胶体化学物理化学

合集下载

物理化学第七章

物理化学第七章

粗分散物系
>10-7m
混浊泥水,牛 奶,豆浆
3、胶体四大特征:(同溶液相比较)
①聚结不稳定性(热不稳自发聚沉)②多相不均匀性 聚结不稳定性 ②多相不均匀性(一相分散 于另一相,有相界面)③高分散性 ③高分散性(颗粒大小及胶团量不相同) 结构组成不确定性(受添加剂或添加物影响) ④结构组成不确定性 (真溶液:热稳,均相物系,组成,结构,分子量恒定) 4、胶体化学研究内容:表面现象,分散物系及高分子溶液 5、表面:物体处于真空或与本身饱和蒸气达平衡的面。 6、界面:物体与空气或其他物体相接触的面(存在于两相之间 几个nm厚度薄层) 7、表面现象(Surface phenomenon):凡物质处于凝聚状态时, 其界面上发生的一切物理化学现象。(包括s-g,s-l,l-g,ss,l-l等统称表面)严格讲为界面现象,如:毛细现象,润湿 作用,液体过热,蒸气过饱和,吸附作用等统称界面现象 AS Sο (Interface phenomenon)。
(1)按分散相和分散介质的聚集状态分类
分散相 分散介质 名称 气 泡沫 液 液 乳状液 固 悬浮体,溶液胶 气 液 固 固溶胶 固 气 液 气 气溶胶 固
实例 肥皂泡沫 牛奶 泥浆,金溶胶 浮石,泡沫玻璃 珍珠,某些矿石 某些合金 雾 烟
(2)按分散相的分散度分类
类型 低分子 分散物系 分散相粒子半 径 <10-9m 分散相 原子 离子,小分子 性质 均相,热力学稳定物 系,扩散快,能透过 半透膜,形成真溶液 均相,热力学稳定物 系,扩散慢,不能透 过半透膜,形成真溶 液 举例 NaCI、蔗糖的 水溶液,混合 气体等 聚乙烯醇水溶 液
之一):当毛细管插入润湿性液体水中时,管内液面呈凹面, △P背向 液面,使液体受到向上提升力而沿管内壁上升,当液柱产生的静压 力ρgh=△P时达平衡停止移动;反之,当毛细管插入非润湿性液体 汞中时产生管内凸液面,因△P向下,使管内液面下降至ρgh=△P 达平衡时停止,此为毛细现象。

物理化学第十四章胶体化学

物理化学第十四章胶体化学

过程是自发过程。
固体的溶解度与颗粒的大小有关,颗粒半径与其相 应的溶解度之间服从Kelvin公式:
lns2 s1
M RT
2
1 R2'
1 R1'
若有大小不同的颗粒同时在一个溶胶中,较小颗粒 附近的饱和浓度大于较大颗粒的饱和浓度,结果是小者 愈小,大者愈大,直到小颗粒全部溶解为止。
而大颗粒大到一定程度即发生沉淀,这就是产生老 化过程的原因。
14.2 溶胶的制备与纯化
一、溶胶制备
粗分 散 分 体 散 胶 系 法 体 凝 体 聚 系 分 法 子分
1.分散法 (1)研磨法 (2)超声分散法 (3)电孤法 2.凝聚法
(1)物理凝聚法
(2)化学凝聚法
化学凝聚法
通过各种化学反应使初生成的难溶物微粒 结合成胶粒,在少量稳定剂存在下形成溶胶。 稳定剂:某一过量的反应物。
四、均分散胶体的制备和应用 1. 制备
在严格控制的条件下,有可能制备出形状 相同、尺寸相差不大的沉淀颗粒,组成均分散 系统。颗粒的尺寸在胶体颗粒范围之内的均分 散系统则称为均分散胶体系统。
Perrin用大小均匀的藤黄粒子作悬浮体,证 明了Einstein理论的正确性:
D RT 1
L 6 r
制备均分散系统的方法有:(1) 沉淀法; (2) 相转移法;(3) 多组分阳离子法;(4) 粒子 “包封法”;(5) 气溶胶反应法;(6) 微乳液 法等。
3.粗分散体系
分散相粒子半径大于1000 nm,多相体系,热力 学不稳定。
按分散相和介质聚集状态分类 1.液溶胶
将液体作为分散介质所形成的溶胶。当分散 相为不同状态时,则形成不同的液溶胶:
A.液-固溶胶 如油漆,AgI溶胶 B.液-液溶胶 如牛奶,石油原油等乳状液 C.液-气溶胶 如泡沫

物理化学第十章 胶体化学

物理化学第十章 胶体化学

3. 沉降与沉降平衡
多相分散系统中的粒子,因受重力作用而下 沉的过程,称为沉降。沉降与扩散为一对矛盾 的两个方面
沉降 扩散 分散相分布
真溶液
粗分散系统 胶体系统 平衡


