人数占总人数的0.56×0.08=0.0448>0.03故选④错误;故答案为①③.【点睛】本题主要考查对扇形统计图和条形统计图的观察分析能力,掌握条形统计图和扇形统计图的关联是解答本题的关键.15.150【分析】等量关系为:打九折的售价-打七折的售价=30根据这个等量关系可列出方程再求解【详解】解:设这件运动服的原价为x元由题意得:09x-07x=30解得x=150故这件运动服的原价是150元解析:150【分析】等量关系为:打九折的售价-打七折的售价=30.根据这个等量关系,可列出方程,再求解.【详解】解:设这件运动服的原价为x 元,由题意得:0.9x-0.7x=30,解得x=150.故这件运动服的原价是150元.故答案为:150.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.16.【分析】先去括号再计算整式的加减然后根据多项式不含项可得一个关于k 的一元一次方程解方程即可得【详解】多项式不含项解得故答案为:【点睛】本题考查了整式的加减一元一次方程的应用熟练掌握整式的加减运算法则 解析:152【分析】先去括号,再计算整式的加减,然后根据多项式不含xy 项可得一个关于k 的一元一次方程,解方程即可得.【详解】()224235x kxy x xy x ---+,22423153x kxy x xy x =--+-,2(152)3x k xy x =+--,多项式()224235x kxy x xy x ---+不含xy 项, 1520k ∴-=, 解得152k =, 故答案为:152. 【点睛】本题考查了整式的加减、一元一次方程的应用,熟练掌握整式的加减运算法则是解题关键.17.(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)根据直线射线的定义画出图形即可;(2)根据线段的延长线的定义以及中点的定义画出图形即可;(3)连接AF 交直线BC 于点P 点P 即为所求解析:(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)根据直线,射线的定义画出图形即可;(2)根据线段的延长线的定义以及中点的定义画出图形即可;(3)连接AF 交直线BC 于点P ,点P 即为所求.【详解】解:(1)如图,直线BC ,射线AD 即为所求作.(2)如图,线段BE 即为所求作.(3)如图,点P 即为所求作.理由:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了作图-复杂作图,两点之间线段最短,直线,射线,线段的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.【分析】根据取最小值时则2x+y=0然后将代数式变形为2(2x+y)+3整体代入即可求解【详解】解:∵∴当取最小值时∴2x+y=0∴=2(2x+y)+3=3故答案为:3【点睛】本题主要考察了绝对值的解析:【分析】 根据21x y ++取最小值时,2=0x y +,则2x+y=0,然后将代数式423x y ++变形为2(2x+y)+3,整体代入即可求解.【详解】解:∵20x y +≥∴当21x y ++取最小值时,2=0x y +∴2x+y=0∴423x y ++=2(2x+y)+3=3故答案为:3.【点睛】本题主要考察了绝对值的性质、用整体代入法求代数式的值,解题的关键是熟练掌握绝对值的性质以及用整体代入法求代数式的值.19.4【分析】原式首先计算乘方的零次幂再计算乘除法即可得到答案【详解】解:故答案为:4【点睛】此题主要考查了有理数的混合运算熟练掌握运算法则是解答此题的关键解析:4【分析】原式首先计算乘方的零次幂,再计算乘除法即可得到答案.【详解】解:()2204231641414-÷⨯=÷⨯=⨯=,故答案为:4.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 20.全三、解答题21.(1)50;24%;(2)补全图形见解析;(3)72;(4)160名.【分析】(1)由条形统计图得到B 级学生数,由扇形统计图得B 学生数占抽取学生总数的48%,用24除以48%得所抽取学生的总数即得前一个空的答案,由条形统计图得A 级学生数,用其除以所抽取的学生总数再化成百分数即得a 的值;(2)在(1)的基础上用抽取的总学生数减去A 、B 、D 级的学生数得到C 级的学生数,即可补全条形统计图;(3)用C 级的学生数除以所抽取的总学生数乘以360°即得;(4)先算得D 级学生数占所抽取学生总数的百分比,再乘以学校的学生总数即可.【详解】(1)2448%50÷=(名),1250100%24%a =÷⨯=;(2)C 级学生数为50-12-24-4=10(名)补全条形统计图如下图(3)103607250⨯︒=︒,故填72;(4)4100%200016050⨯⨯=(名) 所以该校D 级学生有160名.【点睛】 此题综合考查了条形统计图和扇形统计图,还有用样本去估计全体的相关知识.其关键是领会两种统计图各自的特点和不足,合起来运用.条形统计图能清楚反映出各部分的具体数目,用扇形统计图能直观清楚的看出各部分占全部的百分比.22.甲的速度为16千米/小时,乙的速度是5千米/小时【分析】设乙的速度是x 千米/小时,则甲的速度为(3x+1)千米/小时,根据二人行走路程之和为A 、B 两地路程的二倍列出方程,解方程即可.【详解】解:设乙的速度是x 千米/小时,则甲的速度为(3x+1)千米/小时,由题意得 ()451313+3=252602x x ⎛⎫+-⨯ ⎪⎝⎭, 解得 x=5,3x+1=16,答:甲的速度为16千米/小时,乙的速度是5千米/小时.【点睛】本题考查了一元一次方程的应用,理解题意,找到等量关系是解题关键.23.(1)∠AOD=∠BOC ;(2)∠AOC+∠BOD=180°;(3)任然成立,理由如见解析【分析】(1)根据角的和差关系解答,(2)利用周角的定义和直角解答;(3)根据同角的余角相等解答∠AOD 和∠BOC 的关系,根据图形,表示出∠BOD+∠AOC=∠BOD+∠AOB+∠COB 整理即可得到原关系仍然成立.【详解】解:(1)∠AOD 和∠BOC 相等,∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD ,∴∠AOD=∠COB ;(2)∠AOC 和∠BOD 互补 .∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°,∴∠AOC 和∠BOD 互补;⑶成立.∵∠AOB=∠COD=90°,∴∠AOB-∠BOD=∠COD-∠BOD ,∴∠AOD=∠COB ,∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=∠BOD+∠AOB+∠COB ,=90°+∠BOD+∠COB ,=90°+∠DOC ,=90°+90°,=180°.【点睛】本题主要考查角的和、差关系,互余互补的角关系,理清角的和或差,互余与互补关系是解题的关键.24.93,2abc - 【分析】先去中括号,然后去小括号,合并同类项进行计算即可,化简后将a 、b 、c 的值代入即可【详解】解:原式2222(644)3a b a b abc ac ac abc =--+-- 2263a b a b abc abc =-+-3abc = .当 1132a b c ==-=,,时, 原式3abc =1931322=⨯⨯-⨯=-(). 【点睛】本题考查了整式的化简,熟练掌握运算法则是解本题的关键;25.(1)34.5,(2)26,(3)8500.【分析】(1)由表格可计算出星期三收盘时每股的价钱;(2)本题需先根据本周内每股最低价是星期五,再列出式子解出结果即可; (3)求出星期二股票价格,算出获利即可.【详解】解:(1)27+(+4+4.5-1)=27+(8.5-1)=27+7.5=34.5(元).答:星期三收盘时,每股34.5元;(2)27+(+4+4.5-1-2.5-6)=27+[(+4+4.5)+(-1-2.5-6)]=27+[8.5+(-9.5)]=27+(-1)=26(元).答:本星期内每股最低价是26元;(3)星期二的股票价格为:27+(+4+4.5)=35.5(元)利润为:(35.5-27)×1000=8.5×1000=8500 (元).答:星期二收盘时,全部股票获利8500元.【点睛】此题考查了有理数混合运算的实际应用,本题提供的是实际生活中常见的表格,它提供了多种信息,关键是找出解题所需的有效信息,构建相应的数学模型,列出正确的算式,从而解决问题.学生解题时要注意运算顺序和运算法则.26.见解析【分析】本题涉及的知识点是正方体的平面展开图;要想组成正方体,其平面展开图应是“一,四,一”、“三,三”、“二,二,二”、“一,三,二”中的一种,结合题目已给图形,进行发散思维,即可得出对正方体展开图的补图.【详解】解:如图所示:新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.【点睛】本题主要考查了正方体的展开图,掌握正方体展开图的特点是解题的关键.。
【浙教版】七年级数学上期末试卷(带答案)(1)
一、选择题1.为了解某市九年级男生的身高情况,随机抽取了该市100名九年级男生,他们的身高()cm x 统计如下: 组别()cm 160x ≤160170x <≤170180x <≤ 180x > 人数1542385( ) A .28500B .17100C .10800D .15002.以下问题,不适合采用全面调查方式的是( ) A .调查全班同学对“郑万高铁”的了解程度 B .了解我市中学生的近视率C .疫情期间对国外入境人员的健康状况检查D .旅客上飞机前的安检3.已知10个数据:63,65,67,69,66,64,65,67,66,68,对这些数据编制频数分布表,那么数据在64.5~67.5之间的频率为:( ) A .0.5 B .0.6 C .5 D .6 4.已知x =3是关于x 的一元一次方程mx +3=0的解,则m 的值为( ) A .-1B .0C .1D .25.下列说法中,其中正确的个数有( ) ①两点之间的所有连线中,线段最短; ②倒数等于它本身的数是1-、0、1; ③不能作射线OA 的延长线;④单项式3222a b -的系数是2-,次数是7; ⑤若a b =,则a b =±;⑥方程||2(3)40m m x --+=是关于x 的一元一次方程,则3m =±. A .1个B .2个C .3个D .4个6.下列等式变形不正确的是( ) A .如果3x=6y ,则x=2y B .如果2x-1=3y+2,则2x=3y+3 C .如果x-2y=1,则2x-4y=2D .如果4x=9y 则x=32y 7.如图,在线段AD 上有两点B ,C ,则图中共有_____条线段,若在车站A 、D 之间的线路中再设两个站点B 、C ,则应该共印刷_____种车票.A .3, 3B .3, 6C .6, 6D .6, 128.永定河,“北京的母亲河”.近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A ,B 两地间的河道改直后大大缩短了河道的长度.这一做法的主要依据是( )A .两点确定一条直线B .垂线段最短C .过一点有且只有一条直线与已知直线垂直D .两点之间,线段最短 9.已知∠'α21=,∠β0.36=︒,则∠α和∠β的大小关系是( ) A .∠α=∠β B .∠α>∠βC .∠α<∠βD .无法确定10.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:第1行 1 第2行 -2 3 第3行 -4 5 -6 第4行 7 -8 9 -10 第5行 11 -12 13 -14 15 ……按照上述规律排下去,那么第100行从左边数第4个数是( ) A .-4954B .4954C .-4953D .495311.在一个有盖的正方体玻璃容器内装了一些水(约占一半),把容器按不同方式倾斜,容器内水面的形状不可能是( )A .B .C .D .12.5-的相反数是( ) A .15-B .5-C .5D .15二、填空题13.小明对某班级同学参加课外活动内容进行问卷调查后(每人必选且只选一种),绘制成如图所示的统计图,已知参加踢毽子的人数比参加打篮球的人数少6人,则参加“其他”活动的人数为__________人.14.2019年5月1日至10日我市空气质量指数(AQI )分别为77,52,46,57,58,78,75,34,47,43,将数据进行分组,落在53.5~59.5这一组的频数是__________.15.A 、B 、C 三地依次在同一直线上,B ,C 两地相距560千米,甲、乙两车分别从B ,C 两地同时出发,相向匀速行驶,行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达地A ,则A ,B 两地相距___________千米.16.已知关于x 的方程ax b c +=的解为1x =-,则3a b c -+-的值为____. 