最新力学电磁学测试题

合集下载

大学物理”力学和电磁学“练习题(附答案)

大学物理”力学和电磁学“练习题(附答案)

部分力学和电磁学练习题(供参考)一、选择题1. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. [ C ]2. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则(A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ A ]3. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A) 06εq . (B) 012εq.(C) 024εq . (D) 048εq . [ C ]4. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为 (A)d S q q 0212ε+. (B) d Sq q 0214ε+. (C) d S q q 0212ε-. (D) d Sq q 0214ε-. [ C ] 5. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:(A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C .(D) E A <E B <E C ,U A >U B >U C . [ D ]6. 均匀磁场的磁感强度B ϖ垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为(A) 2πr 2B . (B) πr 2B .(C) 0. (D) 无法确定的量. [ B ] 7. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B ϖ沿图中闭合路径L 的积分⎰⋅Ll B ϖϖd 等于(A) I 0μ. (B) I 031μ.(C) 4/0I μ. (D) 3/20I μ. [ D ]OMm m-P 0 A bcqdA Sq 1q 2C B AIIa bc d120°8. 一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则 (A) 两粒子的电荷必然同号. (B) 粒子的电荷可以同号也可以异号. (C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同. [ B ]9. 如图所示,在磁感强度为B ϖ的均匀磁场中,有一圆形载流导线,a 、b 、c是其上三个长度相等的电流元,则它们所受安培力大小的关系为 (A) F a > F b > F c . (B) F a < F b < F c . (C) F b > F c > F a . (D) F a > F c > F b . [ C ]10. 如图,长度为l 的直导线ab 在均匀磁场B ϖ中以速度v ϖ移动,直导线ab中的电动势为 (A) Bl v . (B) Bl v sin α.(C) Bl v cos α. (D) 0. [ D ]11. 如图所示的电路中,A 、B 是两个完全相同的小灯泡,其内阻r >>R ,L 是一个自感系数相当大的线圈,其电阻与R 相等.当开关K 接通和断开时,关于灯泡A 和B 的情况下面哪一种说法正确?(A) K 接通时,I A >I B . (B) K 接通时,I A =I B .(C) K 断开时,两灯同时熄灭.(D) K 断开时,I A =I B . [ A] 12. 如图所示,两个线圈P 和Q 并联地接到一电动势恒定的电源上.线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计.当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是(A) 4. (B) 2. (C) 1. (D)21. [ D ] 13. 如图,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强度H ϖ的环流与沿环路L 2的磁场强度H ϖ的环流两者,必有:(A) >'⎰⋅1d L l H ϖϖ⎰⋅'2d L l H ϖϖ.(B) ='⎰⋅1d L l H ϖϖ⎰⋅'2d L l H ϖϖ. (C) <'⎰⋅1d L l H ϖϖ⎰⋅'2d L l H ϖϖ. (D) 0d 1='⎰⋅L l H ϖϖ. [ C ] 14. 用导线围成如图所示的回路(以O 点为心的圆,加一直径),放在轴线通过O 点垂直于图面的圆柱形均匀磁场中,如磁场方向垂直图面向里,其大小随时间减小,则感应电流的流向为[ B ]B ϖϖ (A)二、填空题20. 一质点沿x 方向运动,其加速度随时间变化关系为 a = 3+2 t (SI) ,如果初始时质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度 v = .21. 已知质点的运动学方程为24t r =ϖi ϖ+(2t +3)j ϖ (SI),则该质点的轨道方程为__________________________.22. 质量分别为m 1、m 2、m 3的三个物体A 、B 、C ,用一根细绳和两根轻弹簧连接并悬于固定点O ,如图.取向下为x 轴正向,开始时系统处于平衡状态,后将细绳剪断,则在刚剪断瞬时,物体B 的加速度B a ϖ=_______;物体A 的加速度A a ϖ=______.23. 质量为m 的小球,用轻绳AB 、BC 连接,如图,其中AB 水平.剪断绳AB 前后的瞬间,绳BC 中的张力比 T: T ′=____________________.24. 质量为m 的质点以速度v ϖ沿一直线运动,则它对该直线上任一点的角动量为__________.25. 二质点的质量各为m 1,m 2.当它们之间的距离由a 缩短到b 时,它们之间万有引力所做的功为____________.26. 可绕水平轴转动的飞轮,直径为1.0 m ,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4 s 内绳被展开10 m ,则飞轮的角加速度为_________________.27. 决定刚体转动惯量的因素是__________________________________________ ______________________________________________________.28. 定轴转动刚体的角动量(动量矩)定理的内容是_______________________________________________________________________________________________,其数学表达式可写成_________________________________________________.动量矩守恒的条件是________________________________________________.29. 一点电荷q =10-9 C ,A 、B 、C 三点分别距离该点电荷10 cm 、20 cm 、30 cm .若选B 点的电势为零,则A 点的电势为______________,C 点的电势为________________.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)31. 一平行板电容器,两板间充满各向同性均匀电介质,已知相对介电常量为εr .若极板上的自由电荷面密度为σ ,则介质中电位移的大小D =____________,电场强度的大小E =____________________.32. 一空气平行板电容器,电容为C ,两极板间距离为d .充电后,两极板间相互作用力为F .则两极板间的电势差为______________,极板上的电荷为______________.33. 在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.34. 用导线制成一半径为r =10 cm 的闭合圆形线圈,其电阻R =10 Ω,均匀磁场垂直于线圈平面.欲使电路中有一稳定的感应电流i = 0.01 A ,B 的变化率应为d B /d t =_______________________________.35. 将条形磁铁插入与冲击电流计串联的金属环中时,有q =2.0×10-5 C 的电荷通过电流计.若连接电流q计的电路总电阻R =25 Ω,则穿过环的磁通的变化∆Φ =_____________________.三、计算题1. 一人从10 m 深的井中提水.起始时桶中装有10 kg 的水,桶的质量为1 kg ,由于水桶漏水,每升高1 m 要漏去0.2 kg 的水.求水桶匀速地从井中提到井口,人所作的功.2. 一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).3. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.4. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?5. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?6. 在一长直密绕的螺线管中间放一正方形小线圈,若螺线管长1 m ,绕了1000匝,通以电流 I =10cos100πt (SI ),正方形小线圈每边长5 cm ,共 100匝,电阻为1 Ω,求线圈中感应电流的最大值(正方形线圈的法线方向与螺线管的轴线方向一致,μ0 =4π×10-7 T ·m/A .)二、填空题答案2FdC三、计算题答案1.解:选竖直向上为坐标y 轴的正方向,井中水面处为原点.由题意知,人匀速提水,所以人所用的拉力F 等于水桶的重量即: F =P =gy mg ky P 2.00-=-=107.8-1.96y (SI) 3分 人的拉力所作的功为:W=⎰⎰=Hy F W 0d d =⎰-10d )96.18.107(y y =980 J 2分2. 解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg ­T =ma ① 2分 T r =J β ② 2分 由运动学关系有: a = r β ③ 2分由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt22-1) 2分3. 解: 通过x =a 处平面1的电场强度通量Φ1 = -E 1 S 1= -b a 3 1分 通过x = 2a 处平面2的电场强度通量Φ2 = E 2 S 2 = 2b a 3 1分其它平面的电场强度通量都为零.因而通过该高斯面的总电场强度通量为Φ = Φ1+ Φ2 = 2b a 3-b a 3 = b a 3 =1 N ·m 2/C 3分4. 解:(1) 令无限远处电势为零,则带电荷为q 的导体球,其电势为 RqU 04επ=将d q 从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电 势能 q RqW A d 4d d 0επ==3分(2) 带电球体的电荷从零增加到Q 的过程中,外力作功为⎰⎰==QR q q A A 004d d πεR Q 028επ=2分5. 解:因为所带电荷保持不变,故电场中各点的电位移矢量D ϖ保持不变, 又 rr r w D D DE w εεεεε0200202112121====3分 因为介质均匀,∴电场总能量 r W W ε/0=2分6. 解: n =1000 (匝/m)nI B 0μ= 3分nI a B a 022μΦ=⋅= 1分tI n Na t Nd d d d 02μΦ-=-=☜=π2×10-1 sin 100 πt (SI) 3分 ==R I m m /☜π2×10-1 A = 0.987 A 1分。

