偏导数概念及其计算.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
显然
0 0
在上节已证 f (x , y) 在点(0 , 0)并不连续!
上节例 目录 上页 下页 返回 结束
例1 . 求 z x 2 3x y y 2 在点(1 , 2) 处的偏导数. z z 2x 3y , 3x 2 y 解法1: x y z z y (1, 2) x (1, 2)
z x2y 2e y x 3 2 z z x2y ( ) 2 e y x 2 x y x 2z 2z , 但这一结论并不总成立. 注意:此处 x y y x
p V T RT 1 V T p pV
机动 目录 上页 下页 返回 结束
二、高阶偏导数
设 z = f (x , y)在域 D 内存在连续的偏导数
z z f x ( x, y ) , f y ( x, y ) x y 若这两个偏导数仍存在偏导数, 则称它们是z = f ( x , y )
机动 目录 上页 下页 返回 结束
类似可以定义更高阶的偏导数.
例如,z = f (x , y) 关于 x 的三阶偏导数为
z = f (x , y) 关于 x 的 n –1 阶偏导数 , 再关于 y 的一阶 偏导数为
( y
z ) n 1 x y
n
机动
目录
上页
下页
返回
结束
3 z x2y . 的二阶偏导数及 例5. 求函数 z e 2 y x z z 解: 2 e x2y e x2y y x 2 2 z z x2y x2y 2 e e 2 x y x
x
x
f y ( x, y , z ) ?
f z ( x, y , z ) ?
(请自己写出)
机动
目录
上页
下页
返回
结束
二元函数偏导数的几何意义:
f x
x x0 y y0
d f ( x, y 0 ) x x0 dx
z
M0
z f ( x, y ) 在点 M0 处的切线 是曲线 y y0 M 0Tx 对 x 轴的斜率.
证:
x z 1 z y x ln x y
2z
例3. 求 的偏导数 . (P14 例4) 2x x r 解: 2 2 2 x 2 x y z r r z z r
机动 目录 上页 下页 返回 结束
(R 为常数) , 例4. 已知理想气体的状态方程 求证: p V T 1 V T p RT p RT 2 , 证: p 说明: 此例表明, V V V 偏导数记号是一个 RT V R V , p T p 整体记号, 不能看作 分子与分母的商 !
f y
是曲线
x x0 y y0
Tx
y0
Ty
o x
y
d f ( x0 , y) y y0 dy
x0
在点M0 处的切线 M 0Ty 对 y 轴的
斜率.
机动 目录 上页 下页 返回 结束
注意: 函数在某点各偏导数都存在,
但在该点不一定连续.
xy , x2 y2 0 2 例如, z f ( x, y ) x y 2 2 2 0 , x y 0
f1( x0 , y0 ) .
同样可定义对 y 的偏导数
f y ( x0 , y0 ) lim
f ( x0 , y0 y) f ( x0 , y0 )
y 0
y
若函数 z = f ( x , y ) 在域 D 内每一点 ( x , y ) 处对 x
或 y 偏导数存在 , 则该偏导数称为偏导函数, 也简称为 偏导数 , 记为
第二节 偏 导 数
一、 偏导数概念及其计算 二 、高阶偏导数
第八章
机动
目录
上页
下页
返回
结束
一、 偏导数定义及其计算法
引例: 研究弦在点 x0 处的振动速度与加速度 , 就是 将振幅
中的 x 固定于 x0 处, 求
关于 t 的
一阶导数与二阶导数.
u o
u ( x0 , t )
u(x , t )
x0
x
解法2: z
2 x 6x 4 y 2
z x (1, 2)
z
x 1 1 3 y
y
2
z y (1, 2)
机动 目录 上页 下页 返回 结束
y 求证 ) , 例2. 设 z x ( x 0, 且 x 1 x z 1 z 2z y x ln x y
;Biblioteka Baidu
f ( x0 x, y0 ) f ( x0 , y0 ) 注意: f x ( x0 , y0 ) lim x 0 x ) f ( x ) d x f ( x y 0 0 lim f ( x0 ) x 0 x d x x x0
机动 目录 上页 下页 返回 结束
z f ( x, y ) , , z y , f y ( x, y ) , f 2 y y
机动 目录 上页 下页 返回 结束
偏导数的概念可以推广到二元以上的函数 . 例如, 三元函数 u = f (x , y , z) 在点 (x , y , z) 处对 x 的 偏导数定义为
x x
机动
目录
上页
下页
返回
结束
定义1. 设函数 z f ( x, y ) 在点 ( x0 , y0 ) 的某邻域内
极限
x0 x
x
x0
存在, 则称此极限为函数 z f ( x, y ) 在点 ( x0 , y0 ) 对 x 的偏导数,记为
f ; zx x ( x0 , y 0 )
( x0 , y 0 )
的二阶偏导数 . 按求导顺序不同, 有下列四个二阶偏导 数:
z 2z z 2 z ( ) f x y ( x, y ) ( ) 2 f x x ( x, y ); y x x y x x x
2 z 2z z z ( ) f y x ( x, y ); ( ) 2 f y y ( x, y ) x y y x y y y
相关文档
最新文档