导数的概念及其计算-完整版

合集下载

导数的概念及运算

导数的概念及运算

使 b (3t 2 1)a 2t 3. 则方程 2t 3 3at 2 a b 0 有三个相异的实数根.
记 g (t ) 2t 3 3at 2 a b,则 g (t ) 6t 2 6at 6t (t a).
于是,若过点 a, b 可作曲线 y f ( x) 的三条切线,
(3).复合函数的导数: 复合函数y=f(g(x))的导数和函 数y=f(u),u=g(x)的导数间关系为
ux yx yu
考点2 导数的计算
【变式】求下列函数的导数: 例2.
x x (1) y x sin cos ; 2 2
(2) y x( x 1)( x 2) ;
f′ (x)=cos x ; (3)f(x)=sin x; 答: __________
(4)f(x)=cos x; 答: __________ f′( x)=-sin x; (5)f(x)=ax 答: __________ f′ (x)=axln a;
f′(x)=ex ; (6)f(x)=ex 答: __________ 1 (x)=xln a; (7)f(x)=logax; 答: f′ __________ 1 f′(x)=x ; (8)f(x)=ln x; 答: __________ ′=f′(x)± g′(x); (9)y=f(x)± g(x); 答: y ________________ y′=f′(x)g(x)+f(x)g′(x) (10)y=f(x)g(x); 答: ____________________________ ; f′xgx-fxg′x fx y′= 2 (11)y= 答: __________________. gx≠0; [ g x ] gx

导数的定义与计算

导数的定义与计算

导数的定义与计算导数是微积分中的重要概念,用于描述函数在某一点上的变化率。

它在数学和科学领域有着广泛的应用,可以帮助我们理解和解决各种问题。

本文将介绍导数的定义与计算方法。

一、导数的定义导数表示函数在某一点上的瞬时变化率。

我们以函数 f(x) 为例进行说明。

函数 f 的导数在点 x 处的定义如下:f'(x) = lim(h→0) [f(x+h) - f(x)] / h其中,lim 表示极限,h 为一个无穷小量,表示 x 的增量。