均相
沉于底部 形成浓度梯度
贝林(Perrin)导出沉降平衡时粒子浓度随高度的分布:
o c2 Mg ln 1 ( h2 h1 ) c1 RT
胶核 可滑动面
胶粒
{[AgI]m nI-(n-x)K+}x- xK+ 胶团结构
K+
K+
I-
K+
(AgI)m
I-
I-
K+
特点:
1) 胶核:首先吸附过量的成核离子,然后吸附反离子; 2) 胶团整体为电中性
I-
§10.5
溶胶的稳定与聚沉
Derjaguin&Landau(1941)
1. 溶胶的经典稳定理论DLVO理论
溶胶粒子间的作用力:
Verwey &Overbeek(1948) van der Waals 吸引力:EA -1/x2
势 能 ER
双电层引起的静电斥力:ER ae-x 总作用势能:E = ER + EA
E
EA 曲线的形状由粒子本
性决定,不受电解质影响;
Emax
0 x 第二最小值 EA 第一最小值
势 能 ER 电解质浓度: c1 < c2 < c3 ,
0EAc3源自c2c1E电解质浓度,ER,E,
溶胶稳定性。在 c3 以后, 引力势能占绝对优势,分散 相粒子一旦相碰,即可聚合。
41
电解质对溶胶的聚沉规律:
(i)反离子的价数起主要作用

物理化学第十二章胶体化学

物理化学第十二章胶体化学
第十二章 一门古老 而又年轻的科学。
有史以前,我们的祖先就会制造陶器;汉 朝已能利用纤维造纸;后汉时又发明了墨; 其他像做豆腐、面食以及药物的制剂等等在 我国都有悠久的历史,这些成品及其制作过 程都与胶体化学密切相关。
1809年,俄国化学家Scheele发现了土粒 的电泳现象;
1871年 Rayleigh 对非导电的、球形粒子的 稀溶胶系统,导出了单位体积溶胶的散射强度:
I=9π 2V 2C 24l 2

n2 n02 n2 2n02
2
1

cos2

I0
I :散射光强 ;
I0 : 入射光强;
V :一个粒子的体积; C :单位体积中的粒子数;
3)缔合胶体— 分散相为表面活性剂缔合形成的 胶束,分散相与分散介质间有很好的亲和性, 也是均相热力学稳定系统。
表 12.0.2 分散系统按聚集状态分类
分散介质 气 液

分散相
液 固
气 液 固
气 液 固
名称 气溶胶
泡沫 乳状液 溶胶或悬浮液
固溶胶
实例
云、雾、喷雾 烟、粉尘
肥皂泡沫 牛奶、含水原油 金溶胶、油墨、泥浆
1829年英国植物学家Brown观察到花粉的 布朗运动。次后,许多人相继制备了各种溶 胶,并研究了它们的性质。
胶体化学作为一门学科来说,它的历史 比较一致的看法是从1861年开始的,创始人 是英国科学家Thomas Graham,他系统研究 过许多物质的扩散速度,并首先提出晶体和 胶体(colloid)的概念,制定了许多名词用 来形容他所发现的事实。
泡沫塑料 珍珠、蛋白石 有色玻璃、某些合金
憎液溶胶 分散相与分散介质之间有相界面 液溶胶

