2017年广东省深圳市高考数学一模试卷(理科) Word版含解析

合集下载

2017年广东省高考试题(理数_word解析版)

2017年广东省高考试题(理数_word解析版)

2017年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1、答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”. 2、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求做大的答案无效。

4、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。

漏涂、错涂、多涂的,答案无效。

5、考生必须保持答题卡得整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:柱体的体积公式V Sh ,其中S 为柱体的底面积,h 为柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设i 为虚数单位,则复数56i i=( )()A 65i ()B 65i ()C i ()D i【解析】选D 依题意:256(56)65ii ii ii,故选D .2.设集合{1,2,3,4,5,6},{1,2,4}UM;则U C M( )()A U()B {1,3,5}()C {,,}()D {,,}【解析】选C U C M{,,}3. 若向量(2,3),(4,7)BACA ;则BC( )()A (2,4)()B (2,4)()C (,)()D (,)【解析】选A(2,4)B C B AC A 4.下列函数中,在区间(0,)上为增函数的是( )()A ln(2)yx ()B 1yx ()C ()xy ()D y xx【解析】选Aln(2)y x区间(0,)上为增函数,1yx 区间(0,)上为减函数()xy区间(0,)上为减函数,yxx区间(1,)上为增函数5.已知变量,x y 满足约束条件241yx y xy,则3z xy 的最大值为( )()A 12()B 11()C ()D 【解析】选B约束条件对应ABC 边际及内的区域:53(2,2),(3,2),(,)22A B C 则3[8,11]zx y6.某几何体的三视图如图1所示,它的体积为( )()A 12()B 45()C ()D 【解析】选C 几何体是圆柱与圆锥叠加而成它的体积为2222135353573V 7. 从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )()A 49()B 13()C ()D 【解析】选D①个位数为1,3,5,7,9时,十位数为2,4,6,8,个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个②个位数为0时,十位数为1,3,5,7,9,共5个别个位数为0的概率是514598. .对任意两个非零的平面向量和,定义;若平面向量,a b 满足0ab ,a 与b 的夹角(0,)4,且,a b b a 都在集合}2n nZ 中,则a b( )()A 12()B 1()C ()D 【解析】选C21cos 0,cos 0()()cos(,1)2a b a bb aa b b a ba,a b b a 都在集合}2n nZ 中得:*12123()()(,)42n n a b b a n n N a b二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2017年广东高考理科数学真题及答案

2017年广东高考理科数学真题及答案

2017年广东高考理科数学真题及答案注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则A. {|0}A B x x =<B. A B =RC. {|1}A B x x =>D. A B =∅ 【答案】A 【难度】容易【点评】本题在高考数学(理)提高班讲座 第一章《集合》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

2.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A.14 B. π8 C. 12 D. π4【答案】B 【难度】容易【点评】本题在高考数学(理)提高班讲座 第十四章《概率》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

3.设有下面四个命题1:p 若复数z 满足1z∈R ,则z ∈R ;2:p 若复数z 满足2z ∈R ,则z ∈R ;3:p 若复数12,z z 满足12z z ∈R ,则12z z =; 4:p 若复数z ∈R ,则z ∈R .其中的真命题为A.13,p pB.14,p pC.23,p pD.24,p p 【答案】B 【难度】中等【点评】本题在高考数学(理)提高班讲座中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .8【答案】C 【难度】容易【点评】本题在高考数学(理)提高班讲座 第六章《数列》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

广东省深圳高级中学2017届高三(上)第一次考试数学(理)试卷(解析版).doc

广东省深圳高级中学2017届高三(上)第一次考试数学(理)试卷(解析版).doc

2016-2017学年广东省深圳高中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列函数中,既是偶函数又在(0,+∞)上单调递增的是()A.y=e x B.y=lnx2C.y=D.y=sinx【考点】奇偶性与单调性的综合.【专题】函数思想;定义法;函数的性质及应用.【分析】根据函数奇偶性和单调性的定义分别进行判断即可.【解答】解:y=,y=e x为(0,+∞)上的单调递增函数,但不是偶函数,故排除A,C;y=sinx在整个定义域上不具有单调性,排除D;y=lnx2满足题意,故选:B.【点评】本题主要考查函奇偶性和单调性的判断,要求熟练掌握常见函数的性质:单调性、奇偶性等性质,比较基础.2.函数f(x)=sinx﹣cos(x+)的值域为()A.[﹣2,2] B.[﹣,] C.[﹣1,1] D.[﹣,] 【考点】三角函数中的恒等变换应用;正弦函数的定义域和值域.【专题】三角函数的图像与性质.【分析】通过两角和的余弦函数化简函数的表达式,利用两角差的正弦函数化为一个角的一个三角函数的形式,求出函数的值域.【解答】解:函数f(x)=sinx﹣cos(x+)=sinx﹣+=﹣+=sin(x﹣)∈.故选B.【点评】本题考查三角函数中的恒等变换应用,正弦函数的定义域和值域,考查计算能力.3.若函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是()A.(﹣1,2)B.(﹣∞,﹣3)∪(6,+∞)C.(﹣3,6)D.(﹣∞,﹣1)∪(2,+∞)【考点】利用导数研究函数的极值.【专题】计算题;导数的综合应用.【分析】由题意求导f′(x)=3x2+2ax+(a+6);从而化函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值为△=(2a)2﹣4×3×(a+6)>0;从而求解.【解答】解:∵f(x)=x3+ax2+(a+6)x+1,∴f′(x)=3x2+2ax+(a+6);又∵函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,∴△=(2a)2﹣4×3×(a+6)>0;故a>6或a<﹣3;故选B.【点评】本题考查了导数的综合应用,属于中档题.4.若f(x)=x2+2f(x)dx,则f(x)dx=()A.﹣1 B.﹣C.D.1【考点】定积分.【专题】导数的综合应用.【分析】利用回代验证法推出选项即可.【解答】解:若f(x)dx=﹣1,则:f(x)=x2﹣2,∴x2﹣2=x2+2(x2﹣2)dx=x2+2()=x2﹣,显然A不正确;若f(x)dx=,则:f(x)=x2﹣,∴x2﹣=x2+2(x2﹣)dx=x2+2()=x2﹣,显然B正确;若f(x)dx=,则:f(x)=x2+,∴x2+=x2+2(x2+)dx=x2+2()=x2+2,显然C不正确;若f(x)dx=1,则:f(x)=x2+2,∴x2+2=x2+2(x2+2)dx=x2+2()=x2+,显然D不正确;故选:B.【点评】本题考查定积分以及微积分基本定理的应用,回代验证有时也是解答问题的好方法.5.在△ABC中,AC=,BC=2,B=60°则BC边上的高等于()A.B.C.D.【考点】解三角形.【专题】计算题;压轴题.【分析】在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB可求AB=3,作AD ⊥BC,则在Rt△ABD中,AD=AB×sinB【解答】解:在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB把已知AC=,BC=2 B=60°代入可得,7=AB2+4﹣4AB×整理可得,AB2﹣2AB﹣3=0∴AB=3作AD⊥BC垂足为DRt△ABD中,AD=AB×sin60°=,即BC边上的高为故选B【点评】本题主要考查了余弦定理在解三角形中的应用,解答本题的关键是求出AB,属于基础试题6.函数y=lncosx()的图象是()A.B.C.D.【考点】函数的图象与图象变化.【专题】数形结合.【分析】利用函数的奇偶性可排除一些选项,利用函数的有界性可排除一些个选项.从而得以解决.【解答】解:∵cos(﹣x)=cosx,∴是偶函数,可排除B、D,由cosx≤1⇒lncosx≤0排除C,故选A.【点评】本小题主要考查复合函数的图象识别.属于基础题.7.将函数y=sin(6x+)的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心()A.B.C.()D.()【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的对称性.【专题】计算题.【分析】先根据三角函数图象变换规律写出所得函数的解析式,再根据三角函数的性质进行验证:若f(a)=0,则(a,0)为一个对称中心,确定选项.【解答】解:函数的图象上各点的横坐标伸长到原来的3倍得到图象的解析式为再向右平移个单位得到图象的解析式为=sin2x当x=时,y=sinπ=0,所以是函数y=sin2x的一个对称中心.故选A.【点评】本题考查了三角函数图象变换规律,三角函数图象、性质.是三角函数中的重点知识,在试题中出现的频率相当高.8.设147()9a-=,159()7b=,27log9c=,则a, b, c的大小顺序是()A、b a c<<B、c a b<<C、c b a<<D、b c a<<【考点】对数值大小的比较.【专题】数形结合;转化思想;函数的性质及应用.【分析】利用指数函数的单调性即可得出.【解答】解:∴a>b>c.故选:B.【点评】本题考查了指数函数的单调性,考查了推理能力与计算能力,属于基础题.9.(2016•江门模拟)若f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0)的最小正周期为π,f(0)=,则()A.f(x)在单调递增B.f(x)在单调递减C.f(x)在单调递增D.f(x)在单调递减【考点】函数y=Asin(ωx+φ)的图象变换.【专题】转化思想;综合法;三角函数的图像与性质.【分析】由周期求出ω,由f(0)=求出φ的值,可得函数的解析式;再利用余弦函数的单调性得出结论.【解答】解:∵f(x)=sin(ωx+ϕ)+cos(ωx+ϕ)=sin(ωx+ϕ+)(ω>0)的最小正周期为=π,可得ω=2.再根据=sin(ϕ+),可得sin(ϕ+)=1,ϕ+=2kπ+,k∈Z,故可取ϕ=,y=sin(2x+)=cos2x.在上,2x∈(﹣,),函数f(x)=cos2x 没有单调性,故排除A、B;在上,2x∈(0,π),函数f(x)=cos2x 单调递减,故排出C,故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由f (0)=求出φ的值;余弦函数的单调性,属于基础题.10.(2011•湖南)设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1 B.C.D.【考点】导数在最大值、最小值问题中的应用.【专题】计算题;压轴题;转化思想.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.11.(2016•湖南校级模拟)已知函数(x∈R),若关于x的方程f(x)﹣m+1=0恰好有3个不相等的实数根,则实数m的取值范围为()A.B.C.D.【考点】根的存在性及根的个数判断.【专题】数形结合;转化思想;转化法;函数的性质及应用.【分析】讨论x的范围,求函数的导数,研究函数的单调性和极值,利用数形结合进行求解即可.【解答】解:当x≤0时,为减函数,f(x)min=f(0)=0;当x>0时,,,则时,f'(x)<0,时,f'(x)>0,即f(x)在上递增,在上递减,.其大致图象如图所示,若关于x的方程f(x)﹣m+1=0恰好有3个不相等的实数根,则,即,故选:A.【点评】本题主要考查函数根的个数的判断,利用函数与方程之间的关系转化为两个函数的交点问题,求函数的导数,利用数形结合进行求解是解决本题的关键.12.(2016•湖南模拟)设,若对任意的正实数x,y,都存在以a,b,c为三边长的三角形,则实数p的取值范围是()A.(1,3)B.(1,2] C.D.以上均不正确【考点】基本不等式;简单线性规划.【专题】转化思想;转化法;不等式.【分析】由基本不等式可得a≥,c≥2,再由三角形任意两边之和大于第三边可得,+2>,且+>2,且+2>,由此求得实数p的取值范围.【解答】解:对于正实数x,y,由于≥=,c=x+y≥2,,且三角形任意两边之和大于第三边,∴+2>,且+>2,且+2>.解得1<p<3,故实数p的取值范围是(1,3),故选:A.【点评】本题主要考查基本不等式的应用,注意不等式的使用条件,以及三角形中任意两边之和大于第三边,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分.)13.(2009•锦州一模)函数f(x)=,不等式f(x)>2的解集为{x|1<x<2或x>}.【考点】分段函数的解析式求法及其图象的作法;其他不等式的解法.【专题】计算题.【分析】先分两段分别解不等式,最后所求将不等式解集合并即可【解答】解:不等式f(x)>2⇔①或②由①得1<x<2,由②得x>∴不等式f(x)>2的解集为{x|1<x<2或x>}故答案为{x|1<x<2或x>}【点评】本题考查了函数与不等式的关系,特别是分段函数与不等式,解题时要分辨清楚何时求交集何时求并集,认真解不等式才可顺利解题14.(2016秋•深圳校级月考)已知,则=﹣.【考点】两角和与差的正弦函数;同角三角函数间的基本关系.【专题】计算题;三角函数的求值.【分析】由已知利用两角差的正弦公式展开化简,然后结合辅助角公式可求sin(),最后利用诱导公式=﹣sin()即可求解【解答】解:∵,展开可得,=∴由辅助角公式可得sin()=则=﹣sin()=﹣故答案为:【点评】本题主要考查了两角差的正弦公式、辅助角公式及诱导公式在三角函数的化简求值中的应用.15.(2015秋•哈尔滨校级期末)在△ABC中,内角A、B、C的对边分别为a、b、c,且c=2,b=a,则△ABC面积的最大值为2.【考点】三角形的面积公式.【专题】方程思想;综合法;解三角形.【分析】先利用余弦定理求出cosC的值然后利用三角形面积公式可知S=a2sinC,然后化简变形求出S的最大值,注意取最大值时a的值.【解答】解:由公式c2=a2+b2﹣2abcosC和c=2,b=a得4=a2+2a2﹣2a2cosC可推出cosC=,又由公式S面积=absinC和b= a 得S=a2sinC=•=,当a2=12时,S面积取最大值2.三角形三边a+b>c,b﹣a<c所以得2+2>a>2﹣2,所以a=2.故答案是:2.【点评】本题主要考查了三角形中的几何计算,同时考查了余弦定理和二次函数的最值等有关基础知识,属于中档题.16.(2016秋•深圳校级月考)已知定义在R上的函数f(x)同时满足以下三个条件(1)f(x)+f(2﹣x)=0,(2)f(x)=(﹣2﹣x)(3)f(x)=则函数f(x)与函数g(x)=的图象在区间[﹣3,3]上公共点个数为6个.【考点】根的存在性及根的个数判断.【专题】数形结合;数形结合法;函数的性质及应用.【分析】根据f(x)的周期性和对称性做出f(x)在[﹣3,3]上的函数图象,再做出g(x)的函数图象,根据图象判断交点个数.【解答】解:∵f(x)=f(﹣2﹣x),∴f(x)的图象关于x=﹣1对称,又∵f(x)+f(2﹣x)=0,∴f(x)的图象关于点(1,0)对称,做出f(x)和g(x)在[﹣3,3]上的函数图象如图所示:由图象可知当x≤0时,f(x)与g(x)的图象有4个交点,设g(x)在(1,0)处的切线斜率为k,则k=﹣<﹣1,又g(2)=f(2)=﹣1,∴当x>0时,f(x)与g(x)只有两个交点(1,0)和(2,﹣1).综上,f(x)与g(x)在[﹣3,3]上有6个交点.故答案为:6.【点评】本题考查了分段函数的图象,函数性质的应用,属于中档题.三、解答题:本大题共5小题,满分60分.解答应写出文字说明,证明过程或演算步骤.17.(12分)(2014•郑州一模)如图△ABC中,已知点D在BC边上,满足•=0.sin ∠BAC=,AB=3,BD=.(Ⅰ)求AD的长;(Ⅱ)求cosC.【考点】余弦定理的应用;正弦定理.【专题】计算题;解三角形.【分析】(I)通过向量的数量积,判断垂直关系,求出cos∠BAD的值,在△ABD中,由余弦定理求AD的长;(Ⅱ)在△ABD中,由正弦定理,求出sin∠ADB,通过三角形是直角三角形,即可求cosC.【解答】解:(Ⅰ)∵•=0,∴AD⊥AC,∴,∵sin∠BAC=,∴….(2分)在△ABD中,由余弦定理可知BD2=AB2+AD2﹣2AB•ADcos∠BAD,即AD2﹣8AD+15=0,解之得AD=5或AD=3 ….(6分)由于AB>AD,∴AD=3…..(7分)(Ⅱ)在△ABD中,由正弦定理可知,又由,可知,∴=,∵∠ADB=∠DAC+∠C,∠DAC=,∴.…(12分)【点评】本题考查解三角形,余弦定理以及正弦定理的应用,考查计算能力.18.(12分)(2012•新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】概率的应用;离散型随机变量的期望与方差.【专题】综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)(2016•广州一模)如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.(I)证明:平面A1CO⊥平面BB1D1D;(Ⅱ)若∠BAD=60°,求二面角B﹣OB1﹣C的余弦值.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.【专题】综合题;向量法;空间位置关系与距离;空间角;空间向量及应用.【分析】(1)根据面面垂直的判定定理进行证明即可.(2)建立空间直角坐标系,求平面的法向量,利用向量法进行求解.【解答】证明:(1)∵A1O⊥面ABCD,且BD,AC⊂面ABCD,∴A1O⊥BD,又∵在菱形ABCD中,AC⊥BD,∵A1O∩AC=O,∴BD⊥面A1AC,∵BD⊂平面平面BB1D1D,∴平面A1CO⊥平面BB1D1D(2)建立以O为坐标原点,OA,OB,OA1分别为x,y,z轴的空间直角坐标系如图:∵AB=AA1=2,∠BAD=60°,∴OB=1,OA=,∵AA1=2,∴A1O=1.则A(,0,0),B(0,1,0),A1(0,0,1),C(﹣,0,0),==(﹣,1,0),=(0,1,0),=(﹣,0,0),=(0,0,1),则=+=(﹣,1,1),设平面BOB1的一个法向量为=(x,y,z),则,令x=,则y=0,z=3,即=(,0,3),设平面OB1C的一个法向量为=(x,y,z),则,令y=1,则z=﹣1,x=0,则=(0,1,﹣1),cos<,>===﹣,∵二面角B﹣OB1﹣C是钝二面角,∴二面角B﹣OB1﹣C的余弦值是﹣.【点评】本小题主要考查面面垂直的判断和二面角的求解,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力,综合性较强,运算量较大.20.(12分)(2016•蚌埠三模)设函数f(x)=ln(x﹣1)+(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当x>2,xln(x﹣1)>a(x﹣2)恒成立,求实数a的取值范围.【考点】利用导数研究函数的单调性;函数恒成立问题.【专题】转化思想;综合法;导数的综合应用.【分析】(Ⅰ)求得函数的定义域,求导,根据二次函数图象及性质,利用△≤0,再对a 分类讨论即可求f(x)的单调区间;(Ⅱ)xln(x﹣1)>a(x﹣2)恒成立,等价于f(x)﹣a>0,构造辅助函数,根据(Ⅰ)讨论a的取值,判断f(x)的单调区间,即可求得实数a的取值范围.【解答】解:(Ⅰ)由题易知函数f(x)的定义域为(1,+∞),∴,…(2分)设g(x)=x2﹣2ax+2a,△=4a2﹣8a=4a(a﹣2),①当△≤0,即0≤a≤2时,g(x)≥0,∴f'(x)≥0,f(x)在(1,+∞)上是增函数,…(3分)②当a<0时,g(x)的对称轴x=a,当x>1时,g(x)>g(1)>0,∴g(x)>0,函数f(x)在(1,+∞)上是增函数,③当a>2时,设x1,x2(x1<x2)是方程x2﹣2ax+2a=0的两个根,则x1=a﹣>1,x2=a+,当1<x<x1或x>x2时,f′(x)>0,f(x)在(1,x1),(x2,+∞)上增函数,…(4分)当x1<x<x2时,f′(x)<0,f(x)在(x1,x2)上是减函数;…综合以上可知:当a≤2时,f(x)的单调递增区间为(1,+∞),无单调减区间;当a>2时,f(x)的单调递增区间为,单调减区间为;…(6分)(Ⅱ)当x>2时,,…(7分)令h(x)=f(x)﹣a,由(Ⅰ)知:①当a≤2时,f(x)在(1,+∞)上是增函数,∴h(x)在(2,+∞)上增函数,∵当x>2时,h(x)>h(2)=0,上式成立;当a>2时,f(x)在(a﹣,a+)是减函数,∴h(x)在(2,a+)是减函数,x∈(2,a+)时,h(x)<h(2)=0,上式不成立,综上,a的取值范围是(﹣∞,2].…(12分)【点评】本题考查利用函数的导数求函数的单调性及恒成立问题综合应用,关键是通过分类讨论得到函数的单调区间及会转化利用已证的结论解决问题,属于难题.21.(12分)(2016秋•深圳校级月考)已知函数f(x)=5+lnx,g(x)=(k∈R).(I)若函数f(x)在点(1,f(1))处的切线与函数y=g(x)的图象相切,求k的值;(II)若k∈N*,且x∈(1,+∞)时,恒有f(x)>g(x),求k的最大值.(参考数据:ln5≈1.61,ln6≈1.7918,ln(+1)=0.8814)【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【专题】计算题;转化思想;综合法;导数的综合应用.【分析】(I)由f(1)=5,且,f′(1)=1,利用导数的几何意义得到函数f(x)在点(1,f(1))处的切线方程为y=x+4,设直线y=x+4与g(x)=,(k∈R)相切于点P(x0,y0),得g′(x0)=1,g(x0)+4,由此利用导当数性质能求出k的值.(II)当x∈(1,+∞)时,5+lnx>恒成立,等价于当x∈(1,+∞)时,k<恒成立,设h(x)=,(x>1),则,(x>1),记p(x)=x﹣4﹣lnx,(x>1),则p′(x)=,由此利用导数性质能求出k的最大值.【解答】解:(I)∵函数f(x)=5+lnx,∴f(1)=5,且,从而得到f′(1)=1.∴函数f(x)在点(1,f(1))处的切线方程为:y﹣5=x﹣1,即y=x+4.…(2分)设直线y=x+4与g(x)=,(k∈R)相切于点P(x0,y0),从而可得g′(x0)=1,g(x0)+4,又,∴,解得或.∴k的值为1或9.…(II)当x∈(1,+∞)时,5+lnx>恒成立,等价于当x∈(1,+∞)时,k<恒成立.…(6分)设h(x)=,(x>1),则,(x>1)记p(x)=x﹣4﹣lnx,(x>1),则p′(x)=1﹣=,∴p(x)在x∈(1,+∞)递增.又p(5)=1﹣ln5<0,p(6)=2﹣ln6>0,…(8分)∴p(x)在x∈(1,+∞)存在唯一的实数根m∈(5,6),使得p(m)=m﹣4﹣lnm=0,①∴当x∈(1,m)时,p(x)<0,即h′(x)<0,则h(x)在x∈(1,m)递减;当x∈(m,+∞)时,p(x)>0,即h′(x)>0,则h(x)在x∈(m,+∞)递增;所以x∈(1,+∞)时,h min=h(m)=,由①可得lnm=m﹣4,∴h(m)=,…(10分)而m∈(5,6),m+(),又h(3+2)=8,p(3+2)=2﹣1﹣ln(3+2)>0,∴m∈(5,3+2),∴h(m)∈(,8).又k∈N*,∴k的最大值是7.…(12分)【点评】本题考查实数值的求法,考查实数的最大值的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.[选修4-1:几何证明选讲]22.(10分)(2016•佛山二模)如图,点A,B,D,E在⊙O上,ED、AB的延长线交于点C,AD、BE交于点F,AE=EB=BC.(1)证明:=;(2)若DE=2,AD=4,求DF的长.【考点】与圆有关的比例线段.【专题】选作题;转化思想;综合法;推理和证明.【分析】(1)证明∠BAD=∠EAD,即可证明=;(2)证明△EAD∽△FED,可得.即可求DF的长.【解答】(1)证明:∵EB=BC,∴∠C=∠BEC.∵∠BED=∠BAD,∴∠C=∠BED=∠BAD.∵∠EBA=∠C+∠BEC=2∠C,AE=EB,∴∠EAB=∠EBA=2∠C又∠C=∠BAD,∴∠EAD=∠C,∴∠BAD=∠EAD.∴=;(2)解:由(1)知∠EAD=∠C=∠FED,∵∠EAD=∠FDE,∴△EAD∽△FED,∴.∵DE=2,AD=4,∴DF=1.【点评】本题考查两角相等的证明,考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.[选修4-4:坐标系与参数方程]23.(2015秋•石家庄校级期末)在极坐标系中,已知曲线C:ρ=sin(θ﹣),P为曲线C上的动点,定点Q(1,).(Ⅰ)将曲线C的方程化成直角坐标方程,并说明它是什么曲线;(Ⅱ)求P、Q两点的最短距离.【考点】简单曲线的极坐标方程.【专题】方程思想;分析法;直线与圆;坐标系和参数方程.【分析】(Ⅰ)运用两角差的正弦公式和极坐标与直角坐标的关系:x=ρcosθ,y=ρsinθ,x2+y2=ρ2,化简即可得到所求方程及轨迹;(Ⅱ)求得Q的直角坐标,以及Q到圆心的距离,由最小值d﹣r,即可得到所求值.【解答】解:(Ⅰ)曲线C:ρ=sin(θ﹣)=2(sinθ﹣cosθ)=2sinθ﹣2cosθ,即有ρ2=2ρsinθ﹣2ρcosθ,由x=ρcosθ,y=ρsinθ,x2+y2=ρ2,可得曲线C:x2+y2+2x﹣2y=0,即为以(﹣1,1)为圆心,为半径的圆;(Ⅱ)Q(1,),即为Q(cos,sin),即Q(,),Q到圆心的距离为d==,即有PQ的最短距离为d﹣r=﹣.【点评】本题考查极坐标和直角坐标的互化,点与圆的位置关系,注意运用两点的距离公式,考查运算能力,属于基础题.[选修4-5:不等式选讲]24.(2014•赤峰模拟)设函数f(x)=|2x+1|﹣|x﹣2|.(1)求不等式f(x)>2的解集;(2)∀x∈R,使f(x)≥t2﹣t,求实数t的取值范围.【考点】一元二次不等式的应用;分段函数的解析式求法及其图象的作法;函数的最值及其几何意义.【专题】不等式.【分析】(1)根据绝对值的代数意义,去掉函数f(x)=|2x+1|﹣|x﹣2|中的绝对值符号,求解不等式f(x)>2,(2)由(1)得出函数f(x)的最小值,若∀x∈R,恒成立,只须即可,求出实数t的取值范围.【解答】解:(1)当,∴x<﹣5当,∴1<x<2当x≥2,x+3>2,x>﹣1,∴x≥2综上所述{x|x>1或x<﹣5}.(2)由(1)得,若∀x∈R,恒成立,则只需,综上所述.【点评】考查了绝对值的代数意义、一元二次不等式的应用、分段函数的解析式等基本,去绝对值体现了分类讨论的数学思想,属中档题.。