导数的定义表示当 x 的增量无穷小时,f(x) 在该点上的变化率。

二、导数的计算1. 基本函数的导数计算对于简单的函数,我们可以利用导数定义来计算其导数。

以下是一些常见函数的导数计算公式:常数函数导数为 0:f(x) = c,则 f'(x) = 0,其中 c 为常数。

幂函数导数为其指数乘以常数:f(x) = x^n,则 f'(x) = nx^(n-1),其中 n 为常数。

指数函数导数为其自身乘以常数:f(x) = a^x,则 f'(x) = ln(a)*a^x,其中 a 为常数。

对数函数导数为其自身的倒数:f(x) = log_a(x),则 f'(x) = 1 /(x*ln(a))。

三角函数导数:正弦函数导数为余弦函数:f(x) = sin(x),则 f'(x) = cos(x)。

余弦函数导数为负的正弦函数:f(x) = cos(x),则 f'(x) = -sin(x)。

其他三角函数的导数计算与此类似。

2. 导数的性质导数具有一些重要的性质,我们可以利用这些性质来计算复杂函数的导数。

导数的加法规则:若 f(x) 和 g(x) 都是可导函数,则 [f(x) + g(x)]' = f'(x) + g'(x)。

导数的乘法规则:若 f(x) 和 g(x) 都是可导函数,则 [f(x) * g(x)]' = f'(x) * g(x) + f(x) * g'(x)。

导数的定义与计算

导数的定义与计算

导数的定义与计算导数是微积分中的重要概念,它用于描述函数在某一点处的变化率。

本文将介绍导数的定义和计算方法。

一、导数的定义在数学中,导数可以通过极限的方法来定义。

设函数y=f(x),若函数在点x处的导数存在且有限,则导数表示为f'(x),它表示函数f(x)在点x处的变化率。

导数可以理解为函数在某一点的瞬时变化率。

通过导数,我们可以研究函数的变化趋势、拐点、极值等重要性质。

二、导数的计算方法导数的计算方法有多种,下面将介绍一些常见的计算方法。

1. 函数可导情况下的基本运算法则(1)常数法则:若c为常数,则导数(常数)=0。

(2)幂函数法则:若f(x)=x^n,其中n为常数,则导数f'(x)=nx^(n-1)。

(3)指数函数法则:若f(x)=a^x,其中a为常数,则导数f'(x)=a^x*ln(a)。

(4)对数函数法则:若f(x)=log_a(x),其中a为常数,则导数f'(x)=1/(x*ln(a))。

(5)三角函数法则:若f(x)=sin(x),则导数f'(x)=cos(x)。

2. 导数的基本运算法则(1)和差法则:若f(x)=u(x)+v(x),则导数f'(x)=u'(x)+v'(x)。

(2)积法则:若f(x)=u(x)v(x),则导数f'(x)=u'(x)v(x)+u(x)v'(x)。

(3)商法则:若f(x)=u(x)/v(x),则导数f'(x)=(u'(x)v(x)-u(x)v'(x))/[v(x)]^2。

(4)复合函数法则:若f(x)=g(h(x)),则导数f'(x)=g'(h(x))*h'(x)。

3. 使用导数计算函数的极值为了找到函数的极值点,我们可以先求得函数的导数,然后解方程f'(x)=0。

解得的x值即为函数的极值点。

三、导数的应用导数是微积分的基本工具,它在许多实际问题中具有广泛的应用。

导数的概念、求导法则

导数的概念、求导法则
应用
链式法则可以用于求复合函数的导数,特别是当函数包含多个嵌 套函数时。
乘积法则
乘积法则
$(uv)' = u'v + uv'$
应用
乘积法则可以用于求两个函数的乘积的导数,例如$y = u(x)v(x)$的导数可以通 过乘积法则求得。
商的求导法则
商的求导法则
$(u/v)' = frac{u'v - uv'}{v^2}$
导数的概念、求导法则

CONTENCT

• 导数的概念 • 求导法则 • 导数的应用 • 导数与积分的关系
01
导数的概念
导数的定义
总结词
导数是描述函数在某一点附近的变化 率的重要概念。
详细描述
导数定义为函数在某一点处的切线的 斜率,表示函数在该点附近的小变化 量与自变量变化量之比,即函数在一 点的变化率。
导数表示的几何意义
总结词
导数在几何上表示函数图像在该点的 切线斜率。
详细描述
对于可导函数,其导数在几何上表示 该函数图像在某一点的切线斜率。这 个切线的斜率反映了函数值在该点的 变化趋势。
导数的物理意义
总结词
导数在物理中常用于描述物体的运动状态、速度、加速度等 。
详细描述
在物理中,导数常用于描述物体的运动状态,如速度和加速 度。例如,物体的瞬时速度可以通过位移函数的导数来描述 ,瞬时加速度可以通过速度函数的导数来描述。
THANK YOU
感谢聆听
应用
商的求导法则可以用于求两个函数的商的导数,例如$y = u(x)/v(x)$的导数可以 通过商的求导法则求得。
03
导数的应用
切线斜率

导数的概念与计算

导数的概念与计算

3. 将内层函数的导数乘以外层函 数的导数,得到复合函数的导数 。
03
高阶导数
高阶导数的定义与计算
03
高阶导数定义
计算方法
莱布尼兹公式
函数的高阶导数是指对其一阶导数再次求 导的过程,以此类推可以得到二阶、三阶 等高阶导数。
高阶导数的计算可以通过连续应用求导法 则来实现,例如乘积法则、链式法则等。
导数的物理意义
速度
在物理学中,导数常用来表示物体的速度。如果物体的位移函数为$s(t)$,则物体的速度可以表示为位移函数对 时间$t$的导数,即$v(t) = s'(t)$。
加速度
导数还可以表示物体的加速度。如果物体的速度函数为$v(t)$,则物体的加速度可以表示为速度函数对时间$t$的 导数,即$a(t) = v'(t)$。
04
隐函数及由参数方程所确 定的函数的导数
隐函数的求导法则
01
隐函数求导的基本步 骤
首先将隐函数转化为显函数形式,然 后应用显函数的求导法则进行计算。 若无法转化为显函数形式,则通过隐 函数的求导公式进行求解。
02
隐函数求导的公式
若$y$是$x$的函数,且满足方程 $F(x,y)=0$,则隐函数的导数 $frac{dy}{dx}$可以通过求解方程 $frac{partial F}{partial x} + frac{partial F}{partial y} cdot frac{dy}{dx} = 0$得到。
相关变化率在实际问 题中的应用
相关变化率在实际问题中有着广 泛的应用,如经济学中的边际分 析、物理学中的速度加速度问题 等。通过求解相关变化率,可以 更好地理解和描述这些实际问题 中的变化规律。