物理化学及胶体化学知识点 -回复

物理化学及胶体化学知识点 -回复

物理化学及胶体化学知识点 -回复
物理化学:
1. 物理化学是研究物质性质、能量变化和它们之间的关系的学科。

2. 原子结构:原子由原子核和绕核运动的电子组成,原子核由质子和中子构成。

3. 化学键:共价键是通过原子之间的电子共享形成的,离子键是由电子转移形成的,金属键是由自由电子在金属晶体中形成的。

4. 物态:常见的物态有固态、液态和气态,转变的条件包括温度和压力等。

5. 反应速率:反应速率受到温度、浓度、催化剂和反应物性质等因素的影响。

6. 化学平衡:在闭合系统中,反应物和生成物的浓度达到动态平衡时,称为化学平衡。

7. 热力学:研究物质能量转换和分布的学科,包括热力学定律、热力学函数和热力
学循环等。

8. 电化学:研究物质的电性质,包括电解质溶液的电导性、电解过程中的氧化还原
反应等。

胶体化学:
1. 胶体是介于溶液和悬浮液之间的一种物质状态,具有介于分子和宏观颗粒之间的
特征。

2. 胶体颗粒尺寸范围一般在1纳米至1微米之间,可形成胶体稳定的分散系统。

3. 胶体的稳定性:胶体稳定的关键在于表面活性剂或电解质的存在,可以形成电双
层或生成吸附层来防止胶体的聚集。

4. 高分子胶体:高分子物质形成的胶体称为高分子胶体,例如胶状物质、凝胶等。

5. 胶体的应用:胶体在润滑、化妆品、油墨、医药、陶瓷等领域有广泛的应用,同
时也用于环境修复、纳米材料制备等领域。

以上是物理化学及胶体化学的一些知识点,通过学习和掌握这些知识,可以更好地理
解物质和化学反应的本质,进一步应用于实际科学研究和工程应用中。

物理化学第十四章胶体化学

物理化学第十四章胶体化学
把一种或几种物质 例如:云,牛奶,珍珠 分散在另一种物质中所 构成的系统称为分散系 统。被分散的物质称为 分散相(dispersed phase),而另一种呈 连续分布的物质称为分 散介质(dispersing medium)。
一、分散体系的分类
•真溶液 按分散相粒子的大小分类: •胶体分散体系
•粗分散体系 •液溶胶
按胶体溶液的稳定性分类
1.憎液溶胶 胶体化学的主要研究体系 半径在1 nm~100 nm之间的难溶物固体粒子
分散在液体介质中。溶剂与粒子间亲合力弱。
溶剂蒸发后,再加入溶剂无法再形成溶胶。 不可逆体系。
2.亲液溶胶 大分子溶液
溶剂与粒子(大分子 )间亲合力强。溶剂蒸 发后,产生凝聚,再加入溶剂,又可形成溶胶。 热力学上稳定、可逆的体系。
按分散相和介质的聚集状态分类: •固溶胶 •气溶胶
按胶体溶液的稳定性分类: •憎液溶胶 •亲液溶胶
按分散相粒子的大小分类
1.真溶液(分子分散体系)
分散相与分散介质以分子或离子形式均匀的单 相,热力学稳定。分散相粒子半径小于1 nm。
2.胶体分散体系 分散相粒子半径1 nm~100 nm。高分散的多相 体系,粒子有自动聚集的趋势,热力学不稳定。
A.复分解反应制硫化砷溶胶 2H3AsO3(稀)+ 3H2S →As2S3(溶胶)+6H2O
B.水解反应制氢氧化铁溶胶 FeCl3 +3H2O (热)→ Fe(OH)3 (溶胶)+3HCl
C.氧化还原反应制备硫溶胶 2H2S(稀)+ SO2(g) → 2H2O +3S (溶胶) Na2S2O3 +2HCl → 2NaCl +H2O +SO2 +S (溶胶)

物理化学(第九章)胶体

物理化学(第九章)胶体
离子、分子 凝 聚 (新相生成) 1~100nm 粗粒子 分 散 (比表面增加)
• 分散法
– 使固体粒子变小
原级粒子
聚集
次级粒子
• 凝聚法
– 使分子或离子聚结成胶粒
多级分散体系
分散相在介质中的溶解度必须极小 必须有稳定剂的存在才能使溶胶体系稳定
Page 9
目录
绪论
第一章
第二章
第三章
第四章
第五章
第六章
第五章
第六章
第七章
第八章
第九章
§9-3 胶体系统的光学性质
蓬莱仙境——海市蜃楼
Page 20
目录
绪论
第一章
第二章
第三章
第四章
第五章
第六章
第七章
第八章
第九章
§9-4 溶胶的动力学性质
一、Brown运动
Brown运动是分散介质的分子由于热运动不断地由各个方向 同时冲击胶粒时,其合力未被相互抵消所引起的结果,因此在 不同时间,指向不同的方向,形成曲折运动。 布朗运动是分子热运动的必然结果,是胶体粒子的热运动。
Page 12
目录
绪论
第一章
第二章
第三章
第四章
第五章
第六章
第七章
第八章
第九章
§9-2 胶体系统的制备
水 搅拌机 半 透 膜
水 搅拌器 水
水 溶 胶
+
-
水 水
溶胶 半透膜
水 水
连续渗析装置
电渗析装置
Page 13
目录
绪论
第一章
第二章
第三章
第四章
第五章
第六章
第七章
第八章

物理化学胶体化学知识点

物理化学胶体化学知识点

6.4 胶体系统的动力性质
(1)Brown 运动
1827年,植物学家布朗( Brown)在显微镜下,看到悬浮在水 中的花粉粒子处于不停息的无规则运动状态。
以后发现,线度小于4000nm的粒子, 在分散介质中都有这种运动。(胶体尺 度 1 ~ 1000nm)
这种现象产生的原因是:分散介 质分子由于热运动不断的撞击分散粒 子。对于大小在胶体尺度下的粒子, 粒子受到撞击次数较小,从各个方向 受到的撞击力(Brown Force)不能完 全抵消,在某一时刻,粒子从某一方 向得到的冲量即可发生位移。此即布 朗运动。
:散射角(观察方向与入射方向夹角);
l : 观测距离(观察者与散射中心的距离)。
由 Rayleigh 公式可知:
1)I V 2 :可用来鉴别小分子真溶液与胶体溶液;
如已知 n 、n0 ,可由测 I 求粒子大小V 。
2) I 1/4 :波长越短的光,散射越强。例:用白光照射
溶胶,散射光呈蓝色,透射光呈红色。即所谓"乳光现象"。 雾是气溶胶,海水是水溶胶,也经常显蓝色。
再如:过饱和法: 改变溶剂法;例:硫的酒精溶液倒入水中,形成硫在水
中的溶胶。 冷却法:用冰骤冷苯在水中的饱和溶液,得到苯在水
中的溶胶。
2)化学凝聚法:利用生成不溶性物质的化学反应,控制 析晶过程,使其停留在胶核尺度的阶段,而得到溶胶。所谓 控制析晶过程,系指采用有利于大量形成晶核,减缓于晶体 生长的条件,例:采用较大的过饱和浓度,较低的操作温度。
(2)瑞利(Rayleigh) 公式
1871年,瑞利在假设: 1)粒子尺寸远小于入射光的波长,可认为粒子是点光
源; 2)粒子间的距离较远,各粒子散射光间无相互干涉; 3)粒子不导电;