2017届广东省深圳市高三下学期第一次调研考试(一模)数学理试卷(带解析)

2017届广东省深圳市高三下学期第一次调研考试(一模)数学理试卷(带解析)

绝密★启用前2017届广东省深圳市高三下学期第一次调研考试(一模)数学理试卷(带解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.若集合={2,4,,6,8},B={x|x2−9x+18≤0},则A∩B=()A. {2,4}B. {4,6}C. {6,8}D. {2,8}2.若复数a+i1+2i(a∈R)为纯虚数,其中i为虚数单位,则a=()A. 2B. 3C. -2D. -33.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()A. 14B. 12C. 13D. 234.等比数列{a n}的前n项和为S n=a·3n−1+b,则ab=()A. -3B. -1C. 1D. 35.直线l:k x+y+4=0(k∈R)是圆C:x2+y2+4x−4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A. 22B. 2C. 6D. 266.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为 (0< <2)的平面截该几何体,则截面面积为()A. 4πB. π 2C. π(2− )2D. π(4− )27.函数f(x)=2x+12x−1·cos x的图象大致是()A. B.C. D.8.已知a>b>0,c<0,下列不等关系中正确的是()A. a c>b cB. a c>b cC. log a(a−c)>log b(b−c)D. aa−c >bb−c9.执行如图所示的程序框图,若输入p=2017,则输出i的值为()A. 335B. 336C. 337D. 33810.已知F是双曲线E:x2a −y2b=1(a>0,b>0)的右焦点,过点F作E的一条渐近线的垂线,垂足为P,线段P F与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|F P|=2d,则该双曲线的离心率是()A. 2B. 2C. 3D. 411.已知棱长为2的正方体A B C D−A1B1C1D1,球O与该正方体的各个面相切,则平面A CB1截此球所得的截面的面积为()A. 8π3B. 5π3C. 4π3D. 2π312.已知函数f(x)=x2e x ,x≠0,e为自然对数的底数,关于x的方程f(x)+f(x)λ=0有四个相异实根,则实数λ的取值范围是()A. (0,2e ) B. (22,+∞) C. (e+2e,+∞) D. (e22+4e2,+∞)第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.已知向量p=(1,2),q=(x,3),若p⊥q,则|p+q|=__________.14.(x−1x)5的二项展开式中,含x的一次项的系数为__________.(用数字作答)15.若实数x,y满足不等式组{x+y−4≤02x−3y−8≤0x≥1,目标函数z=k x−y的最大值为12,最小值为0,则实数k=__________.16.已知数列{a n}满足na n+2−(n+2)a n=λ(n2+2n),其中a1=1,a2=2,若a n<a n+1对∀n∈N∗恒成立,则实数λ的取值范围为__________.三、解答题17.ΔA B C的内角A、B、C的对边分别为a、b、c,已知2a=3c sin A−a cos C.(1)求C;(2)若c=3,求ΔA B C的面积S的最大值.18.如图,四边形A B C D为菱形,四边形A C E F为平行四边形,设B D与A C相交于点G,A B=B D=2,A E=3,∠E A D=∠E A B.(1)证明:平面A C E F⊥平面A B C D;(2)若A E与平面A B C D所成角为60°,求二面角B−E F−D的余弦值.19.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;(3)在满足(2)的条件下,估计1月份该市居民用户平均用电费用(同一组中的数据用该组区间的中点值作代表).20.已成椭圆C:x2a +y2b=1(a>b>0)的左右顶点分别为A1、A2,上下顶点分别为B2、B1,左右焦点分别为F1、F2,其中长轴长为4,且圆O:x2+y2=127为菱形A1B1A2B2的内切圆.(1)求椭圆C的方程;(2)点N(n,0)为x轴正半轴上一点,过点N作椭圆C的切线l,记右焦点F2在l上的射影为H,若ΔF1H N的面积不小于316n2,求n的取值范围.21.已知函数f(x)=x ln x,e为自然对数的底数.(1)求曲线y=f(x)在x=e−2处的切线方程;(2)关于x的不等式f(x)≥λ(x−1)在(0,+∞)上恒成立,求实数λ的值;(3)关于x的方程f(x)=a有两个实根x1,x2,求证:|x1−x2|<2a+1+e−2.22.选修4-4:坐标系与参数方程在直角坐标系中x O y中,已知曲线E经过点P(1,233),其参数方程为{x=a cosαy=2sinα(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线E的极坐标方程;(2)若直线l交E于点A、B,且O A⊥O B,求证:1|O A|2+1|O B|2为定值,并求出这个定值.23.选修4-5:不等式选讲已知f(x)=|x+a|,g(x)=|x+3|−x,记关于x的不等式f(x)<g(x)的解集为M.(1)若a−3∈M,求实数a的取值范围;(2)若[−1,1]⊆M,求实数a的取值范围.参考答案1.B【解析】由x2−9x+18≤0得:3≤x≤6,所以A∩B={4,6},故选B.点睛:集合是高考中必考的知识点,一般考查集合的表示、集合的运算比较多.对于集合的表示,特别是描述法的理解,一定要注意集合中元素是什么,然后看清其满足的性质,将其化简;考查集合的运算,多考查交并补运算,注意利用数轴来运算,要特别注意端点的取值是否在集合中,避免出错.2.C【解析】因为a+i1+2i =15(a+i)⋅(1−2i)=15[a+2+(1−2a)i]为纯虚数,所以a+2=0且1−2a≠0,解得a=−2,故选C.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数,共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化,转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.B【解析】因为4个小球随机选3个共有C43=4种不同选法,其中能构成等比数列的三个数分别为2,3,4;2,4,6,有两种不同的选法,所以根据古典概型概率公式得:P=24=12,故选B.4.A【解析】因为a1=s1=a+b, a2=s2−s1=2a,a3=s3−s2=6a,所以q=3, a1=23a=a+b,所以ab=−3,故选A.5.C【解析】由l:k x+y+4=0(k∈R)是圆C:x2+y2+4x−4y+6=0的一条对称轴知,其必过圆心(−2,2),因此k=3,则过点A(0,k)斜率为1的直线m的方程为y=x+3,圆心到其距离d=2=22,所以弦长等于2r2−d2=22−12=6,故选C.6.D【解析】由三视图知,这是一个底面半径为2,高为2的圆柱挖去一个底面半径为2高为2的圆锥,所以平行底面的平面截得一个圆环,其面积为两个圆面积之差,根据比例关系知截圆锥所得圆的半径为h,所以面积为4π−π⋅ 2=π(4− 2),故选D.7.C【解析】易知函数定义域为{x|x≠0},且f(−x)=−f(x),因此函数图象关于原点对称,又当自变量从原点右侧x→0时,y→+∞,故选C.8.D【解析】选项A中不等式a>b>0两边同乘以负数c<0,不等式方向没有改变,错误,选项B中,考查幂函数y=x c,因为c<0,所以函数在(0,+∞)上是减函数,错误,选项D中做差aa−c −bb−c=a b−a c−a b+b c(a−c)⋅(b−c)=(b−a)⋅c(a−c)⋅(b−c)>0,所以aa−c>bb−c正确,选D.点睛:比较大小可以利用做差法,函数增减等来处理问题.利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.9.C【解析】根据框图分析,当n =6时, i =1,当n =12时, i =2,当n =18时, i =3, ⋯当n =2016时, i =336继续进入循环,当n =2022时, i =337,且2022>2017,结束循环,输出 i =337,故选C .10.B【解析】设Q (x 0,y 0),则代入双曲线方程得:b 2x 02−a 2y 02=a 2b 2,又Q (x 0,y 0)到两条渐近线y =b a x , y =−b a x 的距离分别为|bx 0−ay 0|c 和|bx 0+ay 0|c ,所以|bx 0−ay 0|c ⋅|bx 0+ay 0|c =|b 2x 02−a 2y 02|c =a 2b 2c =d 2,即a ⋅b c =d ,又|F P |=2d ,且有点到直线距离知|F P |=b ,所以d =b 2=a ⋅b c ,即e =c a =2,故选B .11.D【解析】因为球与各面相切,所以直径为2,且A C ,AB 1,CB 1的中点在所求的切面圆上,所以所求截面为此三点构成的边长为 2正三角形的外接圆,由正弦定理知R =63,所以面积S =2π3,选D .12.C【解析】由f (x )=x 2e x 得:f ′(x )=2xe x −x 2e x (e x )2=2x −x 2e x ,令2x −x 2=0得:x 1=0,x 2=2,易知x <0时f ′(x )<0,0<x <2时f ′(x )>0,x >2时f ′(x )<0,所以f (x )在(−∞,0)递减,在(0,2)递增,在(2,+∞)递减,大致图象如图所示,当x =2时f (2)=4e 2,令t = f (x ),根据图象,若方程有四根,则方程t +2t =λ必须有一根小于2e ,一根大于2e,当t=2e时,λ=e+2e,而由y=t+2t的图象知,只须λ>e+2e时,方程t+2t =λ必有一根小于2e,一根大于2e,故选C.点睛:本题综合考查函数与方程,函数的零点、极值、单调性,属于难题.解决此类问题的关键是方程t+2t=λ有什么样的根,原方程才有四个根,通过对f(x)的单调性性研究,做出大致图象,结合图象可知方程t+2t =λ必有一根小于2e,一根大于2e,然后结合对号函数图像分析,当λ>e+2e 时,能使程t+2t=λ有一根小于2e,一根大于2e.13.52【解析】由p⊥q知,x+6=0,所以x=−6,|p+q|=|(−5,5)|=52,故填52.14.-5【解析】由通项公式T r+1=C5r x5−r2⋅(−1)r⋅x−r=(−1)r C5r x5−3r2知,展开式含x的一次项时5−3r2=1,得r=1,此时(−1)C51=−5,故填−5.15.3【解析】做出可行域如图,目标函数y=k x−z,当k≤0时,显然最小值不可能为0,当k>0时,当y=k x−z过点(1,3)时取最小值,解得k=3,此时y=k x−z过点(4,0)时有最大值,符合题意,故填k=3.点睛:本题考查线性规划问题,涉及到目标函数中有参数问题,综合性要求较高,属于难题.解决此类问题时,首先做出可行域,然后结合参数的几何意义进行分类讨论,本题参数为直线的斜率,所以可以考虑斜率的正负进行讨论,当k≤0时,显然直线越上移z越小,结合可行域显然最小值不可能为0,分析k >0时,只有当直线y =k x −z 过点(1,3)时取最小值,从而求出k .16.[0,+∞)【解析】由na n +2−(n +2)a n =λ(n 2+2n )得:a n +2n +2−a n n =λ,令b n =an n ,则{b n }的奇数项和偶数项分别成首项为1,且公差为λ的等差数列,所以 b 2k −1=1+(k −1)λ,b 2k =1+(k −1)λ ,k ∈N ∗,故a 2k −1=2k −1+(2k −1)(k −1)λ, a 2k =2k +2k (k −1)λ,k ∈N ∗,因为a n <a n +1对∀n ∈N ∗恒成立,所以a 2k −1=2k −1+(2k −1)(k −1)λ<a 2k =2k +2k (k −1)λ恒成立,同时a 2k =2k +2k (k −1)λ<a 2k +1=2k +1+(2k +1)(k −1)λ恒成立,即−1<(k −1)λ恒成立,当k >1时,−1k −1<λ,而k →+∞时−1k −1→0,所以λ≥0即可,当k =1时,−1<(k −1)λ恒成立,综上λ≥0,故填[0,+∞).17.(1)C =2π3;(2) 34.【解析】试题分析:(1)由已知及正弦定理可得2sin A = 3sin C sin A −sin A cos C ,所以 2= 3sin C −cosC ,化简得:sin (C −π6)=1,在三角形中C =2π3;(2)由(1)知C =2π3,故sin C = 32,又S =122a b sin C ,所以S = 34a b ,结合余弦定理运用均值不等式a b ≤1(当且仅当a =b =1时等号成立),∴S = 34a b ≤34. 试题解析:(1)由已知及正弦定理可得2sin A = 3sin C sin A −sin A cos C ,在ΔA B C 中,sin A >0,∴2= 3sin C −cosC ,∴ 32sin C −12cos C =1,从而sin (C −π6)=1, ∵0<C <π,∴−π6<C −π6<5π6,∴C −π6=π2, ∴C =2π3;(2)解法:由(1)知C =2π3,∴sin C =32, ∵S =122a b sin C ,∴S =34a b , ∵cos C =a 2+b 2−c 22a b , ∴a 2+b 2=3−a b ,∵a 2+b 2≥2a b ,∴a b≤1(当且仅当a=b=1时等号成立),∴S=34a b≤34;解法二:由正弦定理可知asinA =bsin B=csin C=2,∵S=12a b sin C,∴S=3sin A sin B,∴S=3sin A sin(π3−A),∴S=32sin(2A+π6)−34,∵0<A<π3,∴π6<2A+π6<5π6,∴当2A+π6=π2,即A=π6时,S取最大值34.点睛:解决三角形中的角边问题时,要根据俄条件选择正余弦定理,将问题转化统一为边的问题或角的问题,利用三角中两角和差等公式处理,特别注意内角和定理的运用,涉及三角形面积最值问题时,注意均值不等式的利用,特别求角的时候,要注意分析角的范围,才能写出角的大小.18.(1)见解析;(2)513.【解析】试题分析:(1)根(1)要证面面垂直,需要找线面垂直,本题中重点分析线段B D,利用条件底面是菱形可得B D⊥A C,通过全等可知E D=E B,从而B D⊥E G,故B D是平面A C F E的垂线,从而得证;(2)涉及二面角的计算,一般需要建系设点,计算平面的法向量,利用二面角与法向量夹角之间的关系处理,需要注意建系时分析清楚哪三条线互相垂直.试题解析:(1)证明:连接E G,∵四边形A B C D为菱形,∵A D=A B,B D⊥A C,D G=G B,在ΔE A D和ΔE A B中,A D=A B,A E=A E,∠E A D=∠E A B,∴ΔE A D≅ΔE A B,∴E D=E B,∴B D⊥E G,∵A C∩E G=G,∴B D⊥平面A C F E,∵B D⊂平面A B C D,∴平面A C F E⊥平面A B C D;(2)解法一:过G作E F垂线,垂足为M,连接M B,M G,M D,易得∠E A C为A E与面A B C D所成的角,∴∠E A C=600,∵E F⊥G M,E F⊥B D,∴E F⊥平面B D M,∴∠D M B为二面角B−E F−D的平面角,可求得M G=32,D M=B M=132,在ΔD M B中由余弦定理可得:cos∠B M D=513,∴二面角B−E F−D的余弦值为513;解法二:如图,在平面A B C D内,过G作A C的垂线,交E F于M点,由(1)可知,平面A C F E⊥平面A B C D,∴M G⊥平面A B C D,∴直线G M,G A,G B两两互相垂直,分别G A、G B、G M为x,y,z轴建立空间直角坐标系G−x y z,易得∠E A C为A E与平面A B C D所成的角,∴∠E A C=600,则D(0,−1,0),B(0,1,0),E(32,0,32),F(−332,0,32),F E=(23,0,0),B E=(32,−1,32),D E=(32,1,32),设平面B E F的一个法向量为n=(x,y,z),则n·F E=0且n·B E=0,∴x=0,且32x−y+32z=0取z=2,可得平面B E F的一个法向量为n=(0,3,2),同理可求得平面D E F的一个法向量为m=(0,3,−2),∴cos〈n,m〉=513,∴二面角B−E F−D的余弦值为513.19.(1)y ={0.5x ,0≤x ≤2000.8x −60,200<x ≤400x −140,x >400;(2)a =0.0015,b =0.0020;(3)170.5.【解析】试题分析:1)根据电价的分档情况,可以写出分段函数,当0≤x ≤200时,y =0.5x ;当200<x ≤400时,y =0.5×200+0.8×(x −200)=0.8x −60,当x >400时,y =0.5×200+0.8×200+1.0×(x −400)=x −140;(2)由(1)可知:当y =260时,x =400,则P (x ≤400)=0.80,根据频率分布直方图可知{0.1+2×100b +0.3=0.8100a +0.05=0.2,解出a =0.0015,b =0.0020;(3)分别求出各组中值点的电价,并求其概率(频率),再求平均值y =25×0.1+75×0.2+140×0.3+220×0.2+310×0.15+410×0.05=170.5. 试题解析:(1)当0≤x ≤200时,y =0.5x ;当200<x ≤400时,y =0.5×200+0.8×(x −200)=0.8x −60, 当x >400时,y =0.5×200+0.8×200+1.0×(x −400)=x −140,所以y 与x 之间的函数解析式为:y ={0.5x ,0≤x ≤2000.8x −60,200<x ≤400x −140,x >400;(2)由(1)可知:当y =260时,x =400,则P (x ≤400)=0.80,结合频率分布直方图可知:{0.1+2×100b +0.3=0.8100a +0.05=0.2,∴a =0.0015,b =0.0020;(3)由题意可知X 可取50,150,250,350,450,550.当x =50时,y =0.5×50=25,∴P (y =25)=0.1, 当x =150时,y =0.5×150=75,∴P (y =75)=0.2,当x =250时,y =0.5×200+0.8×50=140,∴P (y =140)=0.3, 当x =350时,y =0.5×200+0.8×150=220,∴P (y =220)=0.2,当x =450时,y =0.5×200+0.8×200+1.0×50=310,∴P (y =310)=0.15, 当x =550时,y =0.5×200+0.8×200+1.0×150=410,∴P (y =410)=0.05, 故Y 的概率分布列为:所以随机变量X的数学期望E Y=25×0.1+75×0.2+140×0.3+220×0.2+310×0.15+410×0.05= 170.5.20.(1)x24+y23=1;(2)[433,4].【解析】(1)由题意知2a=4,所以a=2,所以A1(−2,0),A2(2,0),B1(0,−b),B2(0,b),则直线A2B2的方程为x2+yb=1,即b x+2y−2b=0,所以b=127,解得b2=3,故椭圆C的方程为x24+y23=1;(2)由题意,可设直线l的方程为x=m y+n,m≠0,联立{x=m y+n3x2+4y2=12消去x得(3m2+4)y2+6m n y+3(n2−4)=0,(*)由直线l与椭圆C相切,得Δ=(6m n)2−4×3(3m2+4)(n2−4)=0,化简得3m2−n2+4=0,设点H(m t+n,t),由(1)知F1(−1,0),F2(1,0),则t−0 (m t+n)−1·1m=−1,解得t=−m(n−1)1+m,所以ΔF1H N的面积SΔF1H N=12(n+1)|−m(n−1)1+m|=12|m(n2−1)|1+m,代入3m2−n2+4=0消去n化简得SΔF1H N=32|m|,所以32|m|≥316n2=316(3m2+4),解得23≤|m|≤2,即49≤m2≤4,从而49≤n2−43≤4,又n>0,所以433≤n≤4,故n的取值范围为[433,4].点睛:本题主要考查了椭圆的方程及直线与椭圆的位置关系,是高考的必考点,属于难题.求椭圆方程的方法一般就是根据条件建立a,b,c的方程,求出a2,b2即可,注意a2=b2+c2,e=ca 的应用;涉及直线与圆锥曲线相交时,未给出直线时需要自己根据题目条件设直线方程,要特别注意直线斜率是否存在的问题,避免不分类讨论造成遗漏,然后要联立方程组,得一元二次方程,利用根与系数关系写出x1+x2,x1⋅x2,再根据具体问题应用上式,其中要注意判别式条件的约束作用.本题注意相切情况的运用,化三角形面积为含一个变量的式子,再利用椭圆范围求解.21.(1)y=−x−e−2;(2)λ=1;(3)见解析.【解析】(1)对函数f(x)求导得f′(x)=ln x+x·1x=ln x+1,∴f′(e−2)=ln e−2+1=−1,又f(e−2)=e−2ln e−2=−2e−2,∴曲线y=f(x)在x=e−2处的切线方程为y−(−2e−2)=−(x−e−2),即y=−x−e−2;(2)记g(x)=f(x)−λ(x−1)=x ln x−λ(x−1),其中x>0,由题意知g(x)≥0在(0,+∞)上恒成立,下求函数g(x)的最小值,对g(x)求导得g′(x)=ln x+1−λ,令g′(x)=0,得x=eλ−1,当变化时,′∴g(x)min=g(x)极小=g(eλ−1)=(λ−1)eλ−1−λ(eλ−1−1)=λ−eλ−1,∴λ−eλ−1≥0,记G(λ)=λ−eλ−1,则G′(λ)=1−eλ−1,令G′(λ)=0,得λ=1.′∴G(λ)max=G(λ)极大=G(1)=0,故λ−eλ−1≤0当且仅当λ=1时取等号,又λ−eλ−1≥0,从而得到λ=1;(3)先证f(x)≥−x−e−2,记 (x)=f(x)−(−x−e−2)=x ln x+x+e−2,则 ′(x)=ln x+2,令 ′(x)=0,得x=e−2,′∴ (x)min= (x)极小= (e−2)=e−2ln e−2+e−2+e−2=0,(x)≥0恒成立,即f(x)≥−x−e−2,记直线y=−x−e−2,y=x−1分别与y=a交于(x1′,a),(x2′,a),不妨设x1<x2,则a=−x1′−e−2=f(x1)≥−x1−e−2,从而x1′<x1,当且仅当a=−2e−2时取等号,由(2)知,f(x)≥x−1,则a=x2′−1=f(x2)≥x2−1,从而x 2≤x 2′,当且仅当a =0时取等号,故|x 1−x 2|=x 2−x 1≤x 2′−x 1′=(a +1)−(−a −e −2)=2a +1+e −2, 因等号成立的条件不能同时满足,故|x 1−x 2|<2a +1+e −2. 22.(1)ρ2(13cos 2θ+12sin 2θ)=1;(2)见解析.【解析】试题分析:(1)将参数方程中的参数消元得到:x 24+y 23=1,再根据x =ρcos θ,y =ρsin θ,代入普通方程化简得:3ρ2cos 2θ+4ρ2sin 2θ=12;(2)不妨设设点A ,B 的极坐标分别为A (ρ1,θ),B (ρ2,θ+π2),代入极坐标方程得{1ρ12=14cos 2θ+13sin 2θ1ρ22=14sin 2θ+13cos 2θ,所以1ρ1+1ρ2=712,得证. 试题解析: (1)将点P (1,2 33)代入曲线E 的方程:{1−a co sα2 33= 2si n α,解得a 2=3,所以曲线E 的普通方程为x 23+y 22=1,极坐标方程为ρ2(13cos 2θ+12sin 2θ)=1,(2)不妨设点A ,B 的极坐标分别为A (ρ1,θ),B (ρ2,θ+π2),ρ1>0,ρ2>0,则{13(ρ1cos θ)2+12(ρ1sin θ)2=113(ρ2cos (θ+π2))2+12(ρ2sin (θ+π2))2=1,即{1ρ1=13cos 2θ+12sin 2θ1ρ2=13sin 2θ+12cos 2θ, ∴1ρ12+1ρ22=56,即1|O A |2+1|O B |2=56, 所以1|O A |2+1|O B |2为定值56.点睛:本题考查了极坐标方程化为直角坐标方程、椭圆的参数直角方程极坐标方程的互化及其应用、直线的参数方程的应用,考查了推理能力与计算能力,属于中档题.椭圆的参数方程化为普通方程即利用三角恒等式sin 2θ+cos 2θ=1消去参数;在直线的参数方程中,参数的意义即为参数|t |对应的为动点到定点的距离,常结合韦达定理进行求解. 23.(1)(0,3);(2)−2<a <2. 【解析】试题分析:(1)若a −3∈M ,则|2a −3|<|a |−(a −3),分类讨论, 若a ≥32,则2a −3<3,∴32≤a <3,若0≤a <32,则3−2a <3,∴0<a <32,若a ≤0,则3−2a <−a −(a −3),无解;(2)当x ∈[−1,1]时,g (x )=3,所以|x +a |<3恒成立,即−3−x <a <3−x ,当x ∈[−1,1]时恒成立,所以−2<a <2. 试题解析:(1)依题意有:|2a −3|<|a |−(a −3),若a≥32,则2a−3<3,∴32≤a<3,若0≤a<32,则3−2a<3,∴0<a<32,若a≤0,则3−2a<−a−(a−3),无解,综上所述,a的取值范围为(0,3);(2)由题意可知,当x∈[−1,1]时,f(x)<g(x)恒成立,∴|x+a|<3恒成立,即−3−x<a<3−x,当x∈[−1,1]时恒成立,∴−2<a<2.。