17.如图,已知线段AB m =,CD n =,线段CD 在直线AB 上运动(点A 在点B 的左侧,点C 在点D 的左侧),若()21260m n -+-=. (1)求线段AB ,CD 的长;(2)若点M ,N 分别为线段AC ,BD 的中点,4BC =,求线段MN 的长; (3)当CD 运动到某一时刻时,点D 与点B 重合,点P 是线段AB 的延长线上任意一点,下列两个结论:①PA PB PC-是定值,②PA PBPC +是定值,请选择你认为正确的一个并加以说明.18.如图是一个娱乐场,其中半圆形休息区和长方形游泳池以外的地方都是绿地,已知娱乐场的长为3a ,宽为2a ,游泳池的长、宽分别是娱乐场长、宽的一半,且半圆形休息区的直径是娱乐场宽的一半,则绿地的面积为______.(用含a 的代数式表示,将结果化为最简)19.比较大小:227-______3-(填“>”“<”或“=”). 20.如图是正方体的展开图,则正方体中与数字5所在面相对的面上的数字为________ .三、解答题21.某市为提高学生参与体育活动的积极性,2019年5月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一学生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2018年约有初一学生20000,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人. 22.解方程(1)()()345678x x x --=-- (2)1213412x x x -+-=-+ 23.如图:已知直线AB 、CD 相于点O ,90COE ∠=︒.(1)若32AOC ∠=︒,求∠BOE 的度数; (2)若:2:7BOD BOC ∠∠=,求BOD ∠的度数. 24.观察下面的三行单项式 x ,2x 2,4x 3,8x 4,16x 5…① 2x ,﹣4x 2,8x 3,﹣16x 4,32x 5…② 3x ,5x 2,9x 3,17x 4,33x 5…③ 根据你发现的规律,完成以下各题:(1)第①行第7个单项式为 ;第②行第7个单项式为 . (2)第③行第n 个单项式为 .(3)取每行的第10个单项式,令这三个单项式的和为A .计算当x =12时,256[3A ﹣2(A+14)]的值. 25.若a ,b ,c 为三个不相等的有理数,且a 是最大的负整数,b 的相反数等于它本身,c 的平方等于它本身.(1)a = ,b = ,c = ; (2)求b +c 2﹣a 3的值.26.某种包装盒的形状及相关尺寸如图所示(单位:cm).(1)请你画出沿长为3 cm 的棱将这个包装盒剪开的平面展开图,并标出相应的尺寸(接头处忽略不计);(2)计算这个包装盒的表面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】利用样本估计总体的思想解决问题即可.解:全市男生的身高不高于180cm的人数=1005 3000028500100-⨯=,故选:A.【点睛】本题考查频数分布表,样本估计总体等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2.B解析:B【分析】在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.调查全班同学对“郑万高铁”的了解程度适合全面调查;B.了解我市中学生的近视率适合抽样调查,不适合采用全面调查;C.疫情期间对国外入境人员的健康状况检查适合全面调查;D.旅客上飞机前的安检适合合全面调查.故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B解析:B【分析】首先正确数出在64.5~67.5这组的数据;再根据频率、频数的关系:频率=频数数据总和,进行计算.【详解】解:其中在64.5~67.5组的有65,67,66,65,67,66共6个,则64.5~67.5这组的频率是:60.6 10=.故选择:B.【点睛】本题考查频率、频数的关系,解题的关键是熟记求频率的公式.4.A【分析】把x =3代入方程计算即可求出m 的值. 【详解】解:把x =3代入方程得:3m +3=0, 解得:m =-1, 故选:A . 【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.C解析:C 【分析】根据线段的性质,倒数的性质,射线的性质,单项式的定义,绝对值的性质,一元一次方程的定义依次判断. 【详解】①两点之间的所有连线中,线段最短,故正确;②倒数等于它本身的数是1-、1,0没有倒数,故该项错误; ③不能作射线OA 的延长线,故正确;④单项式3222a b -的系数是2-3,次数是4,故该项错误; ⑤若a b =,则a b =±,故正确;⑥方程||2(3)40m m x --+=是关于x 的一元一次方程,则m=-3,故该项错误; 故正确的有:①③⑤, 故选:C . 【点睛】此题考查线段的性质,倒数的性质,射线的性质,单项式的定义,绝对值的性质,一元一次方程的定义,熟练掌握各部分知识是解题的关键.6.D解析:D 【分析】直接用等式的性质进行判断即可,等式左右两边同时加上减去乘以或除以(不为0)的一个数,等式不变; 【详解】A 、如果3x=6y ,则x=2y ,故此选项不符合题意;B 、如果2x-1=3y+2,则2x=3y+3,故此选项不符合题意;C 、如果x-2y=1,则2x-4y=2,故此选项不符合题意;D 、如果4x=9y ,则94x y =,故此选项符合题意; 故选:D .本题考查了等式的性质,熟练掌握等式的性质是解题的关键;7.D解析:D【分析】从左到右的顺序依次确定线段,车票有方向性,是线段条数的2倍.【详解】从A开始的线段有AB,AC,AD三条;从B开始的线段有BC,BD二条;从C开始的线段有CD一条;所以共有6条线段;车票从A到B和从B到A是不同的,所以车票数恰好是线段条数的2倍,所以需要12种车票,故选D.【点睛】本题考查了线段的定义,数线段,以及线段与生活中的车票的关系,熟练数线段,理解车票数是线段数的2倍是解题的关键.8.D解析:D【分析】根据线段的性质分析得出答案.【详解】由题意中改直后A,B两地间的河道改直后大大缩短了河道的长度,其注意依据是:两点之间,线段最短,故选:D.【点睛】此题考查线段的性质:两点之间线段最短,掌握题中的改直的结果是大大缩短了河道的长度的含义是解题的关键.9.C解析:C【分析】一度等于60′,知道分与度之间的转化,统一单位后比较大小即可求解.【详解】解:∵∠α=21′,∠β=0.36︒=21.6′,∴∠α<∠β.故选:C.【点睛】考查了度分秒的换算,熟练掌握角的比较与运算,能够在度与分之间进行转化.10.A解析:A分析可得:第n 行有n 个数,此行最后一个数的绝对值为(1)2n n +;且奇数为正,偶数为负;先求出99行最后一个数,然后可求出100行从左边数第4个数. 【详解】解:第1行有1个数,最后一个数的绝对值是:1;第2行有2个数,最后一个数的绝对值是:3=1+2=2(21)2⨯+; 第3行有3个数,最后一个数的绝对值是:6=1+2+3=3(31)2⨯+; 第4行有4个数,最后一个数的绝对值是:10=1+2+3+4=4(41)2⨯+; 第5行有5个数,最后一个数的绝对值是:15=1+2+3+4+5=5(51)2⨯+; ……;∴第n 行有n 个数,最后一个数的绝对值是:(1)2n n +; ∴第99行有99个数,此行最后一个数的绝对值为:99(991)49502⨯+=; ∴第100行从左边数第4个数的绝对值为4954, ∵奇数为正,偶数为负,∴第100行从左边数第4个数为-4954, 故选:A . 【点睛】本题考查规律型:数字的变化类以及学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.本题的关键是得到规律:第n 行有n 个数,此行最后一个数的绝对值为(1)2n n +;且奇数为正,偶数为负. 11.D解析:D 【分析】结合题意,相当于把正方体一个面,即正方形截去一个角,可得到四角形、五边形、六边形. 【详解】解:根据题意,结合实际,容器内水面的形状不可能是七边形. 故选:D . 【点睛】本题考查了认识立体图形,此类问题也可以亲自动手操作一下,培养空间想象力.12.C【分析】直接利用只有符号不同的两个数叫做互为相反数,进而得出答案.【详解】由相反数的定义可知,−5的相反数为5.故选:C.【点睛】此题主要考查了相反数,正确掌握定义是解题关键.二、填空题13.10【分析】先由扇形统计图得出参加踢毽子与打篮球的人数所占的百分比结合参加踢毽子的人数比参加打篮球的人数少6人求出参加课外活动一共的人数进一步可求参加其他活动的人数【详解】解:6÷(30-15)=4解析:10【分析】先由扇形统计图得出参加踢毽子与打篮球的人数所占的百分比,结合参加踢毽子的人数比参加打篮球的人数少6人,求出参加课外活动一共的人数,进一步可求参加“其他”活动的人数.【详解】解:6÷(30%-15%)=40(人),40×25%=10(人).答:参加“其他”活动的人数为10人.故答案为:10.【点睛】本题考查的是扇形统计图.在扇形统计图中,各部分占总体的百分比之和为1,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.14.【分析】数出在之间的数据个数即可【详解】在之间的数据为故这一组的频数是2故填:2【点睛】此题主要考查频数的个数解题的关键是熟知频数的定义解析:2【分析】数出在53.5~59.5之间的数据个数即可.【详解】在53.5~59.5之间的数据为57,58,故这一组的频数是2,故填:2.【点睛】此题主要考查频数的个数,解题的关键是熟知频数的定义.15.760【分析】设乙车的平均速度是x千米/时根据4(甲的平均速度+乙的平均速度)=560列出方程并求得乙车的行驶平均速度;设甲车从C 地到A 地需要t 小时则乙车从C 地到A 地需要(t+7)小时根据它们行驶路解析:760【分析】设乙车的平均速度是x 千米/时,根据4(甲的平均速度+乙的平均速度)=560列出方程并求得乙车的行驶平均速度;设甲车从C 地到A 地需要t 小时,则乙车从C 地到A 地需要(t +7)小时,根据它们行驶路程相等列出方程并求得t 的值;然后由路程=时间×速度解答.【详解】解:设乙车的平均速度是x 千米/时,则4(5607+x )=560. 解得x =60 即乙车的平均速度是60千米/时.设甲车从C 地到A 地需要t 小时,则乙车从C 地到A 地需要(t +7)小时,则 80(1+10%)t =60(7+t )解得t =15.所以60(7+t )-560=760(千米)故答案是:760.【点睛】此题考查了一元一次方程的应用,读懂题意,找到等量关系,列出方程是解题的关键. 16.3【分析】把x =-1代入方程整理即可求得a-b+c 的值然后整体代入所求的式子中进行求解即可【详解】解:根据题意得:-a +b =c 即a-b+c =0∴|a−b+c−3|=|0−3|=3故答案为:3【点睛】解析:3【分析】把x =-1代入方程整理即可求得a-b+c 的值,然后整体代入所求的式子中进行求解即可.【详解】解:根据题意得:-a +b =c ,即a-b+c =0,∴|a−b+c−3|=|0−3|=3.故答案为:3.【点睛】本题主要考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值. 17.(1);(2)9;(3)②正确见解析【分析】(1)利用两个非负数和为0可得每个非负数为0可求即可;(2)分类考虑当点在点的右侧和点在点的左侧时利用中点可求AMDN 利用线段和差求AD 可求MN=AD-A解析:(1)12AB =,6CD =;(2)9;(3)②正确,2PA PB PC+=,见解析【分析】(1)利用两个非负数和为0,可得每个非负数为0,可求12m =,6n =即可; (2)分类考虑当点C 在点B 的右侧和点C 在点B 的左侧时,利用中点可求AM ,DN ,利用线段和差求AD ,可求MN=AD-AM-DN 即可;(3)利用PA=PC+AC ,PB=PC-BC ,求出PA+PB=2PC 即可.【详解】解:(1)由()21260m n -+-=,()212600m n ≥--≥,, 12=06=0m n --,,得12m =,6n =, 所以12AB =,6CD =;(2)当点C 在点B 的右侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,4BC =,所以()()1124118222AM AC AB BC ==+⨯+==,()()111645222DN BD CD BC ===++=, 又因为124622AD AB BC CD =++=++=,所以22859MN AD AM DN =--=--=, 当点C 在点B 的左侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,所以()()1111244222AM MC AC AB BC ===--==,()()111641222BN ND BD CD BC ===--==, 所以126414AD AB CD BC =+-=+-=所以14419MN AD AM DN =--=--=. 