(完整版)导数的概念、几何意义及其运算

(完整版)导数的概念、几何意义及其运算

导数的概念、几何意义及其运算常见基本初等函数的导数公式和常用导数运算公式 :+-∈==N n nx x C C n n ,)(;)(01''为常数;;sin )(cos ;cos )(sin ''x x x x -== a a a e e xx x x ln )(;)(''==;e x x x x a a log 1)(log ;1)(ln ''==法则1: )()()]()(['''x v x u x v x u ±=± 法则2: )()()()()]()(['''x v x u x v x u x v x u +=法则3: )0)(()()()()()(])()([2'''≠-=x v x v x v x u x v x u x v x u (一)基础知识回顾:1.导数的定义:函数)(x f y =在0x 处的瞬时变化率xx f x x f x y o x x ∆-∆+=∆∆→∆→∆)()(limlim 000称为函数)(x f y =在0x x =处的导数,记作)(0/x f 或0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f 。

称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/y ,即)(/x f =/y =xx f x x f x ∆-∆+→∆)()(lim0 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数)(x f y =在0x 处的导数0/x x y =,就是导函数)(/x f 在0x 处的函数值,即0/x x y ==)(0/x f 。

导数的概念及计算

导数的概念及计算

导数的概念及计算一.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→ f (x 0+Δx )-f (x 0)Δx=0lim x ∆→ Δy Δx 为函数y =f (x )在x =x 0处的导数,记作y ′|x =x 0 =f ′(x 0) =0lim x ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)值就是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).二.基本初等函数的导数公式三.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 四.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.考向一 利用公式及运算法则求导【例2】求下列函数的导数2311(1)()y x x x x =++ (2) (3) ()234(21)x y x =+ (5)sin2xy e x -= 【举一反三】1.下列求导运算正确的是( )A .(3x )′=x •3x−1B .(2e x )′=2e x (其中e 为自然对数的底数)C .(x 2+1x )′=2x +1x 2 D .(x cosx)′=cosx−xsinx cos 2x2.求下列函数的导数: (1)y =√x 5+√x 7+√x 9√x ; (2)y =x ⋅tanx (3)y =x n ⋅lg x ;(4)y =1x +2x 2+1x 3;考向二 复合函数求导【例3】求下列函数导数(1)y =sin(2x +1) ()(2)cos2f x x x =⋅ (3)()cos ln y x =【举一反三】求下列函数的导数: (1)y =; (2)2()5log 21y x =+.(3)sin()eax b y +=;(提示:设e uy =,sin u v =,v ax b =+,x u v xy y u v ''''=⋅⋅)(4)2(πsin 2)3y x =+; 考向三 利用导数求值【例4】(1)f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0= . 2.若f (x )=x 2+2x ·f ′(1),则f ′(0)= .3. 已知函数()f x 的导函数为()f x ',且满足()()2e ln f x xf x +'=,则()e f '= 。