电磁学试题大集合(含答案)

电磁学试题大集合(含答案)

长沙理工大学考试试卷一、选择题:(每题3分,共30分)1. 关于高斯定理的理解有下面几种说法,其中正确的是:(A)如果高斯面上E 处处为零,则该面内必无电荷。

(B)如果高斯面内无电荷,则高斯面上E 处处为零。

(C)如果高斯面上E处处不为零,则该面内必有电荷。

(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零 (E )高斯定理仅适用于具有高度对称性的电场。

[ ]2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于:(A)1P 和2P 两点的位置。

(B)1P 和2P 两点处的电场强度的大小和方向。

(C)试验电荷所带电荷的正负。

(D)试验电荷的电荷量。

[ ]3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出:(A)C B A E E E >>,C B A U U U >>(B)C B A E E E <<,C B A U U U <<(C)C B A E E E >>,C B A U U U <<(D)C B A E E E <<,C B A U U U >> [ ]4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质,则两种介质内:(A)场强不等,电位移相等。

(B)场强相等,电位移相等。

(C)场强相等,电位移不等。

(D)场强、电位移均不等。

[ ]5. 图中,Ua-Ub 为:(A)IR -ε (B)ε+IR(C)IR +-ε (D)ε--IR [ ]6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于: (A)BI a 221 (B)BI a 2341 (C)BI a2 (D)0 [ ]7. 如图,两个线圈P 和Q 并联地接到一电动势恒定的电源上,线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计,当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是:(A)4; (B)2; (C)1; (D)1/2 [ ]8. 在如图所示的电路中,自感线圈的电阻为Ω10,自感系数为H 4.0,电阻R为Ω90,电源电动势为V 40,电源内阻可忽略。

(完整版)电磁学题库(附答案)

(完整版)电磁学题库(附答案)

《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

电磁学试题(含答案)

电磁学试题(含答案)

电磁学试题(含答案)⼀、单选题1、如果通过闭合⾯S 的电通量e Φ为零,则可以肯定A 、⾯S 内没有电荷B 、⾯S 内没有净电荷C 、⾯S 上每⼀点的场强都等于零D 、⾯S 上每⼀点的场强都不等于零 2、下列说法中正确的是 A 、沿电场线⽅向电势逐渐降低 B 、沿电场线⽅向电势逐渐升⾼ C 、沿电场线⽅向场强逐渐减⼩ D 、沿电场线⽅向场强逐渐增⼤3、⾼压输电线在地⾯上空m 25处,通有A 1023的电流,则该电流在地⾯上产⽣的磁感应强度为A 、T 104.15-? B 、T 106.15-? C 、T 1025-? D 、T 104.25-? 4、载流直导线和闭合线圈在同⼀平⾯内,如图所⽰,当导线以速度v 向左匀速运动时,在线圈中 A 、有顺时针⽅向的感应电流B 、有逆时针⽅向的感应电C 、没有感应电流D 、条件不⾜,⽆法判断 5、两个平⾏的⽆限⼤均匀带电平⾯,其⾯电荷密度分别为σ+和σ-,则P 点处的场强为A 、02εσ B 、0εσ C 、02εσ D 、0 6、⼀束α粒⼦、质⼦、电⼦的混合粒⼦流以同样的速度垂直进⼊磁场,其运动轨迹如图所⽰,则其中质⼦的轨迹是 A 、曲线1 B 、曲线2C 、曲线3D 、⽆法判断7、⼀个电偶极⼦以如图所⽰的⽅式放置在匀强电场E中,则在电场⼒作⽤下,该电偶极⼦将A 、保持静⽌B 、顺时针转动C 、逆时针转动D 、条件不⾜,⽆法判断 8、点电荷q 位于边长为a 的正⽅体的中⼼,则通过该正⽅体⼀个⾯的电通量为 A 、0 B 、εqC 、04εq D 、06εq 9、长直导线通有电流A 3=I ,另有⼀个矩形线圈与其共⾯,如图所⽰,则在下列哪种情况下,线圈中会出现逆时针⽅向的感应电流? A 、线圈向左运动 B 、线圈向右运动 C 、线圈向上运动 D 、线圈向下运动10、下列说法中正确的是A 、场强越⼤处,电势也⼀定越⾼σ+ σ-P3IB 、电势均匀的空间,电场强度⼀定为零C 、场强为零处,电势也⼀定为零D 、电势为零处,场强⼀定为零11、关于真空中静电场的⾼斯定理0εi Sq S d E ∑=??,下述说法正确的是:A. 该定理只对有某种对称性的静电场才成⽴;B. i q ∑是空间所有电荷的代数和;C. 积分式中的E⼀定是电荷i q ∑激发的;D. 积分式中的E是由⾼斯⾯内外所有电荷激发的。