综上,线段MN 的长为9;(3)②正确,且2PA PB PC+=.理由如下: 因为点D 与点B 重合,所以BC DC =, 所以6AC AB BC AB DC =-=-=,所以AC BC =,所以()()222PC AC PC BC PA PB PC AC BC PC PC PC PC PC++-++-====.【点睛】本题考查非负数的性质,线段中点,线段和差,线段的比问题,掌握非负数的性质,线段中点,线段和差,线段的比,关键是利用线段和差PA=PC+AC ,PB=PC-BC ,求出PA+PB=2PC .18.【分析】先求出游泳池的长宽及半圆形休息区的直径再根据绿地的面积是:总面积-游泳区的面积-休息区的面积求解即可【详解】解:休息区的直径是:=a 游泳池的长宽分别是=a ∴绿地的面积是:3a·2a-·a-= 解析:229128a a π- 【分析】先求出游泳池的长、宽及半圆形休息区的直径,再根据绿地的面积是:总面积-游泳区的面积-休息区的面积,求解即可.【详解】解:休息区的直径是:22a =a ,游泳池的长、宽分别是32a ,22a =a , ∴绿地的面积是:3a·2a-32a ·a-21()22a π=6a²-232a -28a π=229128a a π-, 故答案为229128a a π-. 【点睛】 本题考查了列代数式,解题的关键是掌握:绿地的面积是=总面积-游泳区的面积-休息区的面积.19.<【分析】根据两个负数绝对值大的反而小进行判断【详解】解:∵||=|-3|=3>3∴<-3故答案为:<【点睛】此题考查了有理数的大小比较的方法注意:两个负数比较绝对值大的反而小解析:<【分析】根据两个负数,绝对值大的反而小,进行判断.【详解】解:∵|227-|=227,|-3|=3, 227>3∴227<-3故答案为:<【点睛】此题考查了有理数的大小比较的方法,注意:两个负数比较,绝对值大的反而小.20.4三、解答题21.(1)500;(2)43.2°;(3)见解析;(4)2400人【分析】(1)用喜欢健身操的学生数除以其所占的百分比即可求得样本容量;(2)用周角乘以最喜欢足球运动的学生所占的百分比即可求得其圆心角的度数;(3)求得喜欢篮球的人数后补全统计图即可;(4)用总人数乘以喜欢足球的人数占总人数的百分比即可求解.【详解】解:(1)100÷20%=500,∴本次抽样调查的样本容量是500;(2)∵360°×60500=43.2°,∴扇形统计图中“最喜欢足球运动”的学生数所对应的扇形圆心角度数为43.2°;(3)喜爱篮球的有:500×(1-20%-18%-20%-60500×100%)=150人,补全统计图如下:(4)20000×60500=2400(人)全市本届学生中“最喜欢足球运动”的学生约有2400人.【点睛】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.22.(1)x=417;(2)x=72.【分析】(1)根据去括号、移项、合并同类项、系数化为1,求出方程的解各是多少即可;(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求出每个方程的解各是多少即可.【详解】解:(1)()()345678x x x --=--去括号,得3x ﹣20+4x =6﹣7x+56移项,得3x+4x+7x =6+56+20合并同类项,得14x =82系数化为1,得x =417; (2)1213412x x x -+-=-+ 去分母,得4x ﹣3(x-1)=-(x+2)+12去括号,得4x-3x+3=-x-2+12移项,得4x ﹣3x+x =12﹣2﹣3合并同类项,得2x =7系数化为1,得x =72. 【点睛】此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.23.(1)58°;(2)40°【分析】(1)根据平角的定义,结合角的和差进行计算;(2)根据平角的定义,结合角的比进行求解计算.【详解】解:(1)直线AB 、CD 相交于点O 180AOC COE BOE ∴∠+∠+∠=︒180BOE AOC COE ∴∠=︒-∠-∠90,32COE AOC ∠=︒∠=︒BOE 180329058∴∠=︒-︒-︒=︒(2)180COD ∠=︒,:2:7BOD BOC ∠∠=2180409BOD ∴∠=︒⨯=︒. 【点睛】 本题考查几何图形中角度的和差计算,理解题意,列出角的和差关系,正确计算是解题关键.24.(1)26x7,27x7;(2)(2n+1)x n;(3)1 4【分析】(1)观察所给的①与②式子可得①的特点,第n个数是2n﹣1x n,②的特点,第n个数是(﹣1)n﹣1(2x)n;(2)观察③式子的特点,可得第n个数是(2n+1)x n,即可求出解;(3)先求出A=29x10﹣210x10+(210+1)x10,再将x=12代入求出A,最后再求256[3A﹣2(A+14)]即可.【详解】解:(1)①的特点,第n个数是2n﹣1x n,∴第7个单项式是26x7;②的特点,第n个数是(﹣1)n﹣1(2x)n,∴第7个单项式是27x7;故答案为:26x7,27x7;(2)③的特点,第n个数是(2n+1)x n,故答案为:(2n+1)x n;(3)①的第10个单项式是29x10,②的第10个单项式是﹣210x10,③的第10个单项式是(210+1)x10,∴A=29x10﹣210x10+(210+1)x10=(29+1)x10,当x=12时,A=(29+1)×(12)10,∴256[3A﹣2(A+14)]=256(A﹣12)=256×[(29+1)×(12)10﹣12]=28×(12)10=14.【点睛】本题考查数字的变化规律,能够通过所给例子,找到式子的规律,列出每行第n个式子的代数式是解题的关键.25.(1)﹣1,0,1;(2)2【分析】(1)根据a,b,c为三个不相等的有理数,且a是最大的负整数,b的相反数等于它本身,c的平方等于它本身,可以得到a、b、c的值;(2)将(1)中a、b、c的值代入b+c2﹣a3,计算即可【详解】解:(1)∵a,b,c为三个不相等的有理数,且a是最大的负整数,b的相反数等于它本身,c的平方等于它本身,∴a=﹣1,b=0,c=1,故答案为:﹣1,0,1;(2)由(1)知,a=﹣1,b=0,c=1,∴b+c2﹣a3=0+12﹣(﹣1)3=0+1﹣(﹣1)=0+1+1=2.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.26.(1)详见解析;(2)22.【分析】(1)根据长方体的展开图的特点以及沿长为3厘米的棱剪开这两个知识点画出图形即可;(2)根据上面画出的展开图求出每个长方形的面积,再加起来计算出结果即可.【详解】(1)如图所示(只要画出一个正确的即可).(2)包装盒的表面积:2×(2×1+2×3+1×3)=22(cm2).【点睛】本题考查的是几何体的展开图,解决此类问题要知道长方体的展开图的特点.。
【浙教版】初一数学上期末模拟试卷附答案(1)
一、选择题1.如图,点C是线段AB的中点,点D是线段CB上任意一点,则下列表示线段关系的式子不正确的是()A.AB=2ACB.AC+CD+DB=ABC.CD=AD-12 ABD.AD=12(CD+AB)2.已知:如图,C是线段AB的中点,D是线段BC的中点,AB=20 cm,那么线段AD等于()A.15 cm B.16 cm C.10 cm D.5 cm3.从不同方向看一只茶壶,你认为是俯视效果图的是()A.B.C.D.4.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确5.小丽买了20支铅笔,店主给她8折优惠(即按标价的80%出售),结果共便宜了1.6元,则每支铅笔的标价是()A.0.20元B.0.40元C.0.60元D.0.80元6.已知方程16x-1=233x,那么这个方程的解是()A.x=-2 B.x=2 C.x=-12D.x=127.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为()A .2314B .3638C .42D .448.若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( )A .8B .﹣8C .6D .﹣6 9.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B = C .A B < D .无法确定10.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数 11.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3B .3C .﹣12D .12 12.下列说法正确的是( )A .近似数1.50和1.5是相同的B .3520精确到百位等于3600C .6.610精确到千分位D .2.708×104精确到千分位二、填空题13.如图,C 为线段AB 的中点,线段AB=12cm ,CD=2cm .则线段DB 的长为_______14.如图,在自来水管道AB 的两旁有两个住宅小区C ,D ,现要在主水管道上开一个接口P 往C ,D 两小区铺设水管,为节约铺设水管的用料,接口P 应在如图所示的位置,请说明依据的数学道理是:___________________________________________________________________.15.关于x 的方程927x kx -=+的解是自然数,则整数k 的值为________. 16.若关于x 的方程3x m -2-m =0是一元一次方程,则m =________,方程的解为________.17.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)18.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.19.填空:(1)____的平方等于9;(2)(-2)3=____;(3)-14+1=____;(4)23×212⎛⎫ ⎪⎝⎭=____. 20.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ .三、解答题21.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.22.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点是为什么呢?”聪明的你能回答小强的疑问吗? 23.某地下停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场的小型汽车数量是中型汽车的3倍,这些车共缴纳停车费270元,则小型汽车有多少辆?24.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?25.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦26.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b==,且a b<,点C、B、E放置在一条直线上,联结AD.(1)求三角形ABD的面积;(2)如果点P是线段CE的中点,联结AP、DP得到三角形APD,求三角形APD的面积;(3)第(2)小题中的三角形APD与三角形ABD面积哪个较大?大多少?(结果都可用a、b代数式表示,并化简)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】解:A、由点C是线段AB的中点,则AB=2AC,正确,不符合题意;B、AC+CD+DB=AB,正确,不符合题意;C、由点C是线段AB的中点,则AC=12AB,CD=AD-AC=AD-12AB,正确,不符合题意;D、AD=AC+CD=12AB+CD,不正确,符合题意.故选D.2.A解析:A 【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.3.A解析:A【解析】俯视图是从上面看到的平面图形,也是在水平投影面上的正投影. 易判断选A.4.C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB ,直线a .故选C .【点睛】本题考查了几何中直线的表示方法,是最基本的知识.5.B解析:B【分析】设未知数,根据题意中的等量关系列出方程,然后求解.【详解】解:设每支铅笔的标价是x 元,根据题意得:20×(1-80%)x=1.6解得x=0.4故选:B .