备战2020年中考 第34课时 统计初步

合集下载

中考复习第34课时数据的整理与分析课件

中考复习第34课时数据的整理与分析课件
2.中位数 将一组数据按照 由小到大(或由大到小) 的顺序排列后,则处 于正中间的一个数据(当数据的个数是奇数时)或正中间的两个 数的平均数(当数据的个数是偶数时)叫做这组数据的中位数. 3.众数 一组数据中出现次数 最多
考点聚焦 豫考探究
的数据叫做这组数据的众数.
当堂检测
第34课时┃ 数据的整理与分析
那么这组数据的众数和平均数分别是( A ) A.0.4和0.34 B.0.4和0.3 C.0.25和0.34 D.0.25和0.3
考点聚焦
豫考探究
当堂检测
第34课时┃ 数据的整理与分析
► 检测考点2 极差、方差
2. [2013· 巴中] 体育课上,某班两名同学分别进行了5次短跑 训练,要判断哪一名同学的成绩比较稳定,通常需要比较 两名同学成绩的( B ) A.平均数 C.频数分布 B.方差 D.中位数
解 析
方差反映这组数据的波动情况,方差越大,波动越
大,方差越小,波动越小.
考点聚焦 豫考探究 当堂检测
第34课时┃数据的整理与分析
方法点析 (1)利用样本估计总体时,常用样本的平均数、方差、频率 作为总体的平均数、方差、频率的估计值; (2)中位数是一个位 置代表值,利用中位数分析数据可以获得一些信息 .如果已知一 组数据(互不相等)的中位数,那么可以知道小于或大于这个中位 数的数各占一半.众数是一个代表大多数的数据,当一个数据有 较多重复数据时,众数往往是人们所关心的数.一组数据的极 差、方差越小,这组数据越稳定.
第34课时┃ 数据的整理与分析
甲、乙射击成绩统计表 平均数 中位数 甲 乙 甲、乙射击成绩折线图 7 方差 命中10环的次数 0 1
考点聚焦
豫考探究
当堂检测

重庆市合川中学2019-2020学年中考九年级数学典型压轴题专练:统计初步(含答案解析)

重庆市合川中学2019-2020学年中考九年级数学典型压轴题专练:统计初步(含答案解析)

重庆市合川区第一中学2020年中考九年级数学典型压轴题专练:统计初步1、根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.2、为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.3、为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?4、某校八年级学生在学习《数据的分析》后,进行了检测.现将该校八年级(1)班学生的成绩统计如下表,并绘制成条形统计图(不完整).(1)补全条形统计图;(2)该班学生成绩的平均数为86.85分,写出该班学生成绩的中位数和众数;(3)该校八年级共有学生500名,估计有多少学生的成绩在96分以上(含96分)?(4)小明的成绩为88分,他的成绩如何,为什么?【逐步提示】(1)在表格中查到得96的人数是6,据此不全条形图;(2)根据众数、中位数的定义求解;(3)用500乘以96分以上(含96分)的人数所占的百分比即可得解;(4)把小明的成绩和平均数、中位数、众数作对比,即可对小明的成绩做出判断.5、秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:分数段频数频率60≤x<70 9 a70≤x<80 36 0.480≤x<90 27 b90≤x≤100 c 0.2请根据上述统计图表,解答下列问题:(1)在表中,a= ,b= ,c= ;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?6、某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?7、某校为了解该校九年级学生适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分 B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.8、中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60B组60≤x<70C组70≤x<80D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为15 ,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?9、海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?10、为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)节目类型新闻体育动画娱乐戏曲人数36 90 a b 27根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?11、在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a 的值为 ;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.12、某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图:请你根据以上的信息,回答下列问题:(1) 本次共调查了_____名学生,其中最喜爱戏曲的有_____人;在扇形统计图中,最喜爱30%8%6%动画新闻体育娱乐戏曲体育的对应扇形的圆心角大小是______;(2) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.13、某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是,并补全条形图;(2)D等级学生人数占被调查人数的百分比为8% ,在扇形统计图中C等级所对应的圆心角为°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.14、为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A市七年级部分学生参加社会实践活动天数的频数分布表天数频数频率3 20 0.104 30 0.155 60 0.306 a 0.257 40 0.20A市七年级部分学生参加社会实践活动天数的条形统计图根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.15、为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示.分组频数4.0≤x<4.2 24.2≤x<4.4 34.4≤x<4.6 54.6≤x<4.8 84.8≤x<5.0 175.0≤x<5.2 5(1)求所抽取的学生人数;(2)若视力达到4.8及以上为达标,估计活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度分析活动前后相关数据,并评价视力保健活动的效果.16、某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个小组打,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:小组研究报告小组展示答辩甲91 80 78乙81 74 85丙79 83 90(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?17、为了解某水果批发市场荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该市场6月上半月共销售这三种荔枝多少吨?(2)该市场某商场计划六月下半月进货A、B、C三种荔枝共500千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?18、某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?19、为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对概念机学生在2015年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.20、某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.答案:1、、【解答】解:(1)A组对应扇形圆心角度数为:360°×=72°;这天载客量的中位数在B组;(2)各组组中值为:A: =10,B: =30;C: =50;D: =70;==38(人),答:这天5路公共汽车平均每班的载客量是38人;(3)可以估计,一个月的总载客量约为38×50×30=57000=5.7×104(人),答:5路公共汽车一个月的总载客量约为5.7×104人.2、【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).3、【解答】解:(1)由题意可得,“非常了解”的人数的百分比为:,即“非常了解”的人数的百分比为20%;(2)由题意可得,对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有:1200×=600(人),即对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有600人.4、解:(1)补全条形统计图如下:(2)该班学生成绩的中位数为90分,众数为90分;(3)∵6+540×500≈138.∴估计有138名学生的成绩在96分以上(含96分).(4)小明的成绩为88分,他的成绩处于中偏下水平,因为小明的成绩比班级平均成绩高,但比班级学生成绩的中位数和众数低.5、【解答】解:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全的频数分布直方图如右图所示,(3)∵=81,即七年级学生的平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400,即“优秀”等次的学生约有400人.6、【解答】解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120﹣18﹣30﹣6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.7、【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人),故答案为:150;(2)A等级的学生数是:150×20%=30,B等级占的百分比是:69÷150×100%=46%,D等级占的百分比是:15÷150×100%=10%,故补全的条形统计图和扇形统计图如右图所示,(3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.11118、【解答】解:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%,则a的值是15;C组扇形的圆心角θ的度数为360×=72°;故答案为:15,72;(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.9、【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.10、【解答】解:(1)∵喜欢体育的人数是90人,占总人数的20%,∴总人数==450(人).∵娱乐人数占36%,∴a=450×36%=162(人),∴b=450﹣162﹣36﹣90﹣27=135(人);(2)∵喜欢动画的人数是135人,∴×360°=108°;(3)∵喜爱新闻类人数的百分比=×100%=8%,∴47500×8%=3800(人).答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人.11、【解答】解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.12、【答案】(1)50,3,72°;(2)160人【解析】(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人),∵“娱乐”类人数占被调查人数的百分比为:18100%36% 50⨯=,∴“体育”类人数占被调查人数的百分比为:1-8%-30%-36%-6%=20%,在扇形统计图中,最喜爱体育的对应扇形圆心角大小事360°×20%=72°;(2)2000×8%=160(人).13、【解答】解:(1)由条形统计图和扇形统计图可知总人数=16÷32%=50人,所以B等级的人数=50﹣16﹣10﹣4=20人,故答案为:50;补全条形图如图所示:(2)D等级学生人数占被调查人数的百分比=×100%=8%;在扇形统计图中C等级所对应的圆心角=8%×360°=28.8°,故答案为:8%,28.8;(3)该校九年级学生有1500人,估计其中A等级的学生人数=1500×32%=480人.14、【解答】解:(1)由题意可得:a=20÷01×0.25=50(人),如图所示:;(2)由题意可得:20000×(0.30+0.25+0.20)=15000(人),答:该市七年级学生参加社会实践活动不少于5天的人数约为15000人.15、【解答】解:(1)∵频数之和=40,∴所抽取的学生人数40人.(2)活动前该校学生的视力达标率==37.5%.(3)①视力4.2≤x<4.4之间活动前有6人,活动后只有3人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,视力保健活动的效果比较好.16、【解答】解:(1)由题意可得,甲组的平均成绩是:乙组的平均成绩是:丙组的平均成绩是:从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:乙组的平均成绩是:丙组的平均成绩是:由上可得,甲组的成绩最高.17、【解答】解:(1)120÷30%=400(吨).[来源:学§科§网Z§X§X§K] 答:该市场6月上半月共销售这三种荔枝400吨;(2)500×=300(千克).答:该商场应购进C品种荔枝300千克比较合理.18、【解答】解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.19、【解答】解:根据题意,阅读了6本的人数为100×30%=30(人),阅读了7本的人数为:100﹣20﹣30﹣﹣15=35(人),补全条形图如图:∵平均每位学生的阅读数量为: =6.45(本),∴估计该校七年级全体学生在2015年全年阅读中外名著的总本数为800×6.45=5160本,答:估计该校七年级全体学生在2015年全年阅读中外名著的总本数约为5160本.20、【解答】解:(1)当n=9时,y==;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=18>15.因此n的最小值为9.(3)若每支笔同时购买9个笔芯,则所需费用总和=(4+6+8)×3×9+7×(3×9+5×1)+5×(3×9+5×2)=895,若每支笔同时购买10个笔芯,则所需费用总和=(4+6+8+7)×3×10+5×(3×10+5×1)=925,因此应购买9个笔芯.。

2024中考数学一轮复习核心知识点精讲—统计

2024中考数学一轮复习核心知识点精讲—统计

2024中考数学一轮复习核心知识点精讲—统计1.能通过实际问题,辨认总体、个体、样本等基本概念.2.掌握三种统计图的画法,明确它们的优缺点及相互关系.特别是扇形统计图与条形统计图结合应用.3.会求一组数据的样本平均数、方差、标准差、中位数、众数等.能根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观念。

考点1:全面调查与抽样调查1.有关概念1)全面调查:为一特定目的而对所有考察对象进行的全面调查叫做全面调查.2)抽样调查:为一特定目的而对部分考察对象进行的调查叫做抽样调查.2.调查的选取:当受客观条件限制,无法对所有个体进行全面调查时,往往采用抽样调查.3.抽样调查样本的选取:1)抽样调查的样本要有代表性;2)抽样调查的样本数目要足够大.总体、个体、样本及样本容量总体:所要考察对象的全体叫做总体.个体:总体中的每一个考察对象叫做个体.样本:从总体中抽取的部分个体叫做样本.样本容量:样本中个体的数目叫做样本容量。

