纳米科技概论第一章纳米材料的基本概念与性质.

合集下载

第一章 纳米材料的基本概念-2014-PDF

第一章 纳米材料的基本概念-2014-PDF
Nanoengineering of NPs’ Surfaces Self-assembly of Ordered
Nanostructures at Different Scales
前言
在20世纪的最后十年一门崭新的学科 - 纳米科 学技术 诞生了。其新颖独特的思路和首批研究成
果问世,在科学技术界,军事界和产业界引起了 巨大的影响,受到广泛的关注。
纳米粒子, 界面结构模型 1985, 美国, Kroto, (Laser) C60, C70的发现
发展历史
1990.7, USA, 1st Nano-Sci & Tech.: “Nanostructured Materials”, “Nano Biology”, “Nanotechnology”.
研究发展历程, 内涵及趋势
Nanocrystalline or nanophase 单相材料的制备, 表征 (1985-1990)
特异性能的挖掘, 复合材料的 设计: 0-0, 0-2, 0-3复合材料
(1990-1994)
Nanostructured assembling,
Patterning materials 有序阵列, 超结构, 材料的合理剪裁…...
1950
1980
1990
2000
Nanowires began to shine !
Sohn et al, Nature 1998, 394, 131 Lieber et al, Nature 2001, 409, 66
Nanosensors
Boron-doped SiNWS were used to create highly sensitive, real time electrically based sensors for biological and chemical species. Amine- and oxide-functionalized SiNWs exhibit pH-dependent conductance that was linear over a large dynamic range and could be understood in terms of the change in surface charge during protonation and deprotonation.

1 纳米材料的基本概念.ppt

1 纳米材料的基本概念.ppt

计算机技术

通信技术
息 主流核心技术 控制技术
技 术
软件技术 网络技术 广播电视技术
前沿技术
超导技术 生物技术 纳米技术 虚拟技术
有关信息的获取、传输、处理控制的 设备和系统的技术,3C技术是核心。 注:C5I:指信息获取、通信、处理、 控制、对抗(collection,communication Computing, control,countermeasure, intelligence )
Moore law提出后,曾有相当一部分人认为下一代的 器件是分子电子器件。其理论基础是分子电子学。
因此,纷纷展开了分子电子学的研究,经过几年的工作
逐渐认识到,在微电子器件与分子电子器件之间有一个
过渡时期
纳电子器件。
三、Future Integrated Multichips Systems
RTD:quantum-wellresonant-tunneling diode
挑战: 减少癌症的病痛和死亡— 2015
“A Vision Not a Dream!” by using nanotechnology, A v. Eschenbach, NCI
手段/ 方法?
目标
早期发现 和诊断
2015 10m
现状
发现和诊断
恶性肿瘤 和转移
Year X 现在
过去 mm
Prevention 细胞内的多个基因改变导致癌症,纳米技术将实现更早期的发现和预防
靶向药物、饥饿疗法 、热疗法治疗癌症
(2)国外基础研究计划中对IT、BT、NT的关注
A
2.纳米电子器件概念的提出
(1)人类对客观世界的认识逐渐发展为两个层次

纳米材料的基本概念与性质

纳米材料的基本概念与性质
虑量子尺寸效应,这会导致纳米微粒磁、光、声、热、电以及 超导电性与宏观特性有着显著的不同。
对介于原子、分子与大块固体之间的纳米晶体,大块材料 中连续的能带将分裂为分立的能级;能级间的间距随颗粒 尺寸减小而增大。
如导电的金属在纳米颗粒时可以变成绝缘体;当温度为1K, Ag纳米粒子直径小于14nm,Ag纳米粒子变为绝缘体。
合成了一维氮化硅纳米 线体。
氮化硅纳米丝
31
1.2 纳米微粒的基本性质
1.电子能级的不连续性 - kubo理论 2. 量子尺寸效应 3. 小尺寸效应 4. 表面效应 5. 宏观量子隧道效应
1.2.1电子能级的不连续性 - kubo理论
久保(Kubo)理论是关于金属粒子电子性质的理 论.它是由久保及其合作者提出的,以后久保和其他 研究者进一步发展了这个理论.1986年Halperin对这一 理论进行了较全面归纳,用这一理论对金属超微粒子 的量子尺寸效应进行了深入分析。
碳纳米管的发现
❖ 饭岛澄男(Iilijima Sumio)分别在1991 和1993年发表论文
❖ “Helical microtubules of graphitic carbon. Nature 354, 56 - 58 (07 November 1991) ”
❖ “Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 - 605 (17 June 1993) ”。
制备C60常用的方法:
采用两个石墨碳棒在惰性气体(He,Ar)中进行直流 电弧放电,并用围于碳棒周围的冷凝板收集挥发物。挥 发物中除了有C60外,还含有C70,C20等其它碳团簇。可 以采用酸溶去其它团簇,但往往还混有C70。