导数的概念及其计算

导数的概念及其计算

x 0
x
x 0 x
我们称它称为函数 y = f (x) 在 x = x0 处的导数, 记作 f (x0) 或 y |xx0 , 即 f(x0) lx i0 m f(x0Δ x)xf(x0).
当x= x0变化时,f’(x)便是一个函数,我们称它为f(x)
的导函数(简称导数)。
C(x) 5284 100 x
C '(x)5 2 8 4'(1 0 0x) 5 2 8 4 (1 0 0x)' 5284
(1 0 0x)2
(100 x)2
(1)C'(90)(105 0289 40)252.84
5284
(2)C'(98)
1321
(10098)2
答:(1)纯净度为90%时,费用的瞬时变化率为 52.84元/吨;(2)纯净度为98%时,费用的瞬时变 化率为1321元/吨。
C.4x-5 D.4x-3
4. 函数 y=sin2x 在点 M( , 3 )处的切线斜率为( C )
62
A.-1
B.-2
C.1
D.2
例 6.已知抛物线 y=ax2+bx+c 通过点(1,1),且在点(2,-1)处与直线 y=x
-3 相切,求 a、b、c 的值.
分解析:∵:本f题(1考)=查1,导∴数a+的b几+c何=1意. 义.函数在 x=2 处的导数①等于直线
2. 若曲线 y=f(x)在点(x0,f(x0))处的切线方程为 2x+y+1=0,则( C )
A.f′(x0)>0
B.f′(x0)=0
C.f′(x0)<0
D.f′(x0)不存在

导数的定义和求导规则

导数的定义和求导规则

导数的定义和求导规则一、导数的定义1.1 极限的概念:当自变量x趋近于某一数值a时,函数f(x)趋近于某一数值L,即称f(x)当x趋近于a时的极限为L,记作:lim (x→a) f(x) = L1.2 导数的定义:函数f(x)在点x=a处的导数,记作f’(a)或df/dx|_{x=a},表示函数在某一点的瞬时变化率。

定义如下:二、求导规则2.1 常数倍法则:如果u(x)是可导函数,c是一个常数,则cu(x)也是可导函数,且(cu(x))’ = c*u’(x)。

2.2 幂函数求导法则:如果u(x) = x^n,其中n为常数,则u’(x) = n*x^(n-1)。

2.3 乘积法则:如果u(x)和v(x)都是可导函数,则(u(x)v(x))’ = u’(x)v(x) +u(x)v’(x)。

2.4 商法则:如果u(x)和v(x)都是可导函数,且v(x)≠0,则(u(x)/v(x))’ =(u’(x)v(x) - u(x)v’(x))/(v(x))^2。

2.5 和差法则:如果u(x)和v(x)都是可导函数,则(u(x) + v(x))’ = u’(x) + v’(x),(u(x) - v(x))’ = u’(x) - v’(x)。

2.6 链式法则:如果y = f(u),u = g(x),则y关于x的导数可以表示为dy/dx = (dy/du) * (du/dx)。

2.7 复合函数求导法则:如果y = f(g(x)),则y关于x的导数可以表示为dy/dx = (df/dg) * (dg/dx)。

2.8 高阶导数:如果f’(x)是f(x)的一阶导数,则f’‘(x)是f’(x)的一阶导数,以此类推。

2.9 隐函数求导法则:如果方程F(x,y) = 0表示隐函数,则y关于x的导数可以表示为(dy/dx) = -F_x / F_y,其中F_x和F_y分别是F(x,y)对x和y的偏导数。

三、导数的应用3.1 函数的单调性:如果f’(x) > 0,则f(x)在区间内单调递增;如果f’(x) < 0,则f(x)在区间内单调递减。

导数概念与运算

导数概念与运算

导数概念与运算知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即xy ∆∆=xx f x x f ∆-∆+)()(00。

如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →∆x xy ∆∆=0lim→∆x xx f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,xy ∆∆有极限。

如果xy ∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率xy ∆∆=xx f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xy x ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。

3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x'=; ⑧()1l g log a a o x ex'=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''vuv v u -(v ≠0)。

导数的概念和定义高数

导数的概念和定义高数

导数的概念和定义高数高等数学中,导数是一个重要的概念,用于描述函数的变化速率。

导数的定义及其性质是高等数学学习的重点内容之一。

本文将对导数的概念和定义进行详细论述。

1. 导数的概念导数是描述函数在某一点上的变化率。

对于函数f(x),它在点x=a处的导数可以用极限的形式表示:f'(a)=lim[(f(x)-f(a))/(x-a)], x→a其中,f'(a)表示函数f(x)在点x=a处的导数,也可以记作dy/dx|{x=a}或df(x)/dx|{x=a}。