目前最全大学物理电磁学题库包含答案(共43页,千道题)

目前最全大学物理电磁学题库包含答案(共43页,千道题)

大学物理电磁学试题(1)一、选择题:(每题3分,共30分)1. 关于高斯定理的理解有下面几种说法,其中正确的是:(A)如果高斯面上E处处为零,则该面内必无电荷。

(B)如果高斯面内无电荷,则高斯面上E处处为零。

(C)如果高斯面上E处处不为零,则该面内必有电荷。

(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零(E )高斯定理仅适用于具有高度对称性的电场。

[ ]2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于:(A)1P 和2P 两点的位置。

(B)1P 和2P 两点处的电场强度的大小和方向。

(C)试验电荷所带电荷的正负。

(D)试验电荷的电荷量。

[ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出:(A)C B A E E E >>,C B A U U U >> (B)C B A E E E <<,C B A U U U << (C)C B A E E E >>,C B A U U U <<(D)C B A E E E <<,C B A U U U >> [ ]4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质,则两种介质内:(A)场强不等,电位移相等。

(B)场强相等,电位移相等。

(C)场强相等,电位移不等。

(D)场强、电位移均不等。

[ ] 5. 图中,Ua-Ub 为:(A)IR -ε (B)ε+IR(C)IR +-ε (D)ε--IR [ ]6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于:(A)BI a 221 (B)BI a 2341 (C)BI a2 (D)0 [ ]7. 如图,两个线圈P 和Q 并联地接到一电动势恒定的电源上,线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计,当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是:(A)4; (B)2; (C)1; (D)1/2 [ ] 8. 在如图所示的电路中,自感线圈的电阻为Ω10,自感系数为H 4.0,电阻R 为Ω90,电源电动势为V 40,电源内阻可忽略。

电磁测试题及答案

电磁测试题及答案

电磁测试题及答案1. 什么是电磁感应定律?电磁感应定律指出,在磁场中移动的导体会产生电动势,这种现象被称为电磁感应。

根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率成正比。

2. 描述洛伦兹力定律。

洛伦兹力定律描述了带电粒子在电磁场中所受的力。

根据洛伦兹力定律,带电粒子在磁场中运动时受到的力与粒子的电荷量、速度以及磁场强度的乘积成正比,且力的方向垂直于电荷速度和磁场的方向。

3. 麦克斯韦方程组包含哪四个方程?麦克斯韦方程组包括四个方程:高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。

这四个方程共同描述了电场和磁场的基本规律。

4. 什么是电磁波?电磁波是由变化的电场和磁场相互激发而产生的波动现象。

电磁波可以在真空中传播,其传播速度等于光速。

5. 简述电磁波的波长、频率和速度之间的关系。

电磁波的波长、频率和速度之间的关系可以用公式c = λf来表示,其中c是电磁波在真空中的速度(光速),λ是波长,f是频率。

波长和频率成反比,即波长越长,频率越低;波长越短,频率越高。

6. 什么是电磁兼容性?电磁兼容性是指设备或系统在其电磁环境中正常工作的能力,同时不对该环境中的其他设备产生不应有的电磁干扰。

7. 描述电磁辐射的类型。

电磁辐射可以分为电离辐射和非电离辐射。

电离辐射包括X射线和伽马射线等,它们具有足够的能量可以电离原子或分子。

非电离辐射包括无线电波、微波、红外线、可见光和紫外线等,它们的能量不足以电离原子或分子。

8. 什么是电磁场?电磁场是由变化的电场和磁场相互作用而产生的物理场。

电磁场可以存在于空间中,并且能够传递能量和动量。

结束语:以上是电磁测试题及答案,希望能够帮助大家更好地理解和掌握电磁学的基本概念和原理。

电磁学考试题库及答案详解

电磁学考试题库及答案详解

电磁学考试题库及答案详解一、单项选择题1. 真空中两个点电荷之间的相互作用力遵循()。

A. 牛顿第三定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:B解析:库仑定律描述了真空中两个点电荷之间的相互作用力,其公式为F=k*q1*q2/r^2,其中F是力,k是库仑常数,q1和q2是两个电荷的量值,r是它们之间的距离。

2. 电场强度的方向是()。

A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于电荷分布D. 与电荷分布无关解析:电场强度的方向是从正电荷指向负电荷,这是电场的基本性质之一。