纳米材料的基本概念与性质

纳米材料的基本概念与性质

纳米材料的基本概念与性质纳米材料是指在尺寸范围为纳米级别的材料,即其尺寸在1到100纳米之间。

相对于常规材料,纳米材料具有特殊的性质和特点,这主要源于其尺寸效应、表面效应和量子效应等纳米尺度效应的影响。

下面将详细介绍纳米材料的基本概念和性质。

首先,纳米材料具有尺寸效应。

当材料的尺寸处于纳米级别时,与常规材料相比,纳米材料的许多物理、化学和力学性质都会有显著改变。

例如,金属纳米颗粒的熔点和磁性会发生变化,纳米薄膜表面的扩散速率会增大,高填充纳米孔隙材料的机械强度也会增加。

这些尺寸效应的改变使得纳米材料在电子、光学、催化等领域具有广泛的应用潜力。

其次,纳米材料表面效应对其性质也产生了重要影响。

相对于体积物质,纳米材料拥有更大的表面积,这意味着纳米颗粒或纳米薄膜的许多原子都处于表面状态。

表面效应的存在改变了纳米材料的电子结构、晶粒尺寸和化学反应活性等性质。

由于表面活性的提高,纳米材料能更好地催化反应、吸附和储存气体、改善电池材料性能等。

另外,量子效应也是纳米材料的重要特点之一、当纳米材料的尺寸缩小到纳米级别时,其原子和分子的量子效应开始显现。

量子效应使得纳米材料的光学、电子和磁性能等性质有显著变化。

例如,纳米发光材料的荧光强度和波长会受到量子尺寸限制的影响,纳米晶体管中的载流子行为也会发生量子限制的变化。

因此,纳米材料的量子效应使得其在量子计算、纳米电子学和纳米光学等领域具有独特的应用优势。

除了尺寸、表面和量子效应之外,纳米材料还具有其他特殊性质。

例如,纳米颗粒的表面增强拉曼散射效应可用于快速检测和分析微量物质的存在;纳米结构的多孔性使其具有大的比表面积和高的吸附能力,有利于储能、催化和环境修复等应用;一些金属纳米材料具有独特的光学性质,如银纳米颗粒的表面等离子体共振现象,可用于增强光子学器件的性能。

总之,纳米材料是在纳米尺度下制备和应用的材料,其独特的性质和特点使其在诸多领域具有广泛应用的潜力。

纳米材料的尺寸效应、表面效应、量子效应以及其他特殊性质使其成为材料科学和工程领域中的研究热点,并在电子、光学、催化、生物医学和环境等领域得到广泛应用。

纳米材料 -简介

纳米材料 -简介


TiO2车用空气清净机
二、纳米二氧化硅

1、优势
纳米二氧化硅是极其重要的高科技超微细无 机新材料之一,因其粒径很小,比表面积大,表 面吸附力强,表面能大,化学纯度高、分散性能 好、热阻、电阻等方面具有特异的性能,以其优
越的稳定性、补强性、增稠性和触变性,在众多
学科及领域内独具特性,有着不可取代的作用。
Human Hair
Take 1 slice
1nm
1000 slices
1 m
10 纳米
一纳米有多小?
空间尺度的划分

宇观(Cosmoscopic) 宏观(Macroscopic) 人的肉眼可见的物体为最小物
体开始为下限,上至无限大的宇宙天体;