2017年广东省深圳市三校联考高三理科一模数学试卷

2017年广东省深圳市三校联考高三理科一模数学试卷

2017年广东省深圳市三校联考高三理科一模数学试卷一、选择题(共12小题;共60分)1. 已知集合,,则A. B.C. D.2. 命题“,”的否定是A. ,B. ,C. ,D. ,3. 函数的定义域为A. B. C. D.4. 定积分A. B. C. D.5. 函数的零点所在的大致区间是A. B.C. 和D.6. 已知,,,则,,的大小关系为A. B. C. D.7. 已知命题:不等式的解集为,则实数;命题:“”是“”的必要不充分条件,则下列命题正确的是A. B.C. D.8. 已知,,则下列结论正确的是A. 是偶函数B. 是奇函数C. 是偶函数D. 是奇函数9. 函数的一段大致图象是A. B.C. D.10. 已知,函数为偶函数,则的值是A. B. C. D.11. 直角坐标系中横坐标、纵坐标均为整数的点称为格点,如果函数的图象恰好通过个格点,则称函数为阶格点函数.下列函数:①;②;③;④.其中是一阶格点函数的有A. ①②B. ①④C. ①②④D. ①②③④12. 定义区间的长度为单调递增,函数的定义域与值域都是,则区间取最大长度时实数的值A. B. C. D.二、填空题(共4小题;共20分)13. .14. 设函数,则.15. 设函数的最大值为,最小值为,则.16. 在平面直角坐标系中,直线是曲线的切线,则当时,实数的最小值是.三、解答题(共8小题;共104分)17. 设:实数满足,:实数满足.(1)若,且为真,求实数的取值范围;(2)若其中且是的充分不必要条件,求实数的取值范围.18. 已知函数为常数,且函数的图象过点.(1)求的值;(2)若,且,求满足条件的的值.19. 已知三次函数过点,且函数在点处的切线恰好是直线.(1)求函数的解析式;(2)设函数,若函数在区间上有两个零点,求实数的取值范围.20. 已知函数满足(其中,).(1)求的表达式;(2)对于函数,当时,,求实数的取值范围.(3)当时,的值为负数,求的取值范围.21. 设,曲线在点处的切线与直线垂直.(1)求的值;(2)若,恒成立,求的范围;(3)求证:.22. 如图,是圆的直径,是弦,的平分线交圆于点,,交的延长线于点,交于点.(1)求证:是圆的切线;(2)若,的半径为,,求的值.23. 在平面直角坐标系中,直线过点且倾斜角为,以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线相交于,两点;(1)曲线的直角坐标方程;(2)若,求直线的倾斜角的值.24. 设函数.(1)求不等式的解集;(2)若存在使不等式成立,求实数的取值范围.答案第一部分1. C2. D3. C4. B5. B【解析】从图象和端点函数值两个方面判断.首先观察与的图象如图可知它们的交点只有一个,又,,,则,所以在内有零点.6. A7. D8. D 【解析】,,A.,.,不满足函数的奇偶性的定义,是非奇非偶函数.B.,.,不满足奇偶性的定义.C.,不满足函数的奇偶性定义.D.,,函数是奇函数.9. A 10. B【解析】由已知 .又,所以,得.11. C 【解析】通过的格点为;通过的格点为;通过的格点为.12. D 【解析】由题意得,函数的定义域是,因为是其定义域的子集,所以或.因为在上是增函数,所以由条件得则,是方程的同号相异的实数根,即,是方程同号相异的实数根.所以,,则,解得或.所以所以的最大值为,此时,解得,即在区间的最大长度为时,的值是.第二部分13.14.15.16.【解析】因为直线是曲线的切线.令切点为,所以,,,.设函数,则.当时,;当时,;当时,..所以函数在上单调递减,在上单调递增.所以的最小值为,所以的最小值为.第三部分17. (1)由得,当时,,即为真时实数的取值范围是.由,得,得,即为真时实数的取值范围是,若为真,则真且真,所以实数的取值范围是.(2)由得,若是的充分不必要条件,则,且,设,,则,又或,或,则,且.所以实数的取值范围是.18. (1)由已知得,解得.(2)由(1)知,又,则,即,即,令,则,即,又,故,即,解得.19. (1)函数在点处的切线恰好是,所以有:,所以,所以所以(2)依题意得:原命题可等价于方程在上有两个不同的解.即在区间有两个不同的解.考察函数令所以或,又所以在单调递增,令所以,又所以在单调递减.所以所以在区间上有两个不同的解.所以20. (1)设,则,代入原函数得,,则.(2)当时,是增函数,是减函数且,所以是定义域上的增函数,同理,当时,也是上的增函数,又,则为奇函数,由得:,所以解得,则实数的取值范围是.(3)因为是增函数,所以时,,又当时,的值为负数,所以,则解得且,所以的取值范围是且.21. (1)由题设,,所以,.(2),,.即.设,即,,①若,则,,这与题设矛盾;②若,方程的判别式,当,即时,,∴在上单调递减,∴,即不等式成立.当时,方程,其根当单调递增,,与题设矛盾.综上所述,.(3)由(2)知,当时,时,成立.不妨令,所以累加可得22. (1)连接,因为是圆的直径,是弦,的平分线交圆于点,所以,所以,又,所以,又为半径,所以是圆的切线.(2)连接,在中,,,所以.又因为,所以,由圆的切割线定理得:,所以.23. (1)因为,所以.所以,所以.所以曲线的直角坐标方程为.(2)当时,直线:,所以,所以舍.当时,设,则:,即,所以圆心到直线的距离.由得:,解得:,所以,因为,所以或.24. (1)由得,所以或解得或,所以不等式的解集为.(2)令,则.所以,因为存在使不等式成立,所以,所以.。

广东省深圳市高三数学下学期第一次调研考试试题 理

广东省深圳市高三数学下学期第一次调研考试试题 理

深圳市2017年高三年级第一次调研考试数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}22,4,,6,8,B |9180A x x x ==-+≤,则AB =( )A . {}2,4B .{}4,6C .{}6,8D .{}2,8 2.若复数()12a ia R i+∈+为纯虚数,其中i 为虚数单位,则a = ( ) A . 2 B . 3 C .-2 D .-33. 袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( )A .14 B .12 C .13 D . 234.等比数列{}n a 的前n 项和为13n n S a b -=+,则ab= ( )A .-3B . -1 C. 1 D .35.直线():40l kx y k R ++=∈是圆22:4460C x y x y ++-+=的一条对称轴,过点()0,A k 作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为 ( )A B D . 6.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为()02h h <<的平面截该几何体,则截面面积为 ( )A .4πB .2h π C. ()22h π- D .()24h π-7. 函数()21cos 21x x f x x +=-的图象大致是( )8.已知0,0a b c >><,下列不等关系中正确的是 ( )A .ac bc >B .c c a b > C. ()()log log a b a c b c ->- D .a ba cb c>-- 9. 执行如图所示的程序框图,若输入2017p =,则输出i 的值为( ) A . 335 B .336 C. 337 D .33810.已知F 是双曲线()2222:10,0x y E a b a b-=>>的右焦点,过点F 作E 的一条渐近线的垂线,垂足为P ,线段PF 与E 相交于点Q ,记点Q 到E 的两条渐近线的距离之积为2d ,若2FP d =,则该双曲线的离心率是( )A B .2 C. 3 D .411. 已知棱长为2的正方体1111ABCD A B C D -,球O 与该正方体的各个面相切,则平面1ACB 截此球所得的截面的面积为( ) A .83π B .53π C. 43π D .23π12. 已知函数()2,0,x x f x x e e=≠为自然对数的底数,关于x 0λ+-=有四个相异实根,则实数λ的取值范围是( )A .20,e ⎛⎫ ⎪⎝⎭ B.()+∞ C. 2,e e ⎛⎫++∞ ⎪⎝⎭ D .224,2e e ⎛⎫++∞ ⎪⎝⎭第Ⅱ卷二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上 13.已知向量()()1,2,,3p q x ==,若p q ⊥,则p q += .14. 51x ⎫-⎪⎭的二项展开式中,含x 的一次项的系数为 .(用数字作答)15.若实数,x y 满足不等式组4023801x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,目标函数z kx y =-的最大值为12,最小值为0,则实数k = .16.已知数列{}n a 满足()()2222n n na n a n n λ+-+=+,其中121,2a a ==,若1n n a a +<对*n N ∀∈恒成立,则实数λ的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17. ABC ∆的内角A B C 、、的对边分别为a b c 、、,已知2sin cos a A a C =-. (1)求C ; (2)若c =ABC ∆的面积S 的最大值.18. 如图,四边形ABCD 为菱形,四边形ACEF 为平行四边形,设BD 与AC 相交于点G,2,AB BD AE EAD EAB ===∠=∠.(1)证明:平面ACEF ⊥平面ABCD ;(2)若AE 与平面ABCD 所成角为60°,求二面角B EF D --的余弦值.19. 某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y (单位:元)关于月用电量x (单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求,a b 的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y 为该居民用户1月份的用电费用,求Y 的分布列和数学期望.20. 已成椭圆()2222:10x y C a b a b+=>>的左右顶点分别为12A A 、,上下顶点分别为21B B 、,左右焦点分别为12F F 、,其中长轴长为4,且圆2212:7O x y +=为菱形1122A B A B 的内切圆. (1)求椭圆C 的方程;(2)点(),0N n 为x 轴正半轴上一点,过点N 作椭圆C 的切线l ,记右焦点2F 在l 上的射影为H ,若1F HN ∆的面积不小于2316n ,求n 的取值范围. 21. 已知函数()ln ,f x x x e =为自然对数的底数. (1)求曲线()y f x =在2x e -=处的切线方程;(2)关于x 的不等式()()1f x x λ≥-在()0,+∞上恒成立,求实数λ的值;(3)关于x 的方程()f x a =有两个实根12,x x ,求证:21221x x a e --<++.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系中xOy 中,已知曲线E经过点P ⎛ ⎝,其参数方程为cos x a y αα=⎧⎪⎨=⎪⎩(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线E 的极坐标方程;(2)若直线l 交E 于点A B 、,且OA OB ⊥,求证:2211OAOB+为定值,并求出这个定值.23.选修4-5:不等式选讲已知()(),3f x x a g x x x =+=+-,记关于x 的不等式()()f x g x <的解集为M . (1)若3a M -∈,求实数a 的取值范围; (2)若[]1,1M -⊆,求实数a 的取值范围.理试卷答案一、选择题1-5: BCBAC 6-10: DCDCB 11、12:BC 二、填空题13. [)0,+∞ 三、解答题17.解:(1)由已知及正弦定理可得2sin sin sin cos A C A A C =-, 在ABC ∆中,sin 0A >,∴2cosC C =-,1cos 12C C -=, 从而sin 16C π⎛⎫-= ⎪⎝⎭,∵0C π<<, ∴5666C πππ-<-<, ∴62C ππ-=,∴23C π=;(2)解法:由(1)知23C π=,∴sin C =,∵12sin 2S ab C =,∴S =, ∵222cos 2a b c C ab+-=,∴223a b ab +=-, ∵222a b ab +≥,∴1ab ≤(当且仅当1a b ==时等号成立),∴S =≤; 解法二:由正弦定理可知2sinA sin sin a b cB C===, ∵1sin 2S ab C =,∴sin S A B =,∴sin 3S A A π⎛⎫=-⎪⎝⎭,∴26S A π⎛⎫=+ ⎪⎝⎭ ∵03A π<<,∴52666A πππ<+<,∴当262A ππ+=,即6A π=时,S .18.解:(1)证明:连接EG , ∵四边形ABCD 为菱形,∵,,AD AB BD AC DG GB =⊥=, 在EAD ∆和EAB ∆中,,AD AB AE AE ==,EAD EAB ∠=∠,∴EAD EAB ∆≅∆, ∴ED EB =, ∴BD EG ⊥, ∵ACEG G =,∴BD ⊥平面ACFE , ∵BD ⊂平面ABCD , ∴平面ACFE ⊥平面ABCD ;(2)解法一:过G 作EF 垂线,垂足为M ,连接,,MB MG MD , 易得EAC ∠为AE 与面ABCD 所成的角, ∴060EAC ∠=, ∵,EF GM EF BD ⊥⊥, ∴EF ⊥平面BDM ,∴DMB ∠为二面角B EF D --的平面角,可求得3,2MG DM BM ===在DMB ∆中由余弦定理可得:5cos 13BMD ∠=, ∴二面角B EF D --的余弦值为513;解法二:如图,在平面ABCD 内,过G 作AC 的垂线,交EF 于M 点, 由(1)可知,平面ACFE ⊥平面ABCD , ∴MG ⊥平面ABCD ,∴直线,,GM GA GB 两两互相垂直,分别GA GB GM 、、为,,x y z 轴建立空间直角坐标系G xyz -,易得EAC ∠为AE 与平面ABCD 所成的角,∴060EAC ∠=,则()()330,1,0,0,1,0,E ,22D B F ⎫⎛⎫-⎪ ⎪⎪ ⎪⎭⎝⎭, ()333323,0,0,,1,,,1,22FE BE DE ⎛⎫⎛⎫==-= ⎪ ⎪⎪⎪⎭⎭, 设平面BEF 的一个法向量为(),,n x y z =,则0n FE =且0n BE =,∴0x =302x y z -+= 取2z =,可得平面BEF 的一个法向量为()0,3,2n =, 同理可求得平面DEF 的一个法向量为()0,3,2m =-, ∴5cos ,13n m =, ∴二面角B EF D --的余弦值为513. 19.解析:(1)当0200x ≤≤时,0.5y x =;当200400x <≤时,()0.52000.82000.860y x x =⨯+⨯-=-,当400x >时,()0.52000.8200 1.0400140y x x =⨯+⨯+⨯-=-,所以y 与x 之间的函数解析式为:0.5,02000.860,200400140,400x x y x x x x ≤≤⎧⎪=-<≤⎨⎪->⎩;(2)由(1)可知:当260y =时,400x =,则()4000.80P x ≤=,结合频率分布直方图可知:0.121000.30.81000.050.2b a +⨯+=⎧⎨+=⎩,∴0.0015,0.0020a b ==;(3)由题意可知X 可取50,150,250,350,450,550. 当50x =时,0.55025y =⨯=,∴()250.1P y ==, 当150x =时,0.515075y =⨯=,∴()750.2P y ==,当250x =时,0.52000.850140y =⨯+⨯=,∴()1400.3P y ==, 当350x =时,0.52000.8150220y =⨯+⨯=,∴()2200.2P y ==,当450x =时,0.52000.8200 1.050310y =⨯+⨯+⨯=,∴()3100.15P y ==, 当550x =时,0.52000.8200 1.0150410y =⨯+⨯+⨯=,∴()4100.05P y ==, 故Y 的概率分布列为:所以随机变量X 的数学期望250.1750.21400.32200.23100.154100.05170.5EY =⨯+⨯+⨯+⨯+⨯+⨯=.20.解:(1)由题意知24a =,所以2a =, 所以()()()()12122,0,2,0,0,,0,A A B b B b --,则 直线22A B 的方程为12x yb+=,即220bx y b +-=, =,解得23b =,故椭圆C 的方程为22143x y +=;(2)由题意,可设直线l 的方程为,0x my n m =+≠,联立223412x my n x y =+⎧⎨+=⎩消去x 得()()222346340m y mny n +++-=,(*) 由直线l 与椭圆C 相切,得()()()2226433440mn m n∆=-⨯+-=,化简得22340m n -+=,设点(),H mt n t +,由(1)知()()121,0,1,0F F -,则()0111t mt n m -=-+-,解得()211m n t m -=-+, 所以1F HN ∆的面积()()()1222111112121F HNm n m n S n m m∆---=+=++, 代入22340m n -+=消去n 化简得132F HN S m ∆=, 所以()223333421616m n m ≥=+,解得223m ≤≤,即2449m ≤≤, 从而244493n-≤≤,又0n >4n≤≤,故n 的取值范围为4⎤⎥⎦.21.解(1)对函数()f x 求导得()1ln ln 1f x x x x x'=+=+, ∴()22ln 11f e e --'=+=-, 又()2222ln 2f e e e e ----==-,∴曲线()y f x =在2x e -=处的切线方程为()()222y e x e ----=--,即2y x e -=--;(2)记()()()()1ln 1g x f x x x x x λλ=--=--,其中0x >, 由题意知()0g x ≥在()0,+∞上恒成立,下求函数()g x 的最小值, 对()g x 求导得()ln 1g x x λ'=+-,令()0g x '=,得1x e λ-=,当x 变化时,()(),g x g x '变化情况列表如下:∴()()()()()1111min 11g x g x g e e e e λλλλλλλ----===---=-极小, ∴10e λλ--≥, 记()1G eλλλ-=-,则()11G eλλ-'=-,令()0G λ'=,得1λ=.当λ变化时,()(),G G λλ'变化情况列表如下:∴()()()max 10G G G λλ===极大, 故10e λλ--≤当且仅当1λ=时取等号, 又10e λλ--≥,从而得到1λ=; (3)先证()2f x x e -≥--,记()()()22ln h x f x x e x x x e --=---=++,则()ln 2h x x '=+, 令()0h x '=,得2x e -=,当x 变化时,()(),h x h x '变化情况列表如下:∴()()()22222min ln 0h x h x h e e e e e -----===++=极小,()0h x ≥恒成立,即()2f x x e -≥--,记直线2,1y x e y x -=--=-分别与y a =交于()()12,,,x a x a '',不妨设12x x <,则()22111a x ef x x e --'=--=≥--,从而11x x '<,当且仅当22a e -=-时取等号,由(2)知,()1f x x ≥-,则()22211a x f x x '=-=≥-, 从而22x x '≤,当且仅当0a =时取等号, 故()()22122121121x x x x x x a a ea e--''-=-≤-=+---=++,因等号成立的条件不能同时满足,故21221x x a e --<++.22.解:(1)将点P ⎛ ⎝代入曲线E 的方程:1cos a αα-⎧=, 解得23a =,所以曲线E 的普通方程为22132x y +=,极坐标方程为22211cos sin 132ρθθ⎛⎫+= ⎪⎝⎭, (2)不妨设点,A B 的极坐标分别为()1212,,,,0,02A B πρθρθρρ⎛⎫+>> ⎪⎝⎭, 则()()2211222211cos sin 13211cos sin 13222ρθρθππρθρθ⎧+=⎪⎪⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪+++= ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩,即22212222111cos sin 32111sin cos 32θθρθθρ⎧=+⎪⎪⎨⎪=+⎪⎩,∴22121156ρρ+=, 即221156OAOB +=, 所以2211OAOB+为定值56. 23.解:(1)依题意有:()233a a a -<--,若32a ≥,则233a -<,∴332a ≤<, 若302a ≤<,则323a -<,∴302a <<,若0a ≤,则()323a a a -<---,无解, 综上所述,a 的取值范围为()0,3;(2)由题意可知,当[]1,1x ∈-时,()()f x g x <恒成立, ∴3x a +<恒成立,即33x a x --<<-,当[]1,1x ∈-时恒成立, ∴22a -<<.。

最新届深圳市高三(一模)数学(理)

最新届深圳市高三(一模)数学(理)