3. 电势能与电势的关系是()。

A. 电势能等于电势的负值B. 电势能等于电势的正值C. 电势能等于电势的两倍D. 电势能与电势无关答案:A解析:电势能U与电势V的关系是U=-qV,其中q是电荷量,V是电势。

4. 电容器的电容C与板间距离d和板面积A的关系是()。

A. C与d成正比B. C与d成反比C. C与A成正比D. C与A和d都成反比解析:电容器的电容C与板间距离d成反比,与板面积A成正比,公式为C=εA/d,其中ε是介电常数。

5. 磁场对运动电荷的作用力遵循()。

A. 洛伦兹力定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:A解析:磁场对运动电荷的作用力遵循洛伦兹力定律,其公式为F=qvBsinθ,其中F是力,q是电荷量,v是电荷的速度,B是磁场强度,θ是速度与磁场的夹角。

二、多项选择题1. 以下哪些是电磁波的特性?()A. 传播不需要介质B. 具有波粒二象性C. 传播速度等于光速D. 只能在真空中传播答案:ABC解析:电磁波的传播不需要介质,具有波粒二象性,传播速度等于光速,但它们也可以在其他介质中传播,只是速度会因为介质的折射率而改变。

2. 以下哪些是电场线的特点?()A. 电场线从正电荷出发,终止于负电荷B. 电场线不相交C. 电场线是闭合的D. 电场线的疏密表示电场强度的大小答案:ABD解析:电场线从正电荷出发,终止于负电荷,不相交,且电场线的疏密表示电场强度的大小。

电磁学期末考试题及答案

电磁学期末考试题及答案

电磁学期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪项是电流的单位?A. 牛顿B. 库仑C. 安培D. 伏特答案:C2. 电磁波的传播速度在真空中是恒定的,其值是:A. 299,792,458 m/sB. 300,000,000 m/sC. 3.00 x 10^8 m/sD. 3.00 x 10^5 m/s答案:C3. 根据麦克斯韦方程组,以下哪项描述了电场与磁场之间的关系?A. 高斯定律B. 法拉第电磁感应定律C. 欧姆定律D. 安培环路定理答案:B4. 一个点电荷在电场中受到的力与以下哪个因素无关?A. 电荷量B. 电场强度C. 电荷的正负D. 电荷的质量答案:D5. 以下哪个选项是描述磁场的基本物理量?A. 电势B. 磁通C. 磁感应强度D. 电场强度答案:C6. 一个闭合电路中的感应电动势与以下哪个因素有关?A. 磁场强度B. 导线长度C. 导线运动速度D. 所有以上因素答案:D7. 根据洛伦兹力定律,一个带电粒子在磁场中运动时受到的力与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 磁场的强度D. 粒子的质量答案:D8. 电磁波的波长与频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积是常数答案:B9. 以下哪种材料最适合用于制作超导磁体?A. 铁B. 铜C. 铝D. 铌钛合金答案:D10. 电磁感应现象是由以下哪位科学家发现的?A. 牛顿B. 法拉第C. 麦克斯韦D. 欧姆答案:B二、填空题(每题2分,共20分)1. 电磁波的传播不需要______。

答案:介质2. 电流通过导线时,导线周围会产生______。

答案:磁场3. 根据欧姆定律,电流I等于电压V除以电阻R,即I=______。

答案:V/R4. 电荷的定向移动形成了______。

答案:电流5. 电磁波的传播速度在真空中是______。

答案:3.00 x 10^8 m/s6. 电磁波的波长、频率和波速之间的关系是______。

高三物理电磁学练习题及答案2023

高三物理电磁学练习题及答案2023

高三物理电磁学练习题及答案2023一、选择题1. 下列哪个选项最准确地描述了电磁感应的现象?A. 通过一个闭合线圈中的直流电流,可以产生磁场。

B. 一个导体在磁场中运动,会产生感应电动势。

C. 交流电经过变压器后,可以改变电压的大小。

D. 静止的导体不会受到磁场的作用力。

2. 两个相邻的导线,电流方向相同时,它们之间的相互作用力是:A. 引力B. 排斥力C. 无相互作用力D. 无法确定3. 一根导线在垂直于磁场方向以速度v匀速运动,切割磁感线的长度为L,则感应电动势的大小为:A. v/LB. v*LC. v+LD. v-L4. 在电路中,若磁感应强度减小,则感应电动势的方向是:A. 不变B. 没有感应电动势C. 与原来相反D. 无法确定5. 一台发电机将机械能转化为电能的过程属于:A. 电磁感应B. 电阻发热C. 机械运动D. 热传导二、填空题1. 在电磁感应现象中,当磁感应强度发生变化时,产生的电动势的方向满足________法则。

答案:楞次定律2. 单位时间内磁通量的变化率称为________。

答案:感应电动势3. 一台发电机的转子中有1000个磁针,转速为1800转/分,每个磁针的磁连量为0.002Wb。

该发电机输出的交流电频率为________Hz。

答案:60Hz4. 一根导线以速度v绕半径为r的圆周做匀速运动,如果磁感应强度的大小为B,则感应电动势的大小为________。

答案:B*v*r5. 电磁铁的磁感应强度为0.8T,长度为20cm,它在磁场中运动,切割磁感线的速度为10m/s,则感应电动势的大小为________。

答案:1.6V三、解答题1. 一根长直导线$AB$位于均匀磁场中,垂直于纸面向里,如图所示。

当导线以速度$v$向左运动时,求:(1) 导线$AB$之间的感应电动势大小。

(2) 感应电动势的方向。

(3) 当$v=10\ m/s$时,导线$AB$之间的感应电动势大小为0.02 V,请计算磁场的强度。

(完整版)电磁学题库(附答案)

(完整版)电磁学题库(附答案)

《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

(完整版)电磁学试题库试题及答案

(完整版)电磁学试题库试题及答案

电磁学试题库 试题3一、填空题(每小题2分,共20分)1、带电粒子受到加速电压作用后速度增大,把静止状态下的电子加速到光速需要电压是( )。

2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。

3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势(4、两个同心的导体薄球壳,半径分别为b a r r 和,其间充满电阻率为ρ的均匀介质(1)两球壳之间的电阻( )。