考点2:几种常见的统计图表1.条形统计图:条形统计图就是用长方形的高来表示数据的图形.特点:(1)能够显示每组中的具体数据;(2)易于比较数据之间的差别.2.折线统计图:用几条线段连成的折线来表示数据的图形.特点:易于显示数据的变化趋势.3.扇形统计图:用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫扇形统计图.百分比的意义:在扇形统计图中,每部分占总体的百分比等于该部分所对扇形的圆心角的度数与360°的比.扇形的圆心角=360°×百分比.4.频数分布直方图1)每个对象出现的次数叫频数.2)每个对象出现的次数与总次数的比(或者百分比)叫频率,频数和频率都能够反映每个对象出现的频繁程度.3)频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范围内的分布情况.4)频数分布直方图的绘制步骤:①计算最大值与最小值的差;②决定组距与组数;③确定分点,常使分点比数据多一位小数,并且把第一组的起点稍微减小一点;④列频数分布表;⑤画频数分布直方图:用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图.考点3:众数、中位数、平均数、方差1.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.3.平均数1)平均数:一般地,如果有n 个数1x ,2x ,…,n x ,那么,121()n x x x x n=+++…叫做这n 个数的平均数,x 读作“x 拔”.2)加权平均数:如果n 个数中,1x 出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里12k f f f n +++=…),那么,根据平均数的定义,这n 个数的平均数可以表示为1122k kx f x f x f x n+++=…,这样求得的平均数x叫做加权平均数,其中f 1,f 2,…,f k 叫做权.4.方差.通常用“2s ”表示,即2222121[()()()]n s x x x x x x n=-+-++-….在一组数据1x ,2x ,…,n x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数【题型1:数据的收集方式】【典例1】(2020•贵阳)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A .直接观察B .实验C .调查D .测量【答案】C【解答】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C .【变式1-1】(2020•扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A .①②③B .①③⑤C .②③④D .②④⑤【答案】C【解答】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【题型2:与统计有关的概念】【变式1-2】(2023•辽宁)下列调查中,适宜采用全面调查方式的是()A.了解某种灯泡的使用寿命B.了解一批冷饮的质量是否合格C.了解全国八年级学生的视力情况D.了解某班同学中哪个月份出生的人数最多【答案】D【解答】解:A、了解某种灯泡的使用寿命,适宜采用抽样调查方式,故此选项不符合题意;B、了解一批冷饮的质量是否合格,适宜采用抽样调查方式,故此选项不符合题意;C、了解全国八年级学生的视力情况,适宜采用抽样调查方式,故此选项不符合题意;D、了解某班同学中哪个月份出生的人数最多,适宜采用全面调查方式,故此选项符合题意;故选:D.【变式1-3】(2023•郴州)下列问题适合全面调查的是()A.调查市场上某品牌灯泡的使用寿命B.了解全市人民对湖南省第二届旅发大会的关注情况C.了解郴江河的水质情况D.神舟十六号飞船发射前对飞船仪器设备的检查【答案】D【解答】解:A.调查市场上某品牌灯泡的使用寿命,适合抽样调查,故选项不符合题意;B.了解全市人民对湖南省第二届旅发大会的关注情况,适合抽样调查,故选项不符合题意;C.了解郴江河的水质情况,适合抽样调查,故选项不符合题意;D.神舟十六号飞船发射前对飞船仪器设备的检查,适合全面调查,故选项符合题意;故选:D.【变式1-4】(2023•聊城)4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A.1500名师生的国家安全知识掌握情况B.150C.从中抽取的150名师生的国家安全知识掌握情况D.从中抽取的150名师生【答案】C【解答】解:样本是所抽取的150名师生的国家安全知识掌握情况.故选:C.【题型3:用各种统计图描述数据】【典例3】(2023•成都)文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有300人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.【答案】(1)300,补全条形统计图见解答;(2)144°;(3)360名.【解答】解:(1)本次调查的师生共有:60÷20%=300(人),“文明宣传”的人数为:300﹣60﹣120﹣30=90(人),补全条形统计图如下:故答案为:300;(2)在扇形统计图中,“敬老服务”对应的圆心角度数为:360°×=144°;(3)1500×80%×=360(名),答:估计参加“文明宣传”项目的师生人数大约为360名.【变式3-1】(2023•扬州)空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图【答案】C【解答】解:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是扇形统计图.故选:C.【变式3-2】(2022•福建)2021年福建省的环境空气质量达标天数位居全国前列.如图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是()A.F1B.F6C.F7D.F10【答案】D【解答】解:根据题意可得,F10地区环境空气质量综合指数约为1.9,是10个地区中最小值.故选:D.【变式3-3】(2023•大连)2023年5月18日,《大连日报》公布《下一站,去博物馆!》问卷调查结果.本次调查共收回3666份有效问卷,其中将“您去博物馆最喜欢看什么?”这一问题的调查数据制成扇形统计图,如图所示.下列说法错误的是()A.最喜欢看“文物展品”的人数最多B.最喜欢看“文创产品”的人数占被调查人数的14.3%C.最喜欢看“布展设计”的人数超过500人D.统计图中“特效体验及其他”对应的圆心角是23.76°【答案】C【解答】解:由题意得:A.最喜欢看“文物展品”的人数最多,占58.25%,说法正确,故本选项不符合题意;B.最喜欢看“文创产品”的人数占被调查人数的14.3%,说法正确,故本选项不符合题意;C.最喜欢看“布展设计”的人数为:3666×9.82%≈360(人),原说法错误,故本选项符合题意;D.统计图中“特效体验及其他”对应的圆心角是:360°×6.6%=23.76°,说法正确,故本选项不符合题意.故选:C.【题型4:平均数】【典例4】(2023•湖州)某住宅小区6月1日~6月5日每天用水量情况如图所示,那么这5天平均每天的用水量是()A.25立方米B.30立方米C.32立方米D.35立方米【答案】B【解答】解:由折线图可知,该小区五天的用水量分别是:30、40、20、30、30.所以5天的平均用水量为:=30(立方米).故选:B.【变式4-1】(2023•镇江)一组数据:2、3、3、4、a,它们的平均数为3,则a为3.【答案】3.【解答】解:由题意(2+3+3+4+a)=3,∴a=3.故答案为:3.【变式4-2】(2023•长沙)睡眠管理作为“五项管理”中重要的内容之一,也是学校教育重点关注的内容.某老师了解到班上某位学生的5天睡眠时间(单位:小时)如下:10,9,10,8,8,则该学生这5天的平均睡眠时间是9小时.【答案】见试题解答内容【解答】解:(10+9+10+8+8)÷5=9(小时).即该学生这5天的平均睡眠时间是9小时.故答案为:9.【变式4-3】(2023•湘潭)某校组织青年教师教学竞赛活动,包含教学设计和现场教学展示两个方面.其中教学设计占20%,现场展示占80%.某参赛教师的教学设计90分,现场展示95分,则她的最后得分为()A.95分B.94分C.92.5分D.91分【答案】B【解答】解:由题意可得,90×20%+95×80%=94(分),即她的最后得分为94分,故选:B.【题型5:中位数与众数的计算】【典例5】(2023•甘孜州)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示.成绩/米 1.50 1.60 1.65 1.70 1.75人数23541这些运动员成绩的众数和中位数分别为()A.1.65米,1.65米B.1.65米,1.70米C.1.75米,1.65米D.1.50米,1.60米【答案】A【解答】解:由表可知1.65m出现次数最多,有5次,所以众数为1.65m,这15个数据最中间的数据是第8个,即1.65m,所以中位数为1.65m,故选:A.【变式5-1】(2023•达州)一组数据2,3,5,2,4,则这组数据的众数和中位数分别为()A.3和5B.2和5C.2和3D.3和2【答案】C【解答】解:数据从小到大排列为:2,2,3,4,5,所以中位数为3;数据2出现了2次,最多,所以这组数据的众数为2.故选:C.【变式5-2】(2023•黄石)我市某中学开展“经典诵读”比赛活动,810班在此次比赛中的得分分别是:9.1,9.8,9.1,9.2,9.9,9.1,9.9,9.1,这组数据的众数和中位数分别是()A.9.1,9.1B.9.1,9.15C.9.1,9.2D.9.9,9.2【答案】B【解答】解:将数据9.1,9.8,9.1,9.2,9.9,9.1,9.9,9.1按照从小到大排列是:9.1,9.1,9.1,9.1,9.2,9.8,9.9,9.9,则这组数据的众数是9.1,中位数是(9.1+9.2)÷2=9.15,故选:B.【变式5-3】(2023•黑龙江)已知一组数据1,0,﹣3,5,x,2,﹣3的平均数是1,则这组数据的众数是()A.﹣3B.5C.﹣3和5D.1和3【答案】C【解答】解:∵数据1,0,﹣3,5,x,2,﹣3的平均数是1,∴1+0﹣3+5+x+2﹣3=7×1,解得x=5,则这组数据为1,0,﹣3,5,5,2,﹣3,∴这组数据的众数为﹣3和5,故选:C.【变式5-4】(2023•盘锦)为了解全市中学生的视力情况,随机抽取某校50名学生的视力情况作为其中一个样本,整理样本数据如图.则这50名学生视力情况的中位数和众数分别是()A.4.8,4.8B.13,13C.4.7,13D.13,4.8【答案】A【解答】解:把这50名学生视力情况从小到大排列,排在中间的两个数分别是4.8、4.8,故中位数为=4.8;在这50名学生视力情况中,4.8出现的次数最多,故众数为4.8.故选:A.【题型6:方差】【典例6】(2023•广西)甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:S甲2=2.1,S乙2=3.5,S丙2=9,S丁2=0.7,则成绩最稳定的是()A.甲B.乙C.丙D.丁【答案】D【解答】解:∵,,,,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.【变式6-1】(2023•眉山)已知一组数据为2,3,4,5,6,则该组数据的方差为()A.2B.4C.6D.10【答案】A【解答】解:=×(2+3+4+5+6)=4,s2=×[(2﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(6﹣4)2]=2.故选:A.【变式6-2】(2023•朝阳)某校在甲、乙、丙、丁四名同学中选中一人参加今年5月份举办的教育系统文艺展演独唱大赛,经过三轮初赛,他们的平均成绩都是88.5分,方差分别是s甲2=1.5,s乙2=2.6,s丙2=1.7,s丁2=2.8,则这四名同学独唱成绩最稳定的是甲.【答案】甲.【解答】解:∵S甲2=1.5,S乙2=2.6,S丙2=1.7,S丁2=2.8,∴S甲2<S丙2<S乙2<S丁2,∴在平均成绩相等的情况下,这四名同学独唱成绩最稳定的是甲.故答案为:甲.【变式6-3】(2023•凉山州)若一组数据x1,x2,x3,…,x n的方差为2,则数据x1+3,x2+3,x3+3,…,x n+3的方差是()A.2B.5C.6D.11【答案】A【解答】解:设一组数据x1,x2,x3,…,x n的平均数为,则方差为[...+]=2,∴数据x1+3,x2+3,x3+3,…,x n+3的平均数为(+3),方差为[+...+]=[...+]=2.故选:A.一.选择题(共9小题)1.为了了解2015年我县九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩,下列说法正确的是()A.2015年我县九年级学生是总体B.样本容量是1000C.1000名九年级学生是总体的一个样本D.每一名九年级学生是个体【答案】B【解答】解:A、2015年我县九年级学生是总体,说法错误,应为2015年我县九年级学生学业水平考试的数学成绩是总体,故此选项错误;B、样本容量是1000,说法正确,故此选项正确;C、1000名九年级学生是总体的一个样本,说法错误,应为1000名九年级学生学业水平考试的数学成绩是总体的一个样本,故此选项错误;D、每一名九年级学生是个体,说法错误,应为每一名九年级学生学业水平考试的数学成绩是个体,故此选项错误;故选:B.2.从全市5000份数学试卷中随机抽取400份试卷,其中360份成绩合格,那么可以估计全市数学成绩合格的学生大约有多少人?()A.4500B.4000C.3600D.4800【答案】A【解答】解:5000×=4500(人).故选:A.3.小东5分钟内共投篮60次,共进球15个,则小东进球的频率是()A.0.25B.60C.0.26D.15【答案】A【解答】解:∵小东5分钟内共投篮60次,共进球15个,∴小东进球的频率是:=0.25.故选:A.4.学校食堂午餐供应6元、8元和10元三种价格的盒饭,如图是食堂某月销售三种午餐盒饭数量的统计图,则该月食堂销售午餐盒饭的平均价格为()A.7.9元B.8元C.8.9元D.9.2元【答案】C【解答】解:10×60%+8×25%+6×15%=6+2+0.9=8.9(元).故该月食堂销售午餐盒饭的平均价格为8.9元.故选:C.5.下列调查中,最适合采用全面调查(普查)的是()A.调查全国中小学生对第二次太空授课的满意度B.调查全国人民,掌握新冠防疫知识情况C.了解某类型医用口罩的质量D.检查神舟飞船十三号的各零部件【答案】D【解答】解:A.调查全国中小学生对第二次太空授课的满意度,适合抽样调查,故本选项不符合题意;B.调查全国人民,掌握新冠防疫知识情况,适合抽样调查,故本选项不符合题意;C.了解某类型医用口罩的质量,适合抽样调查,故本选项不符合题意;D.检查神舟飞船十三号的各零部件,事件重大,适合全面调查,故本选项符合题意.故选:D.6.一组数据2,1,4,x,6的平均值是4,则x的值为()A.3B.5C.6D.7【答案】D【解答】解:∵一组数据2,1,4,x,6的平均值是4,∴(2+1+4+x+6)÷5=4,解得x=7,故选:D.7.小雨同学参加了学校举办的“抗击疫情,你我同行”主题演讲比赛,她的演讲内容、语言表达和形象风度三项得分分别为80分,90分,85分,若这三项依次按照50%,30%,20%的百分比确定成绩,则她的成绩是()A.82分B.83分C.84分D.85分【答案】C【解答】解:根据题意得:80×50%+90×30%+85×20%=40+27+17=84(分).故选:C.8.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数分别是()A.5、6B.5、5C.6、5D.6、6【答案】A【解答】解:因为5出现的次数最多,所以众数是5,将这组数据按从小到大进行排序后,第9个数和第10个数的平均数即为中位数,所以中位数是,故选:A.9.某鞋店在做市场调查时,为了提高销售量,商家最应关注鞋子型号的()A.众数B.平均数C.中位数D.极差【答案】A【解答】解:由于众数是数据中出现最多的数,故鞋业销售商最关注的是销售量最多的鞋号即众数.故选:A.二.填空题(共6小题)10.要统计某城市2021年1﹣12月的天气变化情况,选择折线统计图较好.【答案】折线.【解答】解:要统计某城市2021年1﹣12月的天气变化情况,选择折线统计图较好.故答案为:折线.11.有60个数据,共分成4组,第1、2组的频数分别为25,19,第4组的频率是0.15,则第3组的频数是7.【答案】7.【解答】解:∵有60个数据,共分成4组,第4组的频率是0.15,∴第4组的频数是:60×0.15=9,故第3组的频数是:60﹣25﹣19﹣9=7.故答案为:7.12.如图是某同学6次数学测验成绩的折线统计图,则该同学这6次成绩的最低分是60分.【答案】60.【解答】解:由折线统计图得,该同学这6次成绩的最低分是60分.故答案为:60.13.跳高训练时,甲、乙两名同学在相同条件下各跳了10次,统计他们的平均成绩都是1.36米,且方差为S2甲=0.4,S2乙=0.3,则成绩较为稳定的是乙(填“甲”或“乙”).【答案】见试题解答内容【解答】解:∵S2甲=0.4,S2乙=0.3,∴S2甲>,S2乙,∴乙同学的成绩较为稳定.故答案为乙.14.某班学生参加学校组织的“垃圾分类”知识竞赛,将学生成绩制成如图所示的频数分布直方图(每组数据包括左端值不包括右端值),其中成绩为“优良”(80分及80分以上)的学生有26人.【答案】见试题解答内容【解答】解:由图象可得,成绩为“优良”(80分及80分以上)的学生有:14+12=26(人),故答案为:26.15.一个容量为100的样本,最大值为142,最小值是60,取组距为10,则可以分为9组.【答案】9.【解答】解:(142﹣60)÷10=8余2,所以分成9组,故答案为:9.三.解答题(共2小题)16.为落实“双减”政策,某校利用课后服务开展了“书香校园”的读书活动,活动中,为了解学生对书籍种类(A:艺术类,B:科技类,C:文学类,D:体育类)的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的学生必须选择而且只能在这四种类型中选择一项)将数据进行整理并绘制成两幅不完整的统计图.(1)这次调查中,一共调查了200名学生;(2)在扇形统计图中,“D”部分所对应的圆心角的度数为54度;并补全条形统计图.(3)若全校有4800名学生,请估计喜欢B(科技类)的学生有多少名?【答案】(1)200名;(2)54°;补全条形统计图见解答;(3)1680名.【解答】解:(1)40÷20%=200(名),故答案为:200;(2)D所占百分比为×100%=15%,扇形统计图中“D”所在扇形的圆心角的度数为:360°×15%=54°,C的人数是:200×30%=60(名),补图如下:故答案为:54;(3)4800×=1680(名),答:估计喜欢B(科技类)的学生有1680名.17.某地旅游部门为了促进本地生态特色城镇和新农村建设,将甲、乙,丙三家民宿的相关资料放到某网络平台上进行推广宣传.该平台邀请部分曾在这三家民宿体验过的游客参与调查,得到了这三家民宿的“综合满意度”评分,评分越高表明游客体验越好,现从这三家民宿“综合满意度”的评分中各随机抽取10个评分数据,并对所得数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两家民宿“综合满意度”评分的折线图:b.丙家民宿“综合满意度”评分:2.6,4.7,4.5,5.0,4.5,4.8,4.5,3.8,4.5,3.1c.甲、乙、丙三家民宿“综合满意度”评分的平均数、中位数:甲乙丙平均数m 4.5 4.2中位数 4.5 4.7n根据以上信息,回答下列问题:(1)表中m的值是 4.5,n的值是 4.5;(2)设甲、乙、丙三家民宿“综合满意度”评分的方差分别是s甲2,s乙2,s丙2,直接写出s甲2,s乙2,s丙2之间的大小关系;(3)根据“综合满意度”的评分情况,该平台打算将甲、乙、丙三家民宿中的一家置顶推荐,你认为该平台会将这三家民宿中的哪家置顶推荐?说明理由(至少从两个方面说明).【答案】(1)4.5,4.5;(2)<;(3)推荐乙,理由:乙的方差最小,数据稳定,平均分比丙高.【解答】解:(1)甲家民宿“综合满意度”评分:3.2,4.2,5.0,4.5,5.0,4.9,4.5,4.2,5.0,4.5,∴m=(3.2+4.2+5.0+4.5+5.0+4.9+4.5+4.2+5.0+4.5)=4.5,丙家民宿“综合满意度”评分:2.6,4.7,4.5,5.0,4.5,4.8,4.5,3.8,4.5,3.1,从小到大排列为:2.6.3.1.3.8.4.5.4.5.4.5.4.5.4.7.4.8.5.∴中位数n==4.5,故答案为:4.5,4.5;(2)根据折线统计图可知,乙的评分数据在4分与5分之间波动,甲的数据在3.2分和5分之间波动,根据丙的数据可以在2.6至5分之间波动,∴<;(3)推荐乙,理由:乙的方差最小,数据稳定,平均分比丙高,答案不唯一,合理即可.一.选择题(共11小题)1.今年3月份某校举行学雷锋志愿服务活动,为了解全校学生一周学雷锋志愿服务的次数,随机抽取了50名学生进行调查,依据调查结果绘制了如图所示的折线统计图,下列关于该校学生一周学雷峰志愿服务次数说法正确的是()A.众数是5B.中位数是7C.中位数是9D.众数是13【答案】A【解答】解:因为5出现了13次,出现的次数最多,所以该校一周学雷峰志愿服务次数的众数是5;该校一周学雷峰志愿服务次数最中间的两个数字都为6,所以该组数据的中位数为6;故选项A正确,符合题意.故选:A.2.如图是甲、乙两名射击运动员10次射击成绩的折线统计图,记甲10次成绩的方差为S,乙10次成绩的方差为S,根据折线图判断下列结论中正确的是()A.S>S B.S<SC.S=S D.无法判断【答案】A【解答】解:由折线统计图得乙运动员的成绩波动较大,所以S>S.故选:A.3.某次数学测试,抽取部分同学的成绩(得分为整数),整理制成如图所示的频数分布直方图,根据图示信息,下列对这次数学测试描述不正确的是()A.本次抽查了50名学生的成绩B.估计测试及格率(60分以上为及格)为92%C.抽取学生的成绩的中位数落在第三组D.抽取学生的成绩的众数是第三组的数【答案】D【解答】解:本次抽取的学生人数为4+10+18+12+6=50(人),则选项A正确,不符合题意;估计测试及格率(6(0分)以上为及格)为,则选项B正确,不符合题意;将抽取学生的成绩从小到大进行排序后,第25个数和第26个数的平均数即为中位数,∵4+10=14<25,4+10+18=32>26,∴抽取学生的成绩的中位数落在第三组,选项C正确,不符合题意;因为不能确定出现次数最多的数在哪一组,所以抽取学生的成绩的众数不一定是第三组的数,选项D不正确,不符合题意;故选:D.4.如图,是九(1)班45名同学每周课外阅读时间的频数分布直方图(每组含前一个边界值,不含后一个边界值),由图可知,每周课外阅读时间不小于6小时的人数是()A.6人B.8人C.14人D.36人【答案】C【解答】解:由频数分布直方图知,每周课外阅读时间不小于6小时的人数是8+6=14(人),故选:C.5.为了解某市九年级男生的身高情况,随机抽取了该市100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x≤160160<x≤170170<x≤180x>180人数1542385根据以上结果,全市约有3万名男生,估计全市男生的身高不高于180cm的人数是()A.28500B.17100C.10800D.1500【答案】A【解答】解:估计全市男生的身高不高于180cm 的人数是30000×=28500(名),故选:A .6.一个不透明的盒子中装有10个小球(白色或黑色),它们除了颜色外其余都相同,每次摸球试验前,都将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中,如表是一组统计数据:摸球次数(n )50100150200250300500摸到白球的次数(m )286078104123152251摸到白球的频率(m /n )0.560.600.520.520.490.510.50由表可以推算出盒子白色小球的个数是()A .4个B .5个C .6个D .7个【答案】B【解答】解:∵通过大量重复试验后发现,摸到白球的频率稳定于0.5,∴10×0.5=5,即白色小球的个数是5个.故选:B .7.一组数据:3,4,4,5,如果再添加一个数据4,那么会发生变化的统计量是()A .平均数B .中位数C .众数D .方差【答案】D【解答】解:原数据的3,4,5,4的平均数为=4,中位数为4,众数为4,方差为×[(3﹣4)2+(4﹣4)2×2+(5﹣4)2]=0.5;新数据3,4,4,4,5的平均数为=4,中位数为4,众数为4,方差为×[(3﹣4)2+(4﹣4)2×3+(5﹣4)2]=0.4;故选:D.8.如图,在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法错误的是()A.众数是90分B.方差是10C.平均数是91分D.中位数是90分【答案】B【解答】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故D正确;∵平均数是(85×2+100×1+90×5+95×2)÷10=91;故C正确;方差是:×(90﹣91)2+(100﹣91)2]=19≠10;故B错误.综上所述,B选项符合题意,故选:B.9.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,C.,D.,【答案】D【解答】解:由平均数定义可知:,因为a1,a2,a3,a4,a5是5个正数,且a1>a2>a3>a4>a5,所以将这组数据按从小到大排列为0,a5,a4,a3,a2,a1,由于有偶数个数,取最中间两个数的平均数,∴其中位数为,故选:D.10.超市里五种型号的书包价格分别为50,60,80,90,110(单位:元),降价促销后,每种型号书包价格都降了10元.降价前的五个数据与降价后的五个数据相比,不变的是()A.众数B.中位数C.方差D.平均数【答案】C【解答】解:降价前书包价格分别为50,60,80,90,110,中位数是80,平均数是=78,方差是×[(78﹣50)2+(78﹣60)2+(78﹣80)2+(78﹣90)2+(78﹣110)2]=456,没有众数,降价后书包价格分别为40,50,70,80,100,中位数是70,。