【点睛】本题考查一元一次方程的实际应用,此题要注意联系生活,知道八折就是标价的80%. 6.A解析:A【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】两边同乘以6去分母,得62(23)x x -=+,去括号,得646x x -=+,移项,得646x x -=+,合并同类项,得510x -=,系数化为1,得2x =-,【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.7.C解析:C【详解】解:设每一份为x ,则图②中白色的面积为8x ,灰色部分的面积为3x ,由题意,得 8x +3x =33,解得:x =3,∴灰色部分的面积为:3×3=9,∴图(①)纸片的面积为:33+9=42.故选C .【点睛】本题考查了比列问题在解实际问题中的运用,一元一次方程的解法的运用,解答时根据条件建立方程求出灰色部分的面积是关键.8.D解析:D【详解】因为xΔy =xy +x +y ,且2Δm =-16,所以2m+2+m=-16,解得m=- 6,故选D.考点:1.新定义题2.一元一次方程.9.A解析:A【分析】作差进行比较即可.【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6)=x 2-5x +2- x 2+5x +6=8>0,所以A >B .故选A .【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .10.A解析:A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.11.C解析:C【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案.【详解】原式﹣3×(﹣2)×(﹣2)=﹣3×2×2=﹣12,故选:C .【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.12.C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A 、近似数1.50和1.5是不同的,A 错B 、3520精确到百位是3500,B 错D 、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.二、填空题13.4cm【分析】先由线段中点的定义得出BC=AB再根据DB=BC-CD即可求解【详解】∵C为线段AB的中点线段AB=12cm∴BC=AB=6cm∵CD=2cm∴DB=BC-CD=6-2=4cm∴线段D解析:4cm【分析】先由线段中点的定义得出BC=12AB,再根据DB=BC-CD即可求解.【详解】∵C为线段AB的中点,线段AB=12cm,∴BC=12AB=6cm,∵CD=2cm,∴DB=BC-CD=6-2=4cm.∴线段DB的长为4cm.故答案为:4cm【点睛】本题考查了线段的中点的概念及线段的和差计算.利用线段中点定义转化线段之间的倍分关系是解题的关键,14.两点之间线段最短【解析】【分析】根据两点之间线段最短可知在CD小区之间沿直线铺设可使用料最少即可解答【详解】解:根据两点之间线段最短可知:当P在线段CD上时PC+PD最小即此时所用的铺设水管的材料最解析:两点之间,线段最短【解析】【分析】根据两点之间线段最短可知,在C、D小区之间沿直线铺设可使用料最少,即可解答.【详解】解:根据两点之间线段最短可知:当P在线段CD上时,PC+PD最小,即此时所用的铺设水管的材料最少.故答案为两点之间,线段最短.【点睛】此题考查两点之间线段最短,解题关键在于掌握其定义.15.0或6或8【分析】先解方程得到一个含有字母k的解然后根据解是自然数解出k的值即可【详解】解:移项得9x-kx=2+7合并同类项得(9-k)x=9因为方程有解所以k≠9则系数化为1得x=又∵关于x的方解析:0或6或8【分析】先解方程,得到一个含有字母k的解,然后根据解是自然数解出k的值即可.【详解】解:移项得,9x-kx=2+7合并同类项得,(9-k)x=9,因为方程有解,所以k≠9,则系数化为1得,x=99-k,又∵关于x的方程9x-2=kx+7的解是自然数,∴k的值可以为:0、6、8.其自然数解相应为:x=1、x=3、x=9.故答案为:0或6或8.【点睛】本题考查解一元一次方程、方程的解,解答的关键是根据方程的解对整数k进行取值,注意不要漏解.16.x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1进而求得M结合m的值可得原方程为3x-3=0求解可得方程的解【详解】由题意得:m-2=1解得:m=3所以原方程为3x-3=0解得x=1【点解析:x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1,进而求得M,结合m的值可得原方程为3x-3=0,求解可得方程的解【详解】由题意得:m-2=1,解得:m=3所以原方程为3x-3=0解得x=1【点睛】此题考查一元一次方程的知识,熟练掌握一元一次方程的定义是关键17.【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n条直线相交最多有1+2+3+…+(n-1)=个解析:()12 n n-【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.18.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.19.3或-3-802【分析】根据乘方的法则计算即可【详解】解:(1)32=9(-3)2=9所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×=8解析:3或-3 -8 0 2【分析】根据乘方的法则计算即可.【详解】解:(1)32=9,(-3)2=9,所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×212⎛⎫ ⎪⎝⎭=8×14=2. 故答案为:3或-3;-8;0;2.【点睛】本题考查了有理数乘方运算,熟记法则和乘方的意义是解决此题的关键.20.-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的解析:-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.三、解答题21.(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.22.见解析【分析】根据直线的性质,结合实际意义,易得答案.【详解】解:如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即可看到哪儿打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.【点睛】题考查直线的性质,无限延伸性即没有端点;同时结合生活中的射击场景,立意新颖,熟练掌握直线的性质是解题的关键.23.小型汽车有45辆【分析】设中型汽车有x 辆,则小型汽车有3x 辆,根据“这些车共缴纳停车费270元”列出关于x 的方程,然后求解方程即可.【详解】设中型汽车有x 辆,则小型汽车有3x 辆,根据题意,得643270+⨯=x x ,合并同类项,得18x =270,系数化为1,得x =15,则3x =45.答:小型汽车有45辆.【点睛】本题主要考查一元一次方程的应用,解此题的关键在于根据题意设出未知数,找到题中相等关系列出方程.24.10个家长,5个学生【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生,根据题意得:100x +100×0.8(15﹣x )=1400,解得:x =10,15﹣x =5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.25.(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.26.(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。
【浙教版】七年级数学上期末模拟试卷(及答案)(1)
一、选择题1.为提高学生的课外阅读水平,我市各中学开展了“我的梦,中国梦”课外阅读活动,某校为了解七年级学生每日课外阅读所用的时间情况,从中随机抽取了部分学生,进行了统计分析,整理并绘制出如图所示的频数分布直方图,有下列说法:①这次调查属于全面调查②这次调查共抽取了200名学生-的人数最少③这次调查阅读所用时间在2.53h-的人数占所调查人数的40%,其中正确的有().④这次调查阅读所用时间在1 1.5hA.②③④B.①③④C.①②④D.①②③2.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查3.临近春节,商场开展打折促销活动,某商品如果按原售价的八折出售,将盈利20元,而按原售价的六折出售,将亏损60元,则该商品的原售价为()A.300元B.320元C.350元D.400元4.某商店出售两件衣服,每件售价60元,其中一件赚20%,而另一件赔20%,那么这家商店销售这两件衣服的总体收益情况是()A.赚了5元B.赔了5元C.赚了8元D.赔了8元5.如图是根据某校学生的血型绘制的扇形统计图,该校血型为A型的有200人,那么该校血型为AB型的人数为()A.100B.50C.20D.86.如图,O为模拟钟面圆心,M、O、N在一条直线上,指针OA、OB分别从OM、ON同时出发,绕点O 按顺时针方向转动,OA 运动速度为每秒12°,OB 运动速度为每秒4°,当一根指针与起始位置重合时,转动停止,设转动的时间为t 秒,当t = 秒时,∠AOB =60°.( )A .15B .12C .15或30D .12或30 7.在同一平面上,若60BOA ∠=︒,20BOC ∠=︒,则AOC ∠的度数是( ) A .80°B .40°C .20°或40°D .80°或40°8.如图,OA OB ⊥,若15516'∠=︒,则∠2的度数是( )A .3544︒'B .3484︒'C .3474︒'D .3444︒' 9.如果α∠与β∠的两边分别平行,α∠比β∠的3倍少40︒,则α∠的度数为( ) A .35︒B .125︒C .20︒或125︒D .35︒或125︒10.某水果商店在甲批发市场以每千克a 元的价格购进30千克的橘子,又在乙批发市场以每千克b 元(b a >)的价格购进同样的50千克橘子.如果以每千克2a b+元的价格全部卖出这种橘子,那么这家商店( ) A .盈利了B .亏损了C .不盈不亏D .盈亏不能确定11.数轴上有O ,A ,B ,C ,D 五个点,各点的位置与所表示的数如图所示,且35d <<.若数轴上有一点M ,M 所表示的数为m ,且3m d m -=-,则关于点M 的位置,下列叙述正确的是( )A .M 在O ,B 之间 B .M 在O ,C 之间 C .M 在C ,D 之间 D .M 在A ,D 之间12.若干个相同的立方体摆在一起,前、后、左、右视图都如图,这堆立方体至少有( )A .4个B .5个C .8个D .10个二、填空题13.如图,反映的延某中学七(3)班学生外出乘车、步行、骑车的人数直方图(部分)和扇形统计图,其中步行人数为______.14.2019年5月1日至10日我市空气质量指数(AQI )分别为77,52,46,57,58,78,75,34,47,43,将数据进行分组,落在53.5~59.5这一组的频数是__________.15.对于三个互不相等的有理数a ,b ,c ,我们规定符号max{,,}a b c 表示a ,b ,c 三个数中较大的数,例如max 2,3{,4}4=.按照这个规定则方程max{,,0}32x x x -=-的解为__________.16.如图,点,,A O B 依次在直线MN 上,射线OA 绕点O 以每秒3︒的速度顺时针旋转,同时射线OB 绕点O 以每秒6︒的速度逆时针旋转,直线MN 保持不动,设旋转时间为t 秒(030)t <<,现以射线,,OM OA ON 中两条为边组成一个角,使射线OB 为该角的角平分线,此时t 的值为_______.17.如图,线段AB 的中点为M ,C 点将线段MB 分成MC ,CB 两段,且:1:3MC CB =,若20AC =,求AB 的长.18.如图,第1个图形由4枚棋子摆成,第2个图形由9枚棋子摆成,第3个图形由14枚棋子摆成,…,按照此规律,由399枚棋子摆成的是第________图形.19.根据世卫组织最新实时统计数据,截至北京时间12月25日16时57分,全球累计新冠肺炎确诊病例约7792万例,用科学记数法表示7792万例为_________例.20.如图是一个小正方体的展开图,把展开图叠成小正方体后,相对的面上的数互为相反数,那么x+y=________.三、解答题21.