(2)若两球壳之间的电压是U ,其电流密度( )。

5、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强度的大小为( )6、一矩形闭合导线回路放在均匀磁场中,磁场方向与回路平 面垂直,如图所示,回路的一条边ab 可以在另外的两条边上滑动,在滑动过程中,保持良好的电接触,若可动边的长度为L ,滑动速度为V ,则回路中的感应电动势大小( ),方向( )。

7、一个同轴圆柱形电容器,半径为a 和b ,长度为L ,假定两板间的电压t U u m ω=sin ,且电场随半径的变化与静电的情况相同,则通过半径为r (a<r<b )的任一圆柱面的总位移电流是( )。

8、如图,有一均匀极化的介质球,半径为R ,极 化强度为P ,则极化电荷在球心处产生的场强 是( )。

9、对铁磁性介质M B H、、三者的关系是( ) )。

10、有一理想变压器,12N N =15,若输出端接一个4Ω的电阻,则输出端的阻抗为( )。

一、选择题(每小题2分,共20分) 1、关于场强线有以下几种说法( ) (A )电场线是闭合曲线(B )任意两条电场线可以相交(C )电场线的疏密程度代表场强的大小(D )电场线代表点电荷在电场中的运动轨迹R I O a b vPzRLI2、对某一高斯面S ,如果有0=⋅⎰S S d E则有( ) (A )高斯面上各点的场强一定为零 (B )高斯面内必无电荷 (C )高斯面内必无净电荷 (D )高斯面外必无电荷3、将一接地的导体B 移近一带正电的孤立导体A 时,A 的电势。

电磁学的测试题

电磁学的测试题

电磁学的测试题电磁学是物理学中非常重要的一个分支,研究电和磁现象之间的相互作用。

在学习电磁学的过程中,进行一些测试题是不可或缺的,以检验我们对电磁学知识的掌握程度。

接下来,我将为大家提供一些电磁学的测试题。

第一部分:选择题1. 下列哪个是能量形式的传播?A. 电磁波B. 电流C. 电压D. 电荷2. 当一个导体通过一个磁场时,磁场力对导体的作用为何?A. 使导体发光B. 使导体加热C. 使导体发声D. 使导体受力3. 以下哪个物理量单位不是磁感应强度的单位?A. 特斯拉B. 高斯C. 韦伯D. 坎培4. 电流环路中发生感应电动势的条件是什么?A. 磁场线交变B. 磁场线垂直C. 电流方向变化D. 电流大小变化5. 常用的直流电机是通过什么原理工作的?A. 电动势感应原理B. 电流感应原理C. 洛伦兹力原理D. 磁感应强度原理第二部分:计算题1. 一个长直导线,电流为 I = 2A,位于原点处的磁感应强度为 B = 5T,求导线上某一点的磁场力。

2. 一根长度为 2m 的导线,位于 x 轴上,电流为 I = 3A,位于点P(4,0,0) 处的磁感应强度为 B = 2T,求点 P 处导线所受的磁场力。

第三部分:简答题1. 什么是法拉第电磁感应定律?请简要解释。

2. 请解释電磁波的特性和应用。

3. 解释电磁感应发电原理。

4. 简述电磁波运动方式的三种常见形式。

5. 简述洛伦兹力的定义和计算公式。

以上就是电磁学的一些测试题,包括选择题、计算题和简答题。

这些测试题旨在帮助大家巩固和加深对电磁学知识的理解和应用。

通过反复练习和思考这些题目,相信大家在电磁学学科上会有更进一步的提高。

希望这些测试题对大家的学习有所帮助!。

(完整版)电磁学练习题及答案

(完整版)电磁学练习题及答案

Prλ2λ1R 1 R 21.坐标原点放一正电荷Q ,它在P 点(x =+1,y =0)产生的电场强度为E ρ。

现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x >1。

(B) x 轴上0<x <1。

(C) x 轴上x <0。

(D) y 轴上y >0。

(E) y 轴上y <0。

[ C ]2.个未带电的空腔导体球壳,内半径为R 。

在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去。

选无穷远处为电势零点,则球心O 处的电势为 (A) 0 (B)dq04επ(C)R q 04επ- (D) )11(40Rd q -πε [ D ] 3.图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r 0212ελλπ+ (B) ()()20210122R r R r -π+-πελελ(C) ()20212R r -π+ελλ(D) 20210122R R ελελπ+π [ A ]4.荷面密度为+σ和-σ的两块“无限大”均匀带电的平行平板,放在与平面相垂直的x 轴上的+a 和-a 位置上,如图所示。

设坐标原点O 处电势为零,则在-a <x <+a 区域的电势分布曲线为 [ C ]5.点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为(A)a q 04επ (B) a q08επ(C) a q 04επ- (D) aq08επ- [ D ]yxO +Q P(1,0)R O d +q+a aO -σ +σO-a +ax U (A)O -a +a xUO -a +a x U (C)O -a +ax U (D)aa+qPM6.图所示,CDEF 为一矩形,边长分别为l 和2l 。