介观(Mesoscopic)或纳米观(Nanoscopic): 1~100nm
纳米二氧化钛及其复合氧化物
应用
(1)光催化剂: TiO2╱SnO2 复合氧化物较 单一级 纯TiO2 有较高的光催化活性。 (2)紫外吸收剂(化妆品) (3)其他用途(光过滤等) (4)环境保护(降解有机物、农药、垃圾)
中国科学院首次打造出的 “纳米皇冠”
国家大剧院用的自清洁玻璃

纳米TiO2在可见光照射下对碳氢化合物(包括油 污、细菌等)有催化作用,使其进一步氧化成气体或 者是很容易被擦掉的物质。 在玻璃、陶瓷和瓷砖的表面涂上一层纳米TiO2 薄层,使其具有自清洁作用。
纳米颗粒(0D)
纳米线(1D)
扭曲的纳米线 (1D)
2
多孔 纳米线 (1D)
纳米膜(2D)
尺寸在纳米量级的晶粒(或颗粒)构 成的薄膜以及每层厚度在纳米量级的单层 或多层膜。
纳米带(2D)

纳米技术与纳米材料-文档资料

纳米技术与纳米材料-文档资料
20
二、纳米技术与纳米材料的概念
1.纳米技术
纳米科技是90年代初迅速发展起来的新的前 沿科研领域。它是指在1--100nm尺度空内,研究 电子、原子和分子运动规律、特性的高新技术学 科。其最终目标是人类按照自己的意志直接操纵 单个原子、分子,制造出具有特定功能的产品。
离子注入三维图像
21
2.纳米材料
13
科学家使用STM观测物质的纳米结构
14
STM具有空间的高分辨率(横向可达0.1nm,纵向可优 于0.01nm),能直接观察到物质表面的原子结构,把人 们带到了微观世界。它的基本原理是基于量子隧道效应 和扫描。它是用一个极细的针尖(针尖头部为单个原子) 去接近样品表面,当针尖和表面靠得很近时(<1nm), 针尖头部原子和样品表面原子的电子云发生重迭,若在 针尖和样品之间加上一个偏压、电子便会通过针尖和样 品构成的势垒而形成隧道电流。通过控制针尖与样品表 面间距的恒定并使针尖沿表面进行精确的三维移动,就 可把表面的信息(表面形貌和表面电子态)记录下来。由 于STM具有原子级的空间分辨率和广泛的适用性,国际 上掀起了研制和应用STM的热潮,推动了纳米科技的发 展。
11
扫描隧道显微镜介绍
扫描隧道显微镜是80年代初期发展起来的新型 显微仪器,能达到原子级的超高分辨率。扫描隧道显 微镜不仅作为观察物质表面结构的重要手段,而且可 以作为在极其细微的尺度──即纳米尺度(1 nm=10-9 m)上实现对物质表面精细加工的新奇工具。目前科 学家已经可以随心所欲地操纵某些原子。一门新兴的 学科──纳米科学技术已经应运而生。
42
纳米材料其实并不神密和新奇,自然界中广 泛存在着天然形成的纳米材料,如蛋白石、陨石 碎片、动物的牙齿、海洋沉积物等就都是由纳米 微粒构成的。人工制备纳米材料的实践也已有 1000年的历史,中国古代利用蜡烛燃烧之烟雾制 成碳黑作为墨的原料和着色的染料,就是最早的 人工纳米材料。另外,中国古代铜镜表面的防锈 层经检验也已证实为纳米SnO2尺寸小于15纳米的超微 颗粒在高压力下压制成型, 或再经一定热处理工序后 所生成的致密型固体材料。