2020年中考数学人教版专题复习讲义设计:统计(无答案)

2020年中考数学人教版专题复习讲义设计:统计(无答案)

2020年中考数学人教版专题复习:统计考点梳理全面调查与抽样调查1.全面调查的适用范围:调查的范围小,调查不具有破坏性,数据要求准确、全面.2.抽样调查的适用范围:当所调查对象涉及面大、范围广,或受条件限制,或具有破坏性等.典例精析典例1 下列调查中,适宜采用全面调查(普查)方式的是A.调查巴南区市民对“巴南区创建国家食品安全示范城市”的了解情况B.调查央视节目《国家宝藏》的收视率C.调查我校某班学生喜欢上数学课的情况D.调查学校所有电子白板的使用寿命【答案】C【解析】A、调查巴南区市民对“巴南区创建国家食品安全示范城市”的了解情况,由前面的分析可知本项调查应当采用抽样调查,故本选项错误;B、调查央视节目《国家宝藏》的收视率,由前面的分析可知本项调查应当采用抽样调查,故本选项错误;C、调查我校某班学生喜欢上数学课的情况,适宜采用全面调查,故本选项正确;D、调查学校所有电子白板的使用寿命,由前面的分析可知本项调查应当采用抽样调查,故本选项错误,故选C.拓展1.下列调查:①了解炮弹的杀伤半径;②审查书稿有哪些科学性错误;③考察人们对环境的保护意识.其中不适宜全面调查而适宜抽样调查的个数是A.0 B.1 C.2 D.3总体、个体、样本及样本容量1.在理解总体、个体和样本时,一定要注意总体、个体、样本中的“考察对象”是一种“数量指标”(如身高、体重、使用寿命等),是指我们所要考察的具体对象的属性,三者之间应对应一致.2.样本容量指的是样本中个体的数目,它只是一个数字,不带单位.典例精析典例2 为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指A.80 B.被抽取的80名初三学生C.被抽取的80名初三学生的体重D.该校初三学生的体重【答案】C【解析】样本是被抽取的80名初三学生的体重,故选C.拓展2.为了了解我县4000名初中生的身高情况,从中抽取了400名学生测量身高,在这个问题中,样本是A.4000 B.4000名C.400名学生的身高情况D.400名学生三种常见的统计图1.条形统计图中每个小长方形的高即为该组对象数据的个数(频数),各小长方形的高之比等于相应的个数(频数)之比.2.扇形统计图中,用圆代表总体,扇形的大小代表各部分数量占总体数量的百分数,但是没有给出具体数值,因此不能通过两个扇形统计图来比较两个统计量的多少.3.在利用折线统计图比较两个统计量的变化趋势时,要保证两个图中横、纵坐标的一致性,即坐标轴上同一单位长度所表示的意义应该一致.典例精析典例3 某机构调查了某小区部分居民当天行走的步数(单位:千步),并将数据整理绘制成如下不完整的频数直方图和扇形统计图.根据统计图,得出下面四个结论:①此次一共调查了200位小区居民;②行走步数为8~12千步的人数超过调查总人数的一半;③行走步数为4~8千步的人数为50人;④扇形图中,表示行走步数为12~16千步的扇形圆心角是72°.其中正确的结论有A.①②③B.①②④C.②③④D.①③④【答案】D【解析】①小文此次一共调查了70÷35%=200位小区居民,正确;②行走步数为8~12千步的人数为70,未超过调查总人数的一半,错误;③行走步数为4~8千步的人数为200×25%=50人,正确;④行走步数为12~16千步的扇形圆心角是360°×20%=72°,正确,故选D.典例4 某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的扇形统计图,已知该学校2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°【答案】C【解析】根据骑车的人数和百分比可得:被调查的学生数为:21÷35%=60(人),故A正确;步行的人数为60×(1-35%-15%-5%)=27(人),故B正确;全校骑车上学的学生数为:2560×35%=896(人),故C错误;乘车部分所对应的圆心角为360°×15%=54°,故D正确.故选C.拓展3.某校为了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示的两幅统计图.由图中所给信息知,扇形统计图中C等级所在的扇形圆心角的度数为A.72°B.68°C.64°D.60°4.要反映某市一天内气温的变化情况宜采用A.条形统计图B.扇形统计图C.频数分布图D.折线统计图5.为了了解家里的用水情况,以便能更好地节约用水,小方把自己家1至6月份的用水量绘制成如图的折线图,那么小方家这6个月的月用水量最大是A.1月B.4月C.5月D.6月直方图分组要遵循三个原则:不空,即该组必须有数据;不重,即一个数据只能在一个组;不漏,即不能漏掉某一个数据.典例精析典例5 某班有64位同学,在一次数学检测中,分数只能取整数,统计其成绩绘制成频数直方图,如图所示,从左到右的小长方形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是A.12 B.24C.16 D.8拓展6.为了了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:30分;B:29~25分;C:24~20分;D:19~10分;E:9~0分),统计图如图所示:根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为__________,b的值为__________,并将统计图补充完整;(2)成绩在25分以上(含25分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生约有多少名?7.一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成A.7组B.8组平均数、中位数与众数1.如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2.平均数能充分利用各数据提供的信息,在实际生活中常用样本的平均数估计总体的平均数;中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用中位数来描述数据的集中趋势;众数考察的是各数据所出现的频数,其大小只与部分数据有关,当一组数据中某些数据多次重复出现时,众数往往更能反映问题.典例精析典例6 某学习小组的6名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、80分、74分,则下列结论正确的是A .中位数是90分B .众数是94分C .平均分是91分D .方差是20【答案】B【解析】A 、这组数据按从小到大排列为:74、80、90、94、94、98,所以这组数据的中位数为92(分),所以A 选项错误;B 、这组数据的众数为94(分),所以B 选项正确;C 、这组数据的平均分:(94+98+90+94+80+74)=88.3(分),所以C 选项错误; D 、方差=[(94﹣88)2+(98﹣88)2+(90﹣88)2+(94﹣88)2+(74﹣88)2+(80﹣88)2]≈73,所以D 选项错误.故选B . 拓展8.小莹和小亮进行飞镖比赛,两人各投了10次,成绩如图所示,则小莹和小亮成绩的中位数分别是A .7和7B .7和8C .7.5和7D .6和79.某校参加校园青春健身操比赛的16名运动员的身高如下表:1616则该校16名运动员身高的平均数和中位数分别是A.173 cm,173 cm B.174 cm,174 cmC.173 cm,174 cm D.174 cm,175 cm数据的波动1.方差反映的是数据在它的平均数附近波动的情况,是用来衡量一组数据波动大小的量.2.一组数据的每个数据都变为原来的k倍,则所得的一组新数据的方差将变为原数据方差的k2倍.典例精析典例7 某校体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟),则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是A.众数是177 B.平均数是170C.中位数是173.5 D.方差是135【答案】D【解析】A、这组数据中177出现次数最多,即众数为177,此选项正确;B、这组数据的平均数是:(140+160+169+170×2+177×3+180×2)÷10=170,此选项正确;C、∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是(170+177)÷2=173.5,此选项正确;D、方差=110[(140-170)2+(160-170)2+(169-170)2+2×(170-170)2+3×(177-170)2+2×(180-170)2]=134.7,此选项错误,故选D.典例8 甲、乙、丙、丁四个小组的同学分别参加了班里组织的中华古诗词知识竞赛,在相同条件下各小组的成绩情况如下表所示,若要从中选择出一个小组参加年级的比赛,那么应选A.甲组B.乙组C.丙组D.丁组【答案】B【解析】由图表可知,乙、丁的平均成绩较好,应从乙、丁中选,由于S2乙<S2丁,故丁的方差大,波动大,则要从中选择出一个小组参加年级的比赛,那么应选乙组;故选B.拓展10.甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:则射击成绩最稳定的选手是__________.(填“甲”“乙”“丙”中的一个)11.如果一组数据x1,x2,…,x n的方差是4,则另一组数据x1+3,x2+3,…,x n+3的方差是__________.同步测试1.在下列调查方式中,较为合适的是A.为了解深圳市中小学生的视力情况,采用普查的方式B.为了解龙岗区中小学生的课外阅读习惯情况,采用普查的方式C.为了解某校七年级(2)班学生期末考试数学成绩情况,采用抽样调查方式D.为了解我市市民对消防安全知识的了解情况,采用抽样调查的方式2.全校共有2000名学生,小明为了解某班55名同学对于24字社会主义核心价值观内容的掌握情况,利用课余时间抽查了班级15名同学,其中14名同学能够完整说出24字价值观的内容,在这一抽样调查中,样本容量为A.2000 B.55C.15 D.143.对某校600名学生的体重(单位:kg)进行统计,得到如图所示的频率分布直方图,学生体重在60kg以上的人数为A.120 B.150 C.180 D.3304.据调查,某班30位同学所穿鞋子的尺码如下表所示:则该班这30位同学所穿鞋子尺码的众数是A.8 B.35C.36 D.35和365.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.全班40名同学的成绩的中位数和众数分别是A.75,70 B.70,70C.80,80 D.75,806.某校七年级共720名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生的成绩达到优秀,估计该校七年级学生在这次数学测试中,达到优秀的学生人数约有A.140人B.144人C.210人D.216人7.图1,图2分别是某厂六台机床10月份第一天和第二天生产零件数的统计图,与第一天相比,第二天六台机床生产零件数的平均数与方差的变化情况是A.平均数变大,方差不变B.平均数变小,方差不变C.平均数不变,方差变小D.平均数不变,方差变大8.体育节中,某学校组织九年级学生举行定点投篮比赛,要求每班选派10名队员参加.下面是一班和二班参赛队员定点投篮比赛成绩的折线统计图(每人投篮10次,每投中1次记1分),请根据图中信息判断:①二班学生比一班学生的成绩稳定;②两班学生成绩的中位数相同;③两班学生成绩的众数相同.上述说法中,正确的序号是A.①②B.①③C.②③D.①②③9.一组数据按从小到大排列为2,4,8,x,10,14.若这组数据的中位数为9,则x是A.6 B.8C.9 D.1010.某科普小组有5名成员,身高分别为(单位:cm)160,165,170,163,167,增加1名身高为165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是A.平均数不变,方差不变B.平均数不变,方差变小C.平均数变小,方差不变D.平均数不变,方差变大11.某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是__________.12.老师在计算学期平均分的时候按照如下标准,作业占10%,测验占20%,期中考试占30%,期末考试占40%,小丽的成绩如表所示,则小丽的平均分是__________分.13.一次质量检测,甲组成绩的方差为S甲2=102.5,乙组成的方差为S乙2=98.03,则成绩较稳定的小组是__________.14.某学校在倡导学生大课间活动中,随机抽取了部分学生对“我最喜爱的课间活动”进行了一次抽样调查,分别从打篮球、踢足球、自由活动、跳绳、其它等5个方面进行问卷调查(每人只能选一项),根据调查结果绘制了如图的不完整统计图,请你根据图中信息,解答下列问题.(1)本次调查共抽取了学生多少人?(2)求本次调查中喜欢踢足球的人数,并补全条形统计图;(3)若全校共有中学生1200人,请你估计我校喜欢跳绳学生有多少人.15.某校九年级有600名学生,在体育中考前进行了一次模拟体测.从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图.请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为__________,图2中的值为__________;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校九年级模拟体测中得12分的学生约有多少人?m。

湖南省长沙市怡雅中学2020年中考复习:统计初步 综合练习试题(word版,无答案)

湖南省长沙市怡雅中学2020年中考复习:统计初步 综合练习试题(word版,无答案)