大学电磁学测试题含答案

大学电磁学测试题含答案

大学电磁学测试题含答案一、选择题(每题2分,共20分)1.电磁波在真空中的传播速度是多少?A.300,000km/sB.299,792km/sC.299,792km/s(光速)D.299,792km/s(电磁波速度)答案:C2.法拉第电磁感应定律描述了什么现象?A.磁场对电流的作用B.电流对磁场的作用C.变化的磁场产生电场D.变化的电场产生磁场答案:C3.根据麦克斯韦方程组,以下哪项不是电磁场的基本方程?A.高斯定律B.高斯磁定律C.法拉第电磁感应定律D.欧姆定律答案:D4.电容器的电容与哪些因素有关?A.电容器的面积B.电容器的间距C.电介质材料D.所有以上因素答案:D5.以下哪种介质不能增强电场?A.电介质B.导体C.真空D.磁介质答案:B6.洛伦兹力定律描述了什么?A.磁场对运动电荷的作用B.电场对静止电荷的作用C.重力对物体的作用D.摩擦力对物体的作用答案:A7.电磁波的频率和波长之间有什么关系?A.频率与波长成正比B.频率与波长成反比C.频率与波长无关D.频率与波长成正比(错误选项)答案:B8.根据楞次定律,当线圈中的磁通量增加时,感应电流的方向如何?A.与磁通量增加的方向相同B.与磁通量增加的方向相反C.与磁通量增加的方向垂直D.与磁通量增加的方向无关答案:B9.什么是自感?A.电路中由于电流变化而产生的电磁感应B.电路中由于电压变化而产生的电流C.电路中由于电阻变化而产生的电压D.电路中由于电感变化而产生的电流答案:A10.以下哪种材料不是超导体?A.汞B.铅C.铜D.铝答案:C二、填空题(每空1分,共10分)1.电场强度的国际单位是_______。

答案:伏特/米2.电容器储存电荷的能力称为_______。

答案:电容3.磁场强度的国际单位是_______。

答案:特斯拉4.麦克斯韦方程组包括_______个基本方程。

答案:四个5.电感的国际单位是_______。

答案:亨利三、计算题(每题10分,共30分)1.一个平行板电容器,板间距离为2mm,板面积为0.01平方米,板间电介质的介电常数为2.5,求该电容器的电容。

电磁学练习题(含答案)

电磁学练习题(含答案)

一、选择题1、在磁感强度为的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量与的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B . . (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ D ]2、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流为I ,.若载流长直导线1、2以及圆环中的电流在圆心O 点所产生的磁感强度分别用1B 、2B , 3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B ) B = 0,因为021=+B B ,B 3 = 0. (C ) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0.(D ) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(E ) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ D ]3、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度(A) 与L 无关. (B) 正比于L 2.(C) 与L 成正比. (D) 与L 成反比.(E) 与I 2有关. [ D ]4、无限长直圆柱体,半径为R ,沿轴向均匀流有电流.设圆柱体内( r < R )的磁感强度为B i ,圆柱体外( r > R )的磁感强度为B e ,则有(A) B i 、B e 均与r 成正比.(B) B i 、B e 均与r 成反比.(C) B i 与r 成反比,B e 与r 成正比.(D) B i 与r 成正比,B e 与r 成反比. [ D ]5、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) ⎰=⋅0l d B ,且环路上任意一点B = 0.(B) ⎰=⋅0l d B ,且环路上任意一点B ≠0.(C) ⎰≠⋅0l d B ,且环路上任意一点B ≠0.(D) ⎰≠⋅0l d B ,且环路上任意一点B =常量. [ B ]6、按玻尔的氢原子理论,电子在以质子为中心、半径为r 的圆形轨道上运动.如果把这样一个原子放在均匀的外磁场中,使电子轨道平面与垂直,如图所示,则在r 不变的情况下,电子轨道运动的角速度将:(A) 增加. (B) 减小.(C) 不变. (D) 改变方向. [ A ]7、如图所示,一根长为ab 的导线用软线悬挂在磁感强度为的匀强磁场中,电流由a 向b 流.此时悬线张力不为零(即安培力与重力不平衡).欲使ab 导线与软线连接处张力为零则必须:(A) 改变电流方向,并适当增大电流.(B) 不改变电流方向,而适当增大电流.(C) 改变磁场方向,并适当增大磁感强度的大小. (D) 不改变磁场方向,适当减小磁感强度的大小. [ B ]8、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ B ]9、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率μr 为(真空磁导率μ0 =4π×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102(C) 1.99×102 (D) 63.3 [ B ]10、半径为a 的圆线圈置于磁感强度为的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与的夹角α =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关.(B) 与线圈面积成正比,与时间成正比.(C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关. [ A ]11、如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a –U c 为(A) =0,221l B U U b a ω=-. (B) =0,221l B U U b a ω-=-. (C) =2l B ω,221l B U U b a ω=- (D) =2l B ω,221l B U U b a ω-=-. [ B ]12、有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为μ1和μ2.设r 1∶r 2=1∶2,μ1∶μ2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1.(B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1.(C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.(D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. [ C ]13、用导线围成的回路(两个以O 点为心半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过O 点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图所示.如磁场方向垂直图面向里,其大小随时间减小,则(A)→(D)各图中哪个图上正确表示了感应电流的流向?[ B ]二、填空题 14、如图,一个均匀磁场B 只存在于垂直于图面的P 平面右侧,B 的方向垂直于图面向里.一质量为m 、电荷为q 的粒子以速度射入磁场.在图面内与界面P 成某一角度.那么粒子在从磁场中射出前是做半径为______________的圆周运动.如果q > 0时,粒子在磁场中的路径与边界围成的平面区域的面积为S ,那么q < 0时,其路径与边界围成的平面区域的面积是_________________.答案:)(qB mv15、若在磁感强度B =0.0200T 的均匀磁场中,一电子沿着半径R = 1.00 cm 的圆周运动,则该电子的动能E K =________________________eV .(e =1.6 ×10-19 C, m e = 9.11×10-31 kg)答案: 3.51×103参考解: mR B q mv E K 2212222== =5.62×10-16 J=3.51×103 eV16、氢原子中电子质量m ,电荷e ,它沿某一圆轨道绕原子核运动,其等效圆电流的磁矩大小p m 与电子轨道运动的动量矩大小L 之比=Lp m ________________. 答案:me 217、载有恒定电流I 的长直导线旁有一半圆环导线cd ,半圆环半径为b ,环面与直导线垂直,且半圆环两端点连线的延长线与直导线相交,如图.当半圆环以速度沿平行于直导线的方向平移时,半圆环上的感应电动势的大小是____________________.答案:ba b a Iv -+ln 20πμ 18、如图所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由下落,则t 秒末导线两端的电势差=-N M U U ______________________.答案:al a Igt +-ln 20πμ 19、位于空气中的长为l ,横截面半径为a ,用N匝导线绕成的直螺线管,当符 合________和____________________的条件时,其自感系数可表成V I N L 20)/(μ=,其中V 是螺线管的体积.20、一线圈中通过的电流I 随时间t 变化的曲线如图所示.试定性画出自感电动势 L 随时间变化的曲线.(以I 的正向作为 的正向)答案:21、真空中两条相距2a 的平行长直导线,通以方向相同,大小相等的电流I ,O 、P 两点与两导线在同一平面内,与导线的距离如图所示,则O 点的磁场能量密度w m o =___________,P 点的磁场能量密度w mr =__________________.答案: 022、一平行板空气电容器的两极板都是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流为 ________________________.答案:dt dE R /20πε三、计算题23、如图所示,一无限长直导线通有电流I =10 A ,在一处折成夹角θ =60°的折线,求角平分线上与导线的垂直距离均为r =0.1 cm 的P 点处的磁感强度.(μ0 =4π×10-7 H ·m -1)解:P 处的可以看作是两载流直导线所产生的,与的方向相同.)]60sin(90[sin 4)]90sin(60[sin 400 --+--=rI r I πμπμ ]90sin 60[sin 420 +=rI πμ=3.73×10-3 T 方向垂直纸面向上.24、一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m /A ,铜的相对磁导率μr ≈1)解:在距离导线中心轴线为x 与dx x +处,作一个单位长窄条,其面积为dx dS ⋅=1.窄条处的磁感强度所以通过d S 的磁通量为 dx R Ix BdS d r 202πμμ==Φ 通过1m 长的一段S 平面的磁通量为Wb I dx R Ix r R r 600201042-===Φ⎰πμμπμμ 25、 一通有电流I 1 (方向如图)的长直导线,旁边有一个与它共面通有电流I 2 (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23 (如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为方向向右,从x = a 到x = 2a 磁场所作的功为26、螺绕环中心周长l = 10 cm ,环上均匀密绕线圈N = 200匝,线圈中通有电流I = 0.1 A .管内充满相对磁导率μr = 4200的磁介质.求管内磁场强度和磁感强度的大小.解: 200===l NI nI H A/mH H B r μμμ0===1.06 T27、如图所示,有一矩形回路,边长分别为a 和b ,它在xy 平面内以匀速沿x 轴方向移动,空间磁场的磁感强度与回路平面垂直,且为位置的x 坐标和时间t 的函数,即kx t B t x B sin sin ),(0ω =,其中0B ,ω,k 均为已知常数.设在t =0时,回路在x =0处.求回路中感应电动势对时间的关系.解:选沿回路顺时针方向为电动势正方向,电动势是由动生电动势 1和感生电动势 2组成的.设回路在x 位置:∴ kkx a x k t bB cos )(cos cos 02-+=ωωε 设总感应电动势为 ,且 x =v t ,则有∴。