纳米材料的基本概念与性质

纳米材料的基本概念与性质
团 簇(原子团簇,Cluster):
从原子到宏观块体材料的演变
团簇是由几个至几百个原子、分子或离子通过物理或化学结 合力形成的相对稳定的聚集体。通常尺寸不超过1nm。
例如,Fen, CunSm, C60, C70等。团簇的物理和化学性质随所 含原子数目而变化,其许多性质既不同于单个原子、分子,又 不同于固体和液体,是介于原子、分子与宏观固体之间的物质 结构的新层次,有时被称为物质的“第五态”。 原子团簇不同于具有特定大小和形状的分子,不同于分子间 以弱的相互作用结合而成的聚集体以及周期性很强的晶体。其形 状可以是多种多样的,已知的有球状、骨架状、洋葱状、管状、 层状、线状等。除惰性气体外,均是以化学键紧密结合的聚集体。
不含碳富勒烯:
1991年以色列魏茨曼研究所R.Tenne首次合成出 二硫化钨笼形管状分子(右图)。
由二硫化钨分子层形成 的不含碳富勒烯
纳米粒子(纳米颗粒、纳米微粒、超微粒子、纳米粉):
一般指颗粒尺寸在1-100nm之间的粒状物质。它的尺度大于原 子簇,小于通常的微粉。早期称作超微粒子。 纳米颗粒是肉眼和一般的光学显微镜看不见的微小粒子。名古 屋大学的上田良二(R.Uyeda)给纳米颗粒的定义是:用电子显微 镜才能看到的颗粒称为纳米颗粒。 纳米颗粒所含原子数范围在103-107个(1-100nm)。其比表面 比块体材料大得多,加之所含原子数很少,通常具有量子效应、小 尺寸效应、表面效应和宏观量子隧道效应,因而展现出许多特异的 性质。
Si
电子能量
导带
3P 3S
价带
晶格间距
使孤立的硅原子彼此接近形成 金刚石结构晶体时形成能带
EF
硅能带中成键态与价带及反键态与导带之间的对应
原子间的相互作用导致能级发生分裂,形成能带结构。 当形成固体的原子数 n 非常大时,实际上形成了准连续 的能带。

第1章纳米科技及纳米材料绪论PPT课件

第1章纳米科技及纳米材料绪论PPT课件
掌握纳米材料按维度分类的方法 了解现在纳米材料的研究重点 了解纳米尺度对材料性质产生的影响及其应用 了解纳米材料的潜在生物毒性及应对方法
相关知识 扫描隧道显微镜、富勒烯、巨磁阻效应 美国NNI计划、中国《纳米科技发展纲要》
纳米尺度、宏观领域、微观领域、纳米科技
纳米科学、纳米技术、纳米工程、纳米物理学、 纳米化学、纳米材料学、纳米生物学、纳米医学、 纳米力学、纳米制造 纳米科技对生物医学、信息技术、国防、能源环 境、食品等领域的影响 纳米结构单元、纳米材料 纳米材料学、纳米材料工程、纳米材料发展的3 个阶段 零维、一维、二维、三维纳米材料
atoms one by one the way we want them? —— The principles of physics, as far as I can see,
do not speak against the possibility of maneuvering things atom by atom.
纳米材料的分类 纳米材料的研究现状 纳米材料的特性与应用 纳米材料的安全性
掌握程度 掌握纳米的概念,了解纳米科技的形成过程 了解世界主要经济体的纳米科技发展规划
掌握纳米尺度、纳米科技的基本概念 理解纳米科技主要分支学科的基本特征
了解纳米科技主要应用领域的发展前景
掌握纳米材料的基本概念 了解纳米材料科学与工程的发展概况
特征,即千分之一微米(意译),但现在普遍采用的是更加简 洁的纳米(音译),在我国台湾则被译为奈米。 随着纳米科技的研究日益广泛,现在英文文献中常常直接用 nano来表示纳米。 1nm大约是2~3个金属原子,或10个氢原子排列在一起的“宽 度”。一般病毒的直径约60~250nm,红血球的直径约6,000~ 8,000nm,头发丝的直径则约为30,000 ~50,000nm。

第一章 纳米材料概述

第一章 纳米材料概述


第一章 纳米材料概述
第一章 纳米材料概述
左图为非纳米结构 的表面,水珠滚动时 无法将灰尘带走
右图为具有纳米结构 的表面,水珠滚动时 可将灰尘带走
第一章 纳米材料概述


2、昆虫翅膀的自洁作用
飞行中的昆虫必须保持翅膀的平衡,即使上面沾有一点点 灰尘或水滴,也会因重量不平衡而造成飞行上的问题。尤 其是一些翅膀较大昆虫,因为无法以腿部进行清洁,所以 在翅膀表面多具有纳米结构,可减少与污垢的接触面,水
第一章 纳米材料概述
3-维纳米结构材料的分类示意图
Leabharlann 引言纳米材料是材料科学领域发展的重要成果之一, 人们希望通过运用纳米技术制备比传统材料体积 更小、质量更轻、性能更好的材料。 纳米技术涉及了一个综合的交叉领域,需要通过 物理、化学、材料、生物、机械和电子工程等领 域的科学家的共同努力来实现。