导数可以理解为函数曲线在某一点上的切线斜率。

2. 导数的定义导数的定义基于极限的概念。

一个函数在某一点上的导数等于函数曲线在该点处的切线斜率,也就是曲线与x轴之间的夹角的正切值。

具体来说,对于函数f(x),在点x=a处的导数可以用以下公式表示:f'(a)=lim[(f(x)-f(a))/(x-a)], x→a对于函数f(x)=kx^n,其中k和n都是常数,可通过求导的方式计算导数。

根据定义和导数的特性,我们可以得到:- 常数的导数为0:如果f(x)=k,其中k是一个常数,那么f'(x)=0。

- 幂函数的导数:对于f(x)=x^n,其中n是正整数,f'(x)=nx^(n-1)。

- 指数函数的导数:对于f(x)=a^x,其中a为正实数且a≠1,f'(x)=a^x * ln(a)。

3. 导数的几何意义导数具有重要的几何意义。

对于函数f(x),在点x=a处的导数f'(a)表示函数曲线在该点处的切线斜率。

当导数为正时,函数曲线在该点处向上增长;当导数为负时,函数曲线在该点处向下减小;当导数为零时,函数曲线在该点处具有极值(最大值或最小值)。

通过导数可以描绘出函数的整体特征,包括函数的增减性、极值点、拐点等。

通过对导数图像的分析,可以得到函数图像的大致形态。

4. 导数的计算规则导数的计算有一些特定的规则。

导数概念 公式知识点总结+习题含详细讲解

导数概念  公式知识点总结+习题含详细讲解

.《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。

2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。

函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。

3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x+∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。

由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。

当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。

特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。

5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。

导数的概念及运算

导数的概念及运算

探究二
例2 求下列函数的导数 (1)y=(3x3-4x)(2x+1); (2)y=x2sinx; (3)y=3xex-2x+e; lnx (4)y= 2 x +1 (5)y=e2xcos3x; (6)y=ln x2+1
导数运算
【解析】 (1)方法一 y=(3x3-4x)(2x+1) =6x4+3x3-8x2-4x,∴y′=24x3+9x2-16x-4. 方法二 y′=(3x3-4x)′· (2x+1)+(3x3-4x)(2x+ 1)′=(9x2-4)(2x+1)+(3x3-4x)· 2 =24x3+9x2-16x-4. (2)y′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx.
1 3 4 ∴切线方程为y-( x0+ )=x2(x-x0), 0 3 3 2 3 4 2 即y=x0· x0+ . x- 3 3 2 3 4 2 ∵点P(2,4)在切线上,∴4=2x0- x0+ , 3 3
3 即x0-3x2+4=0,解得x0=-1或x0=2. 0
故所求切线方程为4x-y-4=0或x-y+2=0;
题型三
导数的几何意义
1 3 4 例3 已知曲线y=3x +3. (1)求曲线在点P(2,4)处的切线方程; (2)求曲线过点P(2,4)的切线方程; (3)求满足斜率为1的曲线的切线方程.
【解析】 (1)∵y′=x2, ∴在点P(2,4)处的切线的斜率k=y′|x=2=22=4, ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2), 即4x-y-4=0; 1 3 4 (2)设曲线y= x + 与过点P(2,4)的切线相切于点 3 3 1 3 4 2 A(x0,3x0+3),则切线的斜率k=y′| x=x0=x0.
s′(t0)