湖南省长沙市怡雅中学2020 年中考复习九年级数学统计初步综合练习题1、为配合全市“倡导低碳绿色生活,推进城镇节水减排”的宣传活动,某校数学课外活动小组把用水习惯分为“很注意解决用水(A)”、“较注意解决用水(B)”、“不注意解决用水(C)”三类情况,设计了调查问卷在中学生中开展调查,并将调查结果分析整理后,制成如图所示的两个统计图.请根据以上信息解答下列问题:(1)这次调查问卷调查共调查了多少名学生?(2)在扇形统计图中,“B”所对应的扇形的圆心角度数是多少?(3)如果设该校共有学生 3000 人,试估计“不注意解决用水”的学生人数.2、为了推动课堂教学改革,打造高效课堂,配合我市“两型课堂”的课题研究,莲城中学对八年级部分学生就一期来“分组合作学习”方式的支持程度进行调查,统计情况如图.试根据图中提供的信息,回答下列问题:(1)求本次被调查的八年级学生的人数,并补全条形统计图;(2)若该校八年级学生共有 180 人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?3、某市每年都要举办中小学三独比赛(包括独唱、独舞、独奏三个类别),如图是该市 2012年参加三独比赛的不完整的参赛人数统计图.(1)该市参加三独比赛的总人数是人,图中独唱所在扇形的圆心角的度数是度,并把条形统计图补充完整;(2)从这次参赛选手中随机抽取 20 人调查,其中有 9 人获奖,请你估算今年全市约有多少人获奖?4、为保证学生上学安全,学校打算在今年下期采购一批校车,为此,学校安排学生会在全校300 名走读学生中对购买校车的态度进行了一次抽样调查,并根据抽样调查情况绘制了如图统计图.走读学生对购买校车的四种态度如下:A.非常希望,决定以后就坐校车上学 B.希望,以后也可能坐校车上学C.随便,反正不会坐校车上学D.反对,因家离学校近不会坐校车上学(1)由图①知A 所占的百分比为,本次抽样调查共调查了名走读学生,并完成图②;(2)请你估计学校走读学生中至少会有多少名学生乘坐校车上学(即A 态度的学生人数).5、岳阳楼、君山岛去年评为国家 5A 级景区.“十•一”期间,游客满员,据统计绘制了两幅不完整的游客统计图(如图①、图②),请你根据图中提供的信息解答下列问题:(1)把图①补充完整;(2)在图②中画出君山岛“十•一”期间游客人次的折线图;(3)由统计可知,岳阳楼、君山岛两景点“十一”期间共接待游客 149000 人次,占全市接待游客总数的 40%,求全市共接待游客多少人次(用科学记数法表示,保留两位有效数字)6、某班数学科代表小华对本班上期期末考试数学成绩作了统计分析,绘制成如下频数、频率统计表和频数分布直方图,请你根据图表提供的信息,解答下列问题:分组 49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5合计频数 2 a 20 16 4 50 频率0.040.160.400.32b1(1)频数、频率统计表中,a= ;b= ;(2)请将频数分布直方图补充完整;(3))小华在班上任选一名同学,该同学成绩不低于 80 分的概率是多少?7、游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的 2000 名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了名学生;(2)补全两个统计图;(3)根据抽样调查的结果,估算该校 2000 名学生中大约有多少人“一定会下河游泳”?8、网络购物发展十分迅速,某企业有 4000 名职工,从中随机抽取 350 人,按年龄分布和对网上购物所持态度情况进行了调查,并将调查结果绘成了条形图 1 和扇形图 2.(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?(2)如果把对网络购物所持态度中的“经常(购物)”和“偶尔(购物)”统称为“参与购物”,那么这次接受调查的职工中“参与网购”的人数是多少?(3)这次调查中,“25﹣35”岁年龄段的职工“从不(网购)”的有 22 人,它占“25﹣35”岁年龄段接受调查人数的百分之几?(4)请估计该企业“从不(网购)”的人数是多少?9、为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间不少于 1 小时, 为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图中两幅不完整的统计,请你根据图中提供的信息解答下列问题:(1) 在这次调查中共调查了多少名学生?(2) 求户外活动时间为 0.5 小时的人数,并补充频数分布直方图; (3) 求表示户外活动时间为 2 小时的扇形圆心角的度数;(4) 本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数各是多少?10、某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班 50 名学生的处理方式进行统计,得出相关统计表和统计图.请根据表图所提供的信息回答下列问题:(1) 统计表中的 m=,n= ;(2) 补全频数分布直方图;(3) 若该校有 2000 名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?组别 A B C D 处理方式 迅速离开 马上救助 视情况而定 只看热闹 人数 m 30 n 511、目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为.家长表示“不赞同”的人数为;(2)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是;(3)求图②中表示家长“无所谓”的扇形圆心角的度数.12、市教育局对九年级学生的信息技术、物理实验操作、化学实验操作成绩进行抽样调查,成绩评定 A、B、C、D 四个等级.现抽取 1000 名学生成绩进行统计分析(其中 A、B、C、D 分别表示优秀、良好、合格、不合格四个等级),其相在数据统计如下:(1)(1)请将上表空缺补充完整;(2)全市共有 40000 名学生参加测试,试估计该市九年级学生信息技术成绩合格以上(含合格)的人数;(3)在这 40000 名学生中,化学实验操作达到优秀的大约有多少人?13、如图所示,图①表示的是某教育网站一周内连续 7 天日访问总量的情况,图②表示的是学生日访问量占日访问总量的百分比情况,观察图①、②,解答下列问题:(1)若这 7 天的日访问总量一共约为 10 万人次,求星期三的日访问总量;(2)求星期日学生日访问总量;(3)请写出一条从统计图中得到的信息.14、某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图).次数10 8 6 5人数 3 a 2 1(1)表中a= ;(2)请将条形统计图补充完整;(3)从小组成员中任选一人向学校汇报义工活动情况,参加了 10 次活动的成员被选中的概率有多少?15、初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A.读普通高中; B.读职业高中 C.直接进入社会就业; D.其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:(1)该县共调查了名初中毕业生;(2)将两幅统计图中不完整的部分补充完整;(3)若该县 2020 年初三毕业生共有 4500 人,请估计该县今年的初三毕业生中读普通高中的学生人数.16、6 月5 日是世界环境日,今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息,小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项).以下是他收集数据后,绘制的不完整的统计图表:C n 0.1D 18 m合计 a 1请你根据图表中提供的信息解答以下问题:(1)根据图表信息,可得a= ;(2)请你将条形图补充完整;(3)如果小文所在的学校有 1200 名学生,那么你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人?17、某学校开展课外体育活动,决定开设 A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;(2)请把条形统计图补充完整;(3)若该校有学生 1000 人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?18、某市为了更好地加强城市建设,实现美丽梦想,就社会热点问题广泛征求市民意见,方式是发放调查表:要求每位被调查人员写一个最关心的有关城市建设问题的建议,经统计整理绘制出(a),(b)两幅不完整统计图,请根据统计图提供的信息解答下列问题:(1)本次上交调查表的总人数为多少?(2)求关心“道路交通”部分的人数,并补充完整条形统计图.19、“宜居长沙”是我们的共同愿景,空气质量倍受人们的关注.我市某空气质量检测站点检测了该区域每天的空气质量情况,统计了 2020 年 1 月份至 4 月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图,请根据图中信息,解答下列问题:(1)统计图共统计了天空气质量情况.(2)请将条形统计图补充完整,并计算空气质量为“优”所在扇形圆心角度数.(3)从小源所在班级的 40 名同学中,随机选取一名同学去该空气质量监测点参观,则恰好选到小源的概率是多少?。

2020年四川省绵阳市东辰中学中考数学:统计初步专题复习(无答案)

2020年四川省绵阳市东辰中学中考数学:统计初步专题复习(无答案)

2020年四川省绵阳市东辰中学中考数学:统计初步专题复习1、诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x为整数,总分100分),绘制了如下尚不完整的统计图表.组别成绩分组(单位:分)频数A50≤x<60 40B60≤x<70 aC70≤x<80 90D80≤x<90 bE90≤x<100 100合计c根据以上信息解答下列问题:(1)统计表中a=,b=,c=;(2)扇形统计图中,m的值为,“E”所对应的圆心角的度数是(度);(3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?2、为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?3、绵阳某公司销售部统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元).销售部规定:当x<16时为“不称职”,当16≤x<20时为“基本称职”,当20≤x<25时为“称职”,当x≥25时为“优秀”.根据以上信息,解答下列问题:(1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员月销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果取整数)?并简述其理由.4、某学校一课外学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题: (1)共有 名同学参与问卷调查; (2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.5、随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A .和同学亲友聊天;B .学习;C .购物;D .游戏;E .其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到图表(部分信息未给出): 选项频数频率A 10 mB n 0.2C 50.1 D p 0.4 E50.1根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.6、共享单车近日成为市民新宠,越来越多的居民选择共享单车作为出行的交通工具,某中学课外兴趣小组为了了解某小区居民每周使用共享单车时间的情况,随机抽取了该小区部分使用共享单车的居民进行调查(问卷调查表如图所示),并用调查结果绘制了图①、图②两幅每周使用共享单车时间的人数统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的共有人;在扇形统计图中“D”选项所占的百分比为;(2)扇形统计图中,“B”选项所对应扇形圆心角为度;(3)请补全条形统计图;(4)若该小区共有1200名居民,请你估计该小区使用共享单车的时间在“A”选项的有多少人?7、某公司为了调动员工的积极性,决定实行目标管理,即确定个人年利润目标,根据目标完成的情况对员工进行适当的奖惩.为了确定这一目标,公司对上一年员工所创的年利润进行了抽样调查,并制成了如右的统计图.(1)求样本容量,并补全条形统计图;(2)求样本的众数,中位数和平均数;(3)如果想让一半左右的员工都能达到目标,你认为个人年利润定为多少合适?如果想确定一个较高的目标,个人年利润又该怎样定才合适?并说明理由.8、某单位举行“我的中国梦”主题演讲活动,参加的选手需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.右图是7位评委对选手甲“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.(1)求评委给甲演讲答辩分数的众数,以及民主测评为“良好”票数的扇形的圆心角度数;(2)求甲的综合得分是多少?(3)在竞选中,选手乙的民主测评得分为82分,如果他的综合得分不小于甲的综合得分,则乙的演讲答辩得分至少要多少分?9、某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?10、某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?11、胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.12、随着城市化进程的发展,农村留守儿童问题已引起全社会的广泛关注,为了了解某农村初中800名学生监护人的情况,我们从中抽取一部分学生作为样本进行数据处理,得到如下的分布表和条形统计图:(1)此次参加调查共有 人. (2)根据上述数据,补全统计表和条形统计图;(3)若全市共有40000名农村初中学生,试估计该市初中生的监护人不是自己父亲或母亲的共有多少名?13、八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有 名同学参与问卷调查; (2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.14、某校为了预测本校九年级男生毕业体育测试达标情况,随机抽取该年级部分男生进行了一次测试(满分50分,成绩均记为整数分),并按测试成绩m(单位:分)分成四类:A类(45<m≤50),B类(40<m≤45),C类(35<m ≤40),D类(m≤35)绘制出如图所示的两幅不完整的统计图,请根据图中信息解答下列问题:(1)求本次抽取的样本容量和扇形统计图中A类所对的圆心角的度数;(2)若该校九年级男生有500名,D类为测试成绩不达标,请估计该校九年级男生毕业体育测试成绩能达标的有多少名?15、某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<50 12B50≤x<55 mC55≤x<60 80D60≤x<65 40E65≤x<70 16(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?16、我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?17、小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.(1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数;(2)求小明的综合得分是多少?(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,他的演讲答辩得分至少要多少分?18、某校有学生3600人,在“文明我先行”的活动中,开设了“法律、礼仪、环保、感恩、互助”五门校本课程,规定每位学生必须且只能选一门,为了解学生的报名意向,学校随机调查了一些学生,并制成统计表和统计图:课程类别频数频率法律 36 0.09礼仪 55 0.1375环保m a感恩 130 0.325互助 49 0.1225合计n 1.00(1)在这次调查活动中,学生采取的调查方式是(填写“普查”或“抽样调查”)a=,m=,n=.(2)请补全条形统计图,如果要画一个“校本课程报名意向扇形统计图”,那么“环保”类校本课程所对应的扇形圆心角应为度;(3)请估算该校3600名学生中选择“感恩”校本课程的学生约有多少人?。

备战2020年中考 第34课时 统计初步

备战2020年中考 第34课时 统计初步

第三部分统计与概率第十二单元统计与概率第34课时统计初步前言:“一学就会,一考就废?”,正是因为考试后缺少了这个环节从小学到初中,学生们经历了无数次考试。

通过考试可以检测同学们对知识的理解、掌握情况,提高应试能力。

但对待考试,部分同学只关注自己的分数,而对试卷的分析和总结缺乏重视。

结果常常出现一些题在考试中屡次出现,但却一错再错的情况。

这样,学生们无法从考试中获益,考试也就失去了它的重要意义。

做好试卷分析和总结是十分有必要的。

那么,怎样做好试卷分析呢?我认为,应从下面两点做起:一.失分的原因主要有如下四方面:(1)考试心理:心理紧张,马虎大意;(2)知识结构:知识面窄,基础不扎实;(3)自身能力:审题不清,读不懂题意;(4)解题基本功:答题规范性差。

只有查出、找准原因,才能对症下药,从弱项方面加强训练,以提高成绩。

二.“扭转乾坤”的方法做题的过程中对每一道题要试图问如下几个问题?(1)怎样做出来的?——想解题方法;(2)为什么这样做?——思考解题原理;(3)怎样想到这种方法?——想解题的基本思路;(4)题目体现什么样的思想?——揭示本质,挖掘规律;(5)是否可将题目变化?——一题多变,拓宽思路;(6)题目是否有创新解法?——创新、求异思维。

转变,让我们从一轮复习开始。

按照上面两点认真完成后面练习题。

希望每一位同学经过一轮复习后,能够扭转“一考就废”的局面,最后决胜中考。

1.(2018·贵阳)在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校八年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调査2.(2019·遂宁)某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100B.被抽取的100名学生家长C.被抽取的100名学生家长的意见D.全校学生家长的意见3.(2019·嘉兴)2019年5月26日第五届中国国际大数据产业博览会召开.某市在第五届数博会上的产业签约金额的折线统计图如图34-1所示.下列说法正确的是()图34-1A.签约金额逐年增加B.2019年签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%4.(2018·江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图如图34-2所示.由图可知,下列结论正确的是()图34-2A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%5.(2019·凉山)某班40名同学一周参加体育锻炼时间统计如下表所示:那么该班40() A.17,8.5B.17,9C.8,9 D.8,8.56.(2018·云南)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数字科技文化节·玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某校为了解学生对这次大赛的了解程度,在全校1 300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了如图34-3所示的两幅统计图.下列四个选项中,错误的是()图34-3A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12%C.α=72°D.全校“不了解”的人数估计有428人7.(2019·自贡)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是() A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定8.(2018·常德)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x≤5.5这个范围的频率为________.9.(2018·菏泽)据资料表明:中国已成为全球机器人第二大专利来源国和目标国.机器人几大关键技术领域包括:谐波减速器、RV减速器、电焊钳、3D视觉控制、焊缝跟踪、涂装轨迹规划等,其中涂装轨迹规划的来源国结构(仅计算了中、日、德、美)如图34-4.在该扇形统计图中,美国所对应的扇形圆心角是________.图34-410.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如下表:则该应聘者的总成绩是________分.11.(2018·广州)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是________,众数是________;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.12.甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分):(1)(2)如果数与代数、图形与几何、统计与概率、综合与实践的成绩按3∶3∶2∶2的比例计算,那么甲、乙的数学综合素质成绩分别为多少分?13.(2018·呼和浩特)下表是随机抽取的某公司部分员工的月收入资料.(2)甲、乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲、乙两人的推断结论;(3)指出谁的推断比较科学合理,能真实地反映公司全体员工月收入水平,并说出另一个人的推断依据不能真实反映公司全体员工月收入水平的原因.14.(2018·阜新)为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成如图34-5所示两幅尚不完整的统计图.请根据图中信息,完成下列问题:(1)这次抽查了四类特色美食共________种,扇形统计图中a=________,扇形统计图中A部分圆心角的度数为________;(2)补全条形统计图;(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”.图34-515.(2019·长沙)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了了解学生对垃圾分类知识的掌握情况,该校环保社团的成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图(如图34-6).图34-6请根据以上信息,解答下列问题:(1)本次调查随机抽取了________名学生,表中m=________,n=________;(2)补全条形统计图;(3)若全校有2 000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.参考答案第三部分统计与概率第十二单元统计与概率第34课时统计初步课时作业1.D 2.C 3.C 4.C 5.D 6.D7.B8.0.359.57.6°10.77.411.(1)1617(2)14次(3)2 800次12.(1)甲成绩的中位数为90,乙成绩的中位数为93.(2)甲:90.7分,乙:91.8分.13.(1)平均数为6 150元,中位数为3 200元.(2)甲:由样本平均数6 150元,估计公司全体员工月平均收入大约为6 150元;乙:由样本中位数为3 200元,估计公司全体员工约有一半的月收入超过3 200元,约有一半的月收入不足3 200元.(3)乙的推断比较科学合理,理由略.14.(1)204072°(2)略(3)36种15.(1)502012(2)图略(3)该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1 640人.关闭Word文档返回原板块。

