导数概念及其几何意义
高考复习-导数的概念及几何意义
导数的概念及几何意义知识集结知识元导数及其几何意义知识讲解1.导数及其几何意义【知识点的知识】1、导数的定义如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f (x)的导函数,简称导数,记为f′(x);如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f′(x)为区间[a,b]上的导函数,简称导数.2、导数的几何意义函数f(x)在x=x0处的导数就是切线的斜率k.例如:函数f(x)在x0处的导数的几何意义:k切线=f′(x0)=.【典型例题分析】题型一:根据切线方程求斜率典例1:已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.解:设切点的横坐标为(x0,y0)∵曲线的一条切线的斜率为,∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3故选A.题型二:求切线方程典例2:已知函数其图象在点(1,f(1))处的切线方程为y=2x+1,则它在点(﹣3,f(﹣3))处的切线方程为()A.y=﹣2x﹣3 B.y=﹣2x+3 C.y=2x﹣3 D.y=2x+3解:∵图象在点(1,f(1))处的切线方程为y=2x+1∴f(1)=2+1=3∵f(﹣3)=f(3﹣2)=f(1)=3∴(﹣3,f(﹣3))即为(﹣3,3)∴在点(﹣3,f(﹣3))处的切线过(﹣3,3)将(﹣3,3)代入选项通过排除法得到点(﹣3,3)只满足A故选A.【解题方法点拨】(1)利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y﹣y0=f′(x0)(x﹣x0).(2)若函数在x=x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x=x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y=f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.(3)注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,(4)显然f′(x0)>0,切线与x轴正向的夹角为锐角;f′(x0)<0,切线与x轴正向的夹角为钝角;f(x0)=0,切线与x轴平行;f′(x0)不存在,切线与y轴平行.例题精讲导数及其几何意义例1.'已知函数,其中a>0.(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,证明:-3<f(x1)+f(x2)<-2.'例2.'求下列函数的导数(1)y=2x3-3x2-4;(2)y=xlnx;(3).'例3.'已知函数f(x)=ax3-x2(a>0),x∈[0,+∞).(1)若a=1,求函数f(x)在[0,1]上的最值;(2)若函数y=f'(x)的递减区间为A,试探究函数y=f(x)在区间A上的单调性.'导数的计算知识讲解1.导数的运算【知识点的知识】1、基本函数的导函数①C′=0(C为常数)②(x n)′=nx n﹣1(n∈R)③(sin x)′=cos x④(cos x)′=﹣sin x⑤(e x)′=e x⑥(a x)′=(a x)*lna(a>0且a≠1)⑦[log a x)]′=*(log a e)=(a>0且a≠1)⑧[lnx]′=.2、和差积商的导数①[f(x)+g(x)]′=f′(x)+g′(x)②[f(x)﹣g(x)]′=f′(x)﹣g′(x)③[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)④[]′=.3、复合函数的导数设y=u(t),t=v(x),则y′(x)=u′(t)v′(x)=u′[v(x)]v′(x)【解题方法点拨】1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.例题精讲导数的计算例1.已知函数f(x)=2lnx+x,则f'(1)的值为___.例2.已知函数f(x)的导函数为f′(x),且满足f(x)=e x f′(1)+3lnx,则f′(1)=___.例3.函数f(x)=sin x+e x(e为自然对数的底数),则f′(π)的值为______。
导数的概念及几何意义
注意:(1)函数在一点处的导数,就是在该点的函数改变量与 自变量的改变量的比值的极限,它是一个数值,不是变数. (2)Δx是自变量x在x0处的改变量,Δx≠0,当Δx>0时,Δx→0表 示x0+Δx从x0右边趋近于x0,反之,当Δx<0时,Δx→0表示x0 +Δx从x0左边趋近于x0,Δy是相应函数的改变量,Δy可正、可 负,也可以为0.
2
规范解答
求过某点的曲线的切线方程
(本题满分12分)已知曲线f(x)=2x3-3x,过点M(0,32) 作曲线f(x)的切线,求切线的方程.
[解 ] 经检验知点 M(0,32)不在曲线上, 1 1 分 设切点坐标为 N(x0,2x3 0- 3x0), 3 3 Δy 2 x0+ Δx - 3x0+ Δx- 2x0+ 3x0 = Δx Δx 2 2 3 3 2x3 + 6 x Δ x + 6 x Δ x + 2 Δ x - 3 x - 3Δ x - 2 x 0 0 0 0 0 + 3x0 = Δx
[错因与防范] 本题易错选 D.错因是忽视了分子与分母相应的 符号的一致性,在利用导数的定义求函数在某一点的导数时, Δy 中 Δx 是分子中被减数的自变量减去减数的自变量的差,要 Δx 深刻理解以防出错.
4.设函数 f(x)在点 x0 处可导,且 f′(x0)已知,求下列各式的 极限值. f x0-Δx- fx0 (1)lim ; Δx → 0 Δx f x0+h-fx0- h (2)lim . h→ 0 2h f x0-Δx- fx0 解:(1)lim Δx → 0 Δx f x0-f x0-Δx =- lim =-f′(x0). Δx → 0 Δx f x0+ h-fx0-h (2)lim =f′(x0). h→ 0 2h
导数定义及其几何意义
第9讲 导数定义及其几何意义【知识导图】知识点1 导数及导数运算 1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx =lim Δx →000()()f x x f x x+∆−∆,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|0x x =,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →000()()f x x f x x+∆−∆. (2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间(a ,b )内的导函数.记作f ′(x )或y ′. 2.基本初等函数的导数公式3.导数的运算法则 若f ′(x ),g ′(x )存在,则有(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).例题1.1 求下列函数的导数:(1)y =ln x +1x ;(2)f (x )=sin x2⎝⎛⎭⎫1-2cos 2x 4;(3)y =3x e x -2x +e. 答案 (1) y ′=1x -1x 2,(2) f ′(x )=-12cos x ,(3) y ′=(ln 3+1)·(3e)x -2x ln 2解析 (1)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (2)因为f (x )=sin x 2⎝⎛⎭⎫-cos x 2=-12sin x , 所以f ′(x )=⎝⎛⎭⎫-12sin x ′=-12(sin x )′=-12cos x . (3)y ′=(3x e x )′-(2x )′+e′=(3x )′e x +3x (e x )′-(2x )′=3x e x ln 3+3x e x -2x ln 2=(ln 3+1)·(3e)x -2x ln 2.例题1.2设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.答案 1解析 由f ′(x )=e x (x +a )-e x (x +a )2,可得f ′(1)=e a (1+a )2=e 4,即a (1+a )2=14,解得a =1.例题1.3 已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f (1)=________. 答案 -234解析 因为f (x )=x 2+3xf ′(2)+ln x ,∴f ′(x )=2x +3f ′(2)+1x.令x =2,得f ′(2)=4+3f ′(2)+12,则f ′(2)=-94.∴f (1)=1+3×1×⎝⎛⎭⎫-94+0=-234.知识点2 导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).例题2.1 (1)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.(2)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.答案 (1) 3x -y =0,(2) 2x -y =0解析 (1)y ′=3(2x +1)e x +3(x 2+x )e x =3e x (x 2+3x +1),所以曲线在点(0,0)处的切线的斜率k =e 0×3=3,所以所求切线方程为3x -y =0.(2)设切点坐标为(x 0,y 0),因为y =ln x +x +1,所以y ′=1x+1,所以切线的斜率为1x 0+1=2,解得x 0=1.所以y 0=ln 1+1+1=2,即切点坐标为(1,2),所以切线方程为y -2=2(x -1),即2x -y =0.例题2.2 在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是_______,此时切线方程为_______.答案 (e ,1), x -e y =0解析 设A (m ,n ),则曲线y =ln x 在点A 处的切线方程为y -n =1m(x -m ).又切线过点(-e ,-1),所以有n +1=1m(m +e).再由n =ln m ,解得m =e ,n =1.故点A 的坐标为(e ,1),切线方程为x -e y =0.例题2.3 已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=________.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题意可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 例题2.4 已知函数f (x )=a e x (a >0)与g (x )=2x 2-m (m >0)的图象在第一象限有公共点,且在该点处的切线相同,当实数m 变化时,实数a 的取值范围为( ) A.⎝⎛⎭⎫4e 2,+∞B.⎝⎛⎭⎫8e 2,+∞C.⎝⎛⎭⎫0,4e 2D.⎝⎛⎭⎫0,8e 2 答案 D解析 设在第一象限的切点为A (x 0,y 0),所以⎩⎨⎧a e x 0=2x 20-m ,a e x 0=4x 0,整理得⎩⎨⎧4x 0=2x 20-m ,x 0>0,m >0,由m =2x 20-4x 0>0和x 0>0,解得x 0>2.由上可知a =4x 0e x 0,令h (x )=4xe x ,x >2,则h ′(x )=4(1-x )e x.因为x >2,所以h ′(x )=4(1-x )e x<0,h (x )=4xe x 在(2,+∞)上单调递减, 所以0<h (x )<8e2,即a ∈⎝⎛⎭⎫0,8e 2.。
导数的概念及其几何意义
1、函数的概念:设AB 、是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数(f x )和它对应,那么就称:fA B →为从集合A 到集合B 的一个函数.记作:(,y f xx A =∈).其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}(f xx A ∈)}叫做函数的值域.2、判断函数的单调性有哪几种方法:定义法、图象法、复合函数的单调性结论:“同增异减”等.一、导数的概念1.函数的平均变化率:一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ∆=-,10y y y ∆=-10()()f x f x =-00()()f x x f x =+∆-,则当0x ∆≠时,商00()()f x x f x yx x+∆-∆=∆∆称作函数()y f x =在区间00[,]x x x +∆(或00[,]x x x +∆)的平均变化率.2、函数的瞬时变化率、函数的导数:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ∆时函数值相应的改变00()()y f x x f x ∆=+∆-,如果当x ∆趋近于0时,平均变化率00()()f x x f x y x x+∆-∆=∆∆趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ∆趋近于零时,00()()f x x f x x+∆-∆趋近于常数l ”可以用符号“→”记作:“当0x ∆→时,00()()f x x f x l x +∆-→∆”,或记作“000()()lim x f x x f x l x∆→+∆-=∆”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '.二、导数的几何意义:设函数()y f x =的图象如图,AB 为过点00(,())A x f x 与00(,())B x x f x x +∆+∆的一条割线.由此割线的斜率是00()()f x x f x y x x+∆-∆=∆∆,可知曲线割线的斜率就是函数的平均变化率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线过点A 的切线,即:000()()limx f x x f x x∆→+∆-=∆切线AD 的斜率.曲线()y f x =过点00(,())x f x 切线的斜率等于0()f x '.“当0x ∆→时,000()()()f x x f x f x x +∆-'→∆”或“0000()()lim ()x f x x f x f x x∆→+∆-'=∆”。