导数知识点总结与计算

导数知识点总结与计算

导数知识点总结与计算导数是微积分中的重要概念,它描述了函数在某一点的变化率。

计算导数可以用于求解函数在某一点的切线斜率、最大值最小值以及函数的变化趋势等问题。

在实际应用中,导数也被广泛应用于物理、经济、工程等领域,因此对于导数的理解和掌握是十分重要的。

本文将对导数的基本概念、求导法则以及常见函数的导数进行总结,并进行详细的解释和示例计算,以便读者更好地掌握导数知识。

一、导数的基本概念1. 函数的导数在微积分中,函数f(x)在点x处的导数表示为f'(x),即导数是函数在某一点的变化率。

可以用极限的概念来定义函数的导数:若函数f(x)在点x处的导数存在,则f'(x)=lim (Δx→0) (f(x+Δx)-f(x))/Δx其中Δx表示自变量x的增量。

当Δx趋于0时,函数在点x处的导数即为该点的切线斜率。

2. 导数的几何意义导数可以用几何意义来解释:函数f(x)在点x处的导数即为该点处曲线的切线斜率。

当导数为正时,函数在该点处是增加的;当导数为负时,函数在该点处是减少的;当导数为零时,函数在该点处取得极值。

因此,导数可以用于描述函数在某一点的变化趋势。

3. 导数的物理意义在物理学中,导数也具有重要的物理意义。

例如,当我们知道一个物体的位移函数时,可以通过求导得到该物体的速度函数;再对速度函数求导,可以得到该物体的加速度函数。

因此,导数可以帮助我们描述物体的运动规律。

二、求导法则对于常见的函数,我们可以通过一些基本的求导法则来求解其导数。

下面将介绍求导的基本法则及其示例计算。

1. 常数函数的导数若f(x)=c,其中c为常数,则f'(x)=0。

因为常数函数在任意点的变化率均为0。

示例计算:求函数f(x)=5的导数。

解:f'(x)=0。

2. 幂函数的导数若f(x)=x^n,其中n为正整数,则f'(x)=nx^(n-1)。

即幂函数的导数等于指数与原函数的指数减一的乘积。

导数的概念及其计算

导数的概念及其计算
y′ | x x0 , 即 f ′(x0)=
x 0
lim
f ( x0 x) f ( x0 ) . x
(2)导数的几何意义:函数 y=f(x)在点 x0 处的导数 f′(x0),就是曲线 y=f(x)在点 P(x0,y0)处的切线的 斜率 . (3)导数的物理意义:函数 s=s(t)在点 t0 处的导数 s′(t0),就是物体的运动方程为 s=s(t)在时刻 t0 时的 瞬时 速度 v.即 v=s′(t0).
x 0
探究提高 由导数的定义可知,求函数 y=f(x)的导数的 一般方法是: (1)求函数的改变量 Δy=f(x+Δx)-f(x); Δy f(x+Δx)-f(x) (2)求平均变化率Δx= ; Δx Δy y (3)取极限,得导数 lim Δx.
x0
变式训练 1 过曲线 y= f (x)= x3 上两点 P(1,1)和 Q(1+ Δ x,1+Δ y)作曲线的割线, 求出当 Δ x= 0.1 时割线的 斜率,并求曲线在点 P 处切线的斜率.
2.曲线 y=f(x)“在点 P(x0,y0)处的切线”与“过点 P(x0,y0)的切线”的区别与联系 (1)曲线 y=f(x)在点 P(x0,y0)处的切线是指 P 为切点, 切线斜率为 k=f′(x0)的切线,是唯一的一条切线. (2)曲线 y=f(x)过点 P(x0,y0)的切线,是指切线经过 P 点.点 P 可以是切点,也可以不是切点,而且这样的 直线可能有多条.
基础自测 1. 已知函数 f ( x) =13-8 x+ 2 x , 且 f ' ( x0 ) =
2
3 2 4,则 x0 的值为________.
解析
f ' ( x) =-8+2 2x,
f ' ( x0 ) =-8+2 2 x0 =4,∴ x0 =3 2.