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地做决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括最大值但不包括最小值),请你根据统计图解决下列问题: (1)此次抽样调查的样本容量是______.(2)补全左侧统计图,并求扇形统计图中“25吨~30吨”部分的圆心角度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?22.列方程解应用题,A B 、两种型号的机器生产同一种产品,已知7台A 型机器一天生产的产品装满8箱后还剩2个,5台B 型机器天生产的产品装满6箱后还还剩8个.每台A 型机器比每台B 型机器一天少生产2个产品,求每箱装多少个产品?23.已知AOB ∠内部有三条射线,其中,OE 平分BOC ∠,OF 平分AOC ∠.(1)如图1,若90AOB ∠=︒,30AOC ∠=︒,求EOF ∠的度数; (2)如图2,若AOB α∠=,求EOF ∠的度数(用含α的式子表示); (3)若将题中的“平分”条件改为“3EOB COB ∠∠=,32COF COA ∠∠=”,且AOB α∠=,用含α的式子表示EOF ∠的度数为 .24.先化简,再求值:()()22221132542a a a aaa ⎡⎤-----⎣⎦,其中1a =-.25.计算: (1)357(36)4912⎛⎫--+⨯- ⎪⎝⎭; (2)32110(1)23423⎛⎫----⨯- ⎪⎝⎭. 26.图1是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图2,再沿GF 折叠成图3,求此时图3中∠CFE 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据抽样调查和频数分布直方图的性质逐个分析计算,即可得到答案.这次调查属于抽样调查,故①错误;结合频数分布直方图,可计算得共抽取10208070128200+++++=名学生,故②正确;结合频数分布直方图,阅读所用时间在2.53h -的共8名学生,人数最少,故③正确; 这次调查阅读所用时间在1 1.5h -的人数占比为802=2005,即40%,故④正确; 故选:A . 【点睛】本题考查了抽样调查、频数分布直方图的知识;解题的关键是熟练掌握抽样调查、频数分布直方图的性质,从而完成求解.2.A解析:A 【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似. 【详解】A .对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B .对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C .对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D .对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意. 故选:A . 【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.D解析:D 【分析】设该商品的原售价为x 元,根据成本不变列出方程,求出方程的解即可得到结果. 【详解】解:设该商品的原售价为x 元, 根据题意得:0.8x -20=0.6x +60, 解得:x=400, 故选:D . 【点睛】此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键.4.B【分析】设赚钱的衣服的进价为x元,赔钱的衣服的进价为y元,根据售价=成本×(1+利润率),即可得出关于x,y的一元一次方程,解之即可得出x,y的值,再利用利润=售价−成本,即可求出结论.【详解】解:设赚钱的衣服的进价为x元,赔钱的衣服的进价为y元,依题意,得:(1+20%)x=60,(1−20%)y=60,解得:x=50,y=75,∴60+60−50−75=−5(元).故选:B.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.5.B解析:B【分析】根据A型血的有200人,所占的百分比是40%即可求得被调查总人数,用总人数乘以AB 型血所对应的百分比即可求解.【详解】∵该校血型为A型的有200人,占总人数为40%,∴被调查的总人数为200÷40%=500(人),又∵AB型血人数占总人数的比例为1-(40%+30%+20%)=10%,∴该校血型为AB型的人数为500×10%=50(人),故选:B.【点睛】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.第II卷(非选择题)请点击修改第II卷的文字说明6.C解析:C【分析】根据题意得出OA旋转的角度为12t°,OB旋转的角度为4t°,再分OA与OB重合前和重合后两种情况,根据角度间的数量关系列出方程求解可得.【详解】解:根据题意知OA旋转的角度为12t°,OB旋转的角度为4t°,①OA与OB重合前,12t+60=180+4t,解得:t=15;②OA与OB重合后,4t+60+180=12t,解得:t=30;综上,当t=15或30时,∠AOB=60°;故选:C.【点睛】本题考查一元一次方程的应用,解题的关键是理解题意,学会设未知数列方程解决问题,属于中考常考题型.7.D解析:D【分析】分两种情况考虑:如图1与图2所示,分别求出∠AOC的度数即可.【详解】解:分两种情况考虑:如图1所示,此时∠AOC=∠AOB-∠BOC=60°-20°=40°;如图2所示,此时∠AOC=∠AOB+∠BOC=60°+20°=80°,综上,∠AOC的度数为40°或80°.故选:D.【点睛】此题考查了角的计算,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.8.D解析:D【分析】根据OA⊥OB,得到∠AOB=90°∠AOB=∠1+∠2=90°,即可求出.【详解】解:∵OA⊥OB∴∠AOB=90°∵∠AOB=∠ 1+∠ 2=90°∠ 1=55°16′∴∠ 2=90°-55°16′=34°44′故选:D【点睛】此题主要考查了角度的计算,熟记度分秒之间是六十进制是解题的关键.9.C解析:C由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40°,可得出答案. 【详解】设∠β为x ,则∠α为3x−40°,若两角互补,则x +3x−40°=180°,解得x =55°,∠α=125°; 若两角相等,则x =3x−40°,解得x =20°,∠α=20°. 故选:C . 【点睛】本题考查角有关的运算,关键在于根据两角的两边分别平行打开此题的突破口.10.B解析:B 【分析】先根据题意列出进货的成本与销售额,再作差比较即可. 【详解】解:由题意得,进货成本=30a+50b ,销售额=2a b+ ×(30+50), 2a b+×(30+50)-(30a+50b ) =40(a+b )-(30a+50b ) =40a+40b-30a-50b =10(a-b ), ∵b >a ,∴10(a-b )<0, ∴这家商店亏损了. 故选:B . 【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.11.B解析:B 【分析】根据O 、A 、B 、C 、D 五个点在数轴上的位置和绝对值的定义即可得到结论. 【详解】解:由题意可得:点A 表示的数为-5,点B 表示的数为3,点C 表示的数为-1,点D 表示的数为d ,且AC=BC ∵3m d m -=-, ∴MD=BD , 又∵-5<d <-1<3 ∴M 点介于O 、C 之间,【点睛】本题考查的是数与数轴,利用数形结合思想解题是关键.12.A解析:A【解析】【分析】根据三视图,从最少的情况考虑,即可解答.【详解】从最少的情况考虑,如下图所示即可实现.右图为俯视情况,其中阴影位置表示放置立方体的位置,仅需4个即可达成.故选:A.【点睛】此题考查由三视图判定几何体,解题关键在于画出图形.二、填空题13.8【分析】根据骑车的人数和所占的百分比求出总人数再乘以步行所占的百分比即可【详解】某中学七(3)班总的学生数是:=40(人)其中步行人数为:40−20−12=8(人);故答案为:8【点睛】此题考查条解析:8【分析】根据骑车的人数和所占的百分比求出总人数,再乘以步行所占的百分比即可.【详解】某中学七(3)班总的学生数是:1230%=40(人),其中步行人数为:40−20−12=8(人);故答案为:8.【点睛】此题考查条形统计图,扇形统计图,解题关键在于看懂图中数据.14.【分析】数出在之间的数据个数即可【详解】在之间的数据为故这一组的频数是2故填:2【点睛】此题主要考查频数的个数解题的关键是熟知频数的定义解析:2【分析】数出在53.5~59.5之间的数据个数即可.【详解】在53.5~59.5之间的数据为57,58,故这一组的频数是2,故填:2.【点睛】此题主要考查频数的个数,解题的关键是熟知频数的定义.15.【分析】分时时和时三种情况讨论列出方程求解即可【详解】解:当时即解得(不符合题意舍去);当时即解得当时即解得(不符合题意舍去)综上所述故答案为:【点睛】本题考查解一元一次方程能结合的定义分情况讨论是 解析:1x =【分析】分0x <时,0x >时和0x =时三种情况讨论,列出方程求解即可.【详解】解:当0x <时,max{,,0}x x x -=-,即32x x -=-,解得12x =(不符合题意,舍去); 当0x >时,max{,,0}x x x -=, 即32x x -=,解得1x =,当0x =时,max{,,0}0x x -=,即320x -=,解得23x =(不符合题意,舍去), 综上所述,1x =,故答案为:1x =.【点睛】本题考查解一元一次方程.能结合max{,,}a b c 的定义分情况讨论是解题关键. 16.15s 或12s 或24s 【分析】由题意易得∠BON=6t°∠MOA=3t°则有OA 与OB 重合时时间为t=20s 进而分①当OA 与OB 相遇前又分当∠MON=2∠BON 时和当∠AON=2∠BON 时;②当OA解析:15s 或12s 或24s【分析】由题意易得∠BON=6t°,∠MOA=3t°,则有OA 与OB 重合时,时间为t=20s ,进而分①当OA 与OB 相遇前,又分当∠MON=2∠BON 时和当∠AON=2∠BON 时;②当OA 与OB 相遇后,∠AOM=2∠BOM ,最后分类列方程进行求解即可.【详解】解:由题意得:∠BON=6t°,∠MOA=3t°,∴当OA 与OB 重合时,则有63180t t ︒+︒=︒,解得:20t =,∴①当OA 与OB 相遇前,即020t <<时,当OB 是∠MON 的角平分线时,如图所示:∵∠MON=180°, ∴19062BON MON t ∠=∠=︒=︒, ∴15t =,当OB 是∠AON 的角平分线时,如图所示:∴1803AON MON AOM t ∠=∠-∠=︒-︒,∵OB 是∠AON 的角平分线,∴()111803622BON AON t t ∠=∠=︒-︒=︒, 解得:12t =; ②当OA 与OB 相遇后,即2030t <<,当OB 是∠AOM 的角平分线时,如图所示:∴1806BOM MON BON t ∠=∠-∠=︒-︒,∵OB 是∠AOM 的角平分线,∴113180622BOM AOM t t ∠=∠=⨯︒=︒-︒, 解得:24t =; 综上所述:以射线,,OM OA ON 中两条为边组成一个角,使射线OB 为该角的角平分线,此时t 的值为15s 或12s 或24s ;故答案为15s 或12s 或24s .【点睛】本题主要考查角平分线的定义、一元一次方程的应用及角的和差关系,熟练掌握角平分线的定义、一元一次方程的应用及角的和差关系是解题的关键.17.32【分析】本题需先设根据已知条件C 点将线段MB 分成的两段求出MB=4x 利用M 为AB 的中点列方程求出x 的长即可求出AB 的长;【详解】解:∵设则∴∴解得∵M 为AB 的中点∴【点睛】本题主要考查了两点间的 解析:32【分析】本题需先设MC x =,根据已知条件C 点将线段MB 分成:1:3MC CB =的两段,求出MB=4x ,利用M 为AB 的中点,列方程求出x 的长,即可求出AB 的长;【详解】解:∵ :1:3MC CB =,设MC x =,则3CB x =,∴4AM MB MC CB x ==+=,∴4520AC AM MC x x x =+=+==,解得4x =.∵M 为AB 的中点∴832AB x ==.【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,求出线段的长是解本题的关键;18.80【分析】从图形中可以发现规律第n 个图形需棋子的个数是:5n-1再假设第n 个图形的棋子数为399可列方程即可解得【详解】因为从图中可以看出第1个图形需棋子的个数是:1×4+0=4(枚)第2个图形需解析:80【分析】从图形中可以发现规律,第n 个图形需棋子的个数是:5n-1,再假设第n 个图形的棋子数为399,可列方程,即可解得.