导数的概念及其意义、导数的运算
§3.1 导数的概念及其意义、导数的运算学习目标了解导数的概念、掌握基本初等函数的导数. 2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如f (ax +b ))的导数.知识梳理 1.导数的概念(1)函数y =f (x )在x =x 0处的导数记作f ′(x 0)或0'|x x y =.f ′(x 0)=lim Δx →0 ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)函数y =f (x )的导函数 f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx.2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln_a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x4.导数的运算法则若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); [cf (x )]′=cf ′(x ).5.复合函数的定义及其导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (3)f ′(x 0)=[f (x 0)]′.( × )(4)若f (x )=sin (-x ),则f ′(x )=cos (-x ).( × ) 教材改编题1.函数f (x )=e x +1x 在x =1处的切线方程为________.答案 y =(e -1)x +2 解析 f ′(x )=e x -1x 2,∴f ′(1)=e -1, 又f (1)=e +1,∴切点为(1,e +1),切线斜率k =f ′(1)=e -1, 即切线方程为y -(e +1)=(e -1)(x -1), 即y =(e -1)x +2.2.已知函数f (x )=x ln x +ax 2+2,若f ′(e)=0,则a =________. 答案 -1e解析 f ′(x )=1+ln x +2ax , ∴f ′(e)=2a e +2=0,∴a =-1e.3.若f (x )=ln(1-x )+e 1-x ,则f ′(x )=________. 答案1x -1-e 1-x题型一 导数的运算例1 (1)(多选)(2022·济南质检)下列求导运算正确的是( ) A.⎝⎛⎭⎫1ln x ′=-1x ln 2x B .(x 2e x )′=2x +e xC.⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-sin ⎝⎛⎭⎫2x -π3 D.⎝⎛⎭⎫x -1x ′=1+1x 2 答案 AD解析 ⎝⎛⎭⎫1ln x ′=-1ln 2x ·(ln x )′=-1x ln 2x , 故A 正确;(x 2e x )′=(x 2+2x )e x ,故B 错误;⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-2sin ⎝⎛⎭⎫2x -π3,故C 错误;⎝⎛⎭⎫x -1x ′=1+1x 2,故D 正确.(2)函数f (x )的导函数为f ′(x ),若f (x )=x 2+f ′⎝⎛⎭⎫π3sin x ,则f ⎝⎛⎭⎫π6=________. 答案 π236+2π3解析 f ′(x )=2x +f ′⎝⎛⎭⎫π3cos x , ∴f ′⎝⎛⎭⎫π3=2π3+12f ′⎝⎛⎭⎫π3, ∴f ′⎝⎛⎭⎫π3=4π3, ∴f ⎝⎛⎭⎫π6=π236+2π3.教师备选1.函数y =sin 2x -cos 2x 的导数y ′等于( )A .22cos ⎝⎛⎭⎫2x -π4B .cos 2x +sin xC .cos 2x -sin 2xD .22cos ⎝⎛⎭⎫2x +π4 答案 A解析 y ′=2cos 2x +2sin 2x =22cos ⎝⎛⎭⎫2x -π4. 2.(2022·济南模拟)已知函数f ′(x )=e x sin x +e x cos x ,则f (2 021)-f (0)等于( ) A .e 2 021cos 2 021 B .e 2 021sin 2 021 C.e2 D .e答案 B解析 因为f ′(x )=e x sin x +e x cos x , 所以f (x )=e x sin x +k (k 为常数), 所以f (2 021)-f (0)=e 2 021sin 2 021.思维升华 (1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解. (3)复合函数求导,应由外到内逐层求导,必要时要进行换元.跟踪训练1 (1)若函数f (x ),g (x )满足f (x )+xg (x )=x 2-1,且f (1)=1,则f ′(1)+g ′(1)等于( )A .1B .2C .3D .4 答案 C解析 当x =1时,f (1)+g (1)=0, ∵f (1)=1,得g (1)=-1,原式两边求导,得f ′(x )+g (x )+xg ′(x )=2x , 当x =1时,f ′(1)+g (1)+g ′(1)=2, 得f ′(1)+g ′(1)=2-g (1)=2-(-1)=3.(2)已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a =________. 答案 e 2解析 f ′(x )=12x -3·(2x -3)′+a e -x +ax ·(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.题型二 导数的几何意义 命题点1 求切线方程例2 (1)(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为__________.答案 5x -y +2=0 解析 y ′=⎝⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为__________. 答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2 求参数的值(范围)例3 (1)(2022·青岛模拟)直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于( )A .4B .3C .2D .1 答案 A解析 ∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵ f (x )=a ln x +b ,∴ f ′(x )=a x ,由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln 1+b =2,解得b =2,故2a +b =2+2=4.(2)(2022·广州模拟)过定点P (1,e)作曲线y =a e x (a >0)的切线,恰有2条,则实数a 的取值范围是________. 答案 (1,+∞)解析 由y ′=a e x ,若切点为(x 0,0e x a ), 则切线方程的斜率k =0'|x x y =0e x a >0,∴切线方程为y =0e x a (x -x 0+1), 又P (1,e)在切线上, ∴0e x a (2-x 0)=e ,即ea =0e x (2-x 0)有两个不同的解, 令φ(x )=e x (2-x ), ∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0; 当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴φ(x )max =φ(1)=e , 又x →-∞时,φ(x )→0; x →+∞时,φ(x )→-∞, ∴0<ea<e ,解得a >1,即实数a 的取值范围是(1,+∞). 教师备选1.已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)或(-1,3) D .(1,-3)答案 C解析 设切点P (x 0,y 0), f ′(x )=3x 2-1,又直线x +2y -1=0的斜率为-12,∴f ′(x 0)=3x 20-1=2,∴x 20=1, ∴x 0=±1,又切点P (x 0,y 0)在y =f (x )上, ∴y 0=x 30-x 0+3, ∴当x 0=1时,y 0=3;当x 0=-1时,y 0=3. ∴切点P 为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M 是曲线y =ln x +12x 2+(1-a )x 上的任一点,若曲线在M 点处的切线的倾斜角均是不小于π4的锐角,则实数a 的取值范围是( )A .[2,+∞)B .[4,+∞)C .(-∞,2]D .(-∞,4]答案 C解析 因为y =ln x +12x 2+(1-a )x ,所以y ′=1x +x +1-a ,因为曲线在M 点处的切线的倾斜角均是不小于π4的锐角,所以y ′≥tan π4=1对于任意的x >0恒成立,即1x +x +1-a ≥1对任意x >0恒成立, 所以x +1x ≥a ,又x +1x≥2,当且仅当x =1x ,即x =1时,等号成立,故a ≤2,所以a 的取值范围是(-∞,2].思维升华 (1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (2)注意区分“在点P 处的切线”与“过点P 处的切线”. 跟踪训练2 (1)(2022·南平模拟)若直线y =x +m 与曲线y =e x -2n相切,则( )A .m +n 为定值 B.12m +n 为定值 C .m +12n 为定值D .m +13n 为定值答案 B解析 设直线y =x +m 与曲线y =e x -2n切于点(x 0,02e x n -),因为y ′=e x-2n,所以02e x n -=1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m , 即12m +n =12. (2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是______. 答案 [2,+∞)解析 直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线, ∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0.又4x +1x≥24x ·1x=4, 当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). 题型三 两曲线的公切线例4 (1)(2022·邯郸模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( ) A .0 B .-1 C .3 D .-1或3 答案 D解析 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln 1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1,因为直线l 与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g (x )=x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.(2)(2022·韶关模拟)若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,则a 的取值范围为________. 