第一章 纳米材料概述


纳米是连接原子、分子和宏观世界的桥梁,当材 料的结构单元在纳米尺度以下时,表现出了不同 于宏观体材料的特殊性质,纳米尺度的结构对材 料的特性起到了决定性的作用,也扩大了材料的 应用范围。 纳米科技目前还处在起步和发展的阶段,远远没 有达到成熟,仍旧需要大量深入的研究工作,纳 米技术在人们日常的生产和生活中的应用也才刚 刚开始,实用化和产业化尚需解决大量的科学和 工程问题。

第一章 纳米材料概述

6、纳米与生物科技

基因工程 将好的DNA片段插入细胞原有的DNA内,使细胞展现 所希望的特性(基因疗法、动植物品种改良)。以往科 学家多利用病毒将所欲的DNA片段送入细胞核内,但 缺点是病毒具有毒性,成功率不高。最新研究将DNA 片段压缩装进高分子微粒中(25纳米以下),可明显 提高改造成功率,却没有毒性或免疫反应,有效性与安 全性大为改善。

《纳米材料科学导论》课程教学大纲

《纳米材料科学导论》课程教学大纲

《纳米材料科学导论》课程教学大纲课程代码:ABCL0409课程中文名称:纳米材料科学导论课程英文名称:Introduction to nanomaterials science课程性质:选修课程学分数:1.5课程学时数:24授课对象:材料化学专业本课程的前导课程:大学物理、物理化学、材料科学基础等一、课程简介纳米材料学科是近年来兴起并受到普遍关注的一个新的科学领域,它涉及到凝聚态物理、化学、材料、生物等多种学科的知识,对凝聚态物理和材料学科产生了深远的影响。

纳米材料科学导论以化学、化工、材料化学、高分子、应用化学、新能源材料与器件等专业对纳米材料感兴趣的高年级本科生为讲授对象,介绍纳米材料科学的基本知识体系。

二、教学基本内容和要求本课程主要讲授纳米材料的基本概念与性质、制备纳米粒子的物理和化学方法、纳米薄膜材料、纳米固体材料、纳米复合材料等,其目的是使学生掌握各种纳米材料的性能和制备工艺,为正确选择各种纳米材料的制备工艺提供依据,同时也为研究新材料、新性能、新工艺打下理论基础。

第零章绪论课程教学内容:纳米科技、纳米材料的概念与发展历史。

课程的重点、难点:纳米材料的概念是重点,难点是纳米材料的发展及纳米功能器件的制备。

课程教学要求:了解纳米科技的兴起、纳米材料的研究历史、纳米材料的主要研究内容、本课程的特点和学习方法。

第一章纳米材料的基本概念与性质课程教学内容:纳米材料的基本概念,纳米微粒的基本性质,电子能级的不连续性,量子尺寸效应,小尺寸效应,表面效应,宏观量子隧道效应。

纳米微粒的基本性质,纳米微粒的物理特性,纳米微粒的结构与形貌,纳米微粒的热学性质,纳米微粒的磁学性质,纳米微粒的光学性质。

课程的重点、难点:重点:物质层次可以分为微观、介观和宏观三个层次。

纳米科技的诞生是以扫描隧道显微镜和原子力显微镜为先导的。

微观粒子具有二象性,既具有粒子性,又具有波动性。

量子效应:原子和分子中的电子等粒子的能量量子化是电子受到原子核和其它电子所产生的力场的束缚而产生的,这些粒子可以存在多种运动状态,粒子分布呈现波动性。

纳米材料的基本概念和性质汇总

纳米材料的基本概念和性质汇总

特殊的物理和化学性质:
镶嵌有原子团的功能薄膜会在基质中呈现出调 制掺杂效应,该结构相当于大原子-超原子膜材料, 具有三维特征。

纳米厚度的信息存储薄膜具有超高密度功能, 这类集成器件具有惊人的信息处理能力;