【详解】因为从图中可以看出第1个图形需棋子的个数是:1×4+0=4(枚),第2个图形需棋子的个数是:2×4+1=9(枚),第3个图形需棋子的个数是:3×4+2=14(枚),第n 个图形需棋子的个数是:n×4+(n-1)=5n-1,设第399枚棋子摆成的是第n 个图形5n-1=399解得:n=80故答案为:80.【点睛】本题考查图形的变化,具有规律性,解题的关键是,根据图形发现规律.19.792×107【分析】用科学记数法表示较大的数时一般形式为a×10n其中1≤|a|<10n为整数据此判断即可【详解】解:7792万=77920000=7792×107【点睛】此题考查科学记数法的表示解析:792×107【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:7792万=77920000=7.792×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.-1三、解答题21.(1)100;(2)统计图见解析,90°;(3)39600户【分析】(1)根据统计图可知“10吨~15吨”的用户10户占10%,从而可以求得此次调查抽取的户数;(2)根据(1)中求得的用户数与条形统计图可以得到“15吨~20吨”的用户数,再用360°乘以“25吨~30吨”户数所占百分比;(3)根据前面统计图的信息可以得到该地6万用户中约有多少用户的用水全部享受基本价格.【详解】解:(1)此次抽样调查的样本容量是10÷10%=100,故答案为:100;(2)用水量在15~20的户数为100-(10+36+25+9)=20,补全图形如下:其中扇形统计图中“25吨~30吨”部分的圆心角度数为360°×2590 100=︒;(3)60000×102036100++ =39600(户), 答:该地区6万用户中约有39600户的用水全部享受基本价格.【点睛】本题考查频数分布直方图、扇形统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.22.每箱装12个产品【分析】设每箱装x 个产品,根据题意列出方程,求解即可.【详解】解:设每箱装x 个产品.依题意可列方程:8268275x x +++= 解得:12x =答:求每箱装12个产品.【点睛】本题考查一元一次方程的应用,根据题意列出方程是解题的关键.23.(1)∠EOF=45°,(2)∠EOF=12α,(3)∠EOF=23α . 【分析】(1) 首先求得∠BOC 的度数, 然后根据角的平分线的定义和角的和差可得:∠EOF=∠EOC+∠COF 即可求解;(2) 根据角的平分线的定义和角的和差可得∠EOF=∠EOC+∠COF= 12∠BOC+12∠AOC= 12(∠BOC+∠AOC),即可求解; (3) 根据角的等分线的定义可得:∠EOF=∠EOC+∠COF= 23∠BOC+ 23∠AOC= 23(∠BOC+∠AOC) =23∠AOB ,即可求解 . 【详解】解:(1)∠BOC=∠AOB ﹣∠AOC=90°﹣30°=60°,∵OE 平分∠BOC ,OF 平分∠AOC ,∴∠EOC=12∠BOC=12×60°=30°,∠COF= 12∠AOC=12×30°=15°, ∴∠EOF=∠EOC+∠COF=30°+15°=45°;(2)∵OE 平分∠BOC ,OF 平分∠AOC , ∴∠EOC=12∠BOC ,∠COF=12∠AOC ,∴∠EOF=∠EOC+∠COF=12∠BOC+ 12∠AOC= 12(∠BOC+∠AOC )= 12∠AOB= 12α; (3)3∠EOB=∠COB ,3∠COF=2∠COA 即∠EOB=13∠BOC ,∠COF=23∠AOC , ∴∠EOC=23∠BOC ∴∠EOF=∠EOC+∠COF=23∠BOC+23∠AOC= 23(∠BOC+∠AOC )=23∠AOB= 23α. 【点睛】本题主要考查角的计算及角平分线的定义,角的等分线的定义,注意运算的准确性. 24.22a a --,1【分析】先将整式去小括号,再去中括号,然后合并同类项,最后将a 的值代入即可求解.【详解】解:原式()22221161548a a a a a a =--+-+ 22221161548a a a a a a =-+-+-22a a =--.当1a =-时,原式22a a =--()()2121=---⨯-1=.【点睛】本题主要考查了整式的化简求值,解题的关键是熟练掌握去括号法则.25.(1)26;(2)0【分析】(1)使用乘法分配律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)357(36)4912⎛⎫--+⨯- ⎪⎝⎭ =35736+36364912⨯⨯-⨯ =27+2021-=26(2)32110(1)23423⎛⎫----⨯- ⎪⎝⎭=310 1423⎛⎫---⨯-⎪⎝⎭=14+5--=0.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.26.此时图3中∠CFE 的度数是120°.【分析】由图1与已知,得图2中的∠CFE=160°,在图3中得:∠CFG=140°,∠EFG=20°,故∠CFE=∠CFG-∠EFG可得答案.【详解】由图1可知:AD BC∥,∴180CFE DEF︒∠+∠=,DEF EFB∠=∠,∴160CFE︒∠=,20EFB︒∠=,由折叠的性质得知图2中的∠CFE=160°,∴16020140CFG︒︒︒∠=-=,在图3中由折叠的性质得知:∠CFG=140°,∠EFG=20°,又∵∠CFE=∠CFG-∠EFG=140°-20°=120°.∴此时图3中∠CFE 的度数是120°.【点睛】本题主要考查了折叠的性质,根据图形找出图中相等的角是解题的关键.。
【浙教版】初一数学上期末模拟试卷带答案(1)
一、选择题1.如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=°2.若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A .B .C .D . 3.下列图形中,是圆锥的表面展开图的是( )A .B .C .D . 4.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A .B .C .D .5.解方程32282323x x x ----=的步骤如下,错误的是( )①2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x );②6x ﹣4﹣3x ﹣6=16﹣4x ;③3x +4x =16+10;④x =267. A .① B .②C .③D .④ 6.若4a ﹣9与3a ﹣5互为相反数,则a 2﹣2a+1的值为( ) A .1 B .﹣1 C .2 D .0 7.对于ax+b=0(a ,b 为常数),表述正确的是( )A .当a≠0时,方程的解是x=b aB .当a=0,b≠0时,方程有无数解C .当a=0,b=0,方程无解D .以上都不正确.8.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( )A .2B .12C .-2D .1-29.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .2+6nB .8+6nC .4+4nD .8n10.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .1111.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)12.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃二、填空题13.乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A ,B 两站之间需要安排不同的车票________种.14.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.若3AC =,1CP =,则线段PN 的长为________.15.对于实数a,b,c,d,规定一种运算a bc d=ad-bc,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x xx x++--=27时,则x=_____.16.完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元;每件服装的利润为____________元.由此,列出方程_________________.解这个方程,得x=______________.因此每件服装的成本价是___________元.17.一个关于x的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.18.如图,大、小两个正方形ABCD与正方形BEFG并排放在一起,点G在边BC上.已知两个正方形的面积之差为31平方厘米,则四边形CDGF的面积是______平方厘米.19.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.20.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.三、解答题21.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)22.说出下列图形的名称.23.已知数轴上的A 、B 两点分别对应数字a 、b ,且a 、b 满足|4a-b|+(a-4)2=0(1)a= ,b= ,并在数轴上面出A 、B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A .求点P 和点Q 运动多少秒时,P 、Q 两点之间的距离为4,并求此时点Q 对应的数.24.设a ,b ,c ,d 为有理数,现规定一种新的运算:a bad bc c d =-,那么当35727x-=时,x 的值是多少?25.计算 (1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 26.如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,中间是边长为(a+b )米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a 、b 的式子表示)(2)求出当a=20,b=12时的绿化面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据同角的余角相等得出∠1=∠BCE,再根据∠BCE+∠2=180°,得出∠1+∠2=180°即可.【详解】∵EH⊥BC,∴∠1+∠B=90°,∵∠BAC=90°,∴∠BCE+∠B=90°,∴∠1=∠BCE.∵∠BCE+∠2=180°,∴∠1+∠2=180°,即∠1与∠2互补,故选:C.【点睛】本题考查了余角和补角.解题的关键是掌握余角和补角的定义,同角的余角相等的性质.2.B解析:B【解析】【分析】根据射线的表示法即可确定.【详解】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.3.A解析:A【分析】结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.【详解】解:圆锥的展开图是由一个扇形和一个圆形组成的图形.故选A.【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.4.A解析:A【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【详解】解:根据分析,图A折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B、图C和图D中对面图案不相同;故选A.【点睛】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.5.B解析:B【分析】根据解一元一次方程的基本步骤依次计算可得.【详解】①去分母,得:2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x+6=16﹣4x,③6x﹣3x+4x=16+4﹣6,④x=2,错误的步骤是第②步,故选:B.【点睛】本题主要考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.6.A解析:A【解析】试题分析:∵4a-9与3a-5互为相反数,∴4a-9+3a-5=0,解得:a=2,∴=1,故选A.考点:1.解一元一次方程;2.