物理化学 第七章胶体

物理化学 第七章胶体

使一定量溶胶在一定时间内明显聚沉所需的外加电解质的最小浓度 称为此电解质的聚沉值或凝结值。常用的单位是: mol•m-3或 mmol•d
m-3
电解质的聚沉值越小,其聚沉能力越大。故定义聚沉值的倒数为电 解质的聚沉能力。电解质对溶胶聚沉的影响有如下经验规律: 1. 电解质中主要起聚沉作用的是与胶粒所带电荷电性相反的离子 (即反离子),且反离子的价数越高,聚沉能力越大。一、二、三 价离子的聚沉能力之比为: 1 : 26 : 36 。此规律称叔采-哈迪价数 规则。 2. 价数相同的离子其聚沉能力相近但有差别,部分一价离子的聚沉 能力大小顺序为:H+ >Cs+ >Rb+ >NH4+ >K+ >Na+ >Li+ F- >IO3- >H2PO4- >BrO3 ->Cl- >ClO3- > Br->I->CNS 3.有机离子的聚沉能力很强,如高分子凝结剂。
(2) 若液-固界面张力小于气-固表面张力, cosθ >
0, θ< 90°, 此种情况称为润湿。当θ=0°时,则为
完全润湿,即发生铺展。
3.毛细现象 毛细现象是指具有细微缝隙的固体与液体接触时,液体 沿缝隙上升或下降的现象。例如:将一玻璃毛细管插入水 中,管内液面升得比管外液面高,如下图7.5 (a)所示; 而将一玻璃毛细管插入汞中,管内液面降得比管外液面 低,如下图7.5 (b)所示.
若AB为凸液面,则周围液体的表面张力方向与AB 面相切,合力向下,表现为指向液体内部的附加压力。
若AB为凹液面,那么周围液体的表面张力方向仍 与AB面相切,表现为指向液体外部的附加压力。
二.液体对固体的润湿作用

物理化学 第十二章 胶体化学

物理化学 第十二章 胶体化学
制金溶胶 KAuO2+3HCHO+K2CO3 →2Au+3HCOOK+KHCO3 制硫化砷溶胶 2H3AsO3 + 3H2S → As2S3溶胶 + 6H2O 制氢氧化铁溶胶 FeCl3+3H2O(沸水) → Fe(OH)3溶胶 + 6H2O
3. 溶胶的净化
渗析法
三. 溶胶系统的性质
1.光学性质
丁铎尔效应:当一束波长大于溶胶分散相粒子尺寸的入射 光照射到溶胶系统,可发生散射现象。
从雷利散射公式可知,散射强度与入射光的波长四次 方成反比,即波长越短的光散射越多。在可见光中,蓝色 光的波长较红光和黄色光的波长短,因此,大气层这个气 溶胶对蓝色光产生强烈的散射作用,而波长较长的黄色光 则被散射少而透过的多。这就是为什么万里晴空呈现蔚蓝 色和雾天行驶的汽车必须用黄色灯的原因。
2. 动力学性质
8. 电解质溶液的摩尔电导可以看作是正负离子的摩尔电 导之和,此规律仅适用于( )
(a) 强电解质
(b) 弱电解质
(c) 无限稀溶液 (d) 摩尔浓度为1 mol∙dm-3的溶液
9. 丁铎尔效应是光的什么作用引起的?其强度与入射 光有什么关系?粒子大小范围落在什么区间内可观察 到丁铎尔效应?
10.已知298K时,(NH4)2SO4、NaOH、Na2SO4的Λ∝分别 为3.064 × 10-2、2.451 × 10-2、2.598 × 10-2 S·m2·mol-1, 则NH4OH的Λ∝为:(单位 S·m2·mol-1)
布朗运动:溶胶中分散相粒子由于受到做热运动的分散介 质的撞击而引起的无规则的运动。
扩散 沉降:多相分散系统中的粒子,因受重力作用而下降的过 程。沉降平衡:分散相粒子自身重力使粒子沉降;而介质的 粘度及布朗运动引起的扩散作用阻止粒子沉降;两种作用相 当时达到平衡。