2020年人教版数学中考专题课件《统计专题》 考点解析

2020年人教版数学中考专题课件《统计专题》 考点解析

机调查了该校100位学生,其中有60位学生喜欢甲图案.若该校共有学生2 000人,根据所学的统计知识可以
估计该校喜欢甲图案的学生有
人.
答案 1 200
解析 2 000× 60=1 200(人).故估计该校喜欢甲图案的学生有1 200人.
100
12.(2019湖北黄冈,12,3分)一组数据1,7,8,5,4的中位数是a,则a的值是
答案 D 选项A、B抽取的对象不能反映整体的情况;选项C抽取的对象不是学生;选项D较为合理.故选D.
2.(2016重庆A卷,4,4分)下列调查中,最适合采用全面调查(普查)方式的是 ( ) A.对重庆市辖区内长江流域水质情况的调查 B.对乘坐飞机的旅客是否携带违禁物品的调查 C.对一个社区每天丢弃塑料袋数量的调查 D.对重庆电视台“天天630”栏目收视率的调查
年龄(岁)
12
13
14
15
人数(名)
2
4
3
1
则这10名篮球运动员年龄的中位数为 ( ) A.12 B.13 C.13.5 D.14
答案 B 将10个数按从小到大(或从大到小)的顺序排列,处于中间位置的两个数是13和13,因而中位数是 (13+13)÷2=13.故选B.
8.(2017河北,14,2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表如下: 甲组12户家庭用水量统计表
“>”“=”或“<”)
s12 s12
.(填
s02
答案 = 解析 根据方差的计算公式可知每一个数据都减去90,平均数也少90,所以方差的计算结果不变.
14.(2019湖北武汉,12,3分)武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25,20,18,23,27.这组

2020中考数学知识点【统计初步】.docx

2020中考数学知识点【统计初步】.docx

2020中考数学知识点【统计初步】一、重要概念1.总体:考察对象的全体。

2.个体:总体中每一个考察对象。

3.样本:从总体中抽出的一部分个体。

4.样本容量:样本中个体的数目。

5.众数:一组数据中,出现次数最多的数据。

6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)二、计算方法1.样本平均数:⑴;⑵若,,…,,则(a—常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。

通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

2.样本方差:⑴;⑵若,,…,,则(a—接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。

3.样本标准差:三、应用举例(略)初三数学知识点:第四章直线形★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。

☆内容提要☆一、直线、相交线、平行线1.线段、射线、直线三者的区别与联系从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

2.线段的中点及表示3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)4.两点间的距离(三个距离:点-点;点-线;线-线)5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示方法7.角的平分线及其表示8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区别与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成13.公理、定理14.逆命题二、三角形分类:⑴按边分;⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。

2024年中考数学一轮复习课件--统计(76张PPT)

2024年中考数学一轮复习课件--统计(76张PPT)

3.(2023·聊城)4月15日是全民国家安全教育日.某校为了摸清该
校1500名师生的国家安全知识掌握情况,从中随机抽取了150
名师生进行问卷调查.这项调查中的样本是( C )
A.1500名师生的国家安全知识掌握情况
B.150
C.从中抽取的150名师生的国家安全知识掌握情况
D.从中抽取的150名师生
位置的一个数为这组数据的中位数,如果数据的个数是偶数,
则最中间 两个
数据的
平均数 就是这组数据的中位数.
(4)众数:一组数据中出现次数 最多 的数据叫做这组数

据的众数.

(5)平均数、中位数、众数的优缺点
反映一组数据
的平均水平,
平均数 与这组数据中
的每个数据都
有关
所有数据都参与运算,在现实
优点
生活中较为常用

×+×
×4+
×6=159.4元,

因为159.4>148,
所以仅从工资收入的角度考虑,小明应到乙公司应聘.
16.由于疫情对中小企业造成巨大的冲击,某市计划对该市的中
小企业进行财政补贴.相关行业的主管部门为了解该市中小企
业的生产情况,随机调查了100个企业,得到这些企业第一季
度相对于前一年第一季度产值增长率y的频数分布表.
超过40,每件提成4元;若当日揽件数超过40,超过部分每
件多提成2元.
如图是今年四月份甲公司揽件员人均揽件数和乙公司揽件员人
均揽件数的条形统计图:
第15题图
(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司
揽件员人均揽件数超过40(不含40)的概率;
解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有

专题42 统计【考点精讲】(含答案解析)

专题42  统计【考点精讲】(含答案解析)

专题42统计【考点精讲】-【中考高分导航】备战2022年中考数学考点总复习(全国通用)考点42统计考点1:统计初步知识1.常用的统计调查方式:全面调查、抽样调查.2.所要考察的对象的全体称为总体.组成总体的每一个对象称为个体.3.从总体中抽取的一部分各体叫做总体的一个样本,样本中的个体的数目叫做样本容量.4.在抽取样本的过程中,总体中的每个个体都以相等的机会被抽到,像这样的抽样方法叫做简单随机抽样.【例1】(2021·广东惠州·二模)1.以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量(1)样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目;(2)对于具有破坏性的调查,无法进行普查,普查的意义或价值不大时,应选择抽样调查,而对于精确度要求高的调查或事关重大的调查往往采用普查.2.某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是()A.总体是该校4000名学生的体重B.个体是每一个学生C.样本是抽取的400名学生的体重D.样本容量是400考点2:平均数、中位数、众数1.平均数:x1,x2,…,xn的平均数1xn=(x1+x2+…+xn).2.加权平均数:如果n个数据中,x1出现f1次,x2出现f2次,…,xR出现fR次(这里f1+f2+…+fR=n),则1xn=(x1f1+x2f2+…+xRfR).3.中位数:将一组数据按大小顺序排列,处在最中间位置上的数据叫做这组数据的中位数;如果数据的个数为偶数,中位数就是处在中间位置上的两个数据的平均数.4.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.【例2】(2021·湖南张家界市·中考真题)3.如图是张家界市某周每天最高气温的折线统计图,则这7天的最高气温的中位数是______℃.【例3】(2020•无锡)4.已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是()A.24,25B.24,24C.25,24D.25,25【例4】(2020•淮安)5.一组数据9、10、10、11、8的众数是()A.10B.9C.11D.8(2021·广东深圳·模拟预测)6.为了了解学生线上学习情况,老师抽查某组10名学生的单元测试成绩如下:78,86,A.95,99B.94,99C.94,90D.95,108(2021·广东香洲·二模)7.在一次献爱心的捐款活动中,八(2)班50名同学捐款金额如图所示,则在这次捐款活动中,该班同学捐款金额的众数和中位数分别是()A.20,10B.10,20C.10,10D.10,15(2021·广东深圳·一模)8.某校为了解学生的课外阅读情况,随机抽取了一个班的学生,对他们一周的课外阅读时间进行了统计,统计数据如下表,则该班学生一周课外阅读时间的中位数和众数分别是()读书时间6小时及以下7小时8小时9小时10小时及以上学生人数611887A.8,7B.8,8C.8.5,8D.8.5,7考点3:方差1.方差:x1,x2,…,xn的方差s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2].2.方差是衡量一组数据波动大小的量,方差越小,数据的波动越小;方差越大,数据的波动越大.【例5】(2020•营口)9.从甲、乙、丙三人中选拔一人参加职业技能大赛,经过几轮初赛选拔,他们的平均成绩都是87.9分,方差分别是s甲2=3.83,s乙2=2.71,s丙2=1.52.若选取成绩稳定的一人参加比赛,你认为适合参加比赛的选手是_____.【例6】(2021·四川乐山市·中考真题)10.如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)方差是衡量一组数据波动大小的量,方差越小,数据的波动越小;方差越大,数据的波动越大(2020•湘西州)11.从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到庄稼人对玉米的产量和产量的稳定性十分的关心,选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t )的数据,这两组数据的平均数分别是x 甲7.5≈,x 乙7.5≈,方差分别是s 2甲0.010,s ≈2乙0.002≈,你认为应该选择的玉米种子是_________.(2020•绥化)12.甲、乙两位同学在近五次数学测试中,平均成绩均为90分,方差分别为22=0.70=0.73s s 甲乙;,甲、乙两位同学成绩较稳定的是________同学.(2020•郴州)13.某5人学习小组在寒假期间进行线上测试,其成绩(分)分别为:86,88,90,92,94,方差为28.0s =.后来老师发现每人都少加了2分,每人补加2分后,这5人新成绩的方差2s =新__________.考点4:频数、频率、用样本估计总体1.频数:在我们研究的对象中,每个对象出现的次数叫做频数.2.频率:每个对象出现的次数与总次数的比值叫做频率.3.绘制频数分布直方图的步骤:①计算最大值与最小值的差;②决定组距与组数;③列频数分布表;④画频数分布直方图.【例7】(2020•徐州)14.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.15(1)频率反映了各组频数的大小在总数中所占的分量;(2)样本估计总体的公式:总数×相应的频率.(2021·福建中考真题)15.某校共有1000名学生.为了解学生的中长跑成绩分布情况,随机抽取100名学生的中长跑成绩,画出条形统计图,如图.根据所学的统计知识可估计该校中长跑成绩优秀的学生人数是_________.(2020•南京)16.为了了解某地居民的用电量情况,随机抽取了该地200户居民六月份的用电量(单位:kW h )进行调查,整理样本数据得到下面的频数分布表:组别用电量分组频数x≤<501893x≤<100293178x≤<343178263x≤<114263348x≤<15348433x≤<16433518x≤<27518603x≤<18603688根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内.(2)估计该地1万户居民六月份的用电量低于178kW h⋅的大约有多少户.考点5:常见统计图表的综合应用1.常见的统计图有条形统计图、扇形统计图、折线统计图.条线统计图能显示每组中的具体数据;扇形统计图能显示部分在总体中所占百分比;折线统计图能显示数据的变化趋势.2.扇形统计图的制作步骤:①根据有关数据先算出各部分在总体中所占的百分比(即部分数据÷总体数据),再算出各部分圆心角的度数,公式:各部分扇形圆心角的度数=部分占总体的百分比×360;②按比例,取适当半径画一个圆;③按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;④在各扇形内写上相应的名称及百分比;⑤写出统计图的名称、制作日期.【例8】(2021·浙江温州市·中考真题)17.如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有()A.45人B.75人C.120人D.300人常见的统计图有条形统计图、扇形统计图、折线统计图.条线统计图能显示每组中的具体数据;扇形统计图能显示部分在总体中所占百分比;折线统计图能显示数据的变化趋势.(2021·江西中考真题)18.如图是2020年中国新能源汽车购买用户地区分布图,由图可知下列说法错误的是()A.一线城市购买新能源汽车的用户最多B.二线城市购买新能源汽车用户达37%C.三四线城市购买新能源汽车用户达到11万D.四线城市以下购买新能源汽车用户最少(2021·山东聊城市·中考真题)19.为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:废旧电池数/节45678人数/人9111154请根据学生收集到的废旧电池数,判断下列说法正确的是()A.样本为40名学生B.众数是11节C.中位数是6节D.平均数是5.6节(2021·湖北随州市·中考真题)20.如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是()A.测得的最高体温为37.1℃B.前3次测得的体温在下降C.这组数据的众数是36.8D.这组数据的中位数是36.6参考答案:1.A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】A.检测长征运载火箭的零部件质量情况,必须全面调查才能得到准确数据;B.了解全国中小学生课外阅读情况,量比较大,用抽样调查;C.调查某批次汽车的抗撞击能力,具有破坏性,用抽样调查;D.检测某城市的空气质量,不可能全面调查,用抽样调查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.B【分析】根据总体、个体、样本、样本容量的知识解答.总体是指所要考查对象的全体;个体是指每一个考查对象;样本是指从总体中抽取的部分考查对象称为样本;样本容量是指样本所含个体的个数(不含单位).【详解】解:A、总体是该校4000名学生的体重,此选项正确,不符合题意;B、个体是每一个学生的体重,此选项错误,符合题意;C、样本是抽取的400名学生的体重,此选项正确,不符合题意;D、样本容量是400,此选项正确,不符合题意;故选:B.【点睛】本题主要考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体和样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数量,不能带单位.3.26【分析】将7天的最高气温按从小到大排列以后根据中位数的定义求解即可.【详解】解:根据7天的最高气温折线统计图,将这7天的最高气温按从小到大排列为:20,22,24,26,28,28,30,故中位数为26℃.故答案为:26.【点睛】本题主要考查中位数的定义,将一组数据按照从小到大(或从大到小)的顺序排列,如果这组数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.A【分析】根据平均数的计算公式和中位数的定义分别进行解答即可.【详解】解:这组数据的平均数是:(21+23+25+25+26)÷5=24;把这组数据从小到大排列为:21,23,25,25,26,最中间的数是25,则中位数是25;故应选:A.【点睛】此题考查了平均数和中位数,掌握平均数的计算公式和中位数的定义是本题的关键.5.A【分析】根据众数的定义进行判断即可.【详解】在这组数据中出现最多的数是10,∴众数为10,故选:A.【点睛】本题考查了众数的定义,掌握知识点是解题关键.6.B【分析】按照平均数和中位数的计算方法进行计算即可.【详解】平均数为:788660108112116+90+120+54+116=9410+++++将数据按照从小到大进行排列为:54,60,78,86,90,108,112,116,116,120中位数为:90+108=99 2故选:B.【点睛】本题考查了平均数,中位数的计算,熟知以上计算方法是解题的关键.7.C【分析】根据众数和中位数的定义可得答案.【详解】解:捐款金额学生数最多的是10元,故众数为10;共50名学生,中位数在第25名、26名学生处,故中位数为10+102=10;故选:C.【点睛】本题考查了众数及中位数的知识,解答本题的关键是熟练掌握众数及中位数的定义.8.A【分析】根据众数与中位数的定义可以直接得到答案.【详解】解:因为全班抽取了61188740++++=人,所以一共有40个数据,且表中数据已是从小到大排列的,最中间两个数据分别为8,8,所以这一组数据的中位数是888 2+=,这一组数据中出现次数最多的是7,所以众数是7.故选A.【点睛】本题考查的是中位数与众数的概念,掌握这两个概念是解题的关键.9.丙【分析】根据方差表示数据的波动大小的量即可解答.【详解】解:∵平均成绩都是87.9分,s甲2=3.83,s乙2=2.71,s丙2=1.52,∴s丙2<s乙2<s甲2,∴选手丙的成绩更稳定,即适合参加比赛的选手是丙.故答案为:丙.【点睛】本题考查了方差的意义,理解方差是表示数据波动大小的量是解答本题的关键.10.甲【分析】先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.【详解】解:x甲=(7+6+9+6+7)÷5=7(环),x乙=(5+9+6+7+8)÷5=7(环),2s甲=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,2s乙=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,∵1.2<2,∴甲的成绩较为稳定,故答案为:甲.【点睛】本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.11.乙【分析】通过平均数和方差的性质判断稳定性即可.【详解】∵x 甲7.5≈,x 乙7.5≈,∴x 甲=x 乙,∴甲,乙的每公顷产量相同,∵2s 甲0.010≈,2s 乙0.002≈,∴2s 甲>2s 乙,∴乙的产量比甲的产量稳定,故答案为:乙.【点睛】本题考查了方差和平均数,掌握方差和平均数的意义是解题关键.12.甲【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵甲的方差是20.70s =甲,乙的方差是20.73s =乙,0.73>0.70,∴甲比乙的成绩稳定.∴甲、乙两位同学成绩较稳定的是甲同学.故答案是:甲.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.8.0【分析】根据一组数据中的每一个数据都加上同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,方差不变,∴所得到的一组新数据的方差为S 新2=8.0;故答案为:8.0.【点睛】本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.14.A【分析】设袋子中红球有x 个,根据摸出红球的频率稳定在0.25左右列出关于x 的方程,求出x 的值即可得答案.【详解】解:设袋子中红球有x 个,根据题意,得:0.25,20x =解得5,x =答:袋子中红球有5个.故选:A .【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.15.270【分析】利用样本中的优秀率来估计整体中的优秀率,从而得出总体中的中长跑成绩优秀的学生人数.【详解】解:由图知:样本中优秀学生的比例为:2727%100=,∴该校中长跑成绩优秀的学生人数是:100027%270⨯=(人)故答案是:270.【点睛】本题考查了利用样本估计总体的统计思想,解题的关键是:根据图中信息求出样本中优秀率作为总体中的优秀率,即可求出总体中优秀的人数.16.(1)2;(2)7500【分析】(1)将200个数据按大小顺序排列最中间两个数的平均数即为中位数,进而可解决问题;(2)求出用电量低于178kW h ⋅的户数的百分比,根据总户数求出答案..【详解】解:(1)将200个数据按大小顺序排列最中间两个数即第100和101个数,它们的平均数即为中位数,这两个数都落在第2组,故答案为:2;(2)50100100007500200+⨯=(户)因此,估计该地1万户居民六月的用电量低于178kW h ⋅的大约有7500户.【点睛】本题考查频数分布表,利用统计表获取信息的能力,以及利用样本估计总体,利用统计表获取信息时,必须认真观察、分析、研究统计表,才能作出正确的判断和解决问题.17.C【分析】根据大学生的人数与所占的百分比求出总人数为300人,再用初中生所占的百分比乘以总人数即可得到答案.【详解】解:总人数=6020%÷=300(人);30040%⨯=120(人),故选:C .【点睛】本题主要考查了根据扇形统计图求总人数和单项的人数,关键在于公式的灵活运用.18.C【分析】根据扇形统计图分别求出各组人数以及圆心角度数,进而得出答案.【详解】A 、一线城市购买新能源汽车的用户达46%,用户最多,符合题意;B 、二线城市购买新能源汽车用户达37%,说法正确,符合题意;C 、三四线城市购买新能源汽车用户达11%,不能说用户达到11万,不符合题意;D 、四线城市以下购买新能源汽车用户只占6%,最少,说法正确,符合题意;故选:C .【点睛】本题考查了扇形统计图,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关.19.D【分析】根据样本定义可判定A ,利用众数定义可判定B ,利用中位数定义可判定C ,利用加权平均数计算可判定D 即可.【详解】解:A .随机抽取40名学生对收集废旧电池的数量是样本,故选项A 样本为40名学生不正确;B .根据众数定义重复出现次数最多的数据是5节或6节,故选项B 众数是11节不正确,C .根据中位数定义样本容量为40,中位数位于4020,212=两个位置数据的平均数,第20位、第21位两个数据为5节与6节的平均数65 5.52+=节,故选项C 中位数是6节不正确;D .根据样本平均数()1495116117584 5.640x =⨯+⨯+⨯+⨯+⨯=节故选项D 平均数是5.6节正确.故选择:D .【点睛】本题考查样本,众数,中位数,平均数,熟练掌握样本,众数,中位数,平均数是解题关键.20.D【分析】根据折线图判断最高体温以及上升下降情况,根据众数、中位数的性质判断即可.【详解】解:A、由折线统计图可知,7次最高体温为37.1℃,A选项正确,不符合题意;B、由折线统计图可知,前3次体温在下降,B选项正确,不符合题意;C、由7组数据可知,众数为36.8,C选项正确,不符合题意;D、根据中位数定义可知,中位数为36.8,D选项错误,符合题意;故选:D.【点睛】本题主要考查折线统计图、众数以及中位数的定义,正确读懂统计图,正确理解众数、中位数定义是解题关键,注意必须从大到小或者从小到大排列后再求中位数.。