纳米磁性多层膜具有典型的周期性调制结构, 导致磁性材料的饱和化强度的减小或增强。

5、纳米固体材料
定义:具有纳米特征结构的固体材料称为纳米固体 材料。例如,由纳米颗粒压制烧结而成的三维固体, 结构上表现为颗粒和界面双组元;原子团簇堆亚成块 体后,保持原结构而不发生结合长大反应的固体等。

纳米固体材料的主要特征是具有巨大的颗粒间界面, 如5nm颗粒所构成的固体每立方厘米将含1019个晶界, 原子的扩散系数要比大块材料高 1014~ 1016 倍,从而 使得纳米材料具有高韧性。


按结合方式:范德华力:H、Ne、Ar、Ke、Xe

离子键:LiF、NaCl、CuBr、CsI
化学键:C60、金属原子团簇
特点:


寸:空间尺度为几个埃到几百埃的范围
存在形式:不同于单个原子、分子,也不同于固体 液体,介于两者之间 产生条件:作为原子聚集体,多产生于非平衡条件

纳米复合材料的性质:

同步增韧、增强效应。无机填充材料具有刚性,有机材料具有韧性, 纳米无机材料对有机材料的复合改性,可在发挥无机材料增强效果的 同时起到增韧的效果。 新型功能高分子材料。纳米复合材料以纳米级水平平均分散在复合 材料中,可以直接或间接地达到具体功能的目的,比如高效催化剂、 紫外光屏蔽等。 强度大、弹性模量高。加入很少量的纳米材料即可使聚合物复合材 料的强度、刚度、韧性得到明显的提高,且材料粒度越细,复合材料 的强度、弹性模量就越高。

第一章 纳米材料的基本概念和性质

第一章 纳米材料的基本概念和性质

河南理工大学材料学院
纳米材料导论-第一章
表面效应
纳米微粒尺寸小,表面能高,位于表面的原子占相 当大的比例。
表1.3 纳米微粒尺寸与表面原子数的关系
纳米微粒尺寸/nm
包含总原子数 3×104 4×103 2.5×102 30
表面原子所占比例/% 20 40 80 99
10 4 2 1
随着纳米微粒粒径的减小,微粒中总原子数减小,而 表面原子占总原子的比例却显著增加
而λ=h/mv=h/p称为德布罗意波长公式。这种波也叫物质波, 它即不是机械波也不是电磁波而是一种"概率波"。
河南理工大学材料学院
纳米材料导论-第一章
小尺寸效应
纳米粒子的这些小尺寸效应为实用技术开拓了新 领域:
纳米尺度的强磁性颗粒(Fe-Co合金,氧化铁等),当颗粒尺寸为单磁畴 临界尺寸时,具有甚高的矫顽力。可制成磁性信用卡、磁性钥匙、磁 性车票,还可以制成磁性液体,广泛地用于电声器件、阻尼器件和旋 转密封、润滑、选矿等领域。 纳米微粒的熔点可远低于块状金属,例如2nm的金颗粒熔点为600K, 随粒径增加,熔点迅速上升,块状金为1337K;纳米银粉熔点可降低 到373K,此特性为粉末冶金工业提供了新工艺。
作业
1.试列举纳米颗粒的基本性质有 哪些?
2.试用纳米粒子的表面效应解释, 为什么纳米粒子易于团聚?有哪些 方法可以消除这种团聚?
河南理工大学材料学院 纳米材料导论-第二章
3.纳米微粒的物理特性
河南理工大学材料学院
纳米材料导论-第一章
3.1 纳米微粒的结构与形貌
通常情况下,纳米微粒为球形。但随着制备方法 和条件的不同,粒子的形貌并非都呈球形,而是 类球形。 有人曾用高倍超真空电子显微镜观察纳米粒子, 结果在其表面发现了原子台阶。