物理化学14章_胶体与大分子溶液

物理化学14章_胶体与大分子溶液

物理化学14章_胶体与大分子溶液一、胶体胶体是一种分散体系,其中分散相的粒子大小在1-100nm之间。

这种分散体系具有一些特殊的性质,例如光学、电学和动力学性质,这使得胶体在许多领域都有广泛的应用。

1、胶体的分类胶体可以根据其分散相的不同分为不同类型的胶体,例如:(1)金属胶体:以金属或金属氧化物为分散相的胶体,如Fe(OH)3、TiO2等。

(2)非金属胶体:以非金属氧化物、硅酸盐、磷酸盐等为分散相的胶体,如SiO2、Al2O3、Na2SiO3等。

(3)有机胶体:以高分子化合物为分散相的胶体,如聚合物、蛋白质、淀粉等。

2、胶体的制备制备胶体的方法有多种,例如:(1)溶解法:将物质溶解在适当的溶剂中,通过控制浓度和温度等条件使物质析出形成胶体。

(2)蒸发法:将溶剂蒸发,使溶质析出形成胶体。

(3)化学反应法:通过化学反应生成胶体粒子。

3、胶体的性质胶体具有一些特殊的性质,例如:(1)光学性质:胶体粒子对光线有散射作用,因此胶体具有丁达尔效应。

(2)电学性质:胶体粒子可以带电,因此胶体具有电泳现象。

(3)动力学性质:胶体粒子由于其大小限制,表现出不同于一般粒子的动力学性质,例如扩散速度较慢、沉降速度较慢等。

二、大分子溶液大分子溶液是一种含有高分子化合物的溶液,其中高分子化合物通常具有较大的分子量。

这种溶液具有一些特殊的性质,例如分子量较大、分子链较长、分子间相互作用较强等。

1、大分子溶液的分类大分子溶液可以根据其组成的不同分为不同类型的溶液,例如:(1)合成高分子溶液:由合成高分子化合物组成的溶液。

(2)天然高分子溶液:由天然高分子化合物组成的溶液,如蛋白质、淀粉、纤维素等。

2、大分子溶液的制备制备大分子溶液的方法有多种,例如:(1)溶解法:将大分子化合物溶解在适当的溶剂中,通过控制浓度和温度等条件使其溶解。

(2)化学反应法:通过化学反应合成大分子化合物并将其溶解在适当的溶剂中。

3、大分子溶液的性质大分子溶液具有一些特殊的性质,例如:(1)粘度:大分子溶液通常具有较高的粘度,这是因为大分子链较长,运动较困难。

物理化学 8章表面化学与胶体化学

物理化学 8章表面化学与胶体化学

p大气
在液面处达力平衡
rm
ps= 2σ/r p静压=ρgh
r
cosθ=rm/r

p大气
∵2σ/r =ρgh
pS
h
∴2σcosθ/rm=ρgh
h = 2σcosθ/rmρg rm ↘, ρ↘, h↗
rm:毛细管半径 r:凹液面曲率半径
θ<90o,h>0; θ>90o ,h<0;rm→∞,h →0
2020/1/31
只有降低熔点,才能使 r,B减小,故有:
Tf(微小)< Tf(大块)
2020/1/31
物理化学
▲ 微小固体物质的溶解度大 溶解度:恒T﹑p下,溶质在溶剂中达到溶解
平衡时的(饱和)浓度。 将开尔文公式与亨利定律结合,推导得:
ln c2 2M ( 1 1 ) c1 RT r2 r1

ln cr 2M 1 c0 RT r
δW ' ∝ dAs 2ldx
δW ' dAs fdx
——表面张力
f
2l
l
σ
m1
m2
f
2020/1/31
物理化学
表面张力:垂直作用于单位长度相界面上,与表 面平行(平面)或相切(曲面)的收 缩力。
力的方向:与液面相切,与单位线段垂直。 力的类型:表面收缩力。 力的单位量纲:N·m-1 表面层分子受力不均匀 内压力 表面张力 体系的一种强度性质,受到多种因素的影响。
如何表示?
固体表面有过剩的Gibbs自由能吗?它与
液体的有何不同?
2020/1/31
物理化学
§3 弯曲表面的特性
一、弯曲液面下的附加压强
1.液面的曲率
2.弯曲液面的附加压强

物理化学 第12章 胶体化学

物理化学  第12章 胶体化学

思考题:1.为什么加入与胶体粒子电荷异号离子能引起聚沉呢?2.在进行重量分析实验时,为了尽可能使沉淀完全,通常加入大量电解质,或将溶胶适当加热,为什么?试从胶体分散体系观点解释。