答案 ⎣⎡⎭⎫e24,+∞ 解析 由y =ax 2(a >0),得y ′=2ax , 由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线, 设公切线与曲线C 1切于点(x 1,ax 21), 与曲线C 2切于点(x 2,2e x ),则2ax 1=222121e e ,x x ax x x -=-可得2x 2=x 1+2,∴a =1121e2x x +, 记f (x )=12e2x x +, 则f ′(x )=122e(2)4x x x+-, 当x ∈(0,2)时,f ′(x )<0,f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,f (x )单调递增. ∴当x =2时,f (x )min =e 24.∴a 的取值范围是⎣⎡⎭⎫e 24,+∞.延伸探究 在本例(2)中,把“存在公共切线”改为“存在两条公共切线”,则a 的取值范围为________. 答案 ⎝⎛⎭⎫e 24,+∞ 解析 由本例(2)知,∵两曲线C 1与C 2存在两条公共切线,∴a =1121e2x x +有两个不同的解. ∵函数f (x )=12e2x x+在(0,2)上单调递减, 在(2,+∞)上单调递增,且f (x )min =f (2)=e 24,又x →0时,f (x )→+∞, x →+∞时,f (x )→+∞, ∴a >e 24.教师备选1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于( )A .1B .2C .3D .3或-1 答案 D解析 设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x =1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切, 故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3. 2.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)等于( )A .-1B .-2C .1D .2 答案 B解析 已知曲线y =e x 在点(x 1,1e x )处的切线方程为 y -1e x =1e x (x -x 1),即1111e e e ,xxxy x x =-+曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由题意得1112121e ,e e 1ln ,x x x x x x ⎧=⎪⎨⎪-=-+⎩ 得x 2=11ex , 1e x -1e x x 1=-1+ln x 2=-1+11lnex =-1-x 1, 则1e x =x 1+1x 1-1.又x 2=11e x ,所以x 2=x 1-1x 1+1,所以x 2-1=x 1-1x 1+1-1=-2x 1+1,所以(x 1+1)(x 2-1)=-2.思维升华 公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3 (1)(2022·青岛模拟)已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为( ) A .2 B .5 C .1 D .0答案 C解析 根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0, 由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a , 由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a -1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a -1,解得a =1或a =-34(舍去),又由g (1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f (x )=-2x 2+m , 可得m =1.(2)已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为____________________. 答案 y =e x 或y =x +1解析 设直线l 与f (x )=e x 的切点为(x 1,y 1), 则y 1=1e x ,f ′(x )=e x , ∴f ′(x 1)=1e x , ∴切点为(x 1,1e x ), 切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1), 即y =1e x ·x -x 11e x +1e x ,①同理设直线l 与g (x )=ln x +2的切点为(x 2,y 2), ∴y 2=ln x 2+2, g ′(x )=1x ,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2), 切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1,②由题意知,①与②相同,∴111121221e e ,e e ln 1,x x x x x x x x -⎧=⎪⎨⎪-+==+⇒⎩③④ 把③代入④有111e e x x x -+=-x 1+1, 即(1-x 1)(1e x -1)=0, 解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ; 当x 1=0时,切线方程为y =x +1, 综上,直线l 的方程为y =e x 或y =x +1.课时精练1.(2022·营口模拟)下列函数的求导正确的是( ) A .(x -2)′=-2xB .(x cos x )′=cos x -x sin xC .(ln 10)′=110D .(e 2x )′=2e x 答案 B解析 (x -2)′=-2x -3,∴A 错; (x cos x )′=cos x -x sin x ,∴B 对; (ln 10)′=0,∴C 错; (e 2x )′=2e 2x ,∴D 错.2.(2022·黑龙江哈师大附中月考)曲线y =2cos x +sin x 在(π,-2)处的切线方程为( ) A .x -y +π-2=0 B .x -y -π+2=0 C .x +y +π-2=0 D .x +y -π+2=0答案 D解析 y ′=-2sin x +cos x ,当x =π时,k =-2sin π+cos π=-1,所以在点(π,-2)处的切线方程,由点斜式可得y +2=-1×(x -π),化简可得x +y -π+2=0.3.(2022·长治模拟)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 4.已知点A 是函数f (x )=x 2-ln x +2图象上的点,点B 是直线y =x 上的点,则|AB |的最小值为( ) A. 2 B .2 C.433 D.163答案 A解析 当与直线y =x 平行的直线与f (x )的图象相切时,切点到直线y =x 的距离为|AB |的最小值.f ′(x )=2x -1x =1,解得x =1或x =-12(舍去),又f (1)=3,所以切点C (1,3)到直线y =x 的距离即为|AB |的最小值,即|AB |min =|1-3|12+12= 2.5.设曲线f (x )=a e x +b 和曲线g (x )=cos πx2+c 在它们的公共点M (0,2)处有相同的切线,则b+c -a 的值为( ) A .0 B .π C .-2 D .3 答案 D解析 ∵f ′(x )=a e x ,g ′(x )=-π2sin πx2,∴f ′(0)=a ,g ′(0)=0,∴a =0,又M (0,2)为f (x )与g (x )的公共点,∴f (0)=b =2,g (0)=1+c =2,解得c =1, ∴b +c -a =2+1-0=3.6.(2022·邢台模拟)设点P 是函数f (x )=2e x -f ′(0)x +f ′(1)图象上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是( ) A.⎣⎡⎭⎫0,3π4 B.⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫3π4,π C.⎝⎛⎭⎫π2,3π4 D.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 答案 B解析 ∵f (x )=2e x -f ′(0)x +f ′(1), ∴f ′(x )=2e x -f ′(0),∴f ′(0)=2-f ′(0),f ′(0)=1, ∴f (x )=2e x -x +f ′(1), ∴f ′(x )=2e x -1>-1.∵点P 是曲线上的任意一点,点P 处切线的倾斜角为α, ∴tan α>-1. ∵α∈[0,π), ∴α∈⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫3π4,π. 7.(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .f ′(3)>f ′(2)B .f ′(3)<f ′(2)C .f (3)-f (2)>f ′(3)D .f (3)-f (2)<f ′(2) 答案 BCD解析 f ′(x 0)的几何意义是f (x )在x =x 0处的切线的斜率.由图知f ′(2)>f ′(3)>0, 故A 错误,B 正确. 设A (2,f (2)),B (3,f (3)), 则f (3)-f (2)=f (3)-f (2)3-2=k AB ,由图知f ′(3)<k AB <f ′(2),即f ′(3)<f (3)-f (2)<f ′(2),故C ,D 正确.8.(多选)(2022·重庆沙坪坝区模拟)若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=[f ′(x )]′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,3π4上是凸函数的是( ) A .f (x )=-x 3+3x +4 B .f (x )=ln x +2x C .f (x )=sin x +cos x D .f (x )=x e x 答案 ABC解析 对A ,f (x )=-x 3+3x +4, f ′(x )=-3x 2+3, f ″(x )=-6x ,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故A 为凸函数; 对B ,f (x )=ln x +2x ,f ′(x )=1x +2,f ″(x )=-1x2,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故B 为凸函数; 对C ,f (x )=sin x +cos x , f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝⎛⎭⎫x +π4, 当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故C 为凸函数; 对D ,f (x )=x e x ,f ′(x )=(x +1)e x , f ″(x )=(x +2)e x ,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )>0,故D 不是凸函数. 9.(2022·马鞍山模拟)若曲线f (x )=x cos x 在x =π处的切线与直线ax -y +1=0平行,则实数a =________. 答案 -1解析 因为f (x )=x cos x , 所以f ′(x )=cos x -x sin x , f ′(π)=cos π-π·sin π=-1,因为函数在x =π处的切线与直线ax -y +1=0平行,所以a =f ′(π)=-1.10.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a =________.答案 2解析 f ′(x )=-(ax -1)′(ax -1)2+e xcos x -e xsin x =-a(ax -1)2+e x cos x -e x sin x , ∴f ′(0)=-a +1=-1,则a =2.11.(2022·宁波镇海中学质检)我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=2e x,则f ′(x )=________,其在点(0,1)处的切线方程为________.答案 22e xx y =1 解析 ∵f (x )=2e x ,故f ′(x )=(x 2)′2e x =22e x x ,则f ′(0)=0.故曲线y =f (x )在点(0,1)处的切线方程为y =1.12.已知函数f (x )=x 3-ax 2+⎝⎛⎭⎫23a +1x (a ∈R ),若曲线y =f (x )存在两条垂直于y 轴的切线,则a 的取值范围为____________________. 答案 (-∞,-1)∪(3,+∞)解析 因为f (x )=x 3-ax 2+⎝⎛⎭⎫23a +1x (a ∈R ),所以f ′(x )=3x 2-2ax +23a +1,因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2-2ax +23a +1=0有两个不等的实根,则Δ=4a 2-12⎝⎛⎭⎫23a +1>0,即a 2-2a -3>0, 解得a >3或a <-1,所以a 的取值范围是(-∞,-1)∪(3,+∞).13.