纳米材料概述

纳米材料概述
我国清华—南风纳米粉体产业化工程中心,一直致力 于碳纳米管在工业化生产上的科技攻关,是目前世界上 已知生产规模最大的碳纳米管生产基地。
.
35
多孔纳米线
化学家常常自豪地说:“化学是一门在原子分子水平上研究物质的结构、性质、变化规律和 应用的科学。”但是真正“看见”原子和分子却是20世纪80年代后期的事,距离道尔顿提出 原子论的时间差不多有2个世纪。
原子小于光的波长,单个原子对光是透明的。光学显微镜怎么改进都不可能看到原子。 十个氢原子紧密排列——1nm颗粒——乒乓球——地球
注意——单纯的某一纳米材料若没有特殊的结构和性能表
现,还不能称为纳米技术。如香烟的烟灰粉末或自然土壤 中存在的纳米粉末,虽然它们也能够达到一百个纳米以内 的尺度,但是,因为它们没有特殊的结构和技术性能表现, 所以这些材料还不能称为纳米技术。
.
25
2.纳米材料
纳米材料又称为超微颗粒材料,由纳米粒子 组成, 一般是指尺寸在1~100nm间的粒子, 是处在原子簇和宏观物体交界的过渡区域。
.
12
STM针尖
扫描隧道显微镜工作原理示意图
.
13
硅表面
纳米算盘
C60每10个一组,在铜
表面形成世界上最小
的算盘。
.
14
纳米皇冠
.
15
.
16
Structure of Sodium Chloride
Images of NaCl obtained using Scanning Tunneling Microscope
一维纳米材料:有两维处于纳米尺度的材料,如纳米 线 纳米管
二维纳米材料:在三维空间有一维在纳米尺度的材料, 如超薄膜
三维纳米材料(纳米固体材料):指由尺寸小于15nm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

状。
是由类似石墨的碳原子六边
形网格所组成的管状物,它
一般为多层,直径为几纳米 至几十纳米,长度可达数微
米甚至数毫米。





因为准一维纳米材料在介观领域和纳米器件研制 方面有着重要的应用前景: 它可用作扫描隧道显微镜(STM)的针尖 纳米器件 超大集成电路(ULSIC)中的连线 光导纤维 微电子学方面的微型钻头 复合材料的增强剂等 目前关于一维纳米材料 (纳米管、纳米丝、纳 米棒等)的制备研究已有大量报道。
C60特性 笼状结构使其比石墨和金刚石轻得多 表面碳原子不含有未饱和悬挂键,所以化学性质稳定 具有优良的光学、超导、磁、电等特异性能 制备C60常用的方法: 采用两个石墨碳棒在惰性气体(He,Ar)中进行直流 电弧放电,并用围于碳棒周围的冷凝板收集挥发物。挥 发物中除了有C60外,还含有C70,C20等其它碳团簇。可 以采用酸溶去其它团簇,但往往还混有C70。
二元原子团簇包括InnPm,AgnSm等。
多元原子团簇有Vn(C6H6)m等.
原子簇化合物是原子团簇与其他分子以配位化学 键结合形成的化合物
C60的结构: C60(富勒烯) 由 60个碳原子排 列而成的32面 体,其中20个 六边形,12个 五边形,其直 径为0.7nm。
幻数:构成碳团簇的原子数 幻数为20,24,28,32,36,50,60,70,90具有高稳定 性,其中又以C60最稳定。
第一章 纳米材料的基本概念与性质
基本内容
1.1 纳米材料的基本概念 1.2 纳米微粒的基本性质 1.3纳米微粒的物理特性
1.1 纳米材料的基本概念
纳米材料是指在三维空间中至少有一维处于纳米尺度 范围或由他们作为基本单元构成的材料。
如果按维数来分类,纳米材料的基本单元可以分为三类: (i)零维,指在空间三维尺度均在纳米尺度,如纳米尺度颗粒、 原子团簇等; (ii)一维,指在空间有两维处于纳米尺度,如纳米丝、纳米 棒、纳米管等; (iii)二维,指在三维空间中有一维处于纳米尺度,如超薄膜、 多层膜、超晶格等。
原因,它具有不同于常规固体的新特性。 用途:
吸波隐身材料、 电池电极材料、
太阳能电池材料、
高效催化剂、高效助燃剂、 高韧性陶瓷材料、 人体修复材料和抗癌制剂等。
1.1.3纳米粒子薄膜与纳米粒子层系
定义:含有纳米粒子和原子团簇的薄膜、纳米尺寸厚度的 薄膜、纳米级第二相粒子沉积镀层、纳米粒子复合涂层或 多层膜
具有特殊的物理性质和化学性质
1.1.4
纳米固体
纳米固体是由纳米尺度水平的晶界、相界或位错等缺陷的核 中的原子排列来获得具有新原子结构或微结构性质的固体。 纳米固体材料(nanostructured materials)的主要特征是具有巨 大的颗粒间界面,如纳米颗粒所构 成的固体每立方厘米将含1019个晶 界,原子的扩散系数要比大块材料 高1014~1016倍,从而使得纳米 材料具有高韧性。
1.1.5 纳米复合材料