2017届深圳市高三第一次调研考试试题(一)数学(理科) 2017.2一、选择题:本大题共12小题,每小题5分。

只有一项是符合题目要求的。

1、若集合{}{}22,4,,6,8,B |9180A x x x ==-+≤,则A B =( )A . {}2,4B .{}4,6C .{}6,8D .{}2,82、若复数()12a ia R i+∈+为纯虚数,其中i 为虚数单位,则a = ( ) A . 2 B . 3 C .-2 D .-33、袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( )A . 14B .12C .13D . 234、等比数列{}n a 的前n 项和为,31b a S n n +⋅=-则ab= ( )A .-3B . -1 C. 1 D .35、直线():40l kx y k R ++=∈是圆22:4460C x y x y ++-+=的一条对称轴,过点()0,A k 作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为 ( )A B D . 6、祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等, 那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个 满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为()02h h <<的平面截该几何体,则截面面积为 ( )A .4πB .2h π C. ()22h π- D .()24h π-7、函数x x f xx cos 1212)(⋅-+=的图象大致是( )8、已知0,0a b c >><,下列不等关系中正确的是 ( )A .ac bc >B .c c a b > C. ()()log log a b a c b c ->- D .a ba cb c>-- 9、执行如图所示的程序框图,若输入2017p =,则输出i 的值为( )A . 335B .336 C. 337 D .33810、已知F 是双曲线()2222:10,0x y E a b a b-=>>的右焦点,过点F 作E 的一条渐近线的垂线,垂足为P ,线段PF 与E 相交于点Q ,记点Q 到E 的两条渐近线的距离之 积为2d ,若2FP d =,则该双曲线的离心率是( )A B .2 C. 3 D .411、已知棱长为2的正方体1111ABCD A B C D -,球O 与该正方体的各个面相切,则平面1ACB 截此球所得的截面的面积为( )A .83π B .53π C. 43π D .23π12、已知函数()2,0,x x f x x e e=≠为自然对数的底数,关于x 0λ+-=有四个相异实根,则实数λ的取值范围是( )A .),(e 20B .),22(+∞ C.),2(+∞+ee D .),42(22+∞+e e二、填空题:本大题共4小题,每小题5分.13、已知向量()()1,2,,3p q x ==,若p q ⊥,则p q += .14、51)(xx -的二项展开式中,含x 的一次项的系数为 .(用数字作答)15、若实数,x y 满足不等式组4023801x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,目标函数z kx y =-的最大值为12,最小值为0,则实数k = .16、已知数列{}n a 满足()()2222n n na n a n n λ+-+=+,其中121,2a a ==,若1n n a a +<对*n N ∀∈恒成立,则实数λ的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17、(本小题满分12分)ABC ∆的内角A B C 、、的对边分别为a b c 、、,已知2sin cos a A a C =-. (Ⅰ)求C ;(Ⅱ)若c =ABC ∆的面积S 的最大值.18、(本小题满分12分)如图,四边形ABCD 为菱形,四边形ACFE 为平行四边形,设BD 与AC 相交于点G,2,AB BD AE EAD EAB ===∠=∠. (Ⅰ)证明:平面ACFE ⊥平面ABCD ;(Ⅱ)若AE 与平面ABCD 所成角为60°,求二面角B EF D --的余弦值.19、(本小题满分12分)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但 不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(Ⅰ)求某户居民用电费用y (单位:元)关于月用电量x (单位:度)的函数解析式; (Ⅱ)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电 费用不超过260元的点80%,求,a b 的值;(Ⅲ)在满足(Ⅱ)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y 为该居民用户1月份的用电费用,求Y 的分布列和数学期望.20、(本小题满分12分)已成椭圆()2222:10x y C a b a b+=>>的左右顶点分别为12A A 、,上下顶点分别为21B B 、,左右焦点分别为12F F 、,其中长轴长为4,且圆2212:7O x y +=为菱形1122A B A B 的内切圆.(Ⅰ)求椭圆C 的方程;(Ⅱ)点(),0N n 为x 轴正半轴...上一点,过点N 作椭圆C 的切线l ,记右焦点2F 在l 上的射影 为H ,若1F HN ∆的面积不小于2316n ,求n 的取值范围.21、(本小题满分12分)已知函数()ln ,f x x x e =为自然对数的底数. (Ⅰ)求曲线()y f x =在2x e -=处的切线方程;(Ⅱ)关于x 的不等式()()1f x x λ≥-在()0,+∞上恒成立,求实数λ的值; (Ⅲ)关于x 的方程()f x a =有两个实根12,x x ,求证:21221x x a e --<++.请考生在22、23两题中任选一题作答,注意:只能做所选定的题目。

2017年广东高考(理科)数学试题及答案

 2017年广东高考(理科)数学试题及答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x<},则A .{|0}AB x x =< B .A B =RC .{|1}AB x x =>D .AB =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x ++展开式中2x 的系数为A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n+1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

深圳市2017届高三年级第一次调研考试理科综合试题及答案

深圳市2017届高三年级第一次调研考试理科综合试题及答案

深圳市2017届高三年级第一次调研考试理科综合本试卷共16页,38题(含选考题)。

全卷满分300分。

考试用时150分钟。

注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。

2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。

3.非选择题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

签在试题卷、草稿纸上无效。

4.选考题的作答:先把所选题目的题号在答题卡指定的位置用统一提供的2B铅笔涂黑。

考生应根据自己选做的题目准确填涂题号,不得多选。

答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。

5.考生必须保持答题卡的整洁。

考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 F 19 Mg 24 S 32 Ca 40 Zn 65第I卷选择题一、选择题本大题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列与细胞相关的叙述,错误..的是A.线粒体和核仁都是含有DNA的细胞器B.洋葱鳞片叶内表皮细胞可发生质壁分离C.硝化细菌可依靠有氧呼吸利用葡萄糖的能量D.线粒体不能分解葡萄糖但可产生A TP2.下列关于基因指导蛋白质合成的叙述,正确的是A.遗传信息从碱基序列到氨基酸序列不会损失B.密码子中碱基的改变一定会导致氨基酸改变C.DNA通过碱基互补配对决定mRNA的序列D.每种tRNA可以识别并转运多种氨基酸3.在低温诱导植物染色体数目变化实验中,下列说法合理的是A.剪取0.5~1cm洋葱根尖放入4℃的低温环境中诱导B.待根长至1cm左右时将洋葱放入卡诺氏液中处理C.材料固定后残留的卡诺氏液用95%的酒精冲洗D.经龙胆紫染液染色后的根尖需用清水进行漂洗4.下列关于神经细胞的说法中,正确的是A.神经细胞不能向细胞外分泌化学物质B.静息状态下钾离子外流需要消耗ATPC.受刺激后细胞膜外电位变为负电位D.膝跳反射过程中兴奋的传导是双向的5.松土是农作物栽培的传统耕作措施。

2017年广东高考理科数学试题含答案(Word版)

2017年广东高考理科数学试题含答案(Word版)

2017年普通高等学校招生全国统一考试(广东卷)数学(理)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 答案:B2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+ 答案:A 2525(34)25(34):=34,.34(34)(34)25i i z i i i i --===-++-提示故选A3.若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5:(),(2,1)(1,1)3,3,6,.CM m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选4.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+答案:D提示:从而两曲线均为双曲线,又25故两双曲线的焦距相等,选D.5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)0:11,,60,.22B B =∴答案提示即这两向量的夹角余弦值为从而夹角为选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20 B. 100,20 C. 200,10 D. 100,10::(350045002000)2%200,20002%50%20,.AA ++⋅=⋅⋅=∴答案提示样本容量为抽取的高中生近视人数为:选7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定 答案:D 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130 答案: D1234511122252551311225254:1,2,31:C 10;:C 40;:C C C 80.104080130, D.x x x x x C C A C C ++++=+=+=++=提示可取和为的元素个数为和为2的元素个数为和为3的元素个数为故满足条件的元素总的个数为选二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 .(][)(][),32,:12532,,32,.-∞-+∞---∞-+∞答案:提示数轴上到与距离之和为的数为和故该不等式的解集为:10.曲线25+=-xey 在点)3,0(处的切线方程为 . '5'0:530:5,5,35,530.x x x y y e y y x x y -=+-==-∴=-∴-=-+-=答案提示所求切线方程为即11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .367101:6:67,36,136,.6C C =答案提示要使为取出的个数中的中位数则取出的数中必有个不大于另外个不小于故所求概率为12.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+,则=ba. 2222222:2::cos cos ,2, 2.sin cos sin cos 2sin ,sin()2sin ,sin 2sin ,2, 2.::2,24,222, 2.ab Cc B a a b bB C C B B B C B aA B a b ba b c a c b b b a ab ab ac aa b b+==∴=+=+=∴==∴=+-+-⋅+==∴==答案提示解法一由射影定理知从而解法二:由上弦定理得:即即解法三由余弦定理得即即13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= . 51011912101112202019151201011:50,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100,50.a a a a a a e S a a a S a a a S a a a a e S =∴==+++=+++∴====∴=答案提示:设则(二)选做题(14~15题,考生从中选做一题)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__221212:(1,1):(sin )cos ,,:1,(1,1).C y x C y C C ρθρθ===∴答案提示即故其直角坐标方程为:的直角坐标方程为与的交点的直角坐标为15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___22:9:,()()9.CDF AEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆答案提示显然的面积的面积三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和 演算步骤.16、(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf ,(1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f . 55233:(1)()sin()sin , 3.121243223(2)(1):()3sin(),4()()3sin()3sin()443(sin coscos sin )3(sin()cos cos()sin )4444323cos sin 6cos 426cos ,(0,),42f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴+-=++-+=++-+-===∴=∈解由得10sin 4331030()3sin()3sin()3sin 3.44444f θπππθθπθθ∴=∴-=-+=-==⨯=17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.121272:(1)7,2,0.28,0.08;2525(2):n n f f ======解频率分布直方图如下所示(](](]044(3),30,350.2,30,35(4,0.2),130,35:1(0.2)(0.8)10.40960.5904.B C ξξ-=-=根据频率分布直方图可得工人们日加工零件数落在区间的概率为设日加工零件数落在区间的人数为随机变量,则故4人中,至少有人的日加工零件数落在区间的概率为18.(13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =030,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E.(1)证明:CF ⊥平面ADF ; (2)求二面角D -AF -E 的余弦值.:(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CDDE CF CP EF DCDE DF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴=⋅======⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠==12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431,0),ADF CP (3,1,0),22AEF (x DP DC DA x y z DC A CF CP F DF CF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,19||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为19.(14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =. (1)求123,,a a a 的值; (2)求数列{}n a 的通项公式;211222122331212121331221232121:(1)2314127+=432424()204(15)20,+83,,1587,53,5,7,(2)2342,2(1)3(1)4(n n n n a S a a a a S a S a a a a a a a a S a a a a a a S na n nn S n a n n +-==-⨯-⨯=-=-⨯-⨯=---=---∴==⎧∴=--=-=⎨=⎩====--∴≥=-----解①②联立①②解得综上③当时11121)2161,22(1)21,:()(1),1,3211,;(),,21,21611,22211(21)322411322232(1)11n n n k k k n n a a n na n i n a ii n k a k k k n k a a k k k k k k k k k k k n k ++-+-=+=+===⨯+==+-+=+=+-=⋅+++-=++=+=++=+④③④并整理得:由猜想以下用数学归纳法证明由知当时猜想成立假设当时猜想成立即则当时这就是说,,,2 1.n n N a n *∈=+时猜想也成立从而对一切20.(14分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为,离心率为3,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.2222200220022:(1)3,954,1.94(2),,4(3,2),(3,2).(),(),194(94)18(c c e a b a c a x y C x y y y k x x x y y k x x y k x k y ====∴==-=-=∴+=-±±-=-=-++=++解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:2000022222200000022220000012202200)9()40,,0,(18)()36()4(94)0,4()4(94)0,4(9)240,,1,:1,913,(3,2),(3,2)kx x y kx k y kx y kx k y kx k y x k x y k y k k x x y ⎡⎤-+--=∆=⎣⎦⎡⎤----+=--+=⎣⎦-∴--+-=∴=-=--∴+=-±±依题意即:即两切线相互垂直即显然这四点也满足以上方22,13.P x y ∴+=程点的轨迹方程为21.(本题14分)设函数()f x =2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).222222122222:(1)(2)2(2)30,2123:210,44(1)4(2)0(2),21=01210:11230,23044(3)x x k x x k x x k x x k x x k k k k x x k x x k x x x x k x x k k +++++->++>++<-++->∆=--=-><-∴++--∴++-><->-++++<+++=∆=-+=解则①或②由①得方程的解为由得由②得:方程的判别式23'24(2)0(2),1230:112,11111(,1(12,12)(12,).(2)0,1()2(2k k x x k x k D k k k u f x u x ---><-∴-+++<--<<-<-∴-<-<-<--+∴=-∞------+---+-+∞==-⋅⋅该方程的解为由得设则23222'2'22)(22)2(22)2(1)(21)()(,1,10,21110,()0;()(11),10,21310,()0;()(1,1,10,21310,x k x x u x x x k i x x x x k f x ii x x x x k f x iii x x x x k f -⎡⎤++⋅+++⎣⎦=-+⋅+++∈-∞-+<+++>+>∴>∈--+<+++<-+<∴<∈--++>+++<-+<∴当时当时当时'2'()0;()(1),10,21110,()0.,():(,11,1,():(11),(1).x iv x x x x k f x f x D f x D >∈-+∞+>+++>+>∴<-∞------++∞当时综上在上的单调增区间为在上的单调减区间为22222222222(3)g(x)(2)2(2)3,(1),x D ,g(x)0;g(1)(3k)2(3)3(6)(2),,6,(1)0,()(1)()(1),()(1)[(2)2(2)3][(3k)2(3)3][(2)(3k)]x x k x x k k k k k g f x f g x g g x g x x k x x k k x x k =+++++-∈>=+++-=++<->>⇔<-=+++++--+++-=++-+设由知当时又显然当时从而不等式2222[(2)(3)](3)(1)(225),()(3)(1)0,()(1),()(6,111311111,1111),2250,k x x k k x x x x k i x x x f x f g x x g x k x x +++-+=+-++<-∴-<----<<--+-+--+<+->∴><+<<-+++<当欲使即亦即即2222(3)(1)0,225(2)(5)3(5)0,()(1),()(1);(1iii)31,(3)(1)0,2253(5)0,()(1),;(iv)1(()13,13)(1)0,,2ii xx x x x kx x k k kg x g f x f x x x x x k k g x g x x x x x <+->+++=++++<-++<<>-<<+---<<--+<+++<-++<∴><<+->++时此时即时不合题意21,11253(5)0,()(1),;(v)(3)(1)0,()(1),2250,()(1)11,11(13)(1(1(,11k k g x x g x x x g x g x x x k f x f --<<-+<-++<∴<>+->∴<++-+<---⋃--⋃-+⋃-+-+++<>从而综合题意欲使则即的解集为:上所述。

广州深圳一模数学(理科)(含答案)word版

广州深圳一模数学(理科)(含答案)word版

绝密★启用前 试卷类型:A2017年深圳市高三年级第一次调研考试数学(理科)本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回. 参考公式:如果事件A B 、互斥,那么P A B P A P B +=+()()(); 如果事件A B 、相互独立,那么P AB P A P B =()()(); 若柱体的底面积为S ,高为h ,则柱体的体积为V Sh =;若锥体的底面积为S ,高为h ,则锥体的体积为13V Sh =.一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知a b ∈R ,,若3i 1i i a b +=+⋅()(其中i 为虚数单位),则A .11a b =-=,B .11a b =-=-,C .11a b ==-,D .11a b ==,2.已知p :“a =,q :“直线0x y +=与圆221x y a +-=()相切”.则p 是q 的A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件3.已知n S 为等差数列{}n a 的前n 项和,若11S =,424SS =,则64S S 的值为A .94B .32C .54D .44.如图,圆222:O x y +=π内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是 A .24π B .34π C .22πD .32π 5.在一条公路上每隔10公里有一个仓库,共有5个仓库.一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的.现在要把所有的货物集中存放在一个仓库里,若每吨货物运输1公里需要0.5元运输费,则最少需要的运费是A .450元B .500元C .550元D .600元6.一个几何体的三视图如图所示,则该几何体的体积为A .2B .1C .23D .1310040020一号 二号 三号 四号五号俯视图正(主)视图 侧(左)视图7.设平面区域D 是由双曲线2214y x -=的两条渐近线和直线680x y --=所围成三角形的边界及内部.当,x y D ∈()时,222x y x ++的最大值为 A .24B .25C .4D .78.已知函数f x ()的定义域为 1 5-[,],部分对应值如下表.f x ()的导函数y f x '=()的图象如图所示.下列关于函数f x ()的命题: ①函数y f x =()是周期函数; ②函数f x ()在0 2[,]是减函数; ③如果当1 x t ∈-[,]时,f x ()的最大值是2,那么t 的最大值为4; ④当12a <<时,函数y f x a =-()有4个零点. 其中真命题的个数有 A .4个 B .3个 C .2个D .1个二、填空题:本大题共7小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答. 9.已知全集U =R ,集合A 为函数ln 1f x x =-()()的定义域,则U A ð= . 10.设随机变量2~N 1 3X (,),且06P X P X a ≤=>-()(),则实数a 的值为 . 11.在ABC ∆中,已知a b c ,,分别为A ∠,B ∠,C ∠所对的边,S 为ABC ∆的面积.若向量2224 1p a b c q S =+-= ()(),,,满足//p q,则C ∠= .12.已知命题“x ∃∈R ,12x a x -++≤”是假命题,则实数a 的取值范围是 .x-1 0 4 5 f x ()122113.已知a 为如图所示的程序框图中输出的结果,则二项式6(的展开式中含2x 项的系数是 .(注:框图中的赋值符号“=”也可以写成“←”或 “:=” )(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分.14.(坐标系与参数方程)在极坐标系中,设P 是直线 :cos sin 4l ρθθ+=()上任一点,Q是圆24cos 3C ρρθ=-:上任一点,则PQ 的最小值是 . 15.(几何证明选讲)如图,割线PBC 经过圆心O ,1OB PB ==,OB 绕点O 逆时针旋转120︒到OD ,连PD 交圆O 于点E ,则PE = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数cos sin 2424x x f x x ππ=++-+π()()()().(1)求f x ()的最小正周期; (2)若将f x ()的图象向右平移6π个单位,得到函数g x ()的图象,求函数g x ()在区间0π[,]上的最大值和最小值.BCDEPO第26届世界大学生夏季运动会将于2011年8月12日至23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如下茎叶图(单位:cm ):男 女9 15 7 7 8 9 9 9 8 16 1 2 4 5 8 9 8 6 5 0 17 2 3 4 5 6 7 4 2 1 18 0 1 1 19若身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.18.(本小题满分14分)如图,AC 是圆O 的直径,点B 在圆O 上,30BAC ∠=︒,BM AC ⊥交AC 于点M ,EA ⊥平面ABC ,//FC EA ,431AC EA FC ===,,.(1)证明:EM BF ⊥;(2)求平面BEF 与平面ABC 所成的锐二面角的余弦值.ABCE FMO∙已知点F 是椭圆222101x y a a +=>+()的右焦点,点 0M m (,)、0 N n (,)分别是x 轴、y 轴上的动点,且满足0MN NF ⋅= .若点P 满足2OM ON PO =+.(1)求点P 的轨迹C 的方程;(2)设过点F 任作一直线与点P 的轨迹C 交于A 、B 两点,直线OA ,OB 与直线x a =-分别交于点S ,T (O 为坐标原点),试判断FS FT ⋅是否为定值?若是,求出这个定值;若不是,请说明理由.20.(本小题满分14分)已知数列{}n a 是各项均不为0的等差数列,公差为d ,n S 为其前n 项和,且满足221n n a S -=,n *N ∈.数列{}n b 满足11n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求1a ,d 和n T ;(2)若对任意的n *N ∈,不等式81n n T n λ<+⋅-()恒成立,求实数λ的取值范围; (3)是否存在正整数m n ,1m n <<(),使得1,,m n T T T 成等比数列?若存在,求出所有m n ,的值;若不存在,请说明理由.21.(本小题满分14分)已知函数ln 1af x x a x =+∈+R ()(). (1)当92a =时,如果函数g x f x k =-()()仅有一个零点,求实数k 的取值范围; (2)当2a =时,试比较f x ()与1的大小;(3)求证:1111ln 135721n n +>+++++ ()n ∈*N ().。