浙江省2021年中考数学复习测试第34课 概率初步

浙江省2021年中考数学复习测试第34课 概率初步

第34课概率初步考点一事件的分类1.必然事件:在一定条件下______会发生的事件叫做必然事件.2.不可能事件:在一定条件下________不会发生的事件叫做不可能事件.3.随机事件:在一定条件下,可能________,也可能________的事件叫做不确定事件或随机事件.考点二概率的概念4.概率:把事件A发生的________大小称为事件A发生的概率,记为P(A).5.各类事件的概率:必然事件发生的概率为________,不可能事件发生的概率为________,随机事件发生的概率介于________与________之间.考点三概率的计算6.如果事件发生的各种结果的可能性相同且互相排斥,结果总数为n,事件A 包含其中的结果数为m,那么事件A发生的概率P(A)=________.7.列表、画树状图是人们用来确定事件发生的所有不同可能结果的常用方法.(1)列表法:当一次试验涉及两个因素,且可能出现的结果数目较多时,可采用列表法列出所有可能的结果;(2)画树状图法:当一次试验涉及两个或两个以上因素时,可采用画树状图法表示出所有可能的结果.考点四用频率估计概率8. 一般地,在大量重复试验中,如果事件A发生的频率mn逐渐稳定在某个常数p附近,那么把这个常数p作为这一事件发生的概率的近似值,事件A的概率记作P(A)=________.考点五面积型概率的求法9. 当随机事件的概率大小与几何图形的面积有关时,往往利用面积法求概率,计算公式:P(A)=表示事件A的图形的面积总面积.考点六 概率的应用10.用概率设计游戏方案:在设计游戏规则时要注意设计的方案要使双方获胜的概率相等,同时,设计的方案要有科学性、实用性和可操作性等.1.(2020沈阳)下列事件中,是必然事件的是( A )A .从一个只有白球的盒子里摸出一个球是白球B .任意买一张电影票,座位号是3的倍数C .掷一枚质地均匀的硬币,正面朝上D .汽车驶过一个红绿灯路口时,前方正好是绿灯2.(2020温州)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( C ) A.47B.37C.27D.173.(2020徐州)一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是( A )A .5B .10C .12D .154.(2019乐山)小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x +1<2的概率是( C )A.15B.14C.13D.125.(2020辽阳)如图34-1是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是__59__.(图34-1)◆达标一事件的分类例1(2020攀枝花)下列事件中,为必然事件的是(B)A.明天要下雨B.|a|≥0C.-2>-1D.打开电视机,它正在播广告变式1(2020通辽)下列事件中是不可能事件的是(C)A.守株待兔B.瓮中捉鳖C.水中捞月D.百步穿杨◆达标二用频率估计概率例2(2018玉林)某小组做“用频率估计概率”的试验时,绘制了如图34-2的折线统计图,则符合这一结果的试验可能是(D)(图34-2)A.抛一枚质地均匀的硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大、小王的扑克牌洗匀后,从中任抽一张扑克牌的花色是红桃D.从一个装有2个红球、1个黑球的袋子中任取一球,取到的是黑球变式2(2019泰州)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244A.20 B.300 C.500 D.800◆达标三 求简单事件的概率例3 (2020新疆)四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的一面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为( C ) A.14 B.13 C.12 D.34 【解析】 分别用A ,B ,C ,D 表示正方形、正五边形、正六边形和圆,画树状图如图D34-1:(图D34-1)所以抽到卡片上印有的图案都是中心对称图形的概率为:612=12.故选C.例4 (2020无锡)现有4张正面分别写有数字1,2,3,4的卡片,将4张卡片的背面朝上,洗匀.(1)若从中任意抽取1张,抽到的卡片上的数字恰好为3的概率是__14__;(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用画树状图或列表的方法写出分析过程)解:画树状图如图D34-2:(图D34-2)所以抽得的2张卡片上的数字之和为3的倍数的概率为412=13.变式3 (2018威海)在一个不透明的盒子中放入4张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取2张卡片,抽取的2张卡片上数字之积为负数的概率是( B ) A.14 B.13 C.12 D.34【解析】 画树状图如图D34-3:(图D34-3)所以抽取的两张卡片上数字之积为负数的概率为412=13.变式4 (2020宿迁)将4张分别印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为__14__;(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的2张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表的方法求解).解:画树状图如图D34-4:(图D34-4)∴至少有1张印有“兰”字的概率为716. ◆达标四 概率的综合应用例5 在-2,0,1这三个数中任取两数作为m ,n ,则二次函数y =(x -m )2+n 图象的顶点在坐标轴上的概率为( C )A.25B.13C.23D.12 【解析】 画树状图如图D34-5:(图D34-5)所以顶点在坐标轴上的概率为46=23.故选C.例6疫情过后,为了促进消费,某商场设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满500元,就可以从箱子里先后摸出两个小球(第一次摸出后不放回),商场根据两个小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费500元.(1)该顾客至少可得到__10__元购物券,至多可得到__50__元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.解:画树状图如图D34-6:(图D34-6)从上图可以看出,共有12种等可能结果,其中大于或等于30元共有8种可能结果,所以该顾客所获得购物券的金额不低于30元的概率P=812=23.变式5某人的钱包内有10 元、20 元和50 元的纸币各1 张,从中随机取出2张纸币.求:(1)取出纸币的总额是30 元的概率;(2)取出纸币的总额可购买一件55元的商品的概率.解:(1)根据题意列表如下:共有6种等可能的结果,其中总额是30元有2种,所以取出纸币的总额是30元的概率为13;(2)共有6种等可能的结果,其中总额超过55元的有4种,所以取出纸币的总额可购买一件55元的商品的概率为23.1.“任意掷一枚质地均匀的骰子,掷出的点数是偶数”这个事件是( C )A .必然事件B .不可能事件C .随机事件D .确定事件 2.(2020绍兴)如图34-3,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E 出口落出的概率是( C )(图34-3)A.12B.13C.14D.163.(2018鄂州)一袋中装有形状、大小都相同的五个小球,每个小球上各标有一个数字,分别是2,3,4,5,6.现从袋中任意摸出一个小球,则摸出的小球上的数恰好是方程x 2-5x -6=0的解的概率是( A )A.15B.25C.35D.454.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回地随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球的个数为__20__.5.(2020苏州)一个小球在如图34-4所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在灰色区域的概率是__38__.(图34-4)6.(2020河南)如图34-5所示的转盘被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,重新转动)的颜色,则两次颜色相同的概率是__14__.(图34-5)7.(2020常州)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放入一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是__13__;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.解:用列表法表示所有可能出现的结果情况如下:共有6种等可能的结果,其中和为奇数的有4种,所以签号的和为奇数的概率P =46=23.1.下列事件中,属于不可能事件的是( C )A .某个数的绝对值大于0B .某个数的相反数等于它本身C .任意一个五边形的外角和等于540°D .长分别为3,4,6的三条线段能围成一个三角形2.一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字-1,0,2和3.从中随机地摸取一个小球,则这个小球所标数字是正数的概率为( C )A.14B.13C.12D.343.如图Z34-1是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( A )(图Z34-1)A.13B.14C.16D.184.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( C ) A.110 B.910 C.15 D.455.在平行四边形ABCD 中,AC ,BD 是两条对角线,现从以下四个关系①AB =BC ;②AC =BD ;③AC ⊥BD ;④AB ⊥BC 中随机取出一个作为条件,即可推出平行四边形ABCD 是菱形的概率为( B )A.14B.12C.34 D .16.如图Z34-2是一张矩形纸板,顺次连结各边中点得到菱形,再顺次连结菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是( B )(图Z34-2)A.13B.14C.16D.187.从-5,0,4,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是__25__.8.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有__7__个.9.一个不透明的盒子里装有除颜色外其余均相同的2个黑球和n 个白球,搅匀后从盒子里随机摸出一个球,摸到白球的概率为13.(1)求n 的值;(2)所有球放入盒中,搅匀后随机从中摸出1个球,放回搅匀,再随机摸出第2个球,求两次摸球摸到一个白球和一个黑球的概率.请用画树状图或列表的方法进行说明.解:(1)由题意,得n 2+n=13,解得n=1,经检验n=1是原方程的根,∴n的值为1;(2)用列表法表示所有可能出现的结果情况如下:第1球第2球黑1黑2白黑1(黑1,黑1)(黑2,黑1)(白,黑1)黑2(黑1,黑2)(黑2,黑2)(白,黑2)白(黑1,白)(黑2,白)(白,白)∴P(一白一黑)=4 9.10.有不透明的甲,乙两个口袋:甲袋中装有3张完全相同的卡片,标有数字分别是1,2,-3;乙袋中装有4张完全相同的卡片,标有数字分别是1,-2,-3,4.现在随机从甲口袋中抽取一张将数字记为x,从乙口袋中抽取一张将数字记为y.(1)请你用树状图或列表法求出从两个口袋中所抽取的卡片的数组成对应点(x,y)落在第四象限的概率;(2)求点(x,y)落在函数y=x的图象上的概率.解:(1)画树状图如图ZD34-1:(图ZD34-1)∴点(x,y)落在第四象限的概率为412=13;(2)点(x,y)落在函数y=x图象上的概率为212=16.11.如图Z34-3,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在其他格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是等腰三角形顶点的概率为(C)A.27B.13C.47D.23(图Z34-3) (图ZD34-2) 【解析】 如图ZD34-2,由图知第三枚棋子可摆放的位置共有14种,其中这三枚棋子所在格点恰好是等腰三角形顶点的有8种,∴这三枚棋子所在格点恰好是等腰三角形顶点的概率为814=47.故选C.12.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( A )A.23B.12C.13D.16【解析】 将篮球和足球分别记为a 和b ,三个篮子分别记为1,2,3.画树状图如图ZD34-3:(图ZD34-3)因此P (恰有一个篮子为空)=69=23.13.从1,2,3,4四个数中随机选取两个不同的数,分别记为a ,c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为( C )A.14B.13C.12D.23【解析】 画树状图如图ZD34-4:(图ZD34-4)由树状图可知:一共有12种等可能的结果,其中使ac≤4的有6种结果,∴关于x的一元二次方程ax2+4x+c=0有实数解的概率为12,故选C.14. 抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),从中随机摸出两只袜子,颜色恰好相同的概率为__13__.15.小王和小林举行羽毛球对抗赛,约定三局两胜,胜者可得奖金1200元.结果第一局小王获胜,而后面的比赛因故中断.事后,为了奖金分配两人发生分歧,小王说:“我已经胜了一局,1200元全归我”.小林说:“只比一局不能分出胜负,每人各600元”.裁判说:“小王800元,小林400元”.假设两人球技相当,从胜的可能性大小来考虑奖金分配,你认为谁的话合理?如果都不合理,两人的奖金应各得多少?为什么?解:∵P(小王胜)=34,P(小林胜)=14.∴小王得1200×34=900元,小林得1200×14=300元.16.甲口袋中装有2个相同小球,它们分别写有数字1,2;乙口袋中装有3个相同小球,它们分别写有数字3,4,5;丙口袋中装有2个相同小球,它们分别写有数字6,7.从三个口袋各随机取出1个小球.用画树状图或列表法求:(1)取出的3个小球上恰好有一个偶数的概率;(2)取出的3个小球上全是奇数的概率.解:(1)画树状图如图ZD34-5:(图ZD34-5)取出的3个小球上恰好有一个偶数的概率P=5 12;(2)取出的3个小球上全是奇数的概率P=212=16.17.如图Z34-4,正方体的一个顶点记为A ,那么抛掷这个正方体后,A 点着地的概率是__12__.(图Z34-4)18.如图Z34-5,飞机客舱第12排的6个座位都还没有售出,座号分别是12A ,12B ,12C ,12D ,12E ,12F ,某人随机购买第12排座位字母相邻的2张机票,则他购得的票中有一个座位靠窗的概率是( B )(图Z34-5)A.12B.25C.13D.1419.甲、乙两人同一天从A 市坐飞机去B 市,又同一天坐飞机回A 市,每天从A 到B 有2个航班,从B 到A 有3个航班,问甲、乙同机去同机回的概率是多少?答:每人一趟来回有6种选择,故P (同机去同机回)=636=16.。

2020年九年级中考备考复习课件:统计专题(共28张PPT)

2020年九年级中考备考复习课件:统计专题(共28张PPT)

(2)请将条形统计图补全; 500╳20%=1Fra bibliotek0100
(3)接受问卷调查的学生在活动中投出的信件总数
至少有 425封; 150╳1+100╳2+25╳3=425(封)
(4)全地区中学生共有110 000名,由此次调查估算,
在此项活动中,全地区给老师投过信件的学生约
有多少名?
解:110000 ╳ (1-45%)=60500(名)
项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两封;选项D:三封及以
上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条
形统计图和扇形统计图:
m=500╳45%=225
(1)此次抽样调查了 500名学生,条形统计图中m
= 225,n= 25 ;
n=500╳5%=25
10
生课外阅读的本数最少的有5本,最多的有8本,
并根据调查结果绘制了不完整的图表,如下所示: (1)统计表中的a=____1_0___,b=___0_._2_8__,c=___5_0____; (2)请将频数分布直方图补充完整;
a=50╳0.2=10 b=1-0.2-0.36-0.16=0.28
(3)求所有被调查学生课外阅读的平均本数;
方差
各个数据与平均数之差的平方的平均数叫方差
s2
1 n
(
x1
x)2
(x2 x)2
(
x
n
x)2
标准差
方差的算术平方根叫标准差.
例3 (2018·黔南州中考)某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年
科技创新大赛,表格反映的是各组平时成绩的平均数 x(单位:分)及方差s2,如果要选出一 个成绩较好且状态稳定的组去参赛,那么应选的组是__丙__组_.