3.胶粒吸附稳定离子时有何规律?4.影响胶粒电泳速率的主要因素有哪些?电泳现象说明什么问题?5.什么是ζ-电势?如何确定ζ-电势的正、负号?选择题:1.溶胶与大分子溶液的相同点是(C)A.热力学稳定体系B.热力学不稳定体系C. 动力学稳定体系D. 动力学不稳定体系2.稀的砷酸溶液中通入H2S制备As2S3溶胶,H2S适当过量,则胶团结构为(B)A.[(As2S3)m·nH+,(n-x)HS—]x+·xHS—B.[(As2S3)m·nHS—,(n-x)H+]x-·xH+C. [(As2S3)m·nH+,(n-x)HS—]x-·xHS—D. [(As2S3)m·nHS—,(n-x)H+]x+·xHS-3.下列诸性质中,哪一个属于亲液溶胶(A)A.溶胶与凝胶作用可逆B.需要第三种物质作稳定剂C. 对电解质十分敏感D. 丁达尔效应很强4.关于ζ-电势,描述错误的是(C)A.是指胶粒的相对运动边界与液体内部的电位差B.其值随外加电解质而变化C. 其值一般高于热力学电势D. 有可能因外加电解质而改变符号5.有两种利用光学性质测定溶胶浓度的仪器:比色计和比浊计,它们分别观察胶体溶液的(B)A.透射光、折射光B.透射光、散射光C. 透射光、反射光D. 折射光、散射光6.大分子溶液分散质的粒子尺寸为(C)A.> 1μm B.< 1 nm C. 1 nm ~ 1μm D. > 1 mm7.下列分散系统中,丁达尔效应最强的是(D)A.空气B.蔗糖水溶液 C. 大分子溶液 D.硅胶溶胶8.向碘化银正溶胶中滴加过量的KI溶液,生成的新溶胶在外加直流电场中的移动方向为(A)A.向正极移动B.向负极移动 C. 不移动 D.无法确定9.用0.08mol·L-1的KI和0.1mol·L-1的AgNO3溶液等体积混合制成水溶胶,电解质CaCl2、Na2SO4、MgSO4对它的聚沉能力顺序为(C)A.Na2SO4 > CaCl2 > MgSO4B.MgSO4 > Na2SO4 > CaCl2C. Na2SO4 > MgSO4 > CaCl2D. CaCl2 > Na2SO4 > MgSO410.下面属于水包油型乳状液(O/W型)基本性质之一的是BA.易于分散在油中B.导电性强C. 导电性弱D. 乳化剂的特点是亲油性强11.将两滴K4[Fe(CN)6]水溶液滴入过量的CuCl2水溶液中形成亚铁氰化铜正溶胶,下列四种电解质聚沉值最大的是(A )A. KBrB.K2SO4C. K4[Fe(CN)6]D. NaCl12.在相同的温度及浓度下,同一高分子化合物在良性溶剂中与在不良性溶剂中其散射强度是 ( )A. 在良性溶剂中的散射强度大于在不良性溶剂中的散射强度B. 在良性溶剂中的散射强度小于在不良性溶剂中的散射强度C. 在良性溶剂中的散射强度等于在不良性溶剂中的散射强度D. 无法确定13. 下列属于溶胶光学性质的是( B )A .唐南平衡 B. 丁达尔效应C .电泳 D. 沉降平衡14. 在等电点上,两性电解质(如蛋白质、血浆等)和溶胶在电场中(C )A .向正极移动 B. 向负极移动C .不移动 D.无法确定15. 胶体系统产生丁达尔现象的实质是胶体粒子对光的 ( C )A .反射 B. 透射 C .散射 D. 衍射16. 若分散相固体微小粒子表面吸附负离子,则该胶体粒子的ζ-电势( B )A .大于零 B. 小于零 C .等于零 D. 等于外加电势差17. 对于以AgNO 3为稳定剂的AgCl 水溶胶胶团结构,被称为胶体粒子的是( D )A .m AgCl ][ B. -+--⋅x m Ag x n nNO AgCl })(]{[3C .-+-+⋅-⋅33})(]{[xNO NO x n nAg AgCl x m D. +-+-⋅x m NO x n nAg AgCl })(]{[318. 一定量以KI 为稳定剂的AgI 溶胶,分别加入浓度c 相同的下列电解质溶液,在一定时间范围内,聚沉值最小的是 ( A )A .La(NO 3)3 B. NaNO 3 C .KNO 3 D.Mg(NO 3)219. 作为乳化剂的表面活性剂分子大的一端亲水,小的一端亲油,则此乳化剂有利于形成( )型乳状液A .O/W B. O/W C .O/W 和O/W D. 不确定20. 使用明矾KAl(SO 4)2·12H 2O 来净水,主要是利用( A )A. 胶体的特性吸附B. 电解质的聚沉作用C. 溶胶之间的相互作用D. 高分子的絮凝作用判断题1. ζ-电势在数值上一定小于热力学电势。

物理化学与胶体化学教学大纲

物理化学与胶体化学教学大纲

《物理化学与胶体化学》教学大纲(供四年制药物制剂本科专业用)前言物理化学与胶体化学是一门专业基础理论课。

药物制剂本科专业的学生在继无机化学、有机化学和分析化学后学习本门课程,能为以后学习中药化学、药剂学、炮制学和中药鉴定等专业课程以与将来从事中药与药物制剂研究开发工作奠定良好的化学理论基础。