相反数;3.代数式求值.7.D解析:D【分析】ax+b=0(a,b为常数),当a=0时,就不是一元一次方程,当a=0时,是一元一次方程.分两种情况进行讨论.【详解】A、当a≠0时,方程的解是x=-ba,故错误;B、当a=0,b≠0时,方程无解,故错误;C、当a=0,b=0,方程有无数解,故错误;D、以上都不正确.故选D.【点睛】此题很简单,解答此题的关键是:正确记忆一元一次方程的一般形式中,一次项系数不等于0.8.B解析:B【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:2x-6+3+4x=0移项合并得:6x=3,解得:x=12,故选:B.【点睛】本题考查解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.9.A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n个“金鱼”需用火柴棒的根数为6n+2.故选:A.【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.10.A解析:A【分析】先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;第7次操作,a7=|-7+4|-10=-7;…第2020次操作,a2020=|-7+4|-10=-7.故选:A.【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.11.D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D选项中的两个数互为相反数,【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 12.B解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.二、填空题13.20【解析】【分析】本题需先求出AB 之间共有多少条线段根据线段的条数即可求出车票的种数【详解】设点CDE 是线段AB 上的三个点根据题意可得:图中共用=10条线段∵A 到B 与B 到A 车票不同∴从A 到B 的车票 解析:20【解析】【分析】本题需先求出A 、B 之间共有多少条线段,根据线段的条数即可求出车票的种数.【详解】设点C 、D 、E 是线段AB 上的三个点,根据题意可得:图中共用()5152-⨯=10条线段 ∵A 到B 与B 到A 车票不同.∴从A 到B 的车票共有10×2=20种故答案为20.【点睛】本题主要考查了如何求线段的条数的问题,在解题时要注意线段的条数与车票种数的联系与区别.14.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.15.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x的方程然后解方程即可求出x的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(解析:22【分析】由题中的新定义可知,此种运算为对角线乘积相减的运算,化简所求的式子得到关于x的方程,然后解方程即可求出x的值.【详解】解:∵(1)(2) (3)(1)x xx x++--=27,∴(x +1)(x -1)-(x +2)(x -3)=27,∴x 2-1-(x 2-x -6)=27,∴x 2-1-x 2+x +6=27,∴x =22;故答案为:22.【点睛】本题考查了新定义运算,及灵活运用新定义的能力,根据新定义把所给算式转化为一元一次方程是解答本题的关键.16.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可.【详解】每件服装的标价为:(1+40%)x ,每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.17.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 18.【分析】设出两个正方形边长分别为ab (a>b )表示正方形面积之差用ab 表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab (a>b )由已知四边形的面积为:故答案为:【点睛】本题考查解析:312【分析】设出两个正方形边长分别为a ,b (a>b ),表示正方形面积之差,用a 、b 表示四边形CDGF 的面积,进行整体代入即可.【详解】解:设两个正方形边长分别为a ,b (a>b )由已知2231a b -=四边形CDGF 的面积为:()()()()()()2211113122222DC GF GC DC GF BC BG a b a b a b +⋅=+-=+-=-= 故答案为:312【点睛】本题考查了列代数式和整体代入的相关知识,解答关键是将求值式子进行变式,再应用整体代入解答问题。
初中数学浙教版七年级上学期期末综合题训练专题1 有理数综合题
初中数学浙教版七年级上学期期末综合题训练专题1 有理数综合题一、综合题1.某摩托车厂本周内计划每天生产300辆摩托车,由于工人实行轮休,每天上班人数不一定相等,实际每天生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数):星期一二三四五六日增减 -5 +7 -3 +4 +10 -9 -25(1)问本周六生产了多少辆摩托车?(2)问产量最多的一天比产量最少的一天多生产了多少辆摩托车?(3)问本周实际每天平均生产了多少辆摩托车?2.如图,图中数轴的单位长度为1.(1)如果点P、T表示的数互为相反数,那么点P、S、T表示的数分别是多少?(2)如果点R、T表示的数互为相反数,那么点S表示的数是正数,还是负数?此时图中表示的5个点中,哪一点表示的数的绝对值最大?这一点表示的数的绝对值是多少?3.a是5的相反数,b是最大的负整数,c比最小的正整数大3.(1)填空:a=________,b=________,c=________.(2)求a-b+c的值.4.某路公交车从起点经过A、B、C、D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点 A B C D 终点上车的人数18 15 12 7 5 0下车的人数0 -3 -4 -10 -11(1)到终点下车还有________ 人;(2)车行驶在哪两站之间车上的乘客最多?________站和________站;(3)若每人乘坐一站需买票1元,问该车出车一次能收入多少钱?写出算式.5.已知|a|=10,|b|=4(1)当a,b同号时,求a+b的值;(2)当a,b异号时,求a-b的值。
6.已知有理数a、b在数轴上的对应点如图所示.(1)已知a= –2,b=0.3,计算|a+b|–|a|–|1–b|的值;(2)已知有理数a、b,计算|a+b|–|a|–|1–b|的值.7.(1)已知|a-3|+|2b-4|=0,请求a-b的值.(2)若a+c=-2 018,b+(-d)=2 019,求a+b+c+(-d)的值.8.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+21|=________;② =________;③ =________;(2)用合理的方法进行简便计算:;(3)用简单的方法计算:.9.下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数),如北京时间的上午10:00时,东京时间的10点已过去了1小时,现在已是10+1=11:00.(1)如果现在是北京时间9:00,那么现在的纽约时间是多少?(2)此时(北京时间9:00)小明想给远在巴黎姑妈打电话,你认为合适吗?为什么?(3)如果现在是芝加哥时间上午7:00,那么现在北京时间是多少?城市时差/时纽约-13巴黎-7东京+1芝加哥-1410.如图(1)过,两点画一条数轴,使点表示1,点表示-4.(2)在你所画的数轴上表示出|-1.5|,3.(3)下列各数:①1,②3,③ ,④ ,⑤0,⑥ 中,负数有(填序号):________;分数有(填序号):________.11.小惠和小红在学校操场的旗杆前玩“石头、剪刀、布”的游戏,规则如下:在每一个回合中,若某一方赢了对方,便可向右走2 米,而输的一方则向右走-3 米,和的话就原地不动,最先向右走18 米的便是胜方.假设游戏开始时,两人均在旗杆处.(1)若小惠在前四个回合中都输了,则她会站在什么位置?(2)若小红在前三个回合中赢了两次输了一次,则她会站在什么位置?(3)假设经过五个回合后,小红仍然站在旗杆处,且没有猜和(即五个回合中没有出现和的情况).问小惠此时会站在什么位置?12.在一条不完整的数轴上从左到右有点A,B,C,其中点A与点B之间的距离为2,点B与点C之间的距离1,如图所示.设点A,B,C所对应数的和是p.(1)若以B为原点,p的值为________;若以C为原点,p的值为________.(2)若图中数轴上点C所对应的数为0.5,求p.13.已知,,为有理数,且它们在数轴上的位置如图所示.(1)试判断,,的正负性;(2)在数轴上标出,,相反数的位置;(3)若,,,求的值.14.如图,已知A、B、C是数轴上的三点,点C表示的数是6,点B与点C之间的距离是4,点B与点A的距离是12,点P为数轴上一动点.(1)数轴上点A表示的数为________.点B表示的数为________;(2)数轴上是否存在一点P,使点P到点A、点B的距离和为16,若存在,请求出此时点P所表示的数;若不存在,请说明理由;(3)点P以每秒1个单位长度的速度从C点向左运动,点Q以每秒2个单位长度从点B出发向左运动,点R从点A以每秒5个单位长度的速度向右运动,它们同时出发,运动的时间为t秒,请求点P与点Q,点R的距离相等时t的值.15.如图,数轴上有、、、四个点,分别对应,,,四个数,其中,,与互为相反数,(1)求,的值;(2)若线段以每秒3个单位的速度,向右匀速运动,当________时,点与点重合,当________时,点与点重合;(3)若线段以每秒3个单位的速度向右匀速运动的同时,线段以每秒2个单位的速度向左匀速运动,则线段从开始运动到完全通过所需时间多少秒?(4)在(3)的条件下,当点运动到点的右侧时,是否存在时间,使点与点的距离是点与点的距离的4倍?若存在,请求出值,若不存在,请说明理由.16.已知:b是最小的正整数,且a、b满足|c-6|+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值,a=________,b=________,c=________ 。
浙教版初一数学上册期末测试(一)含答案
初一数学上册期末测试一、选择题(每题3分,共30分)1.某市2016年的元旦的最高气温为6℃,最低气温为-4℃,那么这天最高气温比最低气温高( )A.-10℃ B.-2℃ C.2℃ D.10℃2.4的算术平方根是( )A.2 B.4 C.-2 D.-43.下列运算正确的是( )A.9=±3 B.(-2)3=8 C.-|-3|=3 D.-22=-44.如果一个角是36°,那么( )A.它的余角是64° B.它的补角是64° C.它的余角是144° D.它的补角是144°5.如图,面积为5的正方形ABCD的顶点A在数轴上,且表示的数为1,若AD=AE,则数轴上点E所表示的数为( )第5题图A.- 5B.1- 5C.-1-52D.32- 56.下列叙述中,正确的是( )A.有理数分正有理数和负有理数B.绝对值等于本身的数是0和1C.互为相反数的两个数的三次方根仍是互为相反数D.π2是分数7.某种商品的进价为800元,出售标价为1200元,后由于该商品积压,商店准备打折销售,如果要使得利润率为5%,那么销售时应该打( )A.6折 B.7折 C.8折 D.9折8.用18米长的铝合金做成一个长方形的窗框(如图),设长方形的窗框的横条长度为x 米,则长方形窗框的面积为( )第8题图A.x(18-3x2)平方米 B.x(x-9)平方米C.x(18-x)平方米 D.x(18-2x3)平方米9.根据下表中的规律,从左到右的空格中应依次填写的数字是( )A.100,011 B.011,100 C.011,101 D.101,110 10.将正整数按如图所示的位置顺序排列:第10题图根据排列规律,则2017应在( )A.A处 B.B处 C.C处 D.D处二、填空题(每题3分,共30分)11.计算:3-|-5|=____________.12.用代数式表示比a的5倍大3的数是____________.13.下列6个实数:0,2,-0.01,-25,π,38中,最大的数是____________;有理数有____________个.14.某市2016年财政收入取得重大突破,地方公共财政收入用四舍五入法取近似值后为27.39亿元,那么这个数值是精确到____________.15.