(完整版)导数的概念、导数公式与应用

(完整版)导数的概念、导数公式与应用

导数的观点及运算知识点一:函数的均匀变化率( 1)观点:函数中,假如自变量在处有增量,那么函数值y 也相应的有增量△y=f(x 0+△ x)-f(x0),其比值叫做函数从到+△ x 的均匀变化率,即。

若,,则均匀变化率可表示为,称为函数从到的均匀变化率。

注意:①事物的变化率是有关的两个量的“增量的比值” 。

如气球的均匀膨胀率是半径的增量与体积增量的比值;②函数的均匀变化率表现函数的变化趋向,当取值越小,越能正确表现函数的变化状况。

③是自变量在处的改变量,;而是函数值的改变量,能够是0。

函数的均匀变化率是0,其实不必定说明函数没有变化,应取更小考虑。

( 2)均匀变化率的几何意义函数的均匀变化率的几何意义是表示连结函数图像上两点割线的斜率。

如下图,函数的均匀变化率的几何意义是:直线AB的斜率。

事实上,。

作用:依据均匀变化率的几何意义,可求解有关曲线割线的斜率。

知识点二:导数的观点:1.导数的定义:对函数,在点处给自变量x 以增量,函数y相应有增量。

若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。

即:(或)注意:①增量能够是正数,也能够是负数;②导数的实质就是函数的均匀变化率在某点处的极限,即刹时变化率。

2.导函数:假如函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确立的导数,进而组成了一个新的函数,称这个函数为函数在开区间内的导函数,简称导数。

注意:函数的导数与在点处的导数不是同一观点,是常数,是函数在处的函数值,反应函数在邻近的变化状况。

3.导数几何意义:(1)曲线的切线曲线上一点 P(x 0,y0) 及其邻近一点 Q(x0 +△ x,y 0+△ y) ,经过点 P、 Q作曲线的割线 PQ,其倾斜角为当点 Q(x0+△x,y 0+△y) 沿曲线无穷靠近于点P(x 0,y0) ,即△ x→0 时,割线 PQ的极限地点直线PT叫做曲线在点 P 处的切线。

若切线的倾斜角为,则当△ x→0 时,割线 PQ斜率的极限,就是切线的斜率。

导数的概念与基本运算

导数的概念与基本运算

导数的概念与基本运算导数是微积分学中的重要概念,用以描述函数在某一点的变化率。

导数的概念和基本运算是学习微积分的基础,本文将介绍导数的定义、求导法则以及一些常见函数的导数,帮助读者掌握导数的概念与基本运算。

一、导数的定义函数的导数描述了函数在某一点附近的变化率,可以用数学符号表示为f'(x)。

在微积分中,导数的定义是:f'(x) = lim[∆x→0] (f(x+∆x) - f(x))/∆x其中,∆x表示自变量x的一个增量。

这个定义意味着当∆x无限趋近于0时,函数f(x)在点x处的变化率就可用导数f'(x)来表示。

二、求导法则对于常见的函数形式,可以利用求导法则来求导。

以下是一些常见的求导法则:1. 常数法则:如果f(x)是一个常数,那么它的导数f'(x)等于0。

2. 幂函数法则:如果f(x) = x^n (n为实数),那么它的导数f'(x) =nx^(n-1)。

3. 指数函数法则:如果f(x) = a^x (a>0, a≠1),那么它的导数f'(x) =a^x ln(a)。

4. 对数函数法则:如果f(x) = ln(x),那么它的导数f'(x) = 1/x。

5. 三角函数法则:如果f(x) = sin(x),那么它的导数f'(x) = cos(x),同样适用于cos(x)和tan(x)等三角函数。

6. 反函数法则:如果g(x)是函数f(x)的反函数,那么g'(x) =1/f'(g(x))。

以上是一些常见的求导法则,通过应用这些法则,可以求得更复杂函数的导数。

三、常见函数的导数除了常见的求导法则,还有一些特殊函数的导数需要记住。

以下列举了一些常见函数及其导数:1. 多项式函数:- f(x) = a0 + a1x + a2x^2 + ... + anx^n,其中a0, a1, ..., an为常数。

- f'(x) = a1 + 2a2x + 3a3x^2 + ... + nanx^(n-1)2. 指数函数:- f(x) = e^x- f'(x) = e^x3. 对数函数:- f(x) = ln(x)- f'(x) = 1/x4. 三角函数:- f(x) = sin(x)- f'(x) = cos(x)- f(x) = cos(x)- f'(x) = -sin(x)- f(x) = tan(x)- f'(x) = sec^2(x)通过记住这些函数的导数公式,可以简化函数的求导过程。