广东省深圳市高三数学下学期第一次调研考试试题理

广东省深圳市高三数学下学期第一次调研考试试题理

深圳市2017年高三年级第一次调研考试数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}22,4,,6,8,B |9180A x x x ==-+≤,则AB =( )A . {}2,4B .{}4,6C .{}6,8D .{}2,8 2.若复数()12a ia R i+∈+为纯虚数,其中i 为虚数单位,则a = ( ) A . 2 B . 3 C .-2 D .-33. 袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( )A .14 B .12 C .13 D . 234.等比数列{}n a 的前n 项和为13n n S a b -=+,则ab= ( )A .-3B . -1 C. 1 D .35.直线():40l kx y k R ++=∈是圆22:4460C x y x y ++-+=的一条对称轴,过点()0,A k 作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为 ( )A B D . 6.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为()02h h <<的平面截该几何体,则截面面积为 ( )A .4πB .2h π C. ()22h π- D .()24h π-7. 函数()21cos 21x x f x x +=-的图象大致是( )8.已知0,0a b c >><,下列不等关系中正确的是 ( )A .ac bc >B .c c a b > C. ()()log log a b a c b c ->- D .a ba cb c>-- 9. 执行如图所示的程序框图,若输入2017p =,则输出i 的值为( ) A . 335 B .336 C. 337 D .33810.已知F 是双曲线()2222:10,0x y E a b a b-=>>的右焦点,过点F 作E 的一条渐近线的垂线,垂足为P ,线段PF 与E 相交于点Q ,记点Q 到E 的两条渐近线的距离之积为2d ,若2FP d =,则该双曲线的离心率是( )A B .2 C. 3 D .411. 已知棱长为2的正方体1111ABCD A B C D -,球O 与该正方体的各个面相切,则平面1ACB 截此球所得的截面的面积为( ) A .83π B .53π C. 43π D .23π12. 已知函数()2,0,x x f x x e e=≠为自然对数的底数,关于x 0λ+-=有四个相异实根,则实数λ的取值范围是( )A .20,e ⎛⎫ ⎪⎝⎭ B.()+∞ C. 2,e e ⎛⎫++∞ ⎪⎝⎭ D .224,2e e ⎛⎫++∞ ⎪⎝⎭第Ⅱ卷二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上 13.已知向量()()1,2,,3p q x ==,若p q ⊥,则p +14. 51x ⎫-⎪⎭的二项展开式中,含x 的一次项的系数为 .(用数字作答)15.若实数,x y 满足不等式组4023801x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,目标函数z kx y =-的最大值为12,最小值为0,则实数k = .16.已知数列{}n a 满足()()2222n n na n a n n λ+-+=+,其中121,2a a ==,若1n n a a +<对*n N ∀∈恒成立,则实数λ的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17. ABC ∆的内角A B C 、、的对边分别为a b c 、、,已知2sin cos a A a C =-. (1)求C ; (2)若c =ABC ∆的面积S 的最大值.18. 如图,四边形ABCD 为菱形,四边形ACEF 为平行四边形,设BD 与AC 相交于点G,2,AB BD AE EAD EAB ===∠=∠.(1)证明:平面ACEF ⊥平面ABCD ;(2)若AE 与平面ABCD 所成角为60°,求二面角B EF D --的余弦值.19. 某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y (单位:元)关于月用电量x (单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求,a b 的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y 为该居民用户1月份的用电费用,求Y 的分布列和数学期望.20. 已成椭圆()2222:10x y C a b a b+=>>的左右顶点分别为12A A 、,上下顶点分别为21B B 、,左右焦点分别为12F F 、,其中长轴长为4,且圆2212:7O x y +=为菱形1122A B A B 的内切圆. (1)求椭圆C 的方程;(2)点(),0N n 为x 轴正半轴上一点,过点N 作椭圆C 的切线l ,记右焦点2F 在l 上的射影为H ,若1F HN ∆的面积不小于2316n ,求n 的取值范围. 21. 已知函数()ln ,f x x x e =为自然对数的底数. (1)求曲线()y f x =在2x e -=处的切线方程;(2)关于x 的不等式()()1f x x λ≥-在()0,+∞上恒成立,求实数λ的值;(3)关于x 的方程()f x a =有两个实根12,x x ,求证:21221x x a e --<++.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系中xOy 中,已知曲线E经过点P ⎛ ⎝,其参数方程为cos x a y αα=⎧⎪⎨=⎪⎩(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线E 的极坐标方程;(2)若直线l 交E 于点A B 、,且OA OB ⊥,求证:2211OAOB+为定值,并求出这个定值.23.选修4-5:不等式选讲已知()(),3f x x a g x x x =+=+-,记关于x 的不等式()()f x g x <的解集为M . (1)若3a M -∈,求实数a 的取值范围; (2)若[]1,1M -⊆,求实数a 的取值范围.理试卷答案一、选择题1-5: BCBAC 6-10: DCDCB 11、12:BC 二、填空题13. [)0,+∞ 三、解答题17.解:(1)由已知及正弦定理可得2sin sin sin cos A C A A C =-, 在ABC ∆中,sin 0A >,∴2cosC C =-,1cos 12C C -=, 从而sin 16C π⎛⎫-= ⎪⎝⎭,∵0C π<<, ∴5666C πππ-<-<, ∴62C ππ-=,∴23C π=;(2)解法:由(1)知23C π=,∴sin C =,∵12sin 2S ab C =,∴S =, ∵222cos 2a b c C ab+-=,∴223a b ab +=-, ∵222a b ab +≥,∴1ab ≤(当且仅当1a b ==时等号成立),∴S =≤; 解法二:由正弦定理可知2sinA sin sin a b cB C===, ∵1sin 2S ab C =,∴sin S A B =,∴sin 3S A A π⎛⎫=-⎪⎝⎭,∴26S A π⎛⎫=+ ⎪⎝⎭ ∵03A π<<,∴52666A πππ<+<,∴当262A ππ+=,即6A π=时,S .18.解:(1)证明:连接EG , ∵四边形ABCD 为菱形,∵,,AD AB BD AC DG GB =⊥=, 在EAD ∆和EAB ∆中,,AD AB AE AE ==,EAD EAB ∠=∠,∴EAD EAB ∆≅∆, ∴ED EB =, ∴BD EG ⊥, ∵ACEG G =,∴BD ⊥平面ACFE , ∵BD ⊂平面ABCD , ∴平面ACFE ⊥平面ABCD ;(2)解法一:过G 作EF 垂线,垂足为M ,连接,,MB MG MD , 易得EAC ∠为AE 与面ABCD 所成的角, ∴060EAC ∠=, ∵,EF GM EF BD ⊥⊥, ∴EF ⊥平面BDM ,∴DMB ∠为二面角B EF D --的平面角,可求得3,2MG DM BM ===在DMB ∆中由余弦定理可得:5cos 13BMD ∠=, ∴二面角B EF D --的余弦值为513;解法二:如图,在平面ABCD 内,过G 作AC 的垂线,交EF 于M 点, 由(1)可知,平面ACFE ⊥平面ABCD , ∴MG ⊥平面ABCD ,∴直线,,GM GA GB 两两互相垂直,分别GA GB GM 、、为,,x y z 轴建立空间直角坐标系G xyz -,易得EAC ∠为AE 与平面ABCD 所成的角,∴060EAC ∠=,则()()330,1,0,0,1,0,E ,22D B F ⎫⎛⎫-⎪ ⎪⎪ ⎪⎭⎝⎭, ()333323,0,0,,1,,,1,22FE BE DE ⎛⎫⎛⎫==-= ⎪ ⎪⎪⎪⎭⎭, 设平面BEF 的一个法向量为(),,n x y z =,则0n FE =且0n BE =,∴0x =302x y z -+= 取2z =,可得平面BEF 的一个法向量为()0,3,2n =, 同理可求得平面DEF 的一个法向量为()0,3,2m =-, ∴5cos ,13n m =, ∴二面角B EF D --的余弦值为513. 19.解析:(1)当0200x ≤≤时,0.5y x =;当200400x <≤时,()0.52000.82000.860y x x =⨯+⨯-=-,当400x >时,()0.52000.8200 1.0400140y x x =⨯+⨯+⨯-=-,所以y 与x 之间的函数解析式为:0.5,02000.860,200400140,400x x y x x x x ≤≤⎧⎪=-<≤⎨⎪->⎩;(2)由(1)可知:当260y =时,400x =,则()4000.80P x ≤=,结合频率分布直方图可知:0.121000.30.81000.050.2b a +⨯+=⎧⎨+=⎩,∴0.0015,0.0020a b ==;(3)由题意可知X 可取50,150,250,350,450,550. 当50x =时,0.55025y =⨯=,∴()250.1P y ==, 当150x =时,0.515075y =⨯=,∴()750.2P y ==,当250x =时,0.52000.850140y =⨯+⨯=,∴()1400.3P y ==, 当350x =时,0.52000.8150220y =⨯+⨯=,∴()2200.2P y ==,当450x =时,0.52000.8200 1.050310y =⨯+⨯+⨯=,∴()3100.15P y ==, 当550x =时,0.52000.8200 1.0150410y =⨯+⨯+⨯=,∴()4100.05P y ==, 故Y 的概率分布列为:所以随机变量X 的数学期望250.1750.21400.32200.23100.154100.05170.5EY =⨯+⨯+⨯+⨯+⨯+⨯=.20.解:(1)由题意知24a =,所以2a =, 所以()()()()12122,0,2,0,0,,0,A A B b B b --,则 直线22A B 的方程为12x yb+=,即220bx y b +-=, ,解得23b =,故椭圆C 的方程为22143x y +=;(2)由题意,可设直线l 的方程为,0x my n m =+≠,联立223412x my n x y =+⎧⎨+=⎩消去x 得()()222346340m y mny n +++-=,(*)由直线l 与椭圆C 相切,得()()()2226433440mn m n ∆=-⨯+-=,化简得22340m n -+=,设点(),H mt n t +,由(1)知()()121,0,1,0F F -,则 ()0111t mt n m -=-+-,解得()211m n t m -=-+,所以1F HN ∆的面积()()()1222111112121F HN m n m n S n m m ∆---=+=++,代入22340m n -+=消去n 化简得132F HN S m ∆=,所以()223333421616m n m ≥=+,解得223m ≤≤,即2449m ≤≤,从而244493n -≤≤,又0n >4n ≤≤,故n 的取值范围为4⎤⎥⎦.21.解(1)对函数()f x 求导得()1ln ln 1f x x x x x '=+=+,∴()22ln 11f e e --'=+=-,又()2222ln 2f e e e e ----==-,∴曲线()y f x =在2x e -=处的切线方程为()()222y e x e ----=--,即2y x e -=--;(2)记()()()()1ln 1g x f x x x x x λλ=--=--,其中0x >,由题意知()0g x ≥在()0,+∞上恒成立,下求函数()g x 的最小值,对()g x 求导得()ln 1g x x λ'=+-,令()0g x '=,得1x e λ-=,当x 变化时,()(),g x g x '变化情况列表如下:∴()()()()()1111min 11g x g x g e e e e λλλλλλλ----===---=-极小,∴10e λλ--≥,记()1G e λλλ-=-,则()11G e λλ-'=-,令()0G λ'=,得1λ=.当λ变化时,()(),G G λλ'变化情况列表如下:∴()()()max 10G G G λλ===极大,故10e λλ--≤当且仅当1λ=时取等号,又10e λλ--≥,从而得到1λ=;(3)先证()2f x x e -≥--,记()()()22ln h x f x x e x x x e --=---=++,则()ln 2h x x '=+, 令()0h x '=,得2x e -=,当x 变化时,()(),h x h x '变化情况列表如下:∴()()()22222min ln 0h x h x h e e e e e -----===++=极小,()0h x ≥恒成立,即()2f x x e -≥--,记直线2,1y x e y x -=--=-分别与y a =交于()()12,,,x a x a '', 不妨设12x x <,则()22111a x e f x x e --'=--=≥--,从而11x x '<,当且仅当22a e -=-时取等号,由(2)知,()1f x x ≥-,则()22211a x f x x '=-=≥-, 从而22x x '≤,当且仅当0a =时取等号,故()()22122121121x x x x x x a a e a e --''-=-≤-=+---=++, 因等号成立的条件不能同时满足,故21221x x a e --<++.22.解:(1)将点P ⎛ ⎝代入曲线E 的方程:1cos a αα-⎧=,解得23a =,所以曲线E 的普通方程为22132x y +=,极坐标方程为22211cos sin 132ρθθ⎛⎫+= ⎪⎝⎭,(2)不妨设点,A B 的极坐标分别为()1212,,,,0,02A B πρθρθρρ⎛⎫+>> ⎪⎝⎭,则()()2211222211cos sin 13211cos sin 13222ρθρθππρθρθ⎧+=⎪⎪⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪+++= ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩, 即22212222111cos sin 32111sin cos 32θθρθθρ⎧=+⎪⎪⎨⎪=+⎪⎩,∴22121156ρρ+=, 即221156OA OB +=, 所以2211OA OB +为定值56.23.解:(1)依题意有:()233a a a -<--, 若32a ≥,则233a -<,∴332a ≤<, 若302a ≤<,则323a -<,∴302a <<,若0a ≤,则()323a a a -<---,无解,综上所述,a 的取值范围为()0,3;(2)由题意可知,当[]1,1x ∈-时,()()f x g x <恒成立, ∴3x a +<恒成立,即33x a x --<<-,当[]1,1x ∈-时恒成立,∴22a -<<.。

2017年广东省深圳市三校联考高考数学一模试卷(理科)

2017年广东省深圳市三校联考高考数学一模试卷(理科)

2017年广东省深圳市三校联考高考数学一模试卷(理科)、选择题(共12小题,每小题5分,满分60分) 1.( 5 分)已知集合 A ={x\x ,4} , B ={x Z |_3, x :::0,则 小 B =()A . {-2 , -1, 0}B . (-1,0)C . {-1 , 0}D . (-3,-2)2. ( 5分)命题“ x ・R , si nx .1 ”的否定是()、, J —x 2 — x +2、、3.(5分)函数y的定义域为()lnxA . (-2,1)B . [一2 , 1]C . (0,1)D . (0 , 1]124. ( 5分)定积分|丄x dx =()2A . 0B .C . 1D . 235.( 5分)函数f(x)=log 2x-7的零点包含于区间()xA . (1,2)B . (2,3)C . (3,4)D . (4,::)6. ( 5 分)已知 a=O.30.3, b=1.2°.3, ^log r2 0.3,则 a , b ,A . c ::: a ::: b“ x 2 -2x -8 0 ”是“ x 5 ”的必要不充分条件,则下列命题正确的是( )A . p qB . p (—q )C . (—p ) (—q )D . (_P )q& ( 5分)已知f (x )二4 -x 2 , g (x )=|x-2|,则下列结论正确的是 ()A . h(x) = f (x) g(x)是偶函数B . h(x) =f (x)|_g (x)是奇函数C . h(x) =g(x)U f(x)是偶函数2 —x D . h(x) 幻是奇函数2 —g(x )A . x R , sinx, 1B . 一x R , sinx . 1C . -l x 三 R , sinx = 1D . 一x 三 R ,sinx, 1c 的大小关系为( D . a ■. c ::: b7 . ( 5分)已知命题 p :不等式ax 2 ax 10的解集为 R ,则实数 a (0,4);命题q19. (5分)函数y 的一段大致图象是()sin x -xA . B.第3页(共17页)x R 都有f (x 6) f (x) =2f (3), y#x( 1 的图象关于点(1,0)对称,且f ( 4) = 4,贝U f (2012)=()B.—4 C.—8D. -16x 211. (5分)若函数f (x) = e (x ax b)有极值点x , x?(X i :::X2),且f (X i) = X i,则关于x 的方程f (x),(2 a)f(x) a 5=0的不同实根个数为C. 412 . ( 5分)定义区间[為,X2]的长度为(a a)X_1(^ R,a=0)的定义域与值域都是X2 -x(x yx ) 1单调递增,函数f(x) 2a x 最大长度时实数[m , n](n m),则区间[m , n]取a的值( )A .二3二、填空题B. -3C. 113.(5分)14.(5分)15.(5分)16 . (5分)(本大题共4小题,每小题5分,满分20分.)lg8 Ig125 -Ig2 -Ig5 _lg .10Jg0.11 -Iog2(2 -x)(x ::2)设函数 f (x) 2 3 ,则f(f (3))= ____________ .}2 +3(x …2)L 2设函数f(x)二区马沁的最大值为M,最小值为m,则M 5 =x +4在平面直角坐标系xOy中,直线y =x b是曲线y = alnx的切线,则当a 0时,实数b的最小值是______ •二、解答题(解答须写出文字说明、证明过程和演算步骤. )2 217. ( 12 分)设p :实数x 满足x -4ax 3a ::: 0,q :实数x满足|x 一3| :::1 .(1 )若a =1,且p q为真,求实数x的取值范围;(2)若a .0且-p是-q的充分不必要条件,求实数a的取值范围.118. (12分)已知函数f(x) =(—)ax, a为常数,且函数的图象过点(-1,2).2(1 )求a的值;(2)若g(x) =4丛_2,且g(x) = f (x),求满足条件的x的值.3 219. (12分)已知三次函数f(x)=x bx cx d(a , b , c R)过点(3,0),且函数f (x)在点(0 , f(0))处的切线恰好是直线y =0 .(1)求函数f (x)的解析式;(2)设函数g(x) =9x m -1,若函数y = f (x) —g(x)在区间[_2 , 1]上有两个零点,求实数m的取值范围.a20. (12 分)已知函数f (x)满足f(log a X)=p (x-x」)(其中a . 0 , a=1)a -1(I)求f (x)的表达式;(n)对于函数f (x),当(-1,1)时,f (1-m) • f (1-m2) :::0,求实数m的取值范围;(川)当(-::,2)时,f(x) -4的值为负数,求a的取值范围.21. (12分)设f (x) =(x a)lnx,曲线y = f(x)在点(1 , f (1))处的切线与直线2x y ^0x +1垂直.(1 )求a的值;(2 )若-x • [1,•: :) , f (x), m(x -1)恒成立,求m 的范围.___ n i(3)求证:ln4 2n 1 2 (n N*).i 4i —1[选修4-1:几何证明选讲]22. (10分)如图,AB是圆O的直径,AC是弦,• BAC的平分线AD交圆O于点D ,DE _ AC,交AC的延长线于点E , OE交AD于点F .(1)求证:DE是圆O的切线;(2)若ZCAB =60 , L O的半径为2, EC =1,求DE的值.DO[选修4-4 :坐标系与参数方程]23. 在平面直角坐标系中,直线I过点P(2,3)且倾斜角为二,以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为:「=4cos( ),直线I与曲线3C相交于A,B两点;(1)求曲线C的直角坐标方程;(2)若| AB |二13,求直线I的倾斜角:-的值.[选修4-5:不等式选讲]24. 设函数f (x)斗2x —7| 1 .(1 )求不等式f(x), x的解集;(2)若存在x使不等式f (x) 一2 I x _1|, a成立,求实数a的取值范围.第5页(共仃页)2017年广东省深圳市三校联考高考数学一模试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.( 5 分)已知集合 A ={X |X 2:::4} , B 二{x WZ | _3, x :::1},则 小 B =()B ={ x Z | -3, X ::: 1} ={ < , 则 A 「|B 二{_1, 0}. 故选:C .2. ( 5分)命题“ R , si nx 1 ”的否定是【解答】 解:命题是特称命题,则命题的否定是: 一x 0, sinx, 1 , 故选:D ._X 2 _ X ■罷 13. ( 5分)函数y = 的定义域为【解答】解:由题意得:-X 2_X 2・0,即-2剟x 曰1X 0且lnx -0 X 0且x =1解得:0 ::: X <1, 故选:C .4. ( 5分)定积分C .1 c【解答】解:定积分! X dx故选:B .5. ( 5分)函数f (x )=log 2x-7的零点包含于区间()XA . {_2 , -1 , 0}B .(-1,0)C . {-1 , 0}(-3, -2)【解答】解:集合A={X |X 2:::4} ={X | :::::-2 , -1 , 0},A . X R , sinx, 1B . 一x 三 R , sinx 1C .sin x =1 D .一 x R , sinA . (-2,1)B .[-2 , 1]C . (0,1)(0 , 1]lnx1【解答】解:函数f (x) =log 2x -7在(0, •::)上连续,x77 1f (3)= log 2 30 ; f (4) = log 2 40 ;34 4故函数f (x) =log 2X 一7的零点所在的区间是 (3,4).X 故选:C .0 30 36. ( 5 分)已知 a=0.3.,b =1.2 ',c=log i.2 0.3,则 a ,b ,c 的大小关系为()A . c ::: a ::: bB . c ::: b .. aC. a :: b :: cD. a ■ c ::: b【解答】 解:a =0.30.3 €(0,1) , b=1.20.3>1 , c=log 1.2 0.3 c 0 , .c ::: a ::: b , 故选:A . 7.(5分)已知命题 p :不等式ax 2 ax 1 0的解集为 R ,则实数 a (0,4);命题q “ x 2 -2x -8 0 ”是“ x 5 ”的必要不充分条件,则下列命题正确的是 ( )A . p qB . p (—q)C . (一p) (-q)D . (一p) q【解答】解:命题p :不等式ax 2 ax 1 0的解集为R , a = 0时,可得1 ■ 0恒成立;a = 0时,可得:a 月 ,解得0 ::: a :::4 ,综上可得:实数a ・[0 , 4),因此p 是假命a -4a ::: 0题;命题q : x 2 —2x -8 • 0 ,解得x 4或x ::: -2 .因此“ x 2 —2x 「8 0 ”是“ x 5 ”的必要不充分条件,是真命题. 下列命题正确的是(一p) q . 故选:D .&( 5分)已知f(x)=;;;4-x 2 , g(x)鬥x-2|,则下列结论正确的是( )A . h(x)二 f (x) • g(x)是偶函数B . h(x) =f (x)Lg (x)是奇函数A • (1,2)B • (2,3)C . (3,4)D . (4,::)C . h(x) =g(x)U f(x)是偶函数2 —x1D . h(x) 竺是奇函数2—g(x )【解答】解:f(x) = 4 -x 2 , g(x)=|x-2|,A . h(x)二 f (x) g(x) = .4 —x 2 |x —2|二 4 — x 2 2 —x , x“-2 , 2].h( _x) »4 —x 22 x ,不满足函数的奇偶性的定义,是非奇非偶函数.B . h(x)二 f (x)|_g(x) = 4-x 2|x-2|二 4 -x 2(2 -x) , x 二[一2 , 2].h( _x) = :;;4 -x 2 (2 x),不满足奇偶性的定义.= J4-x 2 , x [_2 , 2)不满足函数的奇偶性定义.图象关于原点对称,C . h(x ),(x)U f(x)2 —xD . h(x)f(x)-2—g(x ),x 三[-2 , 0) _ (0 ,x2],函数是奇函数.段大致图象是(9.故选:D .--f (x),-y = f (x)为奇函数,•当x 二二时,y 0,10. (5分)已知函数f(x)对任意xWR都有f (x+6)+ f (x) =2f (3), y #x()的图象关于点(1,0)对称,且f ( 4) =4,贝U f(2012)=( )A . 0 B. -4 C. -8 D. -16【解答】解:因为函数y = f(x_1)的图象关于点(1,0)对称,所以函数y = f (x)的图象关于点(0,0)对称,即函数y =f(x)是奇函数,令x=_3得,f(_3 6) f(_3)=2f (3),即 f (3) —f ( 3) =2f (3),解得f (3) = 0 .所以 f (x 6) f (x) =2f (3) = 0 , 即卩f (x 6) =_f(x),所以f(x 12^f(x),即函数的周期是12.所以f(2012) =f(12 168 _4) =f (/) - _f (4) - -4 .故选:B .x 211. (5分)若函数f (x)二e (x ax b)有极值点x , X2 (洛:::X2),且f (为)=洛,则关于x的、2方程f (x) • (2 a)f (x) a • b =0的不同实根个数为()A . 0B . 3 C. 4 D. 5【解答】解:函数f(x)有两个不相同的极值点,x 2即f (x) =e [x (2 a)x a b^0有两个不相同的实数根x , X2,也就是方程x (2 a)x a,b=0有两个不相同的实数根,所以△ =(2 a)2 -4(a b) 0 ;由于方程f2(x),(2 a)f(x) a ^0的判别式△丄△,故此方程的两个解为f(x) =X1或f(x)=疋.由于函数y = f (x)的图象和直线y =为的交点个数即为方程 f (x)=人的解的个数,函数y = f (x)的图象和直线y = x2的交点个数即为方程 f (x) =x2的解的个数.根据函数的单调性以及 f (x) ,可知y =f(x)的图象和直线y 的交点个数为2,y = f (x)的图象和直线y =X2的交点个数为1.。

深圳市2017届高三年级第一次调研考试(理数)

深圳市2017届高三年级第一次调研考试(理数)

深圳市2017届高三年级第一次调研考试数学(理科)本试卷共23小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名 和考生号,并将条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、 不污损.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上. 3.非选择题必须用毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和 涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答. 5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}22,4,,6,8,B |9180A x x x ==-+≤,则AB =( )A . {}2,4B .{}4,6C .{}6,8D .{}2,8 2.若复数()12a ia R i+∈+为纯虚数,其中i 为虚数单位,则a = ( ) A . 2 B . 3 C .-2 D .-33.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( )A .14 B .12 C .13 D . 234.等比数列{}n a 的前n 项和为,31b a S n n +⋅=-则a b= ( )A .-3B . -1 C. 1 D .35.直线():40l kx y k R ++=∈是圆22:4460C x y x y ++-+=的一条对称轴,过点()0,A k 作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为 ( )A .22B .2 C. 6 D .266.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为()02h h <<的平面截该几何体, 则截面面积为 ( )A .4πB .2h π C. ()22h π- D .()24h π-7.函数x x f xx cos 1212)(⋅-+=的图象大致是( )8.已知0,0a b c >><,下列不等关系中正确的是 ( ) A .ac bc > B .c c a b > C. ()()log log a b a c b c ->- D .a ba cb c>-- 9.执行如图所示的程序框图,若输入2017p =,则输出i 的值为( ) A . 335 B .336 C. 337 D .33810.已知F 是双曲线()2222:10,0x y E a b a b-=>>的右焦点,过点F 作E 的一条渐近线的垂线,垂足为P ,线段PF 与E 相交于点Q ,记点Q 到E 的两条渐近线的距离之积为2d ,若2FP d =,则该双曲线的离心率是( )A 2B .2 C. 3 D .411.已知棱长为2的正方体1111ABCD A B C D -,球O 与该正方体的各个面相切,则平面1ACB 截此球所得的截面的面积为( )A .83π B .53π C. 43π D .23π12.已知函数()2,0,x x f x x e e=≠为自然对数的底数,关于x ()()0f x f x λ=有四个相异实根,则实数λ的取值范围是( )A .),(e 20 B .),22(+∞ C.),2(+∞+ee D .),42(22+∞+e e 第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答。