拉格朗日中值定理又称拉氏定理,是微积分学中的基本定理之一,它反映了函数在闭区间上的整体平均变化率与区间某点的局部变化率的关系,其具体内容如下:若f (x )在[a ,b ]上满足以下条件:①在[a ,b ]上图象连续,②在(a ,b )内导数存在,则在(a ,b )内至少存在一点c ,使得f (b )-f (a )=f ′(c )(b -a )(f ′(x )为f (x )的导函数).则函数f (x )=x e x -1在[0,1]上这样的c 点的个数为( ) A .1 B .2 C .3 D .4 答案 A解析 函数f (x )=x e x -1, 则f ′(x )=(x +1)e x -1, 由题意可知,存在点c ∈[0,1], 使得f ′(c )=f (1)-f (0)1-0=1,即(1+c )e c -1=1,所以e c -1=11+c ,c ∈[0,1],作出函数y =e c -1和y =11+c的图象,如图所示,由图象可知,函数y =e c-1和y =11+c的图象只有一个交点,所以e c -1=11+c ,c ∈[0,1]只有一个解,即函数f (x )=x e x -1在[0,1]上c 点的个数为1.14.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( ) A .e b <a B .e a <b C .0<a <e b D .0<b <e a答案 D解析 方法一 设切点(x 0,y 0),y 0>0, 则切线方程为y -b =0e x (x -a ),由⎩⎨⎧y 0-b =0e x (x 0-a ),y 0=0e x ,得0e x (1-x 0+a )=b ,则由题意知关于x 0的方程0e x (1-x 0+a )=b 有两个不同的解. 设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ), 由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增, 当x >a 时,f ′(x )<0,f (x )单调递减, 所以f (x )max =f (a )=e a (1-a +a )=e a , 当x <a 时,a -x >0,所以f (x )>0,当x →-∞时,f (x )→0, 当x →+∞时,f (x )→-∞,函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a .方法二 (用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线 ,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方, 得0<b <e a .15.若曲线y =14sin 2x +32cos 2x 在A (x 1,y 1),B (x 2,y 2)两点处的切线互相垂直,则|x 1-x 2|的最小值为( ) A.π3 B.π2 C.2π3 D .π 答案 B解析 ∵y =14sin 2x +32cos 2x=14sin 2x +32×1+cos 2x2 =12sin ⎝⎛⎭⎫2x +π3+34, ∴y ′=cos ⎝⎛⎭⎫2x +π3, ∴曲线的切线斜率在[-1,1]范围内, 又曲线在两点处的切线互相垂直,故在A (x 1,y 1),B (x 2,y 2)两点处的切线斜率必须一个是1,一个是-1.不妨设在A 点处切线的斜率为1, 则有2x 1+π3=2k 1π(k 1∈Z ),2x 2+π3=2k 2π+π(k 2∈Z ),则可得x 1-x 2=(k 1-k 2)π-π2=k π-π2(k ∈Z ),∴|x 1-x 2|min =π2.16.(2022·南昌模拟)已知曲线C 1:y =e x +m ,C 2:y =x 2,若恰好存在两条直线l 1,l 2与C 1,C 2都相切,则实数m 的取值范围是____________. 答案 (-∞,2ln 2-2)解析 由题意知,l 1,l 2的斜率存在,设直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,设l 1与C 1,C 2的切点坐标分别为(x 1,y 1),(x 2,y 2), 则⎩⎨⎧k 1=1e x m+=2x 2(k 1>0),k 1x 1+b 1=1e x m+,k 1x 2+b 1=x 22,可得⎩⎪⎨⎪⎧x 1=ln k 1-m ,x 2=k 12,k 1(x 2-x 1)=x 22-1ex m+,故k 1⎝⎛⎭⎫k 12-ln k 1+m =k 214-k 1, 整理得m =ln k 1-k 14-1,同理可得,当直线l 2:y =k 2x +b 2与C 1,C 2都相切时, 有m =ln k 2-k 24-1,综上所述,只需m =ln k -k4-1(k >0)有两解,令f (k )=ln k -k4-1,则f ′(k )=1k -14=4-k4k ,故当f ′(k )>0时,0<k <4, 当f ′(k )<0时,k >4,所以f (k )在(0,4)上单调递增,在(4,+∞)上单调递减, 故f (k )max =f (4)=ln 4-44-1=2ln 2-2,所以只需满足m <2ln 2-2即可.。
导数的概念及几何意义_基础
导数的概念及几何意义【要点梳理】要点一:导数的概念 1. 导数的概念设函数=()y f x ,当自变量x 从0x 变1x 时,函数值从()0f x 变到()1f x ,函数值关于x 的平均变化率为()()()()100010=f x f x f x x f x y x x x x-+∆-∆=∆-∆, 当1x 趋于0x ,即x ∆趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数=()y f x 在0x 点的导数,通常用符号()0'f x ‘表示,记作 ()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000limlim= 要点诠释:(1)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率.(2)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S 从时间1t 到2t 的平均变化率即为1t 到2t 这段时间的平均速度.(3)增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数.(4)0x ∆→时,Δy 在变化中都趋于0,但它们的比值却趋于一个确定的常数.即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近. (5)函数=()y f x 在0x 点的导数还可以用符号0'|x x y =表示. 要点二:导数的几何意义已知点00(,)P x y 是曲线=()y f x 上一定点,点00(,)Q x x y y +∆+∆是曲线=()y f x 上的动点,我们知道平均变化率yx∆∆表示割线PQ 的斜率.如图所示: ()0'f x ‘表示曲线=()y f x 在0x x =处的切线的斜率,即()0'=tan f x α‘(α为切线的倾斜角)当点Q 无限接近于点P ,即0x ∆→时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线.也就是:当0x ∆→时,割线PQ 斜率的极限,就是切线的斜率.即:0000()()limlim ()x x f x x f x yk f x x x∆→∆→+∆-∆'===∆∆.要点诠释:(1)曲线上一点切线的斜率值只与该点的位置有关.(2)关于切线有两种不同的说法,求法也不同,具体求法与步骤参考类型二:①曲线在点P 处的切线:点P 在曲线上,在点P 处作曲线的切线(P 是切点),此时数量唯一.如图1.②曲线经过点P 处的切线:点P 位置不确定(在曲线上或曲线外),过点P 作曲线上任意位置的切线(只要切线经过点P 即可),数量不唯一.如图2,无论点P 在曲线上还是曲线外, 过点P 都可以作两条直线1l 、2l 与曲线相切.(3)直线与曲线相切⎫直线和曲线有1个公共点;有别于直线和圆,如图,直线l 2与曲线C 有唯一公共点M ,但我们不能说直线l 2与曲线C 相切;而直线l 1尽管与曲线C 相切,却有不止一个公共点.这也是我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线叫做切线”的原因.要点三:导数的物理意义在物理学中,如图物体运动的规律是()=s s t ,那么该物体在时刻0t 的瞬时速度v 就是()=s s t 在0=t t 时的导数,即()0='v s t ;如果物体运动的速度随时间变化的规律是()v v t =,那么物体在时刻0t 的瞬时加速度a 就是()v v t =在0=t t 时的导数,即()0'a v t =.要点诠释:0'()f x 表示函数()f x 在0x 处的瞬时变化率,而在很多物理量中都是借助变化率来定义的.比如,瞬时角速度是角度()t θ对时间t 的变化率;瞬时电流是电量()Q t 对时间t 的变化率;瞬时功率是功()W t 对时间t 的变化率;瞬时电动势是磁通量()t Φ对时间t 的变化率.最常用的是瞬时速度与瞬时加速度. 【典型例题】类型一:导数定义的应用例1. 用导数的定义,求函数()y f x x==x =1处的导数. 【思路点拨】三步法求函数在某点处的导数值. 【解析】先求增量:(1)(1)11y f x f x∆=+∆-=-+∆===再求平均变化率:y x ∆=∆ 求极限,得导数:01'(1)lim2x y f x ∆→∆==-∆.【总结升华】利用定义求函数的导数值,有三步,即三步求导法,具体步骤如下: (1)求函数的增量:00()()y f x x f x ∆=+∆-; (2)求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; (3)求极限,得导数:00000()()'()lim lim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.举一反三:【变式1】已知函数()2=f x x x -+的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy,()'1=f - . 【解析】 ∵ )1()1(22x x y ∆+-+∆+--=∆+-,∴ 2(1)(1)23y x x x x x∆--+∆+-+∆+==-∆∆∆, ∴()'1=f -()00'(1)limlim 3=3x x yf x x ∆→∆→∆==-∆∆.【变式2】求函数 2()3f x x =在x =1处的导数.【解析】 ∵22(1)(1)3(1)363()y f x f x x x ∆=+∆-=+∆-=∆+∆,∴263()63y x x x x x∆∆+∆==+∆∆∆, 0lim(63)6x x ∆→+∆=,即(1)6f '=. ∴函数2()3f x x =在1x =处的导数为6 .【变式3】求函数()2f x x x =-+在1x =-附近的平均变化率,并求出在该点处的导数.【解析】∵2200()()(1)(1)23()y f x x f x x x x x ∆=+∆-=--+∆+-+∆-=∆-∆,∴23()3y x x x x x∆∆-∆==-∆∆∆, ∴00(1)limlim(3)3x x yf x x ∆→∆→∆'-==-∆=∆.例2. 已知函数()24f x x=,求()f x '. 【解析】先求增量:2222444(2)()()x x x y x x x x x x ∆+∆∆=-=-+∆+∆, 再求平均变化率:224(2)()y x x x x x x ∆+∆=-∆+∆. 求极限,得导数:23004(2)8'limlim ()x x y x x y x x x x x∆→∆→∆+∆==-=-∆++∆.【总结升华】求导数的步骤和求导数值的步骤一样,叫三步法求导.举一反三:【变式1】求函数y=在(0,)+∞内的导函数.【解析】∵y∆==,∴y x ∆==∆==∴321lim2x y x -∆→'===-.【变式2】已知()f x =,求'()f x ,'(2)f .【解析】∵y ∆=∴yx ∆=∆==∴'()limx f x y ∆→'==.当2x =时,1'(2)4f ==.例3. 若0'()2f x =,则000()()lim2k f x k f x k→--=________.【思路点拨】【解析】根据导数定义:0000[()]()'()limk f x k f x f x k→+--=-(这时增量x k ∆=-),所以000()()lim2k f x k f x k →--000[()]()1lim 2k f x k f x k →+--⎧⎫=-⋅⎨⎬-⎩⎭000[()]()1lim21221.k f x k f x k →+--=-⋅-=-⨯=-【思路点拨】(1)有一种错误的解法:根据导数的定义:0000()()'()limk f x k f x f x k→--=(这时增量x k ∆=),所以 000000()()()()11limlim 21222k k f x k f x f x k f x k k →→----==⨯=.