导数的定义和计算方法

导数的定义和计算方法

导数的定义和计算方法导数是微积分学中的重要概念,它描述了函数在某一点处的变化率。

在这篇文章中,我们将介绍导数的定义和计算方法,并且探讨一些相关的概念和性质。

一、导数的定义导数的定义可以由两种方式来描述:几何上的观点和代数上的观点。

1. 几何上的观点:对于给定的函数f(x),在某一点x=a处的导数可以理解为函数曲线在该点切线的斜率。

具体地说,导数为f(x)在x=a处的极限值,表示了函数在该点附近的局部变化率。

2. 代数上的观点:导数也可以通过函数的极限定义进行计算。

函数在x=a处的导数可以定义为以下极限:f'(a) = lim┬(h→0)⁡〖(f(a+h)-f(a))/h〗其中,h为自变量的增量。

二、导数的计算方法导数的计算方法取决于函数的形式和性质。

下面列举了几种常见函数的导数计算方法:1. 常数函数:对于常数函数f(x) = c,其中c为常数,它的导数为0。

2. 幂函数:幂函数f(x) = x^n,其中n为正整数,它的导数为f'(x) = nx^(n-1)。

3. 指数函数:指数函数f(x) = e^x,它的导数为f'(x) = e^x。

指数函数的导数与函数本身相等,这是指数函数的一个重要性质。

4. 对数函数:对数函数f(x) = ln(x),其中x>0,它的导数为f'(x) = 1/x。

对数函数的导数可以通过对数函数的定义和导数的定义进行求解。

5. 三角函数:三角函数包括正弦函数、余弦函数和正切函数等。

它们的导数分别为:sin'(x) = cos(x)cos'(x) = -sin(x)tan'(x) = sec^2(x)这些导数可以通过三角函数的性质和导数的定义进行计算。

三、导数的性质和应用导数具有一些重要的性质,这些性质有助于我们计算和应用它们:1. 可导性:如果函数在某一点处的导数存在,则称函数在该点处可导。

可导性是导数的重要性质之一。

导数的概念及运算

导数的概念及运算

导数的概念及运算重点难点分析:1.导数的定义、意义与性质:(1)函数的导数:对于函数f(x),当自变量x在x0处有增量Δx,则函数y相应地有改变量Δy=f(x0+Δx)-f(x0),这两个增量的比叫做函数y=f(x)在x0到x0+Δx之间的平均变化率,即。

如果当Δx→0时,有极限,我们说函数在x0处可导,并把这个极限叫做f(x)在x0处的导数(或变化率)。

记作f'(x0)或,即。

(2)导函数:如果函数y=f(x)在开区间(a,b)内每一点处可导,这时,对于开区间(a,b)内的每一个值x0,都对应着一个确定的导数f'(x0),这样就在开区间(a,b)内构成一个新的函数,我们把这一新函数叫做f(x)在区间内的导函数,记作f'(x)或y',即。

(3)可导与连续的关系:如果函数y=f(x)在点x0处可导,那么函数y=f(x)在点x0处连续。

(4)导数的几何意义:过曲线y=f(x)上任意一点(x,y)的切线的斜率就是f(x)在x处的导数,即。

也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f'(x0),切线方程为y-y0=f'(x0)(x-x0)。

2.求导数的方法:(1)求函数y=f(x)在x0处导数的步骤:①求函数的增量Δy=f(x0+Δx)-f(x0)②求平均变化率③取极限,得导数。

(2)几种常见函数的导数公式:①C'=0(C为常数);②(x n)'=nx n-1 (n∈Q);③(sinx)'=cosx;④(cosx)'=-sinx;⑤(e x)'=e x;⑥(a x)'=a x lna⑦;⑧(3)导数的四则运算法则:①(u±v)'=u'±v'②(uv)'=u'v+uv'③(4)复合函数的导数复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档