201X届深圳一模理科数学

201X届深圳一模理科数学

深圳市2017年高三年级第一次调研考试数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}22,4,,6,8,B |9180A x x x ==-+≤,则AB =( )A . {}2,4B .{}4,6C .{}6,8D .{}2,82.若复数()12a ia R i+∈+为纯虚数,其中i 为虚数单位,则a = ( )A . 2B . 3C .-2D .-33. 袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( )A .14 B .12 C .13 D . 234.等比数列{}n a 的前n 项和为13n n S a b -=+,则ab= ( )A .-3B . -1 C. 1 D .35.直线():40l kx y k R ++=∈是圆22:4460C x y x y ++-+=的一条对称轴,过点()0,A k 作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为 ( ) ABD. 6.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为()02h h <<的平面截该几何体,则截面面积为 ( )A .4πB .2h π C. ()22h π- D .2(4)h π-7. 函数()21cos 21xx f x x +=-的图象大致是( )8.已知0,0a b c >><,下列不等关系中正确的是 ( )A .ac bc >B .c c a b > C. ()()log log a b a c b c ->- D .a ba cb c>-- 9. 执行如图所示的程序框图,若输入2017p =,则输出i 的值为( ) A . 335 B .336 C. 337 D .33810.已知F 是双曲线()2222:10,0x y E a b a b-=>>的右焦点,过点F 作E 的一条渐近线的垂线,垂足为P , 线段PF 与E 相交于点Q ,记点Q 到E 的两条渐近线 的距离之积为2d ,若2FP d =,则该双曲线的离心率 是( )AB .2 C. 3 D .4 11. 已知棱长为2的正方体1111ABCD A BCD -,球O 与 该正方体的各个面相切,则平面1ACB 截此球所得的截 面的面积为( ) A .83π B .53π C. 43π D .23π12. 已知函数()2,0,x x f x x e e=≠为自然对数的底数,关于x0λ-=有四个相异实根,则实数λ的取值范围是( )A .20,e ⎛⎫ ⎪⎝⎭ B .()+∞ C. 2,e e ⎛⎫++∞ ⎪⎝⎭ D .224,2e e ⎛⎫++∞⎪⎝⎭第Ⅱ卷二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量()()1,2,,3p q x ==,若p q ⊥,则||p q += .14.51x ⎫⎪⎭的二项展开式中,含x 的一次项的系数为 .(用数字作答)15.若实数,x y 满足不等式组4023801x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,目标函数z kx y =-的最大值为12,最小值为0,则实数k = .16.已知数列{}n a 满足()()2222n n na n a n n λ+-+=+,其中121,2a a ==,若1n n a a +<对*n N ∀∈ 恒成立,则实数λ的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17. ABC ∆的内角A B C 、、的对边分别为a b c 、、,已知2sin cos a A a C =-. (1)求C ; (2)若c =ABC ∆的面积S 的最大值.18. 如图,四边形ABCD 为菱形,四边形ACEF 为平行四边形,设BD 与AC 相交于点G,2,AB BD AE EAD EAB ===∠=∠.(1)证明:平面ACEF ⊥平面ABCD ;(2)若AE 与平面ABCD 所成角为60°,求二面角B EF D --的余弦值.19. 某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y (单位:元)关于月用电量x (单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求,a b 的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y 为该居民用户1月份的用电费用,求Y 的分布列和 数学期望.20. 已成椭圆()2222:10x y C a b a b+=>>的左右顶点分别为12A A 、,上下顶点分别为21B B 、,左右焦点分别为12F F 、,其中长轴长为4,且圆2212:7O x y +=为菱形1122A B A B 的内切圆. (1)求椭圆C 的方程;(2)点(),0N n 为x 轴正半轴上一点,过点N 作椭圆C 的切线l ,记右焦点2F 在l 上的射影为H ,若1F HN ∆的面积不小于2316n ,求n 的取值范围.21. 已知函数()ln ,f x x x e =为自然对数的底数. (1)求曲线()y f x =在2x e -=处的切线方程;(2)关于x 的不等式()()1f x x λ≥-在()0,+∞上恒成立,求实数λ的值; (3)关于x 的方程()f x a =有两个实根12,x x ,求证:21221x x a e --<++.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中xOy 中,已知曲线E经过点P ⎛ ⎝,其参数方程为cos x a y αα=⎧⎪⎨=⎪⎩(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线E 的极坐标方程;(2)若直线l 交E 于点A B 、,且OA OB ⊥,求证:2211OAOB+为定值,并求出这个定值.23.选修4-5:不等式选讲已知()(),3f x x a g x x x =+=+-,记关于x 的不等式()()f x g x <的解集为M . (1)若3a M -∈,求实数a 的取值范围; (2)若[]1,1M -⊆,求实数a 的取值范围.2017届深圳一模理试卷答案一、选择题1-5: BCBAC 6-10: DCDCB 11、12:DC二、填空题13. [)0,+∞三、解答题17.解:(1)由已知及正弦定理可得2sin sin sin cos A C A A C =-, 在ABC ∆中,sin 0A >,∴2cosC C =-1cos 12C C -=,从而sin 16C π⎛⎫-= ⎪⎝⎭, ∵0C π<<,∴5666C πππ-<-<,∴62C ππ-=,∴23C π=; (2)解法:由(1)知23C π=,∴sin C =12sin 2S ab C =,∴S =,∵222cos 2a b cC ab+-=,∴223a b ab +=-,∵222a b ab +≥,∴1ab ≤(当且仅当1a b ==时等号成立),∴S =≤; 解法二:由正弦定理可知2sinA sin sin a b cB C===, ∵1sin 2S ab C =,∴sin S A B =,∴sin 3S A A π⎛⎫=- ⎪⎝⎭,∴26S A π⎛⎫=+ ⎪⎝⎭ ∵03A π<<,∴52666A πππ<+<, ∴当262A ππ+=,即6A π=时,S. 18.解:(1)证明:连接EG ,∵四边形ABCD 为菱形, ∵,,AD AB BD AC DG GB =⊥=,在EAD ∆和EAB ∆中, ,AD AB AE AE ==,EAD EAB ∠=∠, ∴EAD EAB ∆≅∆, ∴ED EB =, ∴BD EG ⊥, ∵AC EG G =, ∴BD ⊥平面ACFE , ∵BD ⊂平面ABCD ,∴平面ACFE ⊥平面ABCD ;(2)解法一:过G 作EF 垂线,垂足为M ,连接,,MB MG MD , 易得EAC ∠为AE 与面ABCD 所成的角, ∴060EAC ∠=,∵,EF GM EF BD ⊥⊥, ∴EF ⊥平面BDM ,∴DMB ∠为二面角B EF D --的平面角,可求得3,2MG DM BM ===在DMB ∆中由余弦定理可得:5cos 13BMD ∠=, ∴二面角B EF D --的余弦值为513;解法二:如图,在平面ABCD 内,过G 作AC 的垂线,交EF 于M 点, 由(1)可知,平面ACFE ⊥平面ABCD , ∴MG ⊥平面ABCD ,∴直线,,GM GA GB 两两互相垂直,分别GA GB GM 、、为,,x y z 轴建立空间直角坐标系G xyz -,易得EAC ∠为AE 与平面ABCD 所成的角,∴060EAC ∠=,则()()330,1,0,0,1,0,E ,22D B F ⎫⎛⎫-⎪ ⎪⎪ ⎪⎭⎝⎭,()333323,0,0,,1,,,1,22FE BE DE ⎛⎫⎛⎫==-= ⎪ ⎪⎪⎪⎭⎭, 设平面BEF 的一个法向量为(),,n x y z =,则0n FE =且0n BE =,∴0x =302x y z -+= 取2z =,可得平面BEF 的一个法向量为()0,3,2n =, 同理可求得平面DEF 的一个法向量为()0,3,2m =-, ∴5cos ,13n m =, ∴二面角B EF D --的余弦值为513. 19.解析:(1)当0200x ≤≤时,0.5y x =;当200400x <≤时,()0.52000.82000.860y x x =⨯+⨯-=-, 当400x >时,()0.52000.8200 1.0400140y x x =⨯+⨯+⨯-=-,所以y 与x 之间的函数解析式为:0.5,02000.860,200400140,400x x y x x x x ≤≤⎧⎪=-<≤⎨⎪->⎩;(2)由(1)可知:当260y =时,400x =,则()4000.80P x ≤=,结合频率分布直方图可知:0.121000.30.81000.050.2b a +⨯+=⎧⎨+=⎩,∴0.0015,0.0020a b ==;(3)由题意可知X 可取50,150,250,350,450,550. 当50x =时,0.55025y =⨯=,∴()250.1P y ==, 当150x =时,0.515075y =⨯=,∴()750.2P y ==,当250x =时,0.52000.850140y =⨯+⨯=,∴()1400.3P y ==,当350x =时,0.52000.8150220y =⨯+⨯=,∴()2200.2P y ==,当450x =时,0.52000.8200 1.050310y =⨯+⨯+⨯=,∴()3100.15P y ==, 当550x =时,0.52000.8200 1.0150410y =⨯+⨯+⨯=,∴()4100.05P y ==,故的概率分布列为:所以随机变量的数学期望250.1750.21400.32200.23100.154100.05170.5EY =⨯+⨯+⨯+⨯+⨯+⨯=. 20.解:(1)由题意知24a =,所以2a =,所以()()()()12122,0,2,0,0,,0,A A B b B b --,则 直线22A B 的方程为12x yb+=,即220bx y b +-=, =,解得23b =, 故椭圆C 的方程为22143x y +=; (2)由题意,可设直线l 的方程为,0x my n m =+≠, 联立223412x my n x y =+⎧⎨+=⎩消去x 得()()222346340m y mny n +++-=,(*) 由直线l 与椭圆C 相切,得()()()2226433440mn m n∆=-⨯+-=,化简得22340m n -+=,设点(),H mt n t +,由(1)知()()121,0,1,0F F -,则()0111t mt n m-=-+-,解得()211m n t m -=-+, 所以1F HN ∆的面积()()()1222111112121F HNm n m n S n m m ∆---=+=++, 代入22340m n -+=消去n 化简得132F HN S m ∆=,。

广东省深圳市2017届高三下学期第一次调研考试(一模)数学(文)试题 Word版含答案

广东省深圳市2017届高三下学期第一次调研考试(一模)数学(文)试题 Word版含答案

深圳市2017年高三年级第一次调研考试数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}22,4,,6,8,B |9180A x x x ==-+≤,则A B = ( ) A . {}2,4 B .{}4,6 C .{}6,8 D .{}2,82.若复数()12a ia R i+∈+为纯虚数,其中i 为虚数单位,则a = ( ) A . -3 B . -2 C .2 D .33. 袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( ) A .14 B . 13 C . 12 D . 234.设30.330.2,log 0.2,log 0.2a b c ===,则,,a b c 大小关系正确的是( ) A .a b c >> B .b a c >> C. b c a >> D .c b a >> 5. ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知1cos ,1,24C a c ===,则ABC ∆的面积为( )A B 14 D .186. )A C. 2 D 7.将函数sin 64y x π⎛⎫=+⎪⎝⎭的图象上各点的纵坐标不变,横坐标伸长到原来的3倍,再向右平移8π个单位,得到的函数的一个对称中心是( ) A .,02π⎛⎫⎪⎝⎭ B .,04π⎛⎫ ⎪⎝⎭ C. ,09π⎛⎫ ⎪⎝⎭ D .,016π⎛⎫ ⎪⎝⎭8. 函数()21cos 21x xf x x +=- 的图象大致是( ) A . B .C. D .9.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为()02h h <<的平面截该几何体,则截面面积为 ( )A .4πB .2h π C. ()22h π- D .()24h π-10. 执行如图所示的程序框图,若输入2017p =,则输出i 的值为( ) A . 335 B .336 C. 337 D .33811. 已知棱长为2的正方体1111ABCD A B C D -,球O 与该正方体的各个面相切,则平面1ACB 截此球所得的截面的面积为( )A .83π B .53π C. 43π D .23π 12. 若()32sin cos f x x a x =+在()0,π上存在最小值,则实数a 的取值范围是( )A .30,2⎛⎫ ⎪⎝⎭ B .30,2⎛⎤ ⎥⎝⎦ C. 3,2⎡⎫+∞⎪⎢⎣⎭D .()0,+∞ 第Ⅱ卷二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量()()1,2,,3p q x ==,若p q ⊥,则p + 14. 已知α是锐角,且cos 3πα⎛⎫-= ⎪⎝⎭. 15.直线30ax y -+=与圆()()2224x y a -+-=相交于M N 、两点,若MN ≥则实数a 的取值范围是 .16.若实数,x y 满足不等式组4023801x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,目标函数z kx y =-的最大值为12,最小值为0,则实数k = .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.设n S 为数列{}n a 的前n 项和,且()*21,1n n n n S a n n N b a =-+∈=+. (1)求数列{}n b 的通项公式; (2)求数列{}n nb 的前n 项和n T .18. 如图,四边形ABCD 为菱形,四边形ACEF 为平行四边形,设BD 与AC 相交于点G,2,AB BD AE EAD EAB ===∠=∠.(1)证明:平面ACEF ⊥平面ABCD ;(2)若060EAG ∠=,求三棱锥F BDE -的体积.19.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y (单位:元)关于月用电量x (单位:度)的函数解+析式; (2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求,a b 的值;(3)在满足(2)的条件下,估计1月份该市居民用户平均用电费用(同一组中的数据用该组区间的中点值作代表).20.已成椭圆()2222:10x y C a b a b +=>>,过点()0,2P 的直线l 与椭圆C 相交于A B 、两点. (1)求椭圆C 的方程;(2)设M 是AB 中点,且Q 点的坐标为2,05⎛⎫⎪⎝⎭,当QM AB ⊥时,求直线l 的方程. 21.已知函数()()()1ln 3,,f x ax x ax a R g x =+-+∈是()f x 的导函数,e 为自然对数的底数.(1)讨论()g x 的单调性;(2)当a e >时,证明:()0a g e ->;(3)当a e >时,判断函数()f x 零点的个数,并说明理由.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中xOy 中,曲线E的参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)写出曲线E 的普通方程和极坐标方程;(2)若直线l 与曲线E 相交于点A B 、两点,且OA OB ⊥,求证:2211OAOB+为定值,并求出这个定值. 23.选修4-5:不等式选讲已知()(),3f x x a g x x x =+=+-. (1)当1a =,解不等式()()f x g x <;(2)对任意[]()()1,1,x f x g x ∈-<恒成立,求a 的取值范围.试卷答案一、选择题1-5: BBCBA 6-10: DACDC 11、12:DD二、填空题13. 4,3⎛⎤-∞- ⎥⎝⎦ 16. 3 三、解答题17.解:(1)当1n =时,11112112a S a a ==-+=,易得110,1a b ==; 当2n ≥时,()1121211n n n n n a S S a n a n --=-=-+---+⎡⎤⎣⎦, 整理得121n n a a -=+,∴()111212n n n n b a a b --=+=+=,∴数列{}n b 构成以首项为11b =,公比为2等比数列, ∴数列{}n b 的通项公式()12*n n b n N -=∈; (2)由(1)知12n n b -=,则12n n nb n -= , 则01211222322n n T n -=⨯+⨯+⨯++⨯ ,①∴12321222322nn T n =⨯+⨯+⨯++⨯ ,② 由①-②得:0121121212122n n n T n --=⨯+⨯+⨯++⨯-⨯12221212nn n n n n -=-⨯=--⨯-,∴()121n n T n =-+. 18.解:(1)证明:连接EG ,∵四边形ABCD 为菱形,∵,,AD AB BD AC DG GB =⊥=, 在EAD ∆和EAB ∆中,,AD AB AE AE ==,EAD EAB ∠=∠,∴EAD EAB ∆≅∆, ∴ED EB =, ∴BD EG ⊥, ∵AC EG G = , ∴BD ⊥平面ACFE , ∵BD ⊂平面ABCD , ∴平面ACFE ⊥平面ABCD ;(2)解法一:连接,EG FG ,∵BD ⊥面,ACFE FG ⊂平面ACFE ,∴FG BD ⊥, 在平行四边形ACFE 中,易知060,30EGA FGC ∠=∠=,∴090EGF ∠=,即FG EG ⊥,又因为,EG BD 为平面BDE 内的两条相交直线,所以FG ⊥平面BDE ,所以点F 到平面BDE 的距离为3FG =,∵122BDE S ∆==∴三棱锥F BDE -的体积为133= .解法二:∵//,EF 2GC EF GC =,∴点F 到平面BDE 的距离为点C 到平面BDE 的距离的两倍,所以2F BDE C BDE V V --=,作EH AC ⊥,∵平面ACFE ⊥平面,ABCD EH ⊥平面ABCD ,∴1132322C BDE E BCD V V --==⨯⨯=, ∴三棱锥F BDE -19.详细分析:(1)当0200x ≤≤时,0.5y x =;当200400x <≤时,()0.52000.82000.860y x x =⨯+⨯-=-, 当400x >时,()0.52000.8200 1.0400140y x x =⨯+⨯+⨯-=-,所以y 与x 之间的函数解+析式为:0.5,02000.860,200400140,400x x y x x x x ≤≤⎧⎪=-<≤⎨⎪->⎩;(2)由(1)可知:当260y =时,400x =,则()4000.80P x ≤=,结合频率分布直方图可知:0.121000.30.81000.050.2b a +⨯+=⎧⎨+=⎩,∴0.0015,0.0020a b ==; (3)由题意可知:当50x =时,0.55025y =⨯=,∴()250.1P y ==, 当150x =时,0.515075y =⨯=,∴()750.2P y ==,当250x =时,0.52000.850140y =⨯+⨯=,∴()1400.3P y ==, 当350x =时,0.52000.8150220y =⨯+⨯=,∴()2200.2P y ==,当450x =时,0.52000.8200 1.050310y =⨯+⨯+⨯=,∴()3100.15P y ==, 当550x =时,0.52000.8200 1.0150410y =⨯+⨯+⨯=,∴()4100.05P y ==, 故250.1750.21400.32200.23100.154100.05170.5y =⨯+⨯+⨯+⨯+⨯+⨯=.20.解:(1)由题意可知:225a b +=,又222c e a b c a ===+,∴a b ==,所以椭圆C 的方程为22:132x y C +=; (2)①若直线l 的斜率不存在,此时M 为原点,满足QM AB ⊥,所以,方程为0x =, ②若直线l 的斜率存在,设其方程为()()11222,,,,y y kx A x y B x =+, 将直线方程与椭圆方程联立可得222132y kx x y =+⎧⎪⎨+=⎪⎩,即()22231260k x kx +++=, 可得1222122372480k x x k k -⎧+=⎪+⎨⎪∆=->⎩,设()00,M x y ,则00222664,2232323k k x y k k k k --==+=+++ , 由QM AB ⊥可知00125y k x =--,化简得23520k k ++=, 解得1k =-或23k =-,将结果代入272480k ∆=->验证,舍掉23k =-, 此时,直线l 的方程为20x y +-=,综上所述,直线l 的方程为0x =或20x y +-=. 21.解(1)对函数()f x 求导得()()1ln g x f x a x x'==+, ()2211a ax g x x x x-'=-=, ①当0a ≤时,()0g x '<,故()g x 在()0,+∞上为减函数;②当0a >时,解()0g x '>可得1x a >,故()g x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ⎛⎫+∞ ⎪⎝⎭; (2) ()2a a g e a e -=-+,设()2x h x e x =-,则()2x h x e x '=-, 易知当x e >时,()0h x '>, ()220x e h x e x e e =->->;(3)由(1)可知,当a e >时,()g x 是先减再增的函数, 其最小值为111ln ln 10g a a a a a a ⎛⎫⎛⎫=+=+< ⎪ ⎪⎝⎭⎝⎭, 而此时()1110,0a a a g e e g e --⎛⎫=+>> ⎪⎝⎭,且11a a e e a -<<,故()g x 恰有两个零点12,x x , ∵当()10,x x ∈时,()()0f x g x '=>;当()12,x x x ∈时,()()0f x g x '=<;当()2,x x ∈+∞时,()()0f x g x '=>,∴()f x 在12,x x 两点分别取到极大值和极小值,且110,x a ⎛⎫∈ ⎪⎝⎭, 由()1111ln 0g x a x x =+=知111ln a x x =-, ∴()()11111111ln 3ln 2ln f x ax x ax x x =+-+=++, ∵1ln 0x <,∴111ln 2ln x x +≤-,但当111ln 2ln x x +=-时,11x e =,则a e =,不合题意,所以()10f x <,故函数()f x 的图象与x 轴不可能有两个交点. ∴函数()f x 只有一个零点.22.解:(1)曲线E 的普通方程为22143x y +=, 极坐标方程为22211cos sin 143ρθθ⎛⎫+=⎪⎝⎭,∴所求的极坐标方程为22223cos 4sin 12ρθρθ+=;(2)不妨设设点,A B 的极坐标分别为()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭, 则()()2211222211cos sin 14311cos sin 14232ρθρθππρθρθ⎧+=⎪⎪⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪+++= ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩,即22212222111cos sin 43111sin cos 43θθρθθρ⎧=+⎪⎪⎨⎪=+⎪⎩, ∴221211712ρρ+=,即2211712OA OB+=(定值). 23.解:(1)当1a =,()1f x x =+,由()()f x g x <可得13x x x +<+-,即310x x x +-+->, 当3x ≤-时,原不等式等价于20x -->,即2x <-,∴3x ≤-,当31x -<<-时,原不等式等价于40x +>,即4x >-,∴31x -<<-, 当1x ≥-时,原不等式等价于20x -+>,即2x <,∴12x -≤<, 综上所述,不等式的解集为(),2-∞;(2)当[]1,1x ∈-时,()3g x =,∴3x a +<恒成立,∴33a x -<+<,即33x a x --<<-,当[]1,1x ∈-时恒成立, ∴a 的取值范围22a -<<.。

2017年高三深一模数学试卷(理科)(带完美解析)

2017年高三深一模数学试卷(理科)(带完美解析)