2020年中考数学必考34个考点 专题28 数据统计与分析(解析版)

2020年中考数学必考34个考点 专题28 数据统计与分析(解析版)

专题28 数据统计与分析专题知识回顾一、数据的收集、整理与描述1.全面调查:考察全体对象的调查方式叫做全面调查。

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3.总体:所有考察对象的全体叫做总体。

4.个体:总体中每一个考察对象叫做个体。

5.样本:从总体中所抽取的一部分个体叫做总体的一个样本。

6.样本容量:样本中个体的数目称为样本容量。

7.样本平均数:样本中所有个体的平均数叫做样本平均数。

8.总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。

9.数据描述的方法:条形统计图、扇形统计图、折线统计图、直方图。

各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

10.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

11.频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。

12.圆心角的度数=频数与总数的比×360°或百分比×360°13.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

14.画直方图的步骤:(1)计算最大值与最小值的差;(2)决定组距和组数;(3)决定分点(4)列频数分布表;(5)画频数分布直方图。

二、数据的分析1.平均数的概念(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x nx 叫做这n 个数的平均数,x 读作“x 拔”。

(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x kk 2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。

2024贵州中考数学一轮知识点复习 第34讲 统 计(课件)

2024贵州中考数学一轮知识点复习 第34讲  统 计(课件)
3. (2021贵阳6题3分)今年是三年禁毒“大扫除”攻坚克难之年.为了 让学生认识毒品的危害,某校举办了禁毒知识比赛,小红所在班 级学生的平均成绩是80分,小星所在班级学生的平均成绩是85分, 在不知道小红和小星成绩的情况下,下列说法比较合理的是( D ) A. 小红的分数比小星的分数低 B. 小红的分数比小星的分数高 C. 小红的分数与小星的分数相同 D. 小红的分数可能比小星的分数高
成如下折线统计图,则该同学7次测试成绩的众数和中位数分别是
(A ) A. 50和48
B. 50和47
C. 48和48
D. 48和43
第15题图
16. (2022黔南州13题3分)若一组数据2,3,x,1,5,7的众数为7,则 这组数据的中位数为___4_____. 17. (2023安顺16题4分)已知一组数据x1,x2,x3,…,xn的方差为2, 则另一组数据3x1,3x2,3x3,…,3xn的方差为___1_8____.
1 贵州近年真题精选 2 考点精讲
贵州近年真题精选
命题点 1 调查方式的选取(贵阳2考)
1. (2022贵阳4题3分)在“生命安全” 主题教育活动中,为了解甲、乙、 丙、丁四所学校学生对生命安全知识掌握的情况,小丽制定了如下 调查方案,你认为最合理的是( D ) A. 抽取乙校初二年级学生进行调查 B. 在丙校随机抽取600名学生进行调查 C. 随机抽取150名老师进行调查 D. 在四个学校各随机抽取150名学生进行调查
贵州其他地市真题 2. (2023黔南州9题4分)下列调查中,适宜采用全面调查(普查)方式的 是( C ) A. 了解我国民众对乐天集团“萨德事件”的看法 B. 了解湖南卫视《人民的名义》反腐剧的收视率 C. 调查我校某班学生喜欢上数学课的情况 D. 调查某类烟花爆竹燃放的安全情况

九年级中考一轮复习导学案:34课统计

九年级中考一轮复习导学案:34课统计
平均数(g)
方差
甲分装机
200
16.23
乙分装机
200
5.84
则这两台分装机中,分装的茶叶质量更稳定的是_________(填“甲”或“乙”).
6.(2014年四川南充)为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是( )
注:考察对象是指表示事物某一特征的数据。
2.抽样调查:从总体中进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做。
(1)抽样调查的优点:调查范围小,节省时间、人力、物力和财力
(2)抽样调查的局限性是:不如普查得到的结果准确,为获得较为准确的调查结果,抽样时要注意样本的和。
(二)数据的表示
1.扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。
(1)在扇形统计图中,每部分占总体的百分比等于,
所以各个扇形所占的百分比之和为
(2)制作扇形统计图的步骤:①计算各部分占总体的百分比;
②计算各个扇形的圆心角度数:圆心角度数=
③在圆中画出,并标上
为直观反映几个统计量之间的比例关系,绘制条形统计图时应注意:纵轴上的数值应从0开始。
(三)描述一组数据的集中趋势的量有:平均数、众数和中位数
(1)平均数:①算术平均数:对于n个数x1,x2,…,xn,我们把叫做这n个数的算术平均数.简称平均数,记作。
②加权平均数:一组数据x1,x2,…,xn,每个数据的重要程度未必相同,若分别赋予它们的权数为f1,f2,…,fn,则这组数据的平均数为,这个平均数称为加权平均数。

2024年中考数学复习讲义 第33讲 统计(含答案)

2024年中考数学复习讲义 第33讲 统计(含答案)