0-0复合:不同成分、不同相或者不同种类的纳米粒子
复合而成的纳米固体; 0-3复合:把纳米粒子分散到常规的三维固体中; 0-2复合:把纳米粒子分散到二维的薄膜材料中.
均匀弥散:纳米粒子在薄膜中均匀分布; 非均匀弥散:纳米粒子随机地、混乱地分散在薄膜基体中。

纳米复合材料由于其优良的综合性能,特别是其 性能的可设计性被广泛应用于航空航天、国防、交 通、体育等领域,该研究方向主要包括:
纳米丝
以碳纳米管为模板合成氮化硅纳米丝
碳纳米管本身有非常完美的结构,意味着它有好的
性能。它在一维方向上的强度可以超过钢丝强度,
它还有其他材料所不具备的性能:非常好的导电性
能、导热性能和电性能。
碳纳米管尺寸 尽管只有头发丝的 十万分之一,但: 导电率是铜的1万倍, 强度是钢的100倍而重量只有钢的七分之一。 像金刚石那样硬,却有柔韧性,可以拉伸。 熔点是已知材料中最高的。
复合纳米固体材料亦是一个重要的应用领域。例如:
含有20%超微钻颗粒的金属陶瓷是火箭喷气口的耐高 温材料;
金属铝中含进少量的陶瓷超微颗粒,可制成重量轻、 强度高、韧性好、耐热性强的新型结构材料。 超微颗粒亦有可能作为渐变(梯度)功能材料的原材 料。例如,材料的耐高温表面为陶瓷,与冷却系统相接 触的一面为导热性好的金属,其间为陶瓷与金属的复合 体,使其间的成分缓慢连续地发生变化,这种材料可用 于温差达1000°C的航天飞机隔热材料、
尚未形成规整的晶体
绝大多数原子团簇的结构不清楚,但巳知有线状、
层状、管状、洋葱状、骨架状、球状等等
当前能大量制备并分离的团簇是C60(富勒烯)
(富勒烯)
原子团簇可分为一元原子团簇、二元原子 团簇、多元原子团簇和原子簇化合物.
一元原子团簇包括金属团簇(加Nan,Nin等)和非 金属团簇.非金属团簇可分为碳簇(如C60,C70 等)和非碳族(如B,P,S,Si簇等).
1.1.2纳米微粒
定义:微粒尺寸为纳米数量
级,它们的尺寸大于原子团
簇,小于通常的微粒,一般 尺寸为1-l00nm。也有人将它
称为超微粒子(ultra-fine
particle) 日本名古屋大学上田良二教 授曾经给纳米微粒下了一个 定义:用电子显微镜 (TEM) 能 看到的微粒称为纳米微粒。
由于尺寸小,比表面大和量子尺寸效应等
如果按形状,纳米材料可以分为 •原子团簇、纳米颗粒和粉体、纳米管、纳米线、
纳米带、纳米片、纳米薄膜、介孔
1.1.1 原子团簇(atomic cluster )
定义:仅包含几个到数百个原子或尺度小于1nm的粒子称为 “簇”,它是介于单个原子与固态之间的原子集合体。
原子团簇的形状可以是多种多样的,它们
A:纳米聚合物基复合材料 B:纳米碳管功能复合材料 C:纳米钨铜复合材料。
1.1.6 碳纳米管纳米管、纳米棒、纳米丝
自从 1991 年日本 NEC 公司饭岛等发现纳米碳管以 来,立刻引起了许多科技领域的科学家们极大关注.
碳纳米管,是1991年由日本
电镜学家饭岛教授通过高分
辨电镜发现的,属碳材料家 族中的新成员,为黑色粉末
相关文档
最新文档