2017年广东省深圳市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={2,4,6,8},B={x|x2﹣9x+18≤0},则A∩B=()A.{2,4}B.{4,6}C.{6,8}D.{2,8}2.若复数(a∈R)为纯虚数,其中i为虚数单位,则a=()A.2 B.3 C.﹣2 D.﹣33.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()A.B.C.D.4.等比数列{a n}的前n项和为S n=a•3n﹣1+b,则=()A.﹣3 B.﹣1 C.1 D.35.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x﹣4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A.B.C.D.26.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A.4πB.πh2C.π(2﹣h)2D.π(4﹣h)27.函数f(x)=•cosx的图象大致是()8.已知a>b>0,c<0,下列不等关系中正确的是()A.ac>bc B.a c>b cC.log a(a﹣c)>log b(b﹣c)D.>9.执行如图所示的程序框图,若输入p=2017,则输出i的值为()A.335 B.336 C.337 D.33810.已知F是双曲线E:﹣=1(a>0,b>0)的右焦点,过点F作E的一条渐近线的垂线,垂足为P,线段PF与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|FP|=2d,则该双曲线的离心率是()A.B.2 C.3 D.411.已知棱长为2的正方体ABCD﹣A1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为()A.B.C.D.12.已知函数f(x)=,x≠0,e为自然对数的底数,关于x的方程+﹣λ=0有四个相异实根,则实数λ的取值范围是()A.(0,)B.(2,+∞)C.(e+,+∞)D.(+,+∞)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量=(1,2),=(x,3),若⊥,则|+|=.14.(﹣)5的二项展开式中,含x的一次项的系数为(用数字作答).15.若实数x,y满足不等式组,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k=.16.已知数列{a n}满足na n﹣(n+2)a n=λ(n2+2n),其中a1=1,a2=2,若a n<a n+1对∀n∈+2N*恒成立,则实数λ的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分) △ABC的内角A、B、C的对边分别为a、b、c,已知2a=csinA﹣acosC.(1)求C;(2)若c=,求△ABC的面积S的最大值.18.(12分) 如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE=,∠EAD=∠EAB.(1)证明:平面ACEF⊥平面ABCD;(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.19.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.20.(12分) 已成椭圆C: +=1(a>b>0)的左右顶点分别为A1、A2,上下顶点分别为B2/B1,左右焦点分别为F1、F2,其中长轴长为4,且圆O:x2+y2=为菱形A1B1A2B2的内切圆.(1)求椭圆C的方程;(2)点N(n,0)为x轴正半轴上一点,过点N作椭圆C的切线l,记右焦点F2在l上的射影为H,若△F1HN的面积不小于n2,求n的取值范围.21.(12分) 已知函数f(x)=xlnx,e为自然对数的底数.(1)求曲线y=f(x)在x=e﹣2处的切线方程;(2)关于x的不等式f(x)≥λ(x﹣1)在(0,+∞)上恒成立,求实数λ的值;(3)关于x的方程f(x)=a有两个实根x1,x2,求证:|x1﹣x2|<2a+1+e﹣2.[选修4-4:坐标系与参数方程]22.在直角坐标系中xOy中,已知曲线E经过点P(1,),其参数方程为(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线E的极坐标方程;(2)若直线l交E于点A、B,且OA⊥OB,求证: +为定值,并求出这个定值.[选修4-5:不等式选讲]23.已知f(x)=|x+a|,g(x)=|x+3|﹣x,记关于x的不等式f(x)<g(x)的解集为M.(1)若a﹣3∈M,求实数a的取值范围;(2)若[﹣1,1]⊆M,求实数a的取值范围.2017年广东省深圳市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={2,4,6,8},B={x|x2﹣9x+18≤0},则A∩B=()A.{2,4}B.{4,6}C.{6,8}D.{2,8}【考点】交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:∵A={2,4,6,8},B={x|x2﹣9x+18≤0}={x|(x﹣3)(x﹣6)≤0}={x|3≤x ≤6},∴A∩B={4,6},故选:B.2.若复数(a∈R)为纯虚数,其中i为虚数单位,则a=()A.2 B.3 C.﹣2 D.﹣3【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,根据已知条件列出方程组,求解即可得答案.【解答】解:==,∵复数(a∈R)为纯虚数,∴,解得:a=﹣2.故选:C.3.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】现从中随机选取三个球,基本事件总数n==4,所选的三个球上的数字能构成等差数列包含的基本事件的个数,由此能求出所选的三个球上的数字能构成等差数列的概率.【解答】解:袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,基本事件总数n==4,所选的三个球上的数字能构成等差数列包含的基本事件有:(2,3,4),(2,4,6),共有2个,∴所选的三个球上的数字能构成等差数列的概率是p==.故选:B.4.等比数列{a n}的前n项和为S n=a•3n﹣1+b,则=()A.﹣3 B.﹣1 C.1 D.3【考点】等比数列的通项公式.【分析】由等比数列{a n}的前n项和求出前3项,由此能求出利用等比数列{a n}中,,能求出.【解答】解:∵等比数列{a n}的前n项和为S n=a•3n﹣1+b,∴a1=S1=a+b,a2=S2﹣S1=3a+b﹣a﹣b=2a,a3=S3﹣S2=9a+b﹣3a﹣b=6a,∵等比数列{a n}中,,∴(2a)2=(a+b)×6a,解得=﹣3.故选:A.5.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x﹣4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A.B.C.D.2【考点】直线与圆的位置关系.【分析】求出圆的标准方程可得圆心和半径,由直线l:kx+y+4=0经过圆C的圆心(﹣2,2),求得k的值,可得点A的坐标,求出圆心到直线的距离,即可得出结论.【解答】解:∵圆C:x2+y2+4x﹣4y+6=0,即(x+2)2+(y﹣2)2 =2,表示以C(﹣2,2)为圆心、半径等于的圆.由题意可得,直线l:kx+y+4=0经过圆C的圆心(﹣2,2),故有﹣2k+2+4=0,∴k=3,点A(0,3).直线m:y=x+3,圆心到直线的距离d==,∴直线m被圆C所截得的弦长为2=.故选:C.6.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A.4πB.πh2C.π(2﹣h)2D.π(4﹣h)2【考点】由三视图求面积、体积.【分析】由题意,首先得到几何体为一个圆柱挖去一个圆锥,得到截面为圆,明确其半径求面积.【解答】解:由已知得到几何体为一个圆柱挖去一个圆锥,底面半径为2高为2,设截面的圆半径为r,则,得到r=h,所以截面圆的面积为πh2;故选B.7.函数f(x)=•cosx的图象大致是()A.B.C.D.【考点】函数的图象.【分析】先判断函数的奇偶性,再判断函数值,问题得以解决.【解答】解:f(﹣x)=•cos(﹣x)=•cosx=﹣f(x),∴f(x)为奇函数,∴函数f(x)的图象关于原点对称,当x∈(0,)时,cosx>0,>0,∴f(x)>0在(0,)上恒成立,故选:C8.已知a>b>0,c<0,下列不等关系中正确的是()A.ac>bc B.a c>b cC.log a(a﹣c)>log b(b﹣c)D.>【考点】不等式的基本性质.【分析】根据不等式的性质求出a(b﹣c)>b(a﹣c)以及a﹣c>b﹣c>0,从而求出答案.【解答】解:∵a>b>0,c<0,﹣c>0,∴a﹣c>b﹣c>0,ac<bc,故a(b﹣c)>b(a﹣c),故>,故选:D.9.执行如图所示的程序框图,若输入p=2017,则输出i的值为()A.335 B.336 C.337 D.338【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出输出i的值.【解答】解:模拟程序的运行,可得程序框图的功能是统计1到2017这些数中能同时被2和3整除的数的个数i,由于:2017=336×6+1,故程序框图输出的i的值为336.故选:B.10.已知F是双曲线E:﹣=1(a>0,b>0)的右焦点,过点F作E的一条渐近线的垂线,垂足为P,线段PF与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|FP|=2d,则该双曲线的离心率是()A.B.2 C.3 D.4【考点】双曲线的简单性质.【分析】E上任意一点Q(x,y)到两条渐近线的距离之积为d1d2===d2,F(c,0)到渐近线bx﹣ay=0的距离为=b=2d,求出可求双曲线的离心率.【解答】解:E上任意一点Q(x,y)到两条渐近线的距离之积为d1d2===d2,F(c,0)到渐近线bx﹣ay=0的距离为=b=2d,∴,∴e==2,故选B.11.已知棱长为2的正方体ABCD﹣A1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为()A. B. C. D.【考点】球的体积和表面积.【分析】求出平面ACB1截此球所得的截面的圆的半径,即可求出平面ACB1截此球所得的截面的面积.【解答】解:由题意,球心与B的距离为=,B到平面ACB1的距离为=,球的半径为1,球心到平面ACB1的距离为﹣=,∴平面ACB1截此球所得的截面的圆的半径为=,∴平面ACB1截此球所得的截面的面积为=,故选A.12.已知函数f(x)=,x≠0,e为自然对数的底数,关于x的方程+﹣λ=0有四个相异实根,则实数λ的取值范围是()A.(0,)B.(2,+∞)C.(e+,+∞)D.(+,+∞)【考点】根的存在性及根的个数判断.【分析】求导数,确定函数的单调性,可得x=2时,函数取得极大值,关于x的方程+﹣λ=0有四个相异实根,则t+﹣λ=0的一根在(0,),另一根在(,+∞)之间,即可得出结论.【解答】解:由题意,f′(x)=,∴x<0或x>2时,f′(x)<0,函数单调递减,0<x<2时,f′(x)>0,函数单调递增,∴x=2时,函数取得极大值,关于x的方程+﹣λ=0有四个相异实根,则t+﹣λ=0的一根在(0,),另一根在(,+∞)之间,∴,∴λ>e+,故选:C.二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量=(1,2),=(x,3),若⊥,则|+|=5.【考点】平面向量的坐标运算.【分析】⊥,可得=0,解得x.再利用向量模的计算公式即可得出.【解答】解:∵⊥,∴=x+6=0,解得x=﹣6.∴=(﹣5,5).∴|+|==5.故答案为:5.14.(﹣)5的二项展开式中,含x的一次项的系数为﹣5(用数字作答).【考点】二项式系数的性质.【分析】写出二项展开式的通项,由x的指数等于1求得r值,则答案可求.【解答】解:(﹣)5的二项展开式中,通项公式为:=••=(﹣1)r••,T r+1令=1,得r=1;∴二项式(﹣)5的展开式中含x的一次项系数为:﹣1•=﹣5.故答案为:﹣5.15.若实数x,y满足不等式组,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k=3.【考点】简单线性规划.【分析】先画出可行域,得到角点坐标.利用k与0的大小,分类讨论,结合目标函数的最值求解即可.【解答】解:实数x,y满足不等式组的可行域如图:得:A(1,3),B(1,﹣2),C(4,0).①当k=0时,目标函数z=kx﹣y的最大值为12,最小值为0,不满足题意.②当k>0时,目标函数z=kx﹣y的最大值为12,最小值为0,当直线z=kx﹣y过C(4,0)时,Z取得最大值12.当直线z=kx﹣y过A(3,1)时,Z取得最小值0.可得k=3,满足题意.③当k<0时,目标函数z=kx﹣y的最大值为12,最小值为0,当直线z=kx﹣y过C(4,0)时,Z取得最大值12.可得k=﹣3,当直线z=kx﹣y过,B(1,﹣2)时,Z取得最小值0.可得k=﹣2,无解.综上k=3故答案为:3.16.已知数列{a n}满足na n﹣(n+2)a n=λ(n2+2n),其中a1=1,a2=2,若a n<a n+1对∀n∈+2N*恒成立,则实数λ的取值范围是[0,+∞).【考点】数列递推式.【分析】把已知递推式变形,可得数列{}的奇数项与偶数项均是以λ为公差的等差数列,分类求其通项公式,代入a n<a n+1,分离参数λ求解.【解答】解:由na n﹣(n+2)a n=λ(n2+2n)=λn(n+2),+2得,∴数列{}的奇数项与偶数项均是以λ为公差的等差数列,∵a1=1,a2=2,∴当n为奇数时,,∴;当n为偶数时,,∴.当n为奇数时,由a n<a n+1,得<,即λ(n﹣1)>﹣2.若n=1,λ∈R,若n>1则λ>,∴λ≥0;当n为偶数时,由a n<a n+1,得<,即3nλ>﹣2,∴λ>,即λ≥0.综上,λ的取值范围为[0,+∞).故答案为:[0,+∞).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC的内角A、B、C的对边分别为a、b、c,已知2a=csinA﹣acosC.(1)求C;(2)若c=,求△ABC的面积S的最大值.【考点】正弦定理;余弦定理.【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin(C﹣)=1,结合C的范围,可得C的值.(2)由余弦定理,基本不等式可求ab≤1,进而利用三角形面积公式可求△ABC面积的最大值.【解答】(本题满分为12分)解:(1)∵2a=csinA﹣acosC,∴由正弦定理可得:2sinA=sinCsinA﹣sinAcosC,…2分∵sinA≠0,∴可得:2=sinC﹣cosC,解得:sin(C﹣)=1,∵C∈(0,π),可得:C﹣∈(﹣,),∴C﹣=,可得:C=.…6分(2)∵由(1)可得:cosC=﹣,∴由余弦定理,基本不等式可得:3=b2+a2+ab≥3ab,即:ab≤1,(当且仅当b=a时取等号) (8)分=absinC=ab≤,可得△ABC面积的最大值为.…12分∴S△ABC18.如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE=,∠EAD=∠EAB.(1)证明:平面ACEF⊥平面ABCD;(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)连接EG,由四边形ABCD为菱形,可得AD=AB,BD⊥AC,DG=GB,可证△EAD ≌△EAB,进一步证明BD⊥平面ACEF,则平面ACEF⊥平面ABCD;(2)法一、过G作EF的垂线,垂足为M,连接MB,MG,MD,可得∠EAC为AE与面ABCD 所成的角,得到EF⊥平面BDM,可得∠DMB为二面角B﹣EF﹣D的平面角,在△DMB中,由余弦定理求得∠BMD的余弦值,进一步得到二面角B﹣EF﹣D的余弦值;法二、在平面ABCD内,过G作AC的垂线,交EF于M点,由(1)可知,平面ACEF⊥平面ABCD,得MG⊥平面ABCD,则直线GM、GA、GB两两互相垂直,分别以GA、GB、GM 为x、y、z轴建立空间直角坐标系G﹣xyz,分别求出平面BEF与平面DEF的一个法向量,由两法向量所成角的余弦值可得二面角B﹣EF﹣D的余弦值.【解答】(1)证明:连接EG,∵四边形ABCD为菱形,∴AD=AB,BD⊥AC,DG=GB,在△EAD和△EAB中,AD=AB,AE=AE,∠EAD=∠EAB,∴△EAD≌△EAB,∴ED=EB,则BD⊥EG,又AC∩EG=G,∴BD⊥平面ACEF,∵BD⊂平面ABCD,∴平面ACEF⊥平面ABCD;(2)解法一:过G作EF的垂线,垂足为M,连接MB,MG,MD,易得∠EAC为AE与面ABCD所成的角,∴∠EAC=60°,∵EF⊥GM,EF⊥BD,∴EF⊥平面BDM,∴∠DMB为二面角B﹣EF﹣D的平面角,可求得MG=,DM=BM=,在△DMB中,由余弦定理可得:cos∠BMD=,∴二面角B﹣EF﹣D的余弦值为;解法二:如图,在平面ABCD内,过G作AC的垂线,交EF于M点,由(1)可知,平面ACEF⊥平面ABCD,∵MG⊥平面ABCD,∴直线GM、GA、GB两两互相垂直,分别以GA、GB、GM为x、y、z轴建立空间直角坐标系G﹣xyz,可得∠EAC为AE与平面ABCD所成的角,∴∠EAC=60°,则D(0,﹣1,0),B(0,1,0),E(),F(),,,设平面BEF的一个法向量为,则,取z=2,可得平面BEF的一个法向量为,同理可求得平面DEF的一个法向量为,∴cos<>==,∴二面角B﹣EF﹣D的余弦值为.19.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(1)利用分段函数的性质即可得出.(2)利用(1),结合频率分布直方图的性质即可得出.(3)由题意可知X可取50,150,250,350,450,550.结合频率分布直方图的性质即可得出.【解答】解:(1)当0≤x≤200时,y=0.5x;当200<x≤400时,y=0.5×200+0.8×(x﹣200)=0.8x﹣60,当x>400时,y=0.5×200+0.8×200+1.0×(x﹣400)=x﹣140,所以y与x之间的函数解析式为:y=.(2)由(1)可知:当y=260时,x=400,则P(x≤400)=0.80,结合频率分布直方图可知:0.1+2×100b+0.3=0.8,100a+0.05=0.2,∴a=0.0015,b=0.0020.(3)由题意可知X可取50,150,250,350,450,550.当x=50时,y=0.5×50=25,∴P(y=25)=0.1,当x=150时,y=0.5×150=75,∴P(y=75)=0.2,当x=250时,y=0.5×200+0.8×50=140,∴P(y=140)=0.3,当x=350时,y=0.5×200+0.8×150=220,∴P(y=220)=0.2,当x=450时,y=0.5×200+0.8×200+1.0×50=310,∴P(y=310)=0.15,当x=550时,y=0.5×200×0.8×200+1.0×150=410,∴P(y=410)=0.05.故Y的概率分布列为:Y2575140220310410P0.10.20.30.20.150.05所以随机变量Y的数学期望EY=25×0.1+75×0.2+140×0.3+220×0.2+310×0.15+410×0.05=170.5.20.已成椭圆C: +=1(a>b>0)的左右顶点分别为A1、A2,上下顶点分别为B2/B1,左右焦点分别为F1、F2,其中长轴长为4,且圆O:x2+y2=为菱形A1B1A2B2的内切圆.(1)求椭圆C的方程;(2)点N(n,0)为x轴正半轴上一点,过点N作椭圆C的切线l,记右焦点F2在l上的射影为H,若△F1HN的面积不小于n2,求n的取值范围.【考点】椭圆的简单性质.【分析】(1)由题意求得a,直线A2B2的方程为,利用点到直线的距离公式,即可求得b的值,求得椭圆C的方程;(2)设直线方程,代入椭圆方程,由△=0,求得m和n的关系,利用三角形的面积公式,求得m的取值范围,代入即可求得n的取值范围.【解答】解:(1)由题意知2a=4,所以a=2,所以A1(﹣2,0),A2(2,0),B1(0,﹣b),B2(0,b),则直线A2B2的方程为,即bx+2y﹣2b=0,所以=,解得b2=3,故椭圆C的方程为;(2)由题意,可设直线l的方程为x=my+n,m≠0,联立,消去x得(3m2+4)y2+6mny+3(n2﹣4)=0,(*)由直线l与椭圆C相切,得△=(6mn)2﹣4×3×(3m2+4)(n2﹣4)=0,化简得3m2﹣n2+4=0,设点H(mt+n,t),由(1)知F1(﹣1,0),F2(1,0),则•=﹣1,解得:t=﹣,所以△F1HN的面积=(n+1)丨﹣丨=,代入3m2﹣n2+4=0,消去n化简得=丨m丨,所以丨m丨≥n2=(3m2+4),解得≤丨m丨≤2,即≤m2≤4,从而≤≤4,又n>0,所以≤n≤4,故n的取值范围为[,4].21.已知函数f(x)=xlnx,e为自然对数的底数.(1)求曲线y=f(x)在x=e﹣2处的切线方程;(2)关于x的不等式f(x)≥λ(x﹣1)在(0,+∞)上恒成立,求实数λ的值;(3)关于x的方程f(x)=a有两个实根x1,x2,求证:|x1﹣x2|<2a+1+e﹣2.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f′(e﹣2)和f(e﹣2)的值,求出切线方程即可;(2)求出函数g(x)的导数,得到函数的单调区间,求出函数的极小值,从而求出λ的值即可;(3)记h(x)=f(x)﹣(﹣x﹣e﹣2)=xlnx+x+e﹣2,求出h(x)的最小值,得到a=﹣1=f(x2)≥x2﹣1,得到|x1﹣x2|=x2﹣x1≤﹣,从而证出结论.【解答】解(1)对函数f(x)求导得f′(x)=lnx+1,∴f′(e﹣2)=lne﹣2+1=﹣1,又f(e﹣2)=e﹣2lne﹣2=﹣2e﹣2,∴曲线y=f(x)在x=e﹣2处的切线方程为y﹣(﹣2e﹣2)=﹣(x﹣e﹣2),即y=﹣x﹣e﹣2;(2)记g(x)=f(x)﹣λ(x﹣1)=xlnx﹣λ(x﹣1),其中x>0,由题意知g(x)≥0在(0,+∞)上恒成立,下面求函数g(x)的最小值,对g(x)求导得g′(x)=lnx+1﹣λ,令g′(x)=0,得x=eλ﹣1,当x变化时,g′(x),g(x)变化情况列表如下:x(0,eλ﹣1)eλ﹣1(eλ﹣1,+∞)g′(x)﹣0+g(x)递减极小值递增∴g(x)min=g(x)极小值=g(eλ﹣1)=(λ﹣1)eλ﹣1﹣λ(eλ﹣1﹣1)=λ﹣eλ﹣1,∴λ﹣eλ﹣1≥0,记G(λ)=λ﹣eλ﹣1,则G′(λ)=1﹣eλ﹣1,令G′(λ)=0,得λ=1,当λ变化时,G′(λ),G(λ)变化情况列表如下:λ(0,1)1(1,+∞)G′(λ)+0﹣G(λ)递增极大值递减∴G(λ)max=G(λ)极大值=G(1)=0,故λ﹣eλ﹣1≤0当且仅当λ=1时取等号,又λ﹣eλ﹣1≥0,从而得到λ=1;(3)先证f(x)≥﹣x﹣e﹣2,记h(x)=f(x)﹣(﹣x﹣e﹣2)=xlnx+x+e﹣2,则h′(x)=lnx+2,令h′(x)=0,得x=e﹣2,当x变化时,h′(x),h(x)变化情况列表如下:x(0,e﹣2)e﹣2(e﹣2,+∞)h′(x)﹣0+h(x)递减极小值递增∴h(x)min=h(x)极小值=h(e﹣2)=e﹣2lne﹣2+e﹣2+e﹣2=0,h(x)≥0恒成立,即f(x)≥﹣x﹣e﹣2,记直线y=﹣x﹣e﹣2,y=x﹣1分别与y=a交于(,a),(,a),不妨设x1<x2,则a=﹣﹣e﹣2=f(x1)≥﹣x1﹣e﹣2,从而<x1,当且仅当a=﹣2e﹣2时取等号,由(2)知,f(x)≥x﹣1,则a=﹣1=f(x2)≥x2﹣1,从而x2≤,当且仅当a=0时取等号,故|x1﹣x2|=x2﹣x1≤﹣=(a+1)﹣(﹣a﹣e﹣2)=2a+1+e﹣2,因等号成立的条件不能同时满足,故|x1﹣x2|<2a+1+e﹣2.[选修4-4:坐标系与参数方程]22.在直角坐标系中xOy中,已知曲线E经过点P(1,),其参数方程为(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线E的极坐标方程;(2)若直线l交E于点A、B,且OA⊥OB,求证: +为定值,并求出这个定值.【考点】参数方程化成普通方程.【分析】(1)将点P(1,),代入曲线E的方程,求出a2=3,可得曲线E的普通方程,即可求曲线E的极坐标方程;(2)利用点的极坐标,代入极坐标方程,化简,即可证明结论.【解答】解:(1)将点P(1,),代入曲线E的方程:,解得a2=3,所以曲线E的普通方程为=1,极坐标方程为=1;(2)不妨设点A,B的极坐标分别为A(ρ1,θ),B(ρ2,),则代入曲线E的极坐标方程,可得+==,即+为定值.[选修4-5:不等式选讲]23.已知f(x)=|x+a|,g(x)=|x+3|﹣x,记关于x的不等式f(x)<g(x)的解集为M.(1)若a﹣3∈M,求实数a的取值范围;(2)若[﹣1,1]⊆M,求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(1)将x=a﹣3代入不等式,解关于a的不等式即可;(2)得到|x+a|<3恒成立,即﹣3﹣x<a<3﹣x,当x∈[﹣1,1]时恒成立,求出a的范围即可.【解答】解:(1)依题意有:|2a﹣3|<|a|﹣(a﹣3),若a≥,则2a﹣3<3,∴≤a<3,若0≤a<,则3﹣2a<3,∴0<a<,若a≤0,则3﹣2a<﹣a﹣(a﹣3),无解,综上所述,a的取值范围为(0,3);(2)由题意可知,当x∈[﹣1,1]时,f(x)<g(x)恒成立,∴|x+a|<3恒成立,即﹣3﹣x<a<3﹣x,当x∈[﹣1,1]时恒成立,∴﹣2<a<2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年广东省深圳市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={2,4,6,8},B={x|x2﹣9x+18≤0},则A∩B=()A.