(2)在导数的定义中,增量x ∆的形式是多种多样的,但不论x ∆选择哪种形式,y ∆也必须选择与之相对应的形式.利用函数()f x 在0x x =处可导的条件,可以将已给定的极限式恒等变形为导数定义的形式.概念是解决问题的重要依据,只有熟练掌握概念的本质属性,把握其内涵与外延,才能灵活地应用概念进行解题.举一反三:【变式1】函数)(x f 满足2)1('=f ,则当x 无限趋近于0时, (1)=-+xf x f 2)1()1( ;(2)=-+xf x f )1()21( .【答案】(1)00(1)(1)1(1)(1)1lim lim '(1)1222x x f x f f x f f x x →→+-+-===(2)00(12)(1)(12)(1)lim 2lim 2'(1)42x x f x f f x f f x x→→+-+-===【变式2】若0'()f x a = (1)求()()xx f x x f x ∆-∆-→∆000lim的值;(2)求000()()lim x f x x f x x x∆→+∆--∆∆的值.【答案】()()()()()()[]00000000000000000()()lim()()lim()()lim21lim 2lim 1()2'()22'()2x x x x x f x x f x x xf x x f x x f x x f x x xf x x f x xf x x f x x x x f x af x a∆→∆→∆→∆→∆→+∆--∆∆+∆--∆+∆--∆∆-∆-∆-∆-=-=-∆∆--∆=-==-==【变式3】设函数()f x 在点x 0处可导,则000()()lim2h f x h f x h h→+--=________.【答案】 原式0000()()()()lim2h f x h f x f x f x h h→+-+--=000000()()()()1lim lim 2h h f x h f x f x h f x h h →→+---⎡⎤=+⎢⎥-⎣⎦ 0000()()1'()lim 2h f x h f x f x h -→--⎡⎤=+⎢⎥-⎣⎦[]0001'()'()'()2f x f x f x =+=. 类型二:求曲线的切线方程例4.求曲线21y x =+在点()12P ,处的切线方程.【思路点拨】利用导数的几何意义,曲线在点P (1,2)处的切线的斜率等于函数21y x =+在1x =处的导数值,再利用直线的点斜式方程写出切线方程. 【解析】先求切线的斜率()'1f :()()22001+111lim lim x x x y x x∆→∆→⎡⎤∆++∆⎣⎦=-∆∆ ()0lim +2=2x x ∆→=∆,由条件可知()1=2f ,由点斜式可得,过点P 的切线方程为:22(1)y x -=-,即2y x =.【总结升华】求曲线()y f x =在0x x =处切线的步骤:(1)先求()0'f x ,即曲线()y f x =在))((00x f x P ,处切线的斜率. (2)再求()0f x ,则切线过点()()00x f x ,;(2)最后由点斜式写出直线方程:()000=()()y f x f x x x '--.特别的,如果()y f x =在点00(())x f x ,处的切线平行于y 轴(此时导数不存在)时,由切线定义知:切线方程为:0x x =. 举一反三:【变式】求曲线215y x x=++上一点2x =处的切线方程. 【答案】先求2'|x y =:∵22211(2)2+4222(2)x y x x x x x -∆⎛⎫∆=+∆+-=∆+∆+ ⎪+∆+∆⎝⎭,∴142(2)y x x x ∆-=+∆+∆+∆, ∴001115limlim(4)4=2(2)44x x y y x x x ∆→∆→∆-'==+∆+=-∆+∆.再求2|x y =:22119|=25=22x y =++.由点斜式得切线方程:()915--224y x =,即15480x y -+=. 【高清课堂:导数的几何意义 385147 例2】 例5.求曲线()3f x x =经过点(1,1)P 的切线方程.【思路点拨】本题要分点(1,1)P 是切点和(1,1)P 不是切点两类进行求解. 【解析】第一步:先求导函数.00()()limlimx x f x x f x xy y x ∆→∆→+∆-∆∆'==∆ ()()33322330222()lim3+3+=lim=lim 3+3+3=3x x x x x xxx xx x x x x x x x x x x ∆→∆→∆→+∆-∆-∆=+∆∆∆∆∆g g g第二步:验证点(1,1)P 是否在曲线上. 由于()11f =,所以P 在曲线上. 第三步:分类讨论. ①若点P 是切点,则切线的斜率为()'13f =,于是切线方程为13(1)y x -=-,即32y x =-; ②若点P 不是切点,设切点为()()3000,1x x x≠.则切线的斜率为()200'3f x x =,于是切线方程为:320003()y x x x x -=- . 由于切线经过点(1,1)P ,于是有3200013(1)x x x -=-,整理得:()()()()()()32322322200000000000023+1=22++1=221=21+11x x x x x x x x x x x x ()()2000=121x x x ()()200=12+1=0x x ,解得012x =-或01x =(舍去). 所以切线方程是131+(+)842y x =,即3144y x =+. 综上所述,所求切线方程为32y x =-或3144y x =+. 【思路点拨】求曲线()f x 经过点()00P x y ,的切线方程的一般步骤: (1)求导函数()'f x ;(2)验证点P 是否在曲线上:计算()0f x ,观察()00=f x y 是否成立; (3)分类讨论:①若()00=f x y ,则P 是切点,切线唯一,方程为()000=()()y f x f x x x '--: ②若()00f x y ≠,则P 不是切点,求切点:设切点坐标为()()a f a ,,则切线方程()=()()y f a f a x a '--,代入点()00P x y ,坐标,求出a 的值(注意0a x ≠),可得切线方程. 举一反三:【变式1】 已知函数3()3f x x x =-,过点(2,2)作函数图象的切线. 求切线方程. 【解析】先求导函数:20()lim33x yf x x x∆→∆'==-∆.再验证:3(2)232=2f =-⨯,所以点(2,2)在函数()f x 图象上.最后讨论:(1)当点(2,2)是切点时,切线的斜率为(2)9f '=,则切线方程为:9160x y --=.(2)当点(2,2)不是切点时,设切点坐标为3000(,3)x x x -.则切线的斜率为200()33f x x '=-(02x ≠),所以切线方程为()320000(3)=33()y x x x x x ----. 代入点(2,2)得:()3200002(3)=33(2)x x x x ----整理得:0432030=+-x x ⇒0)2)(1(200=-+x x ⇒10-=x ,此时切线方程为2=y .综上所述,所求的切线方程为9160x y --=或2y =.【变式2】已知曲线1y x=. (1)求曲线过点()10A ,的切线方程; (2)求满足斜率为13-的曲线的切线方程.【解析】()200()()11'=limlim =x x f x x f x y x x x x x∆→∆→+∆--=-∆+∆ (1)由于点A 不在曲线上,设切点坐标为1,a a ⎛⎫ ⎪⎝⎭, 则切线的斜率为21'|=x a y a =-,切线方程为211()y x a a a -=--, 将()10A ,代入,得12a =.所以所求的切线方程为44y x =+ .(2)令2113x -=-,解得x = 所以斜率为13-的切线的切点为⎭或⎛ ⎝⎭.所以所求的切线方程为133y x =-+或133y x =--. 【高清课堂:导数的几何意义 385147 例3】【变式3】设函数32()2f x x ax bx a =+++,2()32g x x x =-+(其中x ∈R ,,a b 为常数).已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l .求,a b 的值,并写出切线l 的方程.【答案】 0(2+)(2)'(2)lim x f x f f x∆→∆=∆ 3230(2)2(2)(2)(282)=lim x x a x b x a a b a x∆→+∆++∆++∆+-+++∆ 20lim 1286()128x a b x x a b ∆→⎡⎤=+++∆+∆=++⎣⎦ 0g(2+)g(2)g '(2)lim x x x ∆→∆=∆220(2)3(2)2(2322)=lim x x x x∆→+∆-+∆+--⨯+∆ 0lim(1)1x x ∆→=+∆= 由条件可知:(2)0f =且'(2)'(2)f g =⇒2,5a b =-=,所以切线l 的方程:2y x =-.类型三:导数的实际应用例6.蜥蜴的体温与阳光的照射有关,其关系为()120155T t t =++,其中()T t 为体温(单位:℃),t 为太阳落山后的时间(单位:min).计算()2T ',并解释它的实际意义.【思路点拨】【解析】()0(2)(2)'2lim t T t T T t∆→+∆=∆ ()0012012015152+57=lim 120=lim 77+120=49t t t tt ∆→∆→⎛⎫⎛⎫++ ⎪ ⎪∆+⎝⎭⎝⎭∆∆ ()()1202=C /min 49T '︒ 表示太阳落山后2分钟蜥蜴的体温以()120C /min 49︒ 的速度下降. 【总结升华】解释导学的实际意义要结合题目中变化的事物(指自变量),它反映事物变化的快慢.举一反三:【变式1】设一个物体的运动方程是:2021)(at t v t s +=,其中0v 是初速度(单位:m ),t 是时间(单位:s ).求:2s t =时的瞬时速度(函数s(t)的瞬时变化率). 【解析】00()()s t t s t s t t+∆-∆=∆∆ 220000000011[()()][]2212v t t a t t v t at tv at a t +∆++∆-+=∆=++∆ 2s t ∴=的瞬时速度是02v a +.【变式2】质点按规律()21s t at =+做直线运动(位移单位:m ,时间单位:s ).若质点在 2 s t =时的瞬时速度为8 m / s ,求常数a 的值.【答案】质点 2 s t =时的瞬时速度为()'28s =.∵()222(2)2(2)1214()s s t ―s a t ―a a t a t ∆=+∆=+∆+⨯=∆+∆-, ∴4s a a t t∆=+∆∆. ∴()0'2lim4t s s a t ∆→∆==∆, 所以48a =,即a =2.。
导数的概念和几何意义
导数的概念和几何意义导数是数学分析中的一个重要概念,广泛应用于各个学科领域中。
它不仅有着重要的理论意义,也具有丰富的几何意义。
首先,我们来了解导数的概念。
在数学上,导数可以理解为函数在其中一点上的变化率。
具体而言,设函数$y=f(x)$在其中一点$x_0$的邻近有定义,那么函数在此点的导数可以定义为:$$f'(x_0)=\lim_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$$其中,$\Delta x$ 表示自变量 $x$ 在 $x_0$ 处的增量。
这个极限值即为导数。
在几何意义上,导数可以理解为函数图像上其中一点切线的斜率。
具体而言,设函数$y=f(x)$在点$x_0$处的导数为$k$,那么在点$(x_0,f(x_0))$处的切线的斜率为$k$。
这意味着,切线的斜率描述了函数在该点的变化趋势。
如果导数为正,代表函数在该点上升;如果导数为负,代表函数在该点下降;如果导数为零,代表函数在该点取得极值。
以一个简单的例子来说明导数的几何意义。
考虑函数$y=x^2$,我们可以求得其在点$x_0$处的导数为$2x_0$。
这个导数可以看做是函数$y=x^2$在点$x_0$处的切线的斜率。
比如,在点$(1,1)$处,导数为$2$,那么切线的斜率为$2$。
我们可以绘制出函数曲线$y=x^2$,并在点$(1,1)$处绘制出斜率为$2$的切线。
通过这条切线,我们可以近似描述函数$y=x^2$在点$(1,1)$处的局部行为。
导数的几何意义还可以通过函数图像的凹凸性来解释。
如果函数在其中一区间上的导数始终为正(或始终为负),则函数在该区间上单调递增(或单调递减)。
如果函数在其中一区间上的导数变号,则函数在该区间上存在极值点。
此外,如果函数在其中一点的导数为$0$,则函数在该点可能存在极值点,或者函数在该点处具有水平切线。
另外,导数还可以用于判断函数的连续性。
导数的概念及其几何意义
O P
β
y=f(x) Q
Δy M x
Δx
斜 率!
16
请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着 点P逐渐转动的情况 . y
y=f(x) Q
割 线 T 切线
P
x
o
17
我们发现,当点Q沿着曲线无限接近点P即Δ x→0时,割线PQ 有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.
即物体在时刻t0=2(s)的瞬时速度等于20(m/s). 当时间间隔Δt 逐渐变小时,平均速度就越接 s 近t0=2(s) 时的瞬时速度v=20(m/s).