大学电磁学测试题及答案

大学电磁学测试题及答案

大学电磁学测试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是麦克斯韦方程组中描述磁场变化产生电场的方程?A. ∇·E = ρ/ε₀B. ∇×E = -∂B/∂tC. ∇·B = 0D. ∇×B = μ₀J + ε₀μ₀∂E/∂t答案:B2. 在真空中,电磁波的传播速度是多少?A. 2.998×10^8 m/sB. 3.0×10^8 m/sC. 3.3×10^8 m/sD. 3.0×10^5 km/s答案:B3. 以下哪个物理量是标量?A. 电场强度B. 磁场强度C. 电荷D. 电流答案:C4. 根据洛伦兹力公式,当一个带电粒子垂直于磁场方向运动时,它受到的力的方向是?A. 与磁场方向相同B. 与磁场方向相反C. 与磁场方向垂直D. 与带电粒子运动方向相同答案:C5. 以下哪种情况会导致电磁波的偏振?A. 电磁波在真空中传播B. 电磁波在介质中传播C. 电磁波通过偏振片D. 电磁波通过非均匀介质答案:C6. 电磁感应定律表明,当磁场变化时,会在导体中产生什么?A. 电流B. 电压C. 电阻D. 电场答案:B7. 根据法拉第电磁感应定律,感应电动势与以下哪个因素成正比?A. 磁场强度B. 磁通量的变化率C. 导体长度D. 导体电阻答案:B8. 以下哪个选项不是电磁波的特性?A. 传播速度B. 波长C. 频率D. 质量答案:D9. 电磁波的波速、波长和频率之间的关系是什么?A. v = λfB. v = 1/(λf)C. v = λ/fD. v = f/λ答案:A10. 以下哪种介质对电磁波的传播速度影响最大?A. 真空B. 空气C. 水D. 玻璃答案:D二、填空题(每题2分,共20分)1. 电磁波的传播不需要______。