物理化学与胶体化学的理论很多都是从生产实践中概括出来,因此,反过来它将为生产和科研服务。

随着医疗技术的发展和医药研究的深入,学科之间的相互渗透与相互联系越来越多,药学科学与物理化学与胶体化学的结合也越来越紧密。

从天然药物中分离提取有效成分,需要应用蒸馏、萃取、乳化、吸附等原理和方法,需要掌握溶液与表面现象、胶体化学等方面的知识。

在药物生产中,选择工艺路线,需要掌握影响化学反应速度的各种因素,要探索反应的机理,这就需要化学动力学和化学热力学的知识。

对产品的精制、产品的稳定性的研究,需要掌握溶液、表面现象与化学动力学等方面的知识。

在药物合成的研究中,应了解药物的结构与性质的关系,以便寻找最有效的药物,这就需要掌握物质结构的知识。

而合成的过程中,需要化学动力学的知识。

在药物制剂方面,剂型的研究、改革时,应了解表面现象方面的内容,了解分散程度对药物性能的影响,同样的药物,主药颗粒越细小,药效越好。

如纳米技术的发展必将对药物剂型的改革起着十分重要的作用。

从发展的趋势来看,药学的各个领域中正日益深广地与物理化学相结合,掌握好物理化学与胶体化学的原理和方法,对药学工作者来说是非常必要的。

根据药学专业对本课程的要求,系统和重点相结合,选定化学热力学,相平衡,化学平衡,电化学,化学动力学、表面现象、溶胶,大分子溶液等作为讲课和实验的基本内容。

根据教学计划(甘肃中医学院),本课程共90学时,其中讲课共60学时,实践30学时。

教学要求和内容理论讲授部分绪论[教学要求]1、掌握物理化学与胶体化学课程的基本内容。

2、熟悉学习物理化学与胶体化学必须的数理知识。

天津大学物理化学第五版-第十二章-胶体化学

天津大学物理化学第五版-第十二章-胶体化学
溶胶粒子间的作用力: Verwey &Overbeek(1948)
van der Waals 吸引力:EA -1/x2 双电层引起的静电斥力:ER ae-x
总作用势能:E = ER + EA
EA曲线的形状由粒子本
性决定,不受电解质影响;
ER曲线的形状、位置强
烈地受电解质浓度的影响。
ER 势 能
E
n : 分散相的折射率; n0:分散介质的折射率;
:散射角;
l : 观测距离
I= 9 2V 2C 2 4 l 2
n 2 n02 n2 2n02
2
1 cos 2
I0
由 Rayleigh 公式可知:
1) I V 2
可用来鉴别小分子真溶液与胶体溶液;
如已知 n 、n0 ,可测 I 求粒子大小V 。
2. 憎液溶胶的聚沉 溶胶粒子合并、长大,进而发生沉淀的现
象,称为聚沉。
(1) 电解质的聚沉作用 聚沉值使溶胶发生明显的聚沉所需电解质的最小浓度 聚沉能力聚沉值的倒数
EA 曲线的形状由粒子本性决定,不受电解质影响; ER 曲线的形状、位置强烈地受电解质浓度的影响。
电解质浓度与价数增加,使胶体粒子间势垒的高度 与位置发生变化。
分散系统:一种或几种物质分散在另一种物质之中
分散相:被分散的物质 (dispersed phase) 分散介质:另一种连续分布的物质
medium)
(dispersing
分子分散系统
胶体分散系统
粗分散系统
例如:云,牛奶,珍珠
按分散相粒子的大小分类
类型
粒子大小
特性
举例
低分子溶 液(分子分
散系统)
<1nm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概论
胶 体是一种分散系统
分散系统:一种或几种物质分散在另一种物质之中, 所 构成的系统;
分散相:被分散的物质;
分散介质:另一种连续分布的物质;
2019/5/28
0
粗分散系统 ( d > 10-6m )


胶体系统( 10-9~10-6m)


真溶液(d < 10-9m )
2019/5/28
(氢原子半径 0.05 nm)
1-9m ~1-6m
分散法 大小 > 1-6m
更换溶剂法
化学反应法 电弧法
研磨法
物理凝聚法
超声分散法
凝聚法: (1) 物理凝聚法: a.蒸气凝聚法;例:固态苯与钠,在真空下气化, 到冷 却的器壁上冷凝。 b.过饱和法: 改变溶剂法;例:硫的酒精溶液倒入水中, 形成硫在水中的溶胶
松香乙醇溶液+ 水 松香水溶胶
2019/5/28
9
§2 胶体系统的性质
一. 胶体系统的光学性质--- 、Tyndall(丁铎尔)效应
1869年 Tyndall发现胶体系统有光散射现象
丁铎尔效应:在暗室里,将一束聚集的光投射到胶体系统 上,在与入射光垂直的方向上,可观察到一个发亮的光柱, 其中并有微粒闪烁。
2019/5/28
10
及面积大小As成正比,其比例系数D 称为扩散系数,负号是因为扩散 方向与浓梯方向相反
D 扩散系数 单位浓度梯度下,单位时间通过单位面积 的物质的量。单位:m2 s --1
2019/5/28
19
D 可用来衡量扩散速率。 下表给出不同半径金溶胶的扩散系数。
表 : 18 oC 时金溶胶的扩散系数
丁铎尔效应可用来区分
胶体溶液 小分子真溶液
2019/5/28
13
二. 胶体系统的动力性质
1.Brown 运动
1827年,植物学家布朗( Brown)在显微镜下,看到悬浮在水中的花 粉粒子处于不停息的无规则运动状态。
2019/5/28
15
以后发现,线度小于10-6m的粒子,在分散介质中都 有这种运动。(胶体尺度 10 -9~ 10-6m)
1
(1)溶胶: 分散相不溶于分散介质,有很大相
界面,是热力学不稳定系统。(憎液溶胶)