课前测练
5.已知物体运动的速度与时间的关系式v(t ) = t 2 + 2t + 2
4 Δt 则(1)在时间间隔[1,1 + Δt ] 内的平均加速度为_______;
1 x0 y . 1 x 0
例1:设f ( x) x 2 , 求f ' ( x), f ' (1), f ' (2)
思路:先根据导数的定义求f ' ( x), 再将自变量 的值代入求得导数值。 解:由导数的定义有
f ( x x) f ( x) ( x x) x f ' ( x)= lim lim x0 x0 x x x(2 x x) lim 2x x0 x
1.1.3导数的概念
回顾复习
1.平均速度近似反映了物体运动时的快慢程度,但要精 确地描述非匀速直线运动,就要知道物体在每一时刻运 动的快慢程度,要通过瞬时速度来反映. 设物体作直线运动的运动方程为s=s(t). 以 t0 为起 始时刻,物体在t时间内的平均速度为
数学知识点:导数的概念及其几何意义
数学知识点:导数的概念及其几何意义一般地,对于函数y =f(x),x1,x2是其定义域内不同的两点,那么函数的变化率可用式表示,我们把这个式子称为函数f(x)从x1到x2的平均变化率,习惯上用表示,即平均变化率上式中的值可正可负,但不为0.f(x)为常数函数时,瞬时速度:如果物体的运动规律是s=s(t),那么物体在时刻t的瞬时速度v就是物体在t到这段时间内,当时平均速度的极限,即若物体的运动方程为s=f(t),那么物体在任意时刻t的瞬时速度v(t)就是平均速度v(t,d)为当d趋于0时的极限.函数y=f(x)在x=x0处的导数的定义:一般地,函数y=f(x)在x=x0处的瞬时变化率是,我们称它为函数y=f(x)在x=x0处的导数,记作或,即。
导函数:如果函数y =f(x)在开区间(a,6)内的每一点都可导,则称在(a,b)内的值x为自变量,以x处的导数称为f(x为函数值的函数为fx)在(a,b)内的导函数,简称为f(x)在(a,b)内的导数,记作f′(x)或y′.即f′(x)=切线及导数的几何意义:(1)切线:PPn为曲线f(x)的割线,当点Pn(xn,f(xn))(n∈N)沿曲线f(x)趋近于点P(x0,f(x0))时,割线PPn趋近于确定的位置,这个确定的位置的直线PT称为点P 处的切线。
(2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=。
瞬时速度特别提醒:①瞬时速度实质是平均速度当时的极限值.②瞬时速度的计算必须先求出平均速度,再对平均速度取极限,函数y=f(x)在x=x0处的导数特别提醒:①当时,高考化学,比值的极限存在,则f(x)在点x0处可导;若的极限不存在,则f(x)在点x0处不可导或无导数.②自变量的增量可以为正,也可以为负,还可以时正时负,但.而函数的增量可正可负,也可以为0.③在点x=x0处的导数的定义可变形为:导函数的特点:①导数的定义可变形为:②可导的偶函数其导函数是奇函数,而可导的奇函数的导函数是偶函数,③可导的周期函数其导函数仍为周期函数,④并不是所有函数都有导函数.⑤导函数与原来的函数f(x)有相同的定义域(a,b),且导函数在x0处的函数值即为函数f(x)在点x0处的导数值.⑥区间一般指开区间,因为在其端点处不一定有增量(右端点无增量,左端点无减量).导数的几何意义(即切线的斜率与方程)特别提醒:①利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y-y0=f′(x0)(x- x0).②若函数在x= x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x= x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y =f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.③注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,④显然f′(x0)>0,切线与x轴正向的夹角为锐角;f′(x0)。
导数的概念及运算、几何意义
导数的概念及运算、几何意义1.导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或,即f′(x0)==.y′|x=x(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)·(x-x0).(3)函数f(x)的导函数称函数f′(x)=为f(x)的导函数.2.导数公式及运算法则(1)基本初等函数的导数公式(2)导数的运算法则①[f (x )±g (x )]′=)(x f '±g ′(x );②[f (x )·g (x )]′=)(x f 'g (x )+f (x )g ′(x ); ③])()(['x g x f =f ′(x )g (x )-f (x )g ′(x ) [g (x )]2(g (x )≠0). 特殊情况[c ·f (x )]′=c ·)(x f '.(3)复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1))(0x f '与[f (x 0)]′表示的意义相同.(×)(2))(0x f '是导函数)(x f '在x =x 0处的函数值.(√)(3)曲线的切线不一定与曲线只有一个公共点.(√) (4))3sin('π=cos π3.(×)(5)若(ln x )′=1x ,则)1('x =ln x .(×)(6)函数f (x )=sin(-x )的导数为f ′(x )=cos x .(×)(7)函数f (x )=,由于f ′(0)无意义,则说明f (x )=在x =0处无切线.(×)(8)与曲线只有一个公共点的直线一定是曲线的切线.(×)(9)若f (a )=-x 2+2ax +a 3,则f ′(a )=2x +3a 2.(√)(10)过点P 作y =f (x )的切线,且P 在y =f (x )上,则P 一定为切点.(×)考点一 导数的运算[例1] (1)函数y =(1-x ))1(x +,则y ′=________.解析:∵y =(1-x ))11(x +=1x -x =2121x x --,='y 21232121----x x答案:21232121----x x (2)函数y =ln x x ,则y ′=________.解析:y ′=)ln ('xx =(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. 答案:1-ln x x 2(3)y =ln(2x +5),则y ′=________.解析:设y =ln u ,u =2x +5,则y ′x =y ′u ·u ′x ,因此y ′=12x +5·(2x +5)′=22x +5. 答案:22x +5 (4)已知函数f (x )的导函数f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________.解析:f ′(x )=2f ′(1)+1x令x =1,得f ′(1)=2f ′(1)+1,∴f ′(1)=-1.答案:-1 [方法引航] (1)总原则:先化简解析式,再求导.(2)具体方法:①连乘积的形式:先展开化为多项式形式,再求导.②根式形式:先化为分数指数幂,再求导.③复杂分式:化为简单分式的和、差,再求导.(3)区分f ′(x )与f ′(x 0)f ′(x )表示导函数,f ′(x 0)是导函数值.1.若函数y =tan x ,则y ′=________.解析:y ′=)cos sin ('xx =(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x =1cos 2x . 答案:1cos 2x2.设f (x )=x ln x ,若)(0x f '=2,则x 0的值为( )A .e 2B .e C.ln 22 D .ln 2 解析:选B.由f (x )=x ln x 得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e.考点二 导数的几何意义[例2] (1)求曲线f (x )在点(2,f (2))处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程.解:∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0.[方法引航] 导数几何意义的应用,需注意以下两点:(1)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0;(2)注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f(x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.1.在本例中,若f (x )在P 点处的切线平行x 轴,求P 点坐标.解:∵f ′(x )=3x 2-8x +5,令3x 2-8x +5=0得x =1或x =53,∴f (1)=1-4+5-4=-2,f (53)=-5827,∴P (1,-2)或P )2758,35(-. 2.在本例中,若f (x )不变,求f (x )过点(1,-2)的切线方程.解:设过点P (1,-2)的直线与y =f (x )切于点M (x 0,y 0),∴其切线斜率k =f ′(x 0)=3x 20-8x 0+5,y 0=x 30-4x 20+5x 0-4,其切线方程为y -(x 30-4x 20+5x 0-4)=(3x 20-8x 0+5)(x -x 0)过点(1,-2),即-2-(x 30-4x 20+5x 0-4)=(3x 20-8x 0+5)(1-x 0),即(x 0-1)2(2x 0-3)=0∴x 0=1或x 0=32.∴切点为(1,-2)或)817,23(-,∴k 1=0或k 2=-14. ∴所求切线方程分别为y =-2.或y +178=-14)23(-x ,即y =-14x -74.[易错警示]借问“切点”何处有——求曲线的切线方程时切点易错[典例] (2017·浙江杭州模拟)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[正解] 设过点(1,0)的直线与曲线y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又点(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x-9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1,所以选A.[答案] A[易误] (1)审题不仔细,未对点(1,0)的位置进行判断,误认为(1,0)是切点;(2)当所给点不是切点时,无法与导数的几何意义联系.[警示] ①“曲线y =f (x )在P 点处的切线”与“曲线过P 点的切线”不同,前者P 为切点,后者P 不一定为切点.②此类题首先确定点是否为曲线的切点.当不是切点时.应先设出切点.[高考真题体验]1.(2016·高考全国丙卷)已知f (x )为偶函数,当x ≤0时,x e x f x -=--1)(,则曲线y =f (x )在点(1,2)处的切线方程是________.解析:当x >0时,-x <0,f (-x )=e x -1+x ,而f (-x )=f (x ),所以f (x )=e x -1+x (x >0),点(1,2)在曲线y =f (x )上,易知f ′(1)=2, 故曲线y =f (x )在点(1,2)处的切线方程是y -2=f ′(1)·(x -1),即y =2x .答案:y =2x2.(2015·高考课标卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:由题意可得f ′(x )=3ax 2+1,∴f ′(1)=3a +1,又f (1)=a +2,∴f (x )=ax 3+x +1的图象在点(1,f (1))处的切线方程为y -(a +2)=(3a +1)(x -1),又此切线过点(2,7),∴7-(a +2)=(3a +1)(2-1),解得a =1.答案:13.(2012·高考课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.解析:y ′=3ln x +1+x ·3x =3ln x +4,k =y ′|x =1=4,切线方程为y -1=4(x -1),即y =4x -3.答案:y =4x -34.(2016·高考天津卷)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则)0(f '的值为________.解析:∵f ′(x )=2e x +(2x +1)e x =(2x +3)·e x ,∴f ′(0)=3.答案:35.