答案:介质2. 根据麦克斯韦方程组,电场的散度等于电荷密度除以______。

答案:真空电容率3. 电磁波的波长、频率和波速之间的关系可以用公式______表示。

(完整word版)(电磁学)试题单项选择题

(完整word版)(电磁学)试题单项选择题

注:共120分钟,总分100分 。

一、单项选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1、两电容器的电容之比为C 1:C 2 =1:2,把它们串联后接到电源上充电,则其静电能之比W 1:W 2 =( B )A . 1:2B . 2:1C . 1:1D . 不确定C Q CU W 22122==CU Q =并联呢?2、如图所示,一半径为R 的均匀带电圆环, 电荷总量为q ,则在轴线上离环中心O 为x 处的场强E 为 ( A )A . ;)(423220R x ixq +πεB . ;)(4220R x i xq +πεC . ;)(423220R x iq +πεD . .)(4220R x iq +πε3、边长为a 的正方体中心处放置一电量为Q 的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为( B )A.aQ04πε B.a Q02πε C. a Q0πεD. a Q022πεrQ U 04πε=4、一带电体可作为点电荷处理的条件是( C ) A.电荷必须呈球形分布 B.带电体的线度很小C.带电体的线度与其它有关长度相比可忽略不计D.电量很小5、当一个带电导体达到静电平衡时( D ) A.表面上电荷密度较大处电势较高 B.表面曲率较大处电势较高C.导体内部的电势比导体表面的电势高D.导体内任一点与其表面上任一点的电势差等于零 *6、有两块面积均为S 的金属板,间距为d (d 与板的大小比起来为很少),其中一块板带电荷q ,另一块板带电荷2q ,则两板间的电位差为 ( C )A . ;230εs qdB .;0εs qdC . ;20εs qd D . .20εs qd(无穷大平面:02εσ=E ) 一块板带电荷q :S q=1σ 另一块板带电荷2q :S q 22=σ 两板间的电场:010222εσεσ-=E两板间的电位差:Ed U =7、将通有电流I 的导线弯成如图所示的形状,半径为b 的圆弧对应的圆心角为 2π,则O 点的磁感应强度的大小为 ( D )A .);11(20b a I +μB . );11(40b a I +μC . );11(430b a I +μD . ).13(80b a I +μ圆弧的磁感应强度的大小:πθμ220∙R Iθ:圆弧对应的圆心角8、当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心处产生的电场强度E 和电势U 将 ( C ) A.E 不变,U 不变 B. E 不变,U 改变C. E 改变,U 不变D. E 改变,U 也改变9、均匀磁场的磁感强度B垂直于半径为r 的圆面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力学电磁学测试题
物理B自测卷
2012-2013 学年第二学期课号
课程名称大学物理B (闭卷)适用班级(或年级、专业)
考试时间 120 分钟班级学号姓名
一、单选题(每题3分,共21分)
1、研究以下哪种运动时最适合用角度来描述物体的位置()
A、天空中风筝的盘旋运动;
B、游乐场中摩天轮的转动;
C、马拉松比赛中参赛选手的运动;
D、屋檐下雨滴的运动。

2、表演高空走钢丝的人常常手执沉重的长杆,其主要目的是为了:()
A、增大难度;
B、增大转动惯量;
C、增大力矩;
D、缓解紧张情绪。

3、假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的()
A、角动量守恒,动能守恒;
B、角动量守恒,机械能守恒;
C 、角动量不守恒,机械能守恒;
D 、角动量不守恒,动量也不守恒。

E 、角动量守恒,动量也守恒。

4、两列波叠加时能产生干涉现象的条件是:( )
(1)振动方向相同; (2)运动方向相同; (3)振动相位相同; (4)振动频率相同; (5)相位差恒定; (6)振幅相同。

A 、(2)(4)(5); B 、(1)(3)(6); C 、(3)(4)(5); D 、(1)(4)(5)。

5、下列说法正确的是:( )
A 、闭合曲面的电通量为零时,曲面上各点的电场强度必定为零;
B 、闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零;
C 、闭合曲面上各点电场强度都为零时,曲面内电荷电荷的代数和必定为零;
D 、闭合曲面上各点电场强度都为零时,曲面内一定没有电荷。

6、如图,将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感出正电荷,右端感应出负电荷。

若将导体N 的左端接地,则( )。

A 、N 上的负电荷入地; B 、N 上的正电荷入地; C 、N 上的所有电荷入地;
第6题图
D 、N 上的所有感应电荷入地。

7、在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示。

B 的大小以速率/dB dt 变化,有两根导线放在磁场的两个不同位置ab 和cd ,那么这两根金属棒中的感应电动势的大小关系为:( )。

A 、0ab cd εε=≠;
B 、ab cd εε>;
C 、ab cd εε<;
D 、0ab cd εε==。

二、 判断题(每题2分,共20分)
8、只有在惯性系中牛顿定律才可能成立。

( )
9、合外力矩就是合外力的力矩。

( )
10、不论物体是平动还是转动,其惯性的大小均可用质量来衡量。

( )
11、旋转矢量总是逆时针旋转的。

( )
12、波动方程cos[()]x
y A t u
ωφ=-+中的u 表示质点振动的速度。

( )
13、当一列波由波疏介质向波密介质入射时,反射的瞬间会出现“半波损失”的现象。

( )
14、电势等于零的区域,场强处处相等。

( )。

15、洛伦兹力有的时候也可以做功。

( )
第7题图
16、沿着电场线的方向电势一定降低。

()
17、位移电流服从传导电流遵循的所有定律。

()
三、填空题(共15分)
18、已知质点的运动方程为:2
=+-,则该质点的运动轨迹方程为:
r ti t j
2(2)。

(3分)
19、角动量守恒定律成立的条件是:。

(3分)
20、当波源逐渐远离观察者时,观察者接收到的频率
(填大于、小于或等于)波源发出的频率。

(3 Array分)
21、若载流导线的分布如图所示,则磁场沿闭合曲
线L的积分等于:;(3分)
22、当导体做切割磁感线运动时,产生感应电动势的非静电力是
力。

(3分)
四、计算题(共44分)
23、(10分)
β=(SI)的角加速度转动。

求运动方程。

飞轮从静止开始以0.5t
24、(8分)
cm
简谐波以速度20/u m s =沿x 轴正方向传播,坐标原点处质点振动的旋转矢量图如图所示。

求10x m =处质点的振动方程。

25、(8分)
用高斯定理求真空中半径为R 的无限长均匀带电圆柱体内部各点的场强。

已知圆柱体单位长度带电量为λ。

26、(10分)
如图所示,求以下几种载流导线在O 点的磁感强度。

27、(8分)
如图所示,半径为r 的小圆环,置于半径为R 的大圆环中心,二者在同一平面内,且r <<R .在大环中通有正弦电流0sin I I t ω=,其中ω、0I 为常数,t
为时间,求任一时
o
R
(1)
(2)
第26题
I
第27题
刻小线环中感应电动势。

相关文档
最新文档