{2,4}B.{4,6}C.{6,8}D.{2,8}2.若复数(a∈R)为纯虚数,其中i为虚数单位,则a=()A.2 B.3 C.﹣2 D.﹣33.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()A.B.C.D.4.等比数列{a n}的前n项和为S n=a•3n﹣1+b,则=()A.﹣3 B.﹣1 C.1 D.35.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x﹣4y+6=0的一条对称轴,过点A (0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A.B.C.D.26.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A.4πB.πh2C.π(2﹣h)2D.π(4﹣h)27.函数f(x)=•cosx的图象大致是()A.B.C.D.8.已知a>b>0,c<0,下列不等关系中正确的是()A.ac>bc B.a c>b cC.log a(a﹣c)>log b(b﹣c)D.>9.执行如图所示的程序框图,若输入p=2017,则输出i的值为()A.335 B.336 C.337 D.33810.已知F是双曲线E:﹣=1(a>0,b>0)的右焦点,过点F作E的一条渐近线的垂线,垂足为P,线段PF与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|FP|=2d,则该双曲线的离心率是()A.B.2 C.3 D.411.已知棱长为2的正方体ABCD﹣A1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为()A. B. C. D.12.已知函数f(x)=,x≠0,e为自然对数的底数,关于x的方程+﹣λ=0有四个相异实根,则实数λ的取值范围是()A.(0,)B.(2,+∞)C.(e+,+∞)D.(+,+∞)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量=(1,2),=(x,3),若⊥,则|+|=.14.(﹣)5的二项展开式中,含x的一次项的系数为(用数字作答).15.若实数x,y满足不等式组,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k=.16.已知数列{a n}满足na n﹣(n+2)a n=λ(n2+2n),其中a1=1,a2=2,若a n<+2a n对∀n∈N*恒成立,则实数λ的取值范围是.+1三、解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC的内角A、B、C的对边分别为a、b、c,已知2a=csinA﹣acosC.(1)求C;(2)若c=,求△ABC的面积S的最大值.18.如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE=,∠EAD=∠EAB.(1)证明:平面ACEF⊥平面ABCD;(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.19.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.20.已成椭圆C: +=1(a>b>0)的左右顶点分别为A1、A2,上下顶点分别为B2/B1,左右焦点分别为F1、F2,其中长轴长为4,且圆O:x2+y2=为菱形A1B1A2B2的内切圆.(1)求椭圆C的方程;(2)点N(n,0)为x轴正半轴上一点,过点N作椭圆C的切线l,记右焦点F2在l上的射影为H,若△F1HN的面积不小于n2,求n的取值范围.21.已知函数f(x)=xlnx,e为自然对数的底数.(1)求曲线y=f(x)在x=e﹣2处的切线方程;(2)关于x的不等式f(x)≥λ(x﹣1)在(0,+∞)上恒成立,求实数λ的值;(3)关于x的方程f(x)=a有两个实根x1,x2,求证:|x1﹣x2|<2a+1+e﹣2.[选修4-4:坐标系与参数方程]22.在直角坐标系中xOy中,已知曲线E经过点P(1,),其参数方程为(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线E的极坐标方程;(2)若直线l交E于点A、B,且OA⊥OB,求证: +为定值,并求出这个定值.[选修4-5:不等式选讲]23.已知f(x)=|x+a|,g(x)=|x+3|﹣x,记关于x的不等式f(x)<g(x)的解集为M.(1)若a﹣3∈M,求实数a的取值范围;(2)若[﹣1,1]⊆M,求实数a的取值范围.2017年广东省深圳市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={2,4,6,8},B={x|x2﹣9x+18≤0},则A∩B=()A.{2,4}B.{4,6}C.{6,8}D.{2,8}【考点】交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:∵A={2,4,6,8},B={x|x2﹣9x+18≤0}={x|(x﹣3)(x﹣6)≤0}={x|3≤x≤6},∴A∩B={4,6},故选:B.2.若复数(a∈R)为纯虚数,其中i为虚数单位,则a=()A.2 B.3 C.﹣2 D.﹣3【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,根据已知条件列出方程组,求解即可得答案.【解答】解:==,∵复数(a∈R)为纯虚数,∴,解得:a=﹣2.故选:C.3.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】现从中随机选取三个球,基本事件总数n==4,所选的三个球上的数字能构成等差数列包含的基本事件的个数,由此能求出所选的三个球上的数字能构成等差数列的概率.【解答】解:袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,基本事件总数n==4,所选的三个球上的数字能构成等差数列包含的基本事件有:(2,3,4),(2,4,6),共有2个,∴所选的三个球上的数字能构成等差数列的概率是p==.故选:B.4.等比数列{a n}的前n项和为S n=a•3n﹣1+b,则=()A.﹣3 B.﹣1 C.1 D.3【考点】等比数列的通项公式.【分析】由等比数列{a n}的前n项和求出前3项,由此能求出利用等比数列{a n}中,,能求出.【解答】解:∵等比数列{a n}的前n项和为S n=a•3n﹣1+b,∴a1=S1=a+b,a2=S2﹣S1=3a+b﹣a﹣b=2a,a3=S3﹣S2=9a+b﹣3a﹣b=6a,∵等比数列{a n}中,,∴(2a)2=(a+b)×6a,解得=﹣3.故选:A.5.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x﹣4y+6=0的一条对称轴,过点A (0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A.B.C.D.2【考点】直线与圆的位置关系.【分析】求出圆的标准方程可得圆心和半径,由直线l:kx+y+4=0经过圆C的圆心(﹣2,2),求得k的值,可得点A的坐标,求出圆心到直线的距离,即可得出结论.【解答】解:∵圆C:x2+y2+4x﹣4y+6=0,即(x+2)2+(y﹣2)2 =2,表示以C(﹣2,2)为圆心、半径等于的圆.由题意可得,直线l:kx+y+4=0经过圆C的圆心(﹣2,2),故有﹣2k+2+4=0,∴k=3,点A(0,3).直线m:y=x+3,圆心到直线的距离d==,∴直线m被圆C所截得的弦长为2=.故选:C.6.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A.4πB.πh2C.π(2﹣h)2D.π(4﹣h)2【考点】由三视图求面积、体积.【分析】由题意,首先得到几何体为一个圆柱挖去一个圆锥,得到截面为圆,明确其半径求面积.【解答】解:由已知得到几何体为一个圆柱挖去一个圆锥,底面半径为2高为2,设截面的圆半径为r,则,得到r=h,所以截面圆的面积为πh2;故选B.7.函数f(x)=•cosx的图象大致是()A.B.C.D.【考点】函数的图象.【分析】先判断函数的奇偶性,再判断函数值,问题得以解决.【解答】解:f(﹣x)=•cos(﹣x)=•cosx=﹣f(x),∴f(x)为奇函数,∴函数f(x)的图象关于原点对称,当x∈(0,)时,cosx>0,>0,∴f(x)>0在(0,)上恒成立,故选:C8.已知a>b>0,c<0,下列不等关系中正确的是()A.ac>bc B.a c>b cC.log a(a﹣c)>log b(b﹣c)D.>【考点】不等式的基本性质.【分析】根据不等式的性质求出a(b﹣c)>b(a﹣c)以及a﹣c>b﹣c>0,从而求出答案.【解答】解:∵a>b>0,c<0,﹣c>0,∴a﹣c>b﹣c>0,ac<bc,故a(b﹣c)>b(a﹣c),故>,故选:D.9.执行如图所示的程序框图,若输入p=2017,则输出i的值为()A.335 B.336 C.337 D.338【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出输出i的值.【解答】解:模拟程序的运行,可得程序框图的功能是统计1到2017这些数中能同时被2和3整除的数的个数i,由于:2017=336×6+1,故程序框图输出的i的值为336.故选:B.10.已知F是双曲线E:﹣=1(a>0,b>0)的右焦点,过点F作E的一条渐近线的垂线,垂足为P,线段PF与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|FP|=2d,则该双曲线的离心率是()A.B.2 C.3 D.4【考点】双曲线的简单性质.【分析】E上任意一点Q(x,y)到两条渐近线的距离之积为d1d2===d2,F(c,0)到渐近线bx﹣ay=0的距离为=b=2d,求出可求双曲线的离心率.【解答】解:E上任意一点Q(x,y)到两条渐近线的距离之积为d1d2===d2,F(c,0)到渐近线bx﹣ay=0的距离为=b=2d,∴,∴e==2,故选B.11.已知棱长为2的正方体ABCD﹣A1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为()A. B. C. D.【考点】球的体积和表面积.【分析】求出平面ACB1截此球所得的截面的圆的半径,即可求出平面ACB1截此球所得的截面的面积.【解答】解:由题意,球心与B的距离为=,B到平面ACB1的距离为=,球的半径为1,球心到平面ACB1的距离为﹣=,∴平面ACB1截此球所得的截面的圆的半径为=,∴平面ACB1截此球所得的截面的面积为=,故选A.12.已知函数f(x)=,x≠0,e为自然对数的底数,关于x的方程+﹣λ=0有四个相异实根,则实数λ的取值范围是()A.(0,)B.(2,+∞)C.(e+,+∞)D.(+,+∞)【考点】根的存在性及根的个数判断.【分析】求导数,确定函数的单调性,可得x=2时,函数取得极大值,关于x的方程+﹣λ=0有四个相异实根,则t+﹣λ=0的一根在(0,),另一根在(,+∞)之间,即可得出结论.【解答】解:由题意,f′(x)=,∴x<0或x>2时,f′(x)<0,函数单调递减,0<x<2时,f′(x)>0,函数单调递增,∴x=2时,函数取得极大值,关于x的方程+﹣λ=0有四个相异实根,则t+﹣λ=0的一根在(0,),另一根在(,+∞)之间,∴,∴λ>e+,故选:C.二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量=(1,2),=(x,3),若⊥,则|+|=5.【考点】平面向量的坐标运算.【分析】⊥,可得=0,解得x.再利用向量模的计算公式即可得出.【解答】解:∵⊥,∴=x+6=0,解得x=﹣6.∴=(﹣5,5).∴|+|==5.故答案为:5.14.(﹣)5的二项展开式中,含x的一次项的系数为﹣5(用数字作答).【考点】二项式系数的性质.【分析】写出二项展开式的通项,由x的指数等于1求得r值,则答案可求.【解答】解:(﹣)5的二项展开式中,通项公式为:=••=(﹣1)r••,T r+1令=1,得r=1;∴二项式(﹣)5的展开式中含x的一次项系数为:﹣1•=﹣5.故答案为:﹣5.15.若实数x,y满足不等式组,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k=3.【考点】简单线性规划.【分析】先画出可行域,得到角点坐标.利用k与0的大小,分类讨论,结合目标函数的最值求解即可.【解答】解:实数x,y满足不等式组的可行域如图:得:A(1,3),B(1,﹣2),C(4,0).①当k=0时,目标函数z=kx﹣y的最大值为12,最小值为0,不满足题意.②当k>0时,目标函数z=kx﹣y的最大值为12,最小值为0,当直线z=kx﹣y过C(4,0)时,Z取得最大值12.当直线z=kx﹣y过A(3,1)时,Z取得最小值0.可得k=3,满足题意.③当k<0时,目标函数z=kx﹣y的最大值为12,最小值为0,当直线z=kx﹣y过C(4,0)时,Z取得最大值12.可得k=﹣3,当直线z=kx﹣y过,B(1,﹣2)时,Z取得最小值0.可得k=﹣2,无解.综上k=3故答案为:3.16.已知数列{a n}满足na n﹣(n+2)a n=λ(n2+2n),其中a1=1,a2=2,若a n<+2a n对∀n∈N*恒成立,则实数λ的取值范围是[0,+∞).+1【考点】数列递推式.【分析】把已知递推式变形,可得数列{}的奇数项与偶数项均是以λ为公差的等差数列,分类求其通项公式,代入a n<a n,分离参数λ求解.+1【解答】解:由na n﹣(n+2)a n=λ(n2+2n)=λn(n+2),+2得,∴数列{}的奇数项与偶数项均是以λ为公差的等差数列,∵a1=1,a2=2,∴当n为奇数时,,∴;当n为偶数时,,∴.,得<,当n为奇数时,由a n<a n+1即λ(n﹣1)>﹣2.若n=1,λ∈R,若n>1则λ>,∴λ≥0;当n为偶数时,由a n<a n,得<,+1即3nλ>﹣2,∴λ>,即λ≥0.综上,λ的取值范围为[0,+∞). 故答案为:[0,+∞).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知2a=csinA ﹣acosC .(1)求C ;(2)若c=,求△ABC 的面积S 的最大值.【考点】正弦定理;余弦定理.【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin (C﹣)=1,结合C 的范围,可得C 的值.(2)由余弦定理,基本不等式可求ab ≤1,进而利用三角形面积公式可求△ABC 面积的最大值.【解答】(本题满分为12分)解:(1)∵2a=csinA ﹣acosC ,∴由正弦定理可得:2sinA=sinCsinA ﹣sinAcosC ,…2分∵sinA ≠0,∴可得:2=sinC ﹣cosC ,解得:sin (C ﹣)=1,∵C ∈(0,π),可得:C ﹣∈(﹣,),∴C ﹣=,可得:C=.…6分(2)∵由(1)可得:cosC=﹣,∴由余弦定理,基本不等式可得:3=b 2+a 2+ab ≥3ab ,即:ab ≤1,(当且仅当b=a 时取等号)…8分∴S △ABC =absinC=ab ≤,可得△ABC 面积的最大值为.…12分18.如图,四边形ABCD 为菱形,四边形ACEF 为平行四边形,设BD 与AC 相交于点G ,AB=BD=2,AE=,∠EAD=∠EAB .(1)证明:平面ACEF⊥平面ABCD;(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)连接EG,由四边形ABCD为菱形,可得AD=AB,BD⊥AC,DG=GB,可证△EAD≌△EAB,进一步证明BD⊥平面ACEF,则平面ACEF⊥平面ABCD;(2)法一、过G作EF的垂线,垂足为M,连接MB,MG,MD,可得∠EAC为AE与面ABCD所成的角,得到EF⊥平面BDM,可得∠DMB为二面角B﹣EF﹣D 的平面角,在△DMB中,由余弦定理求得∠BMD的余弦值,进一步得到二面角B﹣EF﹣D 的余弦值;法二、在平面ABCD内,过G作AC的垂线,交EF于M点,由(1)可知,平面ACEF⊥平面ABCD,得MG⊥平面ABCD,则直线GM、GA、GB两两互相垂直,分别以GA、GB、GM为x、y、z轴建立空间直角坐标系G﹣xyz,分别求出平面BEF与平面DEF的一个法向量,由两法向量所成角的余弦值可得二面角B﹣EF﹣D的余弦值.【解答】(1)证明:连接EG,∵四边形ABCD为菱形,∴AD=AB,BD⊥AC,DG=GB,在△EAD和△EAB中,AD=AB,AE=AE,∠EAD=∠EAB,∴△EAD≌△EAB,∴ED=EB,则BD⊥EG,又AC∩EG=G,∴BD⊥平面ACEF,∵BD⊂平面ABCD,∴平面ACEF⊥平面ABCD;(2)解法一:过G作EF的垂线,垂足为M,连接MB,MG,MD,易得∠EAC为AE与面ABCD所成的角,∴∠EAC=60°,∵EF⊥GM,EF⊥BD,∴EF⊥平面BDM,∴∠DMB为二面角B﹣EF﹣D的平面角,可求得MG=,DM=BM=,在△DMB中,由余弦定理可得:cos∠BMD=,∴二面角B﹣EF﹣D的余弦值为;解法二:如图,在平面ABCD内,过G作AC的垂线,交EF于M点,由(1)可知,平面ACEF⊥平面ABCD,∵MG⊥平面ABCD,∴直线GM、GA、GB两两互相垂直,分别以GA、GB、GM为x、y、z轴建立空间直角坐标系G﹣xyz,可得∠EAC为AE与平面ABCD所成的角,∴∠EAC=60°,则D(0,﹣1,0),B(0,1,0),E(),F(),,,设平面BEF的一个法向量为,则,取z=2,可得平面BEF的一个法向量为,同理可求得平面DEF的一个法向量为,∴cos<>==,∴二面角B﹣EF﹣D的余弦值为.19.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(1)利用分段函数的性质即可得出.(2)利用(1),结合频率分布直方图的性质即可得出.(3)由题意可知X可取50,150,250,350,450,550.结合频率分布直方图的性质即可得出.【解答】解:(1)当0≤x≤200时,y=0.5x;当200<x≤400时,y=0.5×200+0.8×(x﹣200)=0.8x﹣60,当x>400时,y=0.5×200+0.8×200+1.0×(x﹣400)=x﹣140,所以y与x之间的函数解析式为:y=.(2)由(1)可知:当y=260时,x=400,则P(x≤400)=0.80,结合频率分布直方图可知:0.1+2×100b+0.3=0.8,100a+0.05=0.2,∴a=0.0015,b=0.0020.(3)由题意可知X可取50,150,250,350,450,550.当x=50时,y=0.5×50=25,∴P(y=25)=0.1,当x=150时,y=0.5×150=75,∴P(y=75)=0.2,当x=250时,y=0.5×200+0.8×50=140,∴P(y=140)=0.3,当x=350时,y=0.5×200+0.8×150=220,∴P(y=220)=0.2,当x=450时,y=0.5×200+0.8×200+1.0×50=310,∴P(y=310)=0.15,当x=550时,y=0.5×200×0.8×200+1.0×150=410,∴P(y=410)=0.05.故Y的概率分布列为:所以随机变量Y的数学期望EY=25×0.1+75×0.2+140×0.3+220×0.2+310×0.15+410×0.05=170.5.20.已成椭圆C: +=1(a>b>0)的左右顶点分别为A1、A2,上下顶点分别为B2/B1,左右焦点分别为F1、F2,其中长轴长为4,且圆O:x2+y2=为菱形A1B1A2B2的内切圆.(1)求椭圆C的方程;(2)点N(n,0)为x轴正半轴上一点,过点N作椭圆C的切线l,记右焦点F2在l上的射影为H,若△F1HN的面积不小于n2,求n的取值范围.【考点】椭圆的简单性质.【分析】(1)由题意求得a,直线A2B2的方程为,利用点到直线的距离公式,即可求得b的值,求得椭圆C的方程;(2)设直线方程,代入椭圆方程,由△=0,求得m和n的关系,利用三角形的面积公式,求得m的取值范围,代入即可求得n的取值范围.【解答】解:(1)由题意知2a=4,所以a=2,所以A1(﹣2,0),A2(2,0),B1(0,﹣b),B2(0,b),则直线A2B2的方程为,即bx+2y﹣2b=0,所以=,解得b2=3,故椭圆C的方程为;(2)由题意,可设直线l的方程为x=my+n,m≠0,联立,消去x得(3m2+4)y2+6mny+3(n2﹣4)=0,(*)由直线l与椭圆C相切,得△=(6mn)2﹣4×3×(3m2+4)(n2﹣4)=0,化简得3m2﹣n2+4=0,设点H(mt+n,t),由(1)知F1(﹣1,0),F2(1,0),则•=﹣1,解得:t=﹣,所以△F1HN的面积=(n+1)丨﹣丨=,代入3m2﹣n2+4=0,消去n化简得=丨m丨,所以丨m丨≥n2=(3m2+4),解得≤丨m丨≤2,即≤m2≤4,从而≤≤4,又n>0,所以≤n≤4,故n的取值范围为[,4].21.已知函数f(x)=xlnx,e为自然对数的底数.(1)求曲线y=f(x)在x=e﹣2处的切线方程;(2)关于x的不等式f(x)≥λ(x﹣1)在(0,+∞)上恒成立,求实数λ的值;(3)关于x的方程f(x)=a有两个实根x1,x2,求证:|x1﹣x2|<2a+1+e﹣2.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f′(e﹣2)和f(e﹣2)的值,求出切线方程即可;(2)求出函数g(x)的导数,得到函数的单调区间,求出函数的极小值,从而求出λ的值即可;(3)记h(x)=f(x)﹣(﹣x﹣e﹣2)=xlnx+x+e﹣2,求出h(x)的最小值,得到a=﹣1=f(x2)≥x2﹣1,得到|x1﹣x2|=x2﹣x1≤﹣,从而证出结论.【解答】解(1)对函数f(x)求导得f′(x)=lnx+1,∴f′(e﹣2)=lne﹣2+1=﹣1,又f(e﹣2)=e﹣2lne﹣2=﹣2e﹣2,∴曲线y=f(x)在x=e﹣2处的切线方程为y﹣(﹣2e﹣2)=﹣(x﹣e﹣2),即y=﹣x﹣e﹣2;(2)记g(x)=f(x)﹣λ(x﹣1)=xlnx﹣λ(x﹣1),其中x>0,由题意知g(x)≥0在(0,+∞)上恒成立,下面求函数g(x)的最小值,对g(x)求导得g′(x)=lnx+1﹣λ,令g′(x)=0,得x=eλ﹣1,当x变化时,g′(x),g(x)变化情况列表如下:∴g(x)min=g(x)极小值=g(eλ﹣1)=(λ﹣1)eλ﹣1﹣λ(eλ﹣1﹣1)=λ﹣eλ﹣1,∴λ﹣eλ﹣1≥0,记G(λ)=λ﹣eλ﹣1,则G′(λ)=1﹣eλ﹣1,令G′(λ)=0,得λ=1,当λ变化时,G′(λ),G(λ)变化情况列表如下:∴G(λ)max=G(λ)极大值=G(1)=0,故λ﹣eλ﹣1≤0当且仅当λ=1时取等号,又λ﹣eλ﹣1≥0,从而得到λ=1;(3)先证f(x)≥﹣x﹣e﹣2,记h(x)=f(x)﹣(﹣x﹣e﹣2)=xlnx+x+e﹣2,则h′(x)=lnx+2,令h′(x)=0,得x=e﹣2,当x变化时,h′(x),h(x)变化情况列表如下:∴h(x)min=h(x)极小值=h(e﹣2)=e﹣2lne﹣2+e﹣2+e﹣2=0,h(x)≥0恒成立,即f(x)≥﹣x﹣e﹣2,记直线y=﹣x﹣e﹣2,y=x﹣1分别与y=a交于(,a),(,a),不妨设x1<x2,则a=﹣﹣e﹣2=f(x1)≥﹣x1﹣e﹣2,从而<x1,当且仅当a=﹣2e﹣2时取等号,由(2)知,f(x)≥x﹣1,则a=﹣1=f(x2)≥x2﹣1,从而x2≤,当且仅当a=0时取等号,故|x1﹣x2|=x2﹣x1≤﹣=(a+1)﹣(﹣a﹣e﹣2)=2a+1+e﹣2,因等号成立的条件不能同时满足,故|x1﹣x2|<2a+1+e﹣2.[选修4-4:坐标系与参数方程]22.在直角坐标系中xOy中,已知曲线E经过点P(1,),其参数方程为(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线E的极坐标方程;(2)若直线l交E于点A、B,且OA⊥OB,求证: +为定值,并求出这个定值.【考点】参数方程化成普通方程.【分析】(1)将点P(1,),代入曲线E的方程,求出a2=3,可得曲线E的普通方程,即可求曲线E的极坐标方程;(2)利用点的极坐标,代入极坐标方程,化简,即可证明结论.【解答】解:(1)将点P(1,),代入曲线E的方程:,解得a2=3,所以曲线E的普通方程为=1,极坐标方程为=1;(2)不妨设点A,B的极坐标分别为A(ρ1,θ),B(ρ2,),则代入曲线E的极坐标方程,可得+==,即+为定值.[选修4-5:不等式选讲]23.已知f(x)=|x+a|,g(x)=|x+3|﹣x,记关于x的不等式f(x)<g(x)的解集为M.(1)若a﹣3∈M,求实数a的取值范围;(2)若[﹣1,1]⊆M,求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(1)将x=a﹣3代入不等式,解关于a的不等式即可;(2)得到|x+a|<3恒成立,即﹣3﹣x<a<3﹣x,当x∈[﹣1,1]时恒成立,求出a的范围即可.【解答】解:(1)依题意有:|2a﹣3|<|a|﹣(a﹣3),若a≥,则2a﹣3<3,∴≤a<3,若0≤a<,则3﹣2a<3,∴0<a<,若a≤0,则3﹣2a<﹣a﹣(a﹣3),无解,综上所述,a的取值范围为(0,3);(2)由题意可知,当x∈[﹣1,1]时,f(x)<g(x)恒成立,∴|x+a|<3恒成立,即﹣3﹣x<a<3﹣x,当x∈[﹣1,1]时恒成立,∴﹣2<a<2.2017年3月19日。

相关文档
最新文档