(2015·高考天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,)(x f '为f (x )的导函数.若)1(f '=3,则a 的值为________.解析:∵f ′(x )=a ln x +a ,∴f ′(1)=a ln 1+a =3,解得a =3.答案:36.(2016·高考山东卷)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3解析:选A.对于A ,y ′=cos x ,存在x 1,x 2,若cos x 1cos x 2=-1,如x 1=π,x 2=2π,可满足,对于B ,其导数为f ′(x )=1x ,f ′(x 1)·f ′(x 2)=1x 1x 2>0,故B 不满足;y =f (x )=e x 的导函数为f ′(x )=e x ,f ′(x 1)·f ′(x 2)=e x 1+x 2>0,故C 不满足;y =f (x )=x 3的导函数为f ′(x )=3x 2,f ′(x 1)·f ′(x 2)=9x 21x 22≥0,故D 不满足.故选A.课时规范训练A 组 基础演练1.若函数f (x )=ax 4+bx 2+c 满足2)1(='f ,则)1(-'f 等于( )A .-1B .-2C .2D .0解析:选B.f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且2)1(='f ,∴)1(-'f =-2.2.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0解析:选A.切线l 的斜率k =4,设y =x 4的切点的坐标为(x 0,y 0),则k =4x 30=4,∴x 0=1,∴切点为(1,1),即y -1=4(x -1),整理得l 的方程为4x -y -3=0.3.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为( ) A .2 B .ln 2+1 C .ln 2-1 D .ln 2解析:选C.∵y =ln x 的导数为y ′=1x ,∴1x =12,解得x =2,∴切点为(2,ln 2).将其代入直线y =12x +b ,得b =ln 2-1.4.曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( )A .(0,1)B .(1,-1)C .(1,3)D .(1,0)解析:选C.y ′=3x+1,令y ′=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3).5.直线y =kx +b 与曲线y =ax 2+2+ln x 相切于点P (1,4),则b 的值为( )A .3B .1C .-1D .-3解析:选C.由点P (1,4)在曲线上可得a ×12+2+ln 1=4,解得a =2,故y =2x 2+2+ln x ,所以y ′=4x +1x ,所以曲线在点P 处切线的斜率1|='=x y k =4×1+11=5.所以直线的方程为y =5x +b .由点P 在直线上得4=5×1+b ,解得b =-1,故选C.6.曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1解析:选C.y ′=e x -1+x e x -1=(x +1)e x -1,故曲线在点(1,1)处的切线斜率为2|1='==x y k7.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2解析:选C.依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,于是有f ′(0)=g ′(0),即-a sin 0=2×0+b ,b =0,m =f (0)=g (0),即m =a =1,因此a +b =1.8.在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是( )A .0B .1C .2D .3解析:选A.依题意得,y ′=3x 2-9,令0≤y '<1得3≤x 2<103,显然满足该不等式的整数x不存在,因此在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是0,选A.9.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选C.依题意,记g (x )=(x -a 1)(x -a 2)…(x -a 8),则f (x )=xg (x ),)(x f '=g (x )+xg ′(x ),f ′(0)=g (0)=a 1a 2…a 8=(a 1a 8)4=212,故选C.10.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=)(1x f ',f 3(x )=)(2x f ',…,f n +1(x )=)(x f n ',n ∈N *,则f 2 019(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选A.∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )是以4为周期的函数,∴f 2 019(x )=f 3(x )=-sin x -cos x ,故选A.B 组 能力突破1.已知函数f (x )在R 上满足f (2-x )=2x 2-7x +6,则曲线y =f (x )在(1,f (1))处的切线方程是( )A .y =2x -1B .y =xC .y =3x -2D .y =-2x +3解析:选C.法一:令x =1得f (1)=1,令2-x =t ,可得x =2-t ,代入f (2-x )=2x 2-7x +6得f (t )=2(2-t )2-7(2-t )+6,化简整理得f (t )=2t 2-t ,即f (x )=2x 2-x ,∴f ′(x )=4x -1,∴f ′(1)=3.∴所求切线方程为y -1=3(x -1),即y =3x -2.法二:令x =1得f (1)=1, 由f (2-x )=2x 2-7x +6,两边求导可得f ′(2-x )·(2-x )′=4x -7,令x =1可得-f ′(1)=-3,即f ′(1)=3.∴所求切线方程为y-1=3(x-1),即y=3x-2.2.已知函数f(x)=a sin x+bx3+4(a∈R,b∈R),)(xf'为f(x)的导函数,则f(2 017)+f(-2 017)+)2018(f'-)2018(-'f=()A.0 B.2 017 C.2 018 D.8解析:选D.设g(x)=a sin x+bx3,∴f(x)=g(x)+4,且g(-x)=-g(x),所以f(2 017)+f(-2 017)=g(2 017)+4+g(-2 017)+4=8,又因为f′(x)=a cos x+3bx2,所以f′(x)为R上的偶函数,则f′(2 018)-f′(-2 018)=0,所以f(2 017)+f(-2 017)+f′(2 018)-f′(-2 018)=8,故选D.3.已知函数y=f(x)及其导函数y=)(xf'的图象如图所示,则曲线y=f(x)在点P处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y=f(x)在点P处的切线的斜率k=f′(2)=1,又过点P(2,0),所以切线方程为x-y-2=0.答案:x-y-2=04.已知函数f(x)的导函数为)(xf',且满足f(x)=3x2+2x·)2(f',则)5(f'=________.解析:对f(x)=3x2+2x)2(f'求导,得f′(x)=6x+2)2(f'.令x=2,得)2(f'=-12.再令x=5,得f′(5)=6×5+2)2(f'=6.答案:65.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.解析:设e x=t,则x=ln t(t>0),∴f(t)=ln t+t,∴f′(t)=1t+1,∴f′(1)=2.答案:26.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析:∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x.∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,x+1x-a=0,∴a=x+1x≥2.答案:[2,+∞)。
导数的定义及几何意义
导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
在一个函数存在导数时,称这个函数可导或者可微分。
可导的函数一定连续。
不连续的函数一定不可导。
导数也叫导函数值。
又名微商,是微积分中的重要基础概念。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。
物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。
如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。
导数的几何意义:函数y=f(x) 在x=x0处的导数f′(x0),表示曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的概念及其几何意义
导数的概念及其几何意义
导数是微积分中一个重要的概念,它描述了函数在某一点的变化率。
导数的几何意义是指函数在一点的导数等于函数图形上对应点的切线斜率。
当函数在某一点取某个值时,函数在该点的切线方向和该点处的法线方向相同,而切线斜率就是法线斜率。
因此,导数的几何意义可以看作是函数在某一点处切线的斜率。
导数的概念来源于微积分中的极值问题。
我们可以使用导数来寻找函数的极值点,特别是寻找函数的零点和极值点。
在求解微积分问题时,导数也是一个常用的工具。
例如,在求解函数的最大值和最小值时,我们可以使用导数来找到函数的极值点,进而求解最大值和最小值。
此外,导数还可以用于求解曲线的最值问题,例如求曲线的最小值或最大值。
总结起来,导数是微积分中一个非常重要的概念,它描述了函数在某一点的变化率,具有广泛的应用。
在求解微积分问题时,我们应该熟练掌握导数的概念和应用,以便更好地解决问题。
导数的概念及几何意义
(1)求物体在时间区间[t0 , t0 t] 上所经过的路程 :
S S(t0 t) S(t0 ) ,
(2)求物体在时间区间[t0 , t0 t] 上的平均速度:
v S S(t0 t) S(t0 ) ,
t
t
(3)求 t0
时刻 的速度: v(t0 )
lim v
t 0
lim
t 0
S(t0
x0 点的导数,记作
f ( x0 ) ,或 y xx0
,
或 dy dx
x x0
,即
f ( x0 )
lim y x0 x
lim
x0
f (x0
x) x
f ( x0 )
lim f ( x) f ( x0 )
x x0
x x0
7
1.1 导数的概念与导数的几何意义
若极限 lim y 不存在,则称函数 f x0 x
f( x0 )
lim
x0
y x
lim x0
f ( x0 x) x
f ( x0 )
lim f ( x) f ( x0 ) ;
x x0
x x0
9
1.1 导数的概念与导数的几何意义
若极限 lim y 存在,则称此极限为 f ( x) 在 x0 x
点 x0 处的右导数,记为 f( x0 ) ,即
f (t) f ( x0 ) 。 t x0
(2)由导数定义可得, v(t0 ) s(t0 ) (导数的物理意义);
k f ( x0 ) (导数的几何意义);
8
1.1 导数的概念与导数的几何意义
(2)单侧导数
定义 2 若极限 lim y 存在,则称此极限为 f ( x) x0 x
3.1 导数的概念及几何意义、导数的运算
∴x2=-2x1,∴f
'(x2)=3 x22=12 x12.∴
f f
'(x1) = 1 .
'(x2 ) 4
(2)由题意,得f '(x)=2x.
设直线与曲线相切于点(x0,y0), 则所求切线的斜率k=2x0,
由题意知2x0= y0 0 = y0 ①.
x0 1 x0 1
林老师网络编辑整理
12
又y0= x02 ②,所以由①②解得x0=0或x0=-2, 所以k=0或k=-4, 所以所求切线方程为y=0或y=-4(x+1), 即y=0或4x+y+4=0. 答案 (1) 1 (2)y=0或4x+y+4=0
2
2
(4)y'
=
cos ex
x
'=(cos
x)
'ex cos (ex )2
x(ex
)'
=-
sin
x cos ex
x.
林老师网络编辑整理
9
栏目索引
栏目索引
方法二 求曲线y=f(x)的切线方程
1.求“在”曲线y=f(x)上一点P(x0,y0)处的切线方程,则点P(x0,y0)为切点,
'(x1)(x0 x1),
点A(x1,y1),代入方程y-y1=f '(x1)(x-x1),化简即得所求的切线方程.