如图,直线AD与BE相交于点O,∠COD=90°,∠COE=70°,则∠AOB=____________.第15题图16.若单项式2x2y m与-12x n y3是同类项,则m+n=____________.17.如果一个角比它的余角大20°,则这个角的补角为____________度.18.某企业为贫困山区孩子送温暖,共捐出衣物和棉被共1800件,已知衣物的件数比棉被件数的3倍少200件,则该企业捐的棉被有____________件.19.如图,点C在线段AB的延长线上,且BC=2AB,点D是AC的中点,若AB=2cm,则BD=____________.第19题图20.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=-1+2+33=43,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=____________.三、解答题(共40分)21.(6分)解答下列各小题:(1)计算:-14-16÷(-12)2+|-3|3; (2)解方程:y-14-2=2y-36.22.(8分)作图与回答:(1)已知线段a和b,请用直尺和圆规作出线段AB,使AB=2a-b.(不必写作法,只需保留作图痕迹)第22题图(2)已知直线AB与CD垂直,垂足为O,请在图中用量角器画射线OE表示北偏西30°、画射线OF表示南偏东30°、画射线OH表示北偏东45°.(3)找一找,你完成的作图(2)中是锐角的对顶角有几组,把它们写出.23.(8分)如图,数轴的单位长度是1.(1)如果点A,D表示的数互为相反数,那么点B表示的数是多少?(2)如果点B,D表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?第23题图(3)当点B为原点时,若存在一点M到A的距离是点M到D的距离的2倍,则点M所表示的数是多少?24.(8分)如图,直线AB、CD、EF都经过点O,且AB⊥CD,OG平分∠BOE,如果∠EOG=25∠AOE,求∠EOG,∠DOF和∠AOE.第24题图25.(10分)某校为了做好大课间活动,计划用400元购买10件体育用品,备选体育用品及单价如下表(单位:元):备选体育用品篮球排球羽毛球拍单价(元) 50 40 25(1)若400元全部用购买篮球和羽毛球拍共10件,问篮球和羽毛球拍各购买多少件?(2)若400元全部用购买篮球、排球和羽毛球拍三种共10件,能实现吗?若能,求出篮球、排球和羽毛球拍分别买了多少?若不能,说明理由.参考答案期末测试(一)一、选择题1.D 2.A 3.D 4.D 5.B 6.C 7.B 8.A 9.B 10.D二、填空题11.-2 12.5a+3 13.π414.百万位15.20°16.5 17.125 18.50019.1cm 20.12或13三、解答题21.(1)10 (2)y=-2122.(1)如图,线段AB就是所求线段.(2)如图:第22题图(3)锐角对顶角有2对,∠EOC与∠DOF;∠AOE与∠BOF.23.(1)∵AD=6,又A,D表示的数互为相反数,∴A,D分别表示-3,3,∴点B表示的数为-1.(2)∵BD=4,又∵B,D表示的数互为相反数,∴B,D分别表示-2和2,∴点A,C分别表示-4和1,∴点A表示的数绝对值最大.(3)①点M在AD之间时,点M表示的数是2;②点M在D点右边时,点M表示的数为10.故答案为2或10.24.∵OG平分∠BOE,∴∠BOE=2∠EOG,又∵∠EOG=25∠AOE,∴∠AOE=52∠EOG,∵∠AOE+∠BOE=180°,∴52∠EOG+2∠EOG=180°,即92∠EOG=180°,∴∠EOG=40°,∴∠AOE=52∠EOG=52×40°=100°,∠BOE=2∠EOG=2×40°=80°,∵AB⊥CD,∴∠BOC=90°,∴∠EOC=∠BOC-∠BOE=90°-80°=10°,∴∠DOF=∠EOC=10°.25.(1)设篮球购买x个,则羽毛球拍购买(10-x)副,据题意得:50x+25(10-x)=400,解得x=6,10-x=4副.答:篮球和羽毛球拍各购买6个,4副.(2)设购买篮球x个,排球y个,则羽毛球拍(10-x-y)副,据题意得:50x+40y+25(10-x-y)=400,化简得:5x+3y=30,x=30-3y5,当y=5时,x=3,10-x-y=2副,故能实现,即分别购买篮球、排球、羽毛球拍各3个、5个、2副.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版七年级数学上期末综合培优2018一,选择题1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( )A 、-1B 、0C 、1D 、不存在 2、对于任何有理数a ,下列各式中一定为负数的是( ) A 、-(-3+a ) B 、-a C 、-|a+1| D 、-|a|-1 3. 适合81272=-++a a 的整数a 的值的个数有 ………………( ) A .5 B .4 C .3 D .24.x 是任意有理数,则2|x |+x 的值( ).A .大于零B . 不大于零C .小于零D .不小于零5.在-0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的数字是( )A .1B .4C .2D .86.如图,在数轴上1,的对应点A 、B , A 是线段BC 的中点,则点C 所表示的数是( )A .B .C .D .7.若实数a 、b 、c 在数轴上对应点的位置如图所示, 则|c |-|b -a |+|b +c |等于…………( )A .-aB .-a +2bC .-a -2cD .a -2b8. 小红在集市上先买回5只羊,平均每只a 元,稍后又买回3只羊,平均每只b 元,后 来他以每只2ba +的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是……( ) A .b a > B .b a < C .b a = D .与a 、b 的大小无关 9、如果某数的平方根是4m +5和m -15,那么这个数是················································································································· ( )A 、2B 、-2C 、169D 、-169222-22-21-12-x21CA10、绝对值大于 1 小于 4 的整数的和是( ) A 、0 B 、5 C 、-5 D 、1011、a,b 互为相反数,下列各数中,互为相反数的一组为( )A.a 2与b 2B. a 3与b 3C. a 2n 与b 2n (n 为正整数)D. a 2n+1与b 2n+1(n 为正整数)12、若a 2003·(-b)2004<0,则下列结论正确的是( ) A .a>0,b>0 B.a<0,b>0 C.a<0,b<0 D.a<0,b ≠0。
13,对于直线AB ,线段CD ,射线EF ,在下列各图中能相交的是( )14,如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( )A 、1∠=3∠B 、31801∠-︒=∠C 、3901∠+︒=∠D 、以上都不对 15,如图,P 为直线l 外一点,C B A 、、为l 上三点,且l PB ⊥,那么( )A 、PC PB PA 、、三条线段中PB 最短 B 、线段PB 叫做点P 到直线l 的距离C 、线段AB 是点A 到PB 的距离D 、线段AC 的长度是点A 到PC 的距离16,如图,115︒∠=,90AOC ︒∠=,点B 、O 、D 在同一直线上, 则2∠的度数为( )A 、75︒B 、15︒C 、105︒D 、165︒17在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的( )A 、南偏西50度方向B 、南偏西40度方向C 、北偏东50度方向D 、北偏东40度方向二,填空18、平方与绝对值都是它的相反数的数是________,这个数的立方和它的关系是_________。
19、已知P 是数轴上的一个点。
把P 向左移动3个单位后,再向右移动一个单位,这时它到原点的距离 是4个单位,则P 点表示的数是______。
20、数轴上哪个数与-24和40的距离相等_____,与数轴上数a 和b距离相等的A B C DO12A点表示的数是_______。
21、在数轴上表示 a 的点到原点的距离为 3,则 a -3=____。
22.23-的相反数地 ,绝对值是 .23.写出两个无理数,使它们的和为有理数 ;写出两个无理数,使它们的积为有理数 .24.在数轴上,到原点距离为5个单位的点表示的数是 .25、若方程2(3)30a a x--+=是关于x 的一元一次方程,则a =_________26、已知代数式2x y -的值是-2,则代数式32x y -+的值是27+2y +=0,则22x y -的值为28、整式mx +2n 的值随x 的取值不同而不同, 右表是当x 取不同值时对应的整式的值,则关于x 的方程4=--n mx 的解为______.29、如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A 和点B ,则点A 表示的数是;点B 表示的数是 .30、某市出租车收费标准为:起步价8元,3千米后每千米1.8元,则某人乘坐出租车x (x>3的整数)千米应付 元。
31、已知n 是自然数,多项式y n +1+3x 3-2x 是三次三项式,那么n 可以取的数是 32、对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a=c 且b=d 时,(a ,b )=(c ,d ).定义运算“⊕”:(a ,b )⊕(c ,d )=(ac-bd ,ad+bc ).若(1,2)⊕(p ,q )=(5,b ),则p= ,q=33、已知x 、y 、z 满足:x <y ,x +y =0,xyz >0,|y |>|z |,则化简|x +z |-|y +z |的结果为____34、如图,C 是线段AB 的中点,D 是线段AC 的中点,CD=2,则线段AB 的长度为 ;第14题图题图 题图35、直线AB 、CD 相交于点O ,且118AOC BOD ∠+∠=,则AOD ∠=_________度; 36、如图,点A 到直线BC 的距离是线段___________的长度,点A 到直线CD 的距离是线段___________的长度;37、在8:30,估计时钟上的时针和分针之间的夹角为___ 度;三,计算38. (本题6分)已知实数a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是4,求2a 22m b -+的值.39.写出所有适合下列条件的数(每小题5分,共10分)(1)大于 (2的所有整数。
40, (1), )1.0()5.2(466-÷--⨯- (2), ()()222104122-⨯---- 41.(本题6分)一个底面半径为4 cm 的圆柱形玻璃杯装满水,杯的高度为π32cm ,现将这杯水倒入一正方形容器中,正好达到正方体容器容积的81处,(玻璃杯及容器的厚度可以不计),求正方体容器的棱长.42.请你将一根细长的绳子,沿中间对折,再沿对折后的绳子中间再对折,这样连续对折5次,最后用剪刀沿对折5次后的绳子的中间将绳子剪断,此时绳子将被剪成 _________ 段. 43.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为 _________ .44.班级开联欢会买奖品,买铅笔和钢笔共100支,已知每支钢笔5元,每支中性笔2元,共花了260元,求买了多少支钢笔和中性笔?45.武夷山茶叶机械制造车间有900人,一人每天加工10个螺栓或25个螺母,组装一部茶机器需4个螺栓和5个螺母,问应安排多少人生产螺栓,多少人生产螺母,才能尽可能多的组装成这种机器.46.下列图形中∠1与∠2是对顶角的是()A.B.C.D.47.如图,在△ABC中,AC⊥BC,CD⊥AB,则图中能表示点到直线(或线段)的距离的线段有()48、如图,(1)已知∠AOB为直角,∠AOC为锐角,OE平分∠BOC,OF平分∠AOC,求∠EOF的度数;(2)若将(1)中的条件“∠AOB为直角”改为“∠AOB为任意一个角”,则∠AOB与∠EOF的大小关系如何?发现结论并说明理由.49、已知∠AOB=900,∠BOC=300,分别作∠AOC,∠BOC的平分线OM,ON,(1)求∠MON的度数。
(2)如图∠AOB=900,将OC向下旋转,使∠BOC=,仍然分别作∠AOC,∠BOC的平分线OM,ON,能否求出∠MON的度数,若能,求出其值,若不能,试说明理由。
(3)如图,∠AOB=900,将OC向上旋转,使OC在∠AOB的内部,且∠BOC =,仍然分别作∠AOC,∠BOC的平分线OM,ON,还能否求出∠MON的度数吗?若能,求出其值,若不能,说明理由。