第33讲 统计目 录考点一 数据的收集、整理与描述题型01 调查收集数据的过程与方法题型02 判断全面调查与抽样调查题型03 总体、个体、样本、样本容量题型04 抽样调查的可靠性题型05 用样本估计总体题型06 统计表类型一 条形统计图类型二 扇形统计图类型三 折线统计图类型四 频数分布直方图类型五 频数分布折线图题型07 频数与频率题型08 借助调查结果做决策考点二 数据分析题型01 与算术平均数有关的计算题型02 与加权平均数有关的计算题型03 与中位数有关的计算题型04 与众数有关的计算题型05 与方差有关的计算题型06 与极差有关的计算题型07 与标准差有关的计算题型08 根据已知数据,判断统计量是否正确题型09 利用合适的统计量做决策题型10 根据方差判断稳定性考点一 数据的收集、整理与描述1. 全面调查与抽样调查概念优缺点全面调查(普查)为特定的目的对全部考察对象进行的调查,叫做全面调查.优点:收集到的数据全面、准确缺点:一般花费多、工作量大,耗时长抽样调查抽取一部分对象进行调查,根据调查样本数据推断全体对象的情况叫抽样调查.优点:调查范围小,花费少、工作量较小,省时.缺点:抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.【使用抽象调查时的注意事项】抽样时注意样本的代表性和广泛性.【小技巧】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.所以要根据调查目的、调查对象等因素,合理选择调查方法,不能凭主观臆想随意选择.2. 总体、个体、样本及样本容量1. 条形统计图中每个小长方形的高即为该组对象数据的个数(频数),各小长方形的高之比等于相应的个数(频数)之比.2. 扇形统计图中,用圆代表总体,扇形的大小代表各部分数量占总体数量的百分数,但是没有给出具体数值,因此不能通过两个扇形统计图来比较两个统计量的多少.3. 在利用折线统计图比较两个统计量的变化趋势时,要保证两个图中横、纵坐标的一致性,即坐标轴上同题型01 调查收集数据的过程与方法【例1】(2022·福建福州·福建省福州延安中学校考模拟预测)为了解某市4万名学生平均每天读书的时间,请你运用数学的统计知识将统计的主要步骤进行排序:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示.合理的排序是()A.③②④①B.③④②①C.③④①②D.②③④①【答案】B【分析】直接根据调查收集数据的过程与方法分析排序即可.【详解】解:统计的主要步骤依次为:从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;利用统计图表将收集的数据整理和表示;分析数据;得出结论,提出建议,故选:B.【点拨】本题主要考查调查收集数据的过程与方法,熟练掌握调查的过程是解答此题的关键.【变式1-1】(2023·四川南充·统考一模)垃圾分类利国利民,某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率②整理采访记录并绘制空矿泉水瓶投放频数分布表③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比正确统计步骤的顺序应该是()A.②→③→①B.②→①→③C.③→①→②D.③→②→①【答案】A三、分析数据,解答问题:(2)表中m=______,n=_______(3)该校共有学生1600人,请估计该校学生中,中度视力不良和重度视力不良的一共有多少人题型02 判断全面调查与抽样调查【例2】(2023·浙江嘉兴·统考一模)下列调查中,适宜采用全面调查方式的是()A.检测“神舟十四号”载人飞船零件的质量B.检测一批LED灯的使用寿命C.检测黄冈、孝感、咸宁三市的空气质量D.检测一批家用汽车的抗撞击能力【答案】A【分析】根据全面调查与抽样调查的特点,逐一判断即可解答.【详解】解:A.检测“神舟十四号”载人飞船零件的质量,适宜采用全面调查的方式,故A符合题意;B.检测一批LED灯的使用寿命,适宜采用抽样调查的方式,故B不符合题意;C.检测黄冈、孝感、咸宁三市的空气质量,适宜采用抽样调查的方式,故C不符合题意;D.检测一批家用汽车的抗撞击能力,适宜采用抽样调查的方式,故D不符合题意.故选:A.【点拨】本题主要考查了全面调查和抽样调查,熟练掌握全面调查与抽样调查的特点是解题的关键.【变式2-1】(2022·贵州贵阳·统考模拟预测)下列调查中,适宜采用抽样调查的是()A.调查某班学生的身高情况B.调查亚运会100 m游泳决赛运动员兴奋剂的使用情况C.调查某批汽车的抗撞击能力D.调查一架“歼10”隐形战斗机各零部件的质量【答案】C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.调查某班学生的身高情况,适合全面调查,故本选项不符合题意;B.调查亚运会100 m游泳决赛运动员兴奋剂的使用情况,适合全面调查,故本选项不符合题意;C.调查某批汽车的抗撞击能力,适合抽样调查,故本选项符合题意;D.调查一架“歼10”隐形战斗机各零部件的质量,适合全面调查,故本选项不符合题意.故选:C.【点拨】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【变式2-2】(2022·重庆渝中·重庆巴蜀中学校考二模)下列说法中正确的是()A.对“神舟十三号载人飞船”零部件的检查,采用抽样调查的方式B.为调查某品牌方便面的色素含量是否符合国家标准,采用普查的方式C.为了解全市中学生的睡眠情况,应该采用普查的方式D.了解小米手机的使用寿命,采用抽样调查的方式【答案】D【分析】根据抽样调查和全面调查的性质,对各个选项逐个分析,即可得到答案.【详解】对“神舟十三号载人飞船”零部件的检查,采用全面调查的方式,故选项A不正确;为调查某品牌方便面的色素含量是否符合国家标准,采用抽样调查的方式,故选项B不正确;为了解全市中学生的睡眠情况,应该采用抽样调查的方式,故选项C不正确;了解小米手机的使用寿命,采用抽样调查的方式,故选项D正确;故选:D.【点拨】本题考查了调查统计的知识;解题的关键是熟练掌握抽样调查和全面调查的性质,从而完成求解.题型03 总体、个体、样本、样本容量【例3】(2022·贵州贵阳·统考模拟预测)某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是()A.总体是该校4000名学生的体重B.个体是每一个学生C.样本是抽取的400名学生的体重D.样本容量是400【答案】B【分析】根据总体、个体、样本、样本容量的知识解答.总体是指所要考查对象的全体;个体是指每一个考查对象;样本是指从总体中抽取的部分考查对象称为样本;样本容量是指样本所含个体的个数(不含单位).【详解】解:A.总体是该校4000名学生的体重,此选项正确,不符合题意;B.个体是每一个学生的体重,此选项错误,符合题意;C.样本是抽取的400名学生的体重,此选项正确,不符合题意;D.样本容量是400,此选项正确,不符合题意;故选:B.【点拨】本题主要考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体和样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数量,不能带单位.【变式3-1】(2023·江苏无锡·统考二模)为了调查我市某校学生的视力情况,在全校的2000名学生中随机抽取了300名学生,下列说法正确的是()A.此次调查属于全面调查B.样本容量是300C.2000名学生是总体D.被抽取的每一名学生称为个体【答案】B【分析】根据全面调查与抽样调查,总体、个体、样本、样本容量的意义逐一判断即可解答.【详解】解:A.此次调查属于抽样调查,故此选项不合题意;B.样本容量是300,故此选项符合题意;C.2000名学生的视力情况是总体,故此选项不合题意;D.被抽取的每一名学生的视力情况称为个体,故此选项不合题意.故选:B.【点拨】本题考查了全面调查与抽样调查,总体、个体、样本、样本容量,掌握这些数学概念是解题的关键.【变式3-2】(2023·福建龙岩·统考一模)某市有3万名学生参加中考,为了考察他们的数学考试成绩,抽样调查了2000名考生的数学成绩,在这个问题中,下列说法正确的是( )A.3万名考生是总体B.每名考生的数学成绩是个体C.2000名考生是总体的一个样本D.2000名是样本容量【答案】B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A.3万名学生的数学成绩是总体,故A不符合题意;B.其中的每名考生的数学成绩是个体,故B符合题意;C.2000名考生的数学成绩是总体的一个样本,故C不符合题意;D.2000是样本容量,故D不符合题意;故选:B.【点拨】本题考查了个体,总体,样本,样本容量等知识,解题的关键在于对知识的熟练掌握.题型04 抽样调查的可靠性【例4】(2022·河南南阳·统考一模)为了解游客在开封、洛阳和安阳这三个城市旅游的满意度,数学小组的同学商议了几个收集数据的方案.方案一:在多家旅游公司调查1000名导游;方案二:在洛阳调查1000名游客;方案三:在开封调查1000名游客;方案四:在三个城市各调查1000名游客.其中最合理的是().A.方案一B.方案二C.方案三D.方案四【答案】D【分析】采取抽样调查时,应能够保证被抽中的调查样本在总体中的合理、均匀分布,调查出现倾向性偏差的可能性是极小的,样本对总体的代表性很强.【详解】解:方案一、方案二、方案三选项选择的调查对象没有代表性.方案四在三个城市各调查1000名游客,具有代表性.故选:D.【点拨】本题考查了抽样调查的可靠性.抽样调查是实际中经常用采用的调查方式,如果抽取的样本得当,就能很好地反映总体情况.否则,抽样调查的结果会偏离总体的情况.【变式4-1】(2020·浙江杭州·模拟预测)抽样调查放学时段,学校附近某路口车流量情况的样本中,下列最合适的是( )A.抽取一月份第一周为样本B.抽取任意一天为样本C.选取每周日为样本D.每个季节各选两周作为样本【答案】D【分析】根据样本是总体中所抽取的一部分个体,样本要具有代表性,可得答案.【详解】A:样本容量太小,不具代表性,故A错误;B:样本容量太小,不具代表性,故B错误;C:样本不具代表性,故C错误;D:春夏秋冬各选两周作为样本,样本具代表性,故D正确;故选D【点拨】本题考查了样本,样本是总体中所抽取的一部分个体,样本要具有代表性.【变式4-2】(2022·河南新乡·统考二模)小明、小红、小亮三名同学想要了解本市老年人的健康状况,他们各自进行了如下调查.题型05 用样本估计总体A.24B.26C.52D.54【答案】C【分析】根据喜欢乒乓球的人数和扇形图的圆心角可以求出总人数,再求出乒乓球和足球的百分比的和,即可求出m与n的和.=50(人),【详解】解:调查的学生总人数为:10÷72360×100%=48%,乒乓球和足球的百分比的和为10+1450∴m%+n%=100%―48%=52%,∴m+n=52.故选:C.A.64B.380【答案】C【分析】用2000乘以样本中喜欢【详解】解:2000×32%=∴估计喜欢木工的人数为640【详解】解:1200×(300÷400)=900(人).故答案是:900人.【点拨】本题考查了用样本估计总体,关键是得到符合条件的人数所占的百分率.题型06 统计表类型一条形统计图【例6】(2021·湖南长沙·长沙市开福区青竹湖湘一外国语学校校考二模)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四【答案】A【分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选:A.【点拨】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.【变式6-1】(2022·云南·统考一模)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,2012―2019年年末全国农村贫困人口的情况如图所示,根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村人口的任务【答案】A【分析】用2018年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断A;用2012年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断B;根据2012~2019年年末全国农村贫困发生率统计图,通过计算即可判断C;根据2012~2019年年末全国农村贫困发生率统计图,即可判断D.【详解】A.1660-551=1109,即2019年末,农村贫困人口比上年末减少1109万人,故本选项推断不合理,符合题意;B.2012年末至2019年末,农村贫困人口累计减少:9899-551=9348,所以超过9000万人,故本选项推断合理,不符合题意;C.9899-8249=1650,8249-7017=1232,7017-5575=1442,5575-4335=1240,4335-3046=1289,3046-1660=1386,1660-551=1109,所以连续7年每年农村贫困人口减少1000万人以上,故本选项推理合理,不符合题意;D.根据2012~2019年年末全国农村贫困发生率统计图,知:2019年末,还有551万农村人口的脱贫任务,故本选项推理合理,不符合题意;故选:A.【点拨】本题考查了条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.【变式6-2】(2021·广东中山·校联考一模)民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:键.【变式6-3】(2023·内蒙古呼伦贝尔·统考一模)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?【答案】(1)作图见解析;(2)月销售额在4万元的人数最多;中间的月销售额为5万元;平均数为7万元;(3)月销售额定为7万元合适,【分析】(1)根据所给数据确定销售额为4万元的人数为4人;销售额为8万元的人数为2人,然后补全条形统计图即可;(2)根据众数、中位数及平均数的计算方法求解即可;(3)根据题意,将月销售额定为7万元合适.【详解】(1)解:根据数据可得:销售额为4万元的人数为4人;销售额为8万元的人数为2人;补全统计图如图所示:(2)由条形统计图可得:月销售额在4万元的人数最多;将数据按照从小到大排序后,中间的月销售额为第8名销售员的销售额为=7万元;平均数为:3×1+4×4+5×3+7×1+8×2+10×3+18×115(3)月销售额定为7万元合适,给予奖励,可以激发销售员的积极性,振兴乡村经济.【点拨】题目主要考查条形统计图及相关统计数据的计算方法,包括众数、中位数、平均数,以及利用平类型二扇形统计图【例7】(2023·河南驻马店·驻马店市第二初级中学校考二模)某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有()A.75人B.90人C.108人D.150人【答案】B【分析】根据信息技术的人数和所占的百分比可以计算出本次参加兴趣小组的总人数,然后根据劳动实践所占的百分比,即可计算出劳动实践小组的人数.【详解】解:本次参加课外兴趣小组的人数为:60÷20%=300,劳动实践小组有:300×30%=90(人),【点拨】本题考查扇形统计图,解答本题的关键是明确题意,求出本次参加兴趣小组的总人数.【变式7-1】(2023·河南濮阳·统考一模)如图,文博学校对学生上学方式进行抽样调查的结果,绘制了一个不完整的扇形统计图,已知文博学校共有4000名学生,被调查的学生中乘车的有18人,则下列四种说法中,正确的是()A.扇形图中,乘车部分所对应的圆心角为45°B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有700人D.被调查的学生有120人【答案】D【分析】根据被抽查的学生中乘车的人数及所占比例,即可求得被调查的学生总人数;根据扇形统计表中的比例关系即可求得每种方式各自有多少人,即可作出判断;用360°乘15%即可求出乘车部分所对应的圆心角度数.【详解】解:因为乘车的有18人,占总调查人数的15%,所以调查的总人数为:18÷15%=120(人),故选项D符合题意;被调查的学生中,步行的有:120×(1―5%―35%―15%)=54(人),不选项B不符合题意;扇形图中,乘车部分所对应的圆心角为:360°×15%=54°,故选项A不符合题意;估计全校骑车上学的学生有:4000×35%=1400(人),故选项C不符合题意.故选:D.【点拨】此题考查了扇形统计图以及用样本估计总体,扇形统计图直接反映部分占总体的百分比大小,正确求出调查的总人数是解答本题的关键.【变式7-2】(2023·江苏苏州·统考二模)如图是某饰品店甲,乙,丙,丁四种饰品出售情况的扇形统计图,若想销量更大,获利更多,该店进货时,应多进的饰品是()A.甲B.乙C.丙D.丁【分析】根据各个部分所占百分比的大小进行判断即可.【详解】解:“丁”所占的百分比为1﹣35%﹣25%﹣30%=10%,由于35%>30%>25%>10%,所以进货时,应多进的饰品“丙”,故选:C.【点拨】本题考查扇形统计图,理解各个部分所占整体的百分比的大小是正确判断的前提.【变式7-3】(2022·浙江温州·统考一模)如图是某班证明勾股定理的学生人数统计图.若会三种证法的人有6人,则会两种证法的人数有()A.4人B.6人C.14人D.16人【答案】D【分析】先求出总人数,再用总人数乘以40%,即可求解.【详解】解:根据学生的总人数为6÷15%=40人,∴会两种证法的人数有40×40%=16人.故选:D【点拨】本题主要考查了扇形统计图,能准确从统计图获取信息是解题的关键.【变式7-4】(2022·黑龙江大庆·统考二模)某学校初一年级学生来自农村,牧区,城镇三类地区,下面是根据其人数比例绘制的扇形统计图,由图中的信息,得出以下3个判断,错误的有()①该校初一学生在这三类不同地区的分布情况为3:2:7②若已知该校来自牧区的初一学生为140人,则初一学生总人数为1080人.③若从该校初一学生中抽取120人作为样本调查初一学生父母的文化程度,则从农村、牧区、城镇学生中分别随机抽取30、20、70人,样本更具有代表性.类型三折线统计图【例8】(2022·福建·统考模拟预测)2021年福建省的环境空气质量达标天数位居全国前列,下图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是()A.F1B.F6C.F7D.F10【答案】D【分析】根据折线统计图,观察图中的各个数据,根据数据信息逐项判定即可.【详解】解:结合题意,综合指数越小,表示环境空气质量越好,根据福建省10个地区环境空气质量综合指数统计图可直观看到F10的综合指数最小,从而可知环境空气质量最好的地区就是F10,故选:D.【点拨】本题考查折线统计图,根据图中所呈现的数据信息得出结论是解决问题的关键.【变式8-1】(2023·湖南株洲·模拟预测)射击比赛中,某队员的10次射击成绩如图所示,则下列结论错误(9.4―9)A.共有500名学生参加模拟测试B.从第1月到第4月,测试成绩“优秀”的学生人数在总人数中的占比逐渐增长C.第4月增长的“优秀”人数比第3月增长的“优秀”人数多D.第4月测试成绩“优秀”的学生人数达到100人【答案】D【分析】根据条形统计图和折线统计图分别判断即可.【详解】解:A.测试的学生人数为:10+250+150+90=500(名),故不符合题意;B.由折线统计图可知,从第1周到第4周,测试成绩“优秀”的学生人数在总人数中的占比逐周增长,故不符合题意;C.第4月增长的“优秀”人数为500×17%―500×13%=20(人),第3月增长的“优秀”人数500×13%―500×10%=15(人),故不符合题意;D.第4月测试成绩“优秀”的学生人数为:500×17%=85(人),故符合题意.故选:D.【点拨】此题考查了条形统计图和折线统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.类型四频数分布直方图(1)本次调查是 调查(选填“抽样”或“全面”);(2)统计表中,x= ,y= ;(3)补全频数分布直方图;(4)在这次调查中,课后书面作业时长波动较小的是 (5)按规定,九年级学生每天课后书面作业时长不得超过钟内(包括90分钟)完成当日课后书面作业的学生共有 【答案】(1)抽样(2)18,74.5(3)见解析(4)因为A学校的方差为127.36,B学校的方差为127.36<144.12,∴课后书面作业时长波动较小的是A学校,故答案为:A.(5)500×5+15+18+850+500×7+10+12+1750=920故答案为:920.【点拨】本题主要考查了统计表,众数,中位数以及方差的综合运用,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【变式9-1】(2023·湖南湘西·统考一模)今年是中国共产主义青年团成立请根据统计图提供的信息,回答如下问题:(1)x=________,y=________,并将直方图补充完整;(2)已知90≤a≤100这组的具体成绩为93,94,99,91,100,94,________,众数是________;(3)若该校共有1200人,估计该校学生对团史掌握程度达到优秀的人数;(4)本次知识竞赛超过95分的学生中有3名女生,1名男生,现从以上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
样本容量 样本中所包含的个体的 数目 叫做样本容量.
【易错提醒】样本容量是不带单位的.
考点 3 频数与频率
定义 统计时,落在各小组的数据的 个数 . 频数
注意 各小组的频数之和等于数据 总数 .
每个小组的 数据个数
定义
频数
频率
比值,即频率= 总数 .
与数据总数的
注意 各小组的频率之和等于 1 .
考点 4 常见统计图[核心考点]
.
将一组数据按照由小到大(或由大到小)的顺序排列,若数 据的个数为奇数,则处于 中间 位置的数就是这组数据 中位数 的中位数;若数据的个数为偶数,则中间两个数据的
平均数 就是这组数据的中位数. 在一组数据中,出现 次数最多 的数据就是这组数据 众数 的众数.
方差
公式
若一组数据 x1,x2,…,xn 的平均数为-x ,则这组数据的 方差 s2= n1[(x1--x )2+(x2--x )2+…+(xn--x )2] .
,并显示各
考点 5 数据的分析[核心考点]
平均数
算术 平均数
加权 平均数
一组数据 x1,x2,…,xn,它们的平均数 -x = n1(x1+x2+…+xn) .
若 n 个数 x1,x2,…,xn 的权分别是 f1,f2,…,
f1x1+f2x2+…+fnxn
fn,则其加权平均数-x = f1+f2+…+fn
定义 为一特定目的而对部分考察对象做的调查叫做抽样调查. 适用 当考察具有破坏性,全面调查的意义或价值不大,无法进行全面调查 范围 时,应选择抽样调查.
考点 2 总体、个体、样本、样本容量 总体 所要考察对象的 全体 称为总体. 个体 总体中 每个考察对象 称为个体. 样本 总体中被抽取出来的 一部分个体 称为样本.
2.(2018·内江)为了了解内江市 2018 年中考数学学科各分数段成绩分布情况,从中 抽取 400 名考生的中考数学成绩进行统计分析.在这个问题中,样本是指( C ) A.400 B.被抽取的 400 名考生 C.被抽取的 400 名考生的中考数学成绩 D.内江市 2018 年中考数学成绩
类型之二 平均数、众数、中位数、方差、频数、频率
类型之三 统计图表 3 (2019·衡阳)某学校为了丰富学生课余生活,开展了“第二课堂”的活动,推
出了以下四种选修课程:A.绘画;B.唱歌;C.演讲;D.十字绣.学校规定:每个学 生都必须报名且只能选择其中的一种课程.学校随机抽查了部分学生,对他们选 择的课程情况进行了统计,并绘制了如下两幅不完整的统计图(如图 34-1).请结合 统计图中的信息,解决下列问题: (1)这次学校抽查的学生人数是 40 ;
【变式训练】 1.(2019·郴州)下列采用的调查方式中,合适的是 ( A ) A.为了解东江湖的水质情况,采用抽样调查的方式 B.我市某企业为了解所生产的产品的合格率,采用普查的方式 C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式 D.某市教育部门为了解该市中小学生的视力情况,采用普查的方式
考点 6 用样本估计总体的统计思想 (1)利用样本估计总体的特征是统计的基本思想,样本的选取要有足够的代表性; (2)利用数据进行决策时,要全面、多角度地去分析已有数据,从数据的变化中发 现它们的规律和变化趋势.
归类探究
类型之一 数据的收集 1 (2019·济宁)以下调查中,适宜全面调查的是
A.调查某批次汽车的抗撞击能力 B.调查某班学生的身高情况 C.调查春节联欢晚会的收视率 D.调查济宁市居民日平均用水量
(B )
【点悟】 (1)下面的情形常采用抽样调查:①当受客观条件的限制,无法对所有 个体进行普查时,如调查某市中学生的视力;②当调查具有破坏性,不允许普查 时,如调查某批灯泡的使用寿命;③当总体的容量较大,个体分布较广时,调查 受客观条件限制,宜用抽样调查. (2)抽样调查的要求:①抽查的样本要有代表性;②所取样本的个体的数目不能太 概率 第34课时 统计初步
考点梳理 归类探究 课时作业
考点梳理
考点 1 全面调查与抽样调查
全面 调查
定义 为一特定目的而考察全体对象的调查叫做全面调查,也叫普查. 适用 结果要求准确、精确度高、无破坏性、事关重大、难度相对不大的调 范围 查,应选择全面调查.
抽样 调查
名称
优点
条形图
能清楚地表示每个项目的具体 的差别.
数据 ,易于比较数据之间
扇形图
易于显示各部分在总体中所占的 相对于总体所占的份额大小.
百分比
,显示各组数据
折线图
能清楚地反映数据的 变化趋势 每个项目的数目.
,频数折线图也可以表示出
直方图
能直观、清楚地反映数据在各小组的 分布情况 组之间的频数差别.
【变式训练】
3.(2019·益阳)已知一组数据 5,8,8,9,10,以下说法错误的是( D )
A.平均数是 8
B.众数是 8
C.中位数是 8
D.方差是 8
4.(2018·南宁)已知一组数据 6,x,3,3,5,1 的众数是 3 和 5,则这组数据的中位数是 4.
【解析】 ∵数据 6,x,3,3,5,1 的众数是 3 和 5, ∴x=5. ∴数据从小到大排列为 1,3,3,5,5,6. ∴这组数据的中位数为3+2 5=4.
2 (2018·自贡)在一次数学测试后,随机抽取九年级(3)班 5 名学生的成绩(单位:
分)如下:80,98,98,83,91.关于这组数据的说法错误的是( D )
A.众数是 98
B.平均数是 90
C.中位数是 91
D.方差是 56
【点悟】 一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按 照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,那么处于中间位置 的数据就是这组数据的中位数;如果这组数据的个数是偶数,那么中间两个数据 的平均数就是这组数据的中位数.平均数是指一组数据中所有数据之和与数据的 个数的商.一般地,设 n 个数据 x1,x2,…,xn 的平均数为-x ,则方差 s2=n1[(x1 --x )2+(x2--x )2+…+(xn--x )2].
意义 方差越大,数据的波动越大;方差越小,数据的波动越小.
【易错提醒】找一组数据的中位数时,一定要先把所给数据按大小排序.
【温馨提示】(1)一组数据的中位数和平均数都只有一个,它们一般不相等,有时 也可能相等; (2)中位数是一个位置代表值,如果已知一组数据的中位数,那么可以知道小于和 大于这个中位数的数据的个数相等.
相关文档
最新文档