林老师网络编辑整理
10
栏目索引
例2 (1)(2018江苏淮安高三期中)已知函数f(x)=x3.设曲线y=f(x)在点P(x1,
f(x1))处的切线与该曲线交于另一点Q(x2, f(x2)),记f '(x)为函数f(x)的导
导数的概念几何意义与运算
导数的概念几何意义与运算一、导数的概念导数是微积分的重要概念之一,是描述函数变化速度的衡量工具。
对于一条曲线上的任意一点,其导数值表示了该点处的切线斜率。
导数的定义为:若函数f(x)在点x0处有定义,那么函数在该点的导数为:f'(x0) = lim(h→0) [f(x0+h) - f(x0)] / h其中 lim 表示极限,h 表示的是 x 的增加量。
导数的概念可以推广到函数的各种高阶导数,分别表示函数变化的速率、加速度、变化的变化率等。
二、导数的几何意义1.切线斜率:导数可以看作是函数曲线在其中一点处切线的斜率。
特定点处的切线斜率表示了函数在该点的变化速度。
2.函数的增减性:若函数在其中一区间内的导数恒大于0,则函数在该区间上是递增的;若导数恒小于0,则函数在该区间上是递减的。
导数的正负性能够直观地反映函数的增减趋势。
3.极值点:若函数在其中一点的导数为0,那么这个点称为函数的极值点。
导数为0相当于切线水平,函数在这一点上由增转为减或由减转为增。
三、导数的运算法则1.常数乘法:对于常数k,(k*f(x))'=k*f'(x)。
2.求和与差:(f(x)±g(x))'=f'(x)±g'(x)。
3.乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
4.商法则:(f(x)/g(x))'=[f'(x)*g(x)-f(x)*g'(x)]/[g(x)]^25.复合函数求导:对于复合函数y=f(g(x)),若g(x)在点x处可导,而f在g(x)处可导,则y也在点x处可导,且y'=f'(g(x))*g'(x)。
四、应用举例1.速度和加速度:对于一个物体的位移函数s(t),其导数s'(t)表示在时间t的瞬时速度。
二次导数s''(t)则表示在时间t的瞬时加速度。
导数的概念及几何意义
导数的概念及几何意义一、知识与方法1、导数的概念:函数在处导数的定义:一般地,函数在处的瞬时变化率是_______,我们称它为函数在处的导数,记作或。
2、求在处的导数的步骤:(1)求函数的改变量;(2)求平均变化率;(3)取极限,得导数。
3、导数的几何意义:函数在点处的导数的几何意义,就是曲线在点处的切线的斜率,即曲线在点处的切线的斜率是,相应地切线的方程是。
特别提醒:(1)在求曲线的切线方程时,要注意区分所求切线是曲线上某点处的切线,还是过某点的切线:曲线上某点处的切线只有一条,而过某点的切线不一定只有一条,即使此点在曲线上也不一定只有一条;(2)在求过某一点的切线方程时,要首先判断此点是在曲线上,还是不在曲线上,只有当此点在曲线上时,此点处的切线的斜率才是。
二、练习题1.一物体的运动方程是,其中的单位是米,的单位是秒,那么物体在时的瞬时速度为__________。
2.已知曲线的一条切线的斜率为,则切点的横坐标为( )A .1B .2C .3D .43.32()32f x ax x =++,若,则的值等于( )A .B .C .D .3.曲线在点处的切线方程是____.4.设曲线在点(1,)处的切线与直线平行,则( )A .1B .C .D .5. 设曲线在点处的切线与直线垂直,则( )A .2B .C .D .6. 曲线在点处的切线的倾斜角为( )A .30°B .45°C .60°D .120°7. 已知函数的图象在点处的切线方程是,则8.已知是实数,函数。
若,求的值及曲线在点处的切线方程。
9. 已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 ( )A.21y x =-B.y x =C.32y x =-D.23y x =-+10. 设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.求函数的解析式。
导数的概念及导数的几何意义
导数的概念及导数的几何意义The final edition was revised on December 14th, 2020.导数的概念及导数的几何意义一.知识梳理1、导数的概念及意义求函数()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ∆=+∆-;(2)求平均变化率=∆∆xy ; (3)取极限,得导数y '= . 特别提醒:)(0/x f 的定义式并不唯一,=')(0x f 0lim→∆x x x f x x f ∆-∆+)()(00,也可以写成00000)()(lim ,)()(lim 0x x x f x f x x x f x f x x x --∆∆--→→∆等形式. 特别提醒:注意)(x f '与)(0x f '的区别与联系 曲线)(:x f y C =在点(x 0,y 0)处的导数的几何意义是)(x f 在该点处的切线的 ,即=k .切线方程为 . 物理意义:设物体运动规律是),(t s s =则 表示物体在t =t 0时刻的瞬时速度;设)(t v v =是速度函数,则 表示物体在t =t 0时刻的加速度.2.常用导数公式3.导数的运算法则 .例1.用导数的定义求函数2231y x x =+-在3x =处的导数. 例2.求下列函数的导数:(1)31sin 3y x x =+- ; (2))23)(12(++=x x y (3)x y tan = ; (4)x e y x ln = (5)1xe y x =+ 例3. 已知曲线y=.34313+x (1)求曲线在点(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程.巩固练习1.知,)(2x x f -=则xf x f x ∆-∆+→∆)3()3(lim 0的值是________. 2.函数3x y =在1=x 处的导数为_______;3.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ________.4.若曲线4x y =的一条切线l 与直线084=-+y x 垂直,则直线l 的方程为________.5.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为________. 6.函数)(x f y =的图像在点M ))1(,1(f 处的切线方程是221+=x y ,)1()1(/f f += . 7. 直线y = kx 与曲线2e x y =相切,则实数k = . 8.已知函数.ln x x y =(1) 求这个函数的导数;(2)这个函数在点1=x 处的切线方程.5. 求双曲线1y x =过点1(2,)2的切线方程。
导数的概念及其几何意义
4.导数的几何意义 导数的几何意义
在点x 函数 y=f(x)在点 0处的导数的几何意义,就是曲 在点 处的导数的几何意义, 在点P(x0 ,f(x0))处的切线的斜率,即曲线 处的切线的斜率, 线 y=f(x)在点 在点 处的切线的斜率 即曲线y= f(x)在点 在点P(x0 ,f(x0)) 处的切线的斜率是 f ′( x0 ). 在点 故曲线y=f(x)在点 曲线 在点P(x0 ,f(x0))处的切线方程是 处的切线方程是: 在点 处的切线方程是
导数的概念及其几何 意义
一、导数的概念 定义:设函数 在点x 定义:设函数y=f(x)在点 0处及其 在点 附近有定义,当自变量 在点x 当自变量x在点 附近有定义 当自变量 在点 0处有改 变量Δ 时函数有相应的改变量 变量Δx时函数有相应的改变量 如果当Δ → Δy=f(x0+ Δx)- f(x0).如果当Δx→0 如果当 的极限存在,这个极限就叫 时,Δy/Δx的极限存在 这个极限就叫 Δ Δ 的极限存在 做函数f(x)在点 0处的导数 或变化率) 在点x 或变化率 做函数 在点 处的导数(或变化 记作 f ′( x )或y′ | , 即:
2
求函数y = x 在点(−2, 4)处的切线.
2
例3求函数y = x 在x0 = 1处的切线.
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数概念及其几何意义
1、在函数的平均变化率的定义中,自变量的的增量满足()
A .>0
B .<0
C D. =0
2、设函数,当自变量由改变到时,函数值的改变量是()
A B C D
3、已知函数的图像上一点(1,2)及邻近一点,则等于()
A 2
B 2x
C
D 2+
5.函数y=f(x)在x=x0处可导是它在x=x0处连续的()
A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件
6.在曲线y=2x2-1的图象上取一点(1,1)及邻近一点(1+Δx,1+Δy),则等于()
A.4Δx+2Δx2 B.4+2Δx C.4Δx+Δx2 D.4+Δx
7.若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x+y-1=0,则()
A.f′(x0)>0 B.f′(x0)<0 C.f′(x0)=0 D.f′(x0)不存在
8.已知命题p:函数y=f(x)的导函数是常数函数;命题q:函数y=f(x)是一次函数,则命题p是命题q的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
9.设函数f(x)在x0处可导,则等于()
A.f′(x0) B.0 C.2f′(x0) D.-2f′(x0)
10.设f(x)=x(1+|x|),则f′(0)等于() A.0 B.1 C.-1 D.不存在
11.若曲线上每一点处的切线都平行于x轴,则此曲线的函数必是______ 函数.(填增、减、常函数)
13.设f(x)在点x处可导,a、b为常数,则=_____.
16.已知曲线y=2x2上一点A(1,2),求(1)点A处的切线的斜率.(2)点A处的切线方程.
17.已知函数f(x)=,试确定a、b的值,使f(x)在x=0处可导.
导数的运算(二)
1.函数f(x)=a4+5a2x2-x6的导数为 ( )
+10ax2-x6 +10a2x-6x5-6x5 D.以上都不对
2.函数y=3x(x2+2)的导数是( )
+6 +6 +6
3.函数y=(2+x3)2的导数是( )
+12x2 +2x3(2+x3)3(2+x3)·3x
4.函数y=x-(2x-1)2的导数是( )
-4x +4x +8x -8x
5.设函数f(x)=ax3+3x2+2,若f'(-1)=4,则a的值为( )
A. B. C. D.
6.函数y=的导数是( )
A. B. C. D.
8.函数y=的导数是( )
A.. D.
10.曲线y=-x3+2x2-6在x=2处的导数为( )
11.曲线y=x2(x2-1)2+1在点(-1,1)处的切线方程为_________.
12.函数y=xsinx-cosx的导数为_________.
13.求曲线y=2x3-3x2+6x-1在x=1及x=-1处两切线夹角的正切值.
14.已知函数f(x)=x2(x-1),若f'(x0)=f(x0),求x0的值.
导数概念及其几何意义
参考答案:
; ; ; ; ; ; ; ; ; ; 11.常数函数; 13.(a+b)f′(x);
16. 解:(1)k=
.∴点A处的切线的斜率为4.
(2)点A处的切线方程是y-2=4(x-1)即y=4x-2
17. 解:== (Δx+1)=1
=
若b≠1,则不存在
∴b=1且a=1时,才有f(x)在x=0处可导
∴a=1,b=1.
导数的运算(二)
; ; ; ; ; ; ; ; 11. y=1; 12. 2sinx+xcosx;
13. 解:∵y'=6x2-6x+6,∴y'|x=1=6, y'|x=-1=18. 设夹角为α,则tanα=||=,
14. 解:∵f(x)=x3-x2,∴f'(x0)=3x02-2x0. 由f'(x0)=f(x0),得3x02-2x0=x03-x02,
即x03-4x02+2x0=0. 所以x0=0或x0=2±.。