(2)高分子溶液: 高分子以分子形式溶于

介质,分散相与分散介质间无相界面,

是热力学稳定系统。(亲液溶胶)
2019/5/28
(3)缔合胶体.: 分散相为表面活性分子缔合形
成的胶束,在水中,表面活性剂分子的亲油 基团向里,亲水基团向外,分散相与分散介
这种现象产生的原因是,分散介质分子处于不断的热运动中,从四面八方 断的撞击分散相粒子。对于大小在胶体尺度下的分散相粒子,粒子受到撞击次 较小,从各个方向受到的撞击力不能完全互相抵消,.在某一时刻,粒子从某一方向
到的冲量即可发生位移。此即布朗运动。
布朗运动是分子热运动的必然结果。
2019/5/28
16
Einstein-Brown 平均位移公式:

RT t
1/2

x 3L π rη
x : t 时间间隔内粒子的平均位移 r : 粒子半径 T:热力学温度
:分散介质粘度
L:阿伏加德罗常数
该公式也可用于分散相粒子大小的测定,及阿伏加德
罗常数的测定。Biblioteka 2019/5/2817
2. 扩散
FeCl3(稀水溶液)+3H2O → Fe(OH)2溶胶 + 3HCl
为了获得稳定的溶胶,还需满足两个条件: 一是分散相在介质中的溶解度要小;
二是需要加入第三者作为稳定剂。
8
三. 溶胶的净化: 常用渗析法,利用胶体粒子不能透过半透膜的特点
,分离出溶胶中多余的电解质或其它杂质。
将 一般用羊皮纸,动物膀胱膜,硝酸或醋酸纤维素,等作为半透膜, 溶胶装于膜内,再放入流动的水中,经过一段时间的渗透作用,即可达到 净。化的目的。若加大渗透面积,适当提高温度,或加外电场,可加速渗透




名称 气溶胶
泡沫 乳状液 液溶胶或悬浮液
固溶胶
实例 云、雾、喷雾 烟、粉尘 肥皂泡沫 牛奶、含水原油 金溶胶、油墨、泥 浆 泡沫塑料 珍珠、蛋白石 有色玻璃、某些合 金
2019/5/28
5
§1 胶体系统的制备:
小分子溶液质点 小变大
大小 < 1-9m
凝聚法
溶胶质点大小 大变小 粗分散系统质点
2019/5/28
11
丁达尔现象的实质是溶胶对光的散射作用。
入射光波长 < 分散粒子尺寸——反射
入射光波长 = 分子固有尺寸—— 吸收 无作用 ——— 透过
入射光波长 > 分散粒子尺寸——散射 (可见光波长 400~ 760 nm;胶粒 10-9~ 10-6m)
2019/5/28
12
系统完全均匀,所有散射光相互抵销,看不到散射光; 系统不均匀,散射光不会被相互抵销,可看到散射光。
定义:在有浓度梯度存在时,物质粒子因热运动而发 生宏观上的定向迁移,称为扩散。
浓度梯度的存在,是扩散的推动力
2019/5/28
18
胶体系统的扩散与溶液中溶质扩散一样,可用Fick 扩散第 一定律来描述:
dn dt

- DAS
dc dx
单位时间通过某一截面的物质的量dn/dt与该处的浓度梯度dc/dx
质亲和性良好,是热力学稳定系统。
2
溶胶
憎液溶胶: 分散相与分散介质之间有相界面 亲液溶胶: 均相,无相界面 高分子溶液
2019/5/28
3
系统 真溶液 胶体系统 粗分散系统
分散系统的分类及特征(总结)
分散相粒子 直径 d
系统相态
热力学稳定性
实例
d < 10-9m
均相
稳定
各种分子、原子、离子溶液 如乙醇水溶液、NaCl 水溶液、 空气等
冷却法:用冰骤冷苯在水中的饱和溶液, 得到苯在水中的溶胶
2019/5/28
7
(2)化学凝聚法:利用生成不溶性物质的化学反应,控制析
晶过程,使其停留在胶核尺度的阶段,而得到溶胶。所谓控 制析晶过程,系指采用有利于大量形成晶核,减缓于晶体生 长的条件,例:采用较大的过饱和浓度,较低的操作温度。
例:在不断搅拌条件下,将FeCl3稀溶液,滴入沸腾的水 中水解,即可生成棕红色透明的Fe(OH)3 溶胶。
10-9<d<10-6m 多,均,均
不稳定,稳,稳
各种溶胶 如 AgI、Al(OH)3 水溶胶等
d > 10-6m
多相
不稳定
乳状液、悬浮液、泡沫 如牛奶、豆浆、泥浆等
高度分散的多相性和热力学不稳定性是胶体系统的主要特点
2019/5/28
4
表: 分散系统按聚集状态分类
分散介质 分散相

液 固




相关文档
最新文档