(完整word版)导数的概念、导数公式与应用
(完整版)导数知识点总结及应用
《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。
2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。
函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。
3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。
由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。
当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。
特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。
5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。
导数的概念导数公式与应用
导数的概念导数公式与应用导数是微积分中的一个重要概念,用于描述函数的变化率。
导数的概念在不同领域都有广泛应用,例如物理学、经济学和工程学等。
本文将介绍导数的概念、导数公式以及导数在实际应用中的一些例子。
导数的概念可以理解为函数在其中一点处的变化率。
具体来说,如果函数在其中一点处具有导数,那么导数等于函数在该点处的斜率。
直观地说,如果一个函数在其中一点的导数为正,意味着函数在该点附近的值在增加;如果导数为负,意味着函数在该点附近的值在减小。
如果导数等于零,在该点附近的值则没有变化。
导数的计算可以使用导数公式来简化。
对于一些常见的函数,我们可以使用已知的导数公式来得到它们的导数。
例如,对于多项式函数,如果f(x) = ax^n ,其中a和n为常数,那么它的导数为f'(x) = nax^(n-1)。
而对于指数函数f(x) = e^x ,它的导数等于它自身,即f'(x) = e^x。
通过使用这些已知的导数公式,我们可以计算更复杂函数的导数。
导数在实际应用中有着广泛的应用。
一个常见的应用是在物理学中,用于描述物体的运动。
例如,我们可以通过计算一个物体的位移函数的导数来得到它的速度函数。
同样地,计算速度函数的导数可以得到加速度函数。
通过这样的导数计算,我们可以更好地理解物体的运动规律。
另一个应用是在经济学中,用于描述供需关系。
导数可以提供给我们有关价格和数量之间关系的更多信息。
如果一个函数表示价格对其中一变量的依赖关系,那么它的导数可以告诉我们,当这个变量改变一个单位时,价格将会如何改变。
这种信息对于制定合理的价格策略和优化资源配置非常重要。
除了物理学和经济学,导数在工程学和计算机科学中也有许多应用。
在工程学中,导数可以用于解决建筑结构的优化问题,确保建筑物的稳定性。
在计算机科学中,导数可以用于图像处理和机器学习等领域,提供对图像和数据的更深入的理解。
总结起来,导数是微积分中的一个重要概念,用于描述函数的变化率。
(完整版)导数的概念、几何意义及其运算
导数的概念、几何意义及其运算常见基本初等函数的导数公式和常用导数运算公式 :+-∈==N n nx x C C n n ,)(;)(01''为常数;;sin )(cos ;cos )(sin ''x x x x -== a a a e e xx x x ln )(;)(''==;e x x x x a a log 1)(log ;1)(ln ''==法则1: )()()]()(['''x v x u x v x u ±=± 法则2: )()()()()]()(['''x v x u x v x u x v x u +=法则3: )0)(()()()()()(])()([2'''≠-=x v x v x v x u x v x u x v x u (一)基础知识回顾:1.导数的定义:函数)(x f y =在0x 处的瞬时变化率xx f x x f x y o x x ∆-∆+=∆∆→∆→∆)()(limlim 000称为函数)(x f y =在0x x =处的导数,记作)(0/x f 或0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f 。
称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/y ,即)(/x f =/y =xx f x x f x ∆-∆+→∆)()(lim0 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数)(x f y =在0x 处的导数0/x x y =,就是导函数)(/x f 在0x 处的函数值,即0/x x y ==)(0/x f 。
导数的两种定义公式法
导数的两种定义公式法【原创实用版】目录一、导数的定义与公式1.导数的定义2.导数的公式二、导数的两种定义公式1.函数在某点的导数2.函数在某区间的平均导数三、导数的实际应用1.函数的切线斜率2.函数的凹凸性3.函数的最值正文导数是微积分学中的一个重要概念,它表示函数在某一点或某一区间的变化率。
导数有两种定义公式,分别是函数在某点的导数和函数在某区间的平均导数。
一、导数的定义与公式导数是函数在某一点的瞬时变化率,也可以理解为函数在某一点的切线斜率。
导数的定义公式为:f"(x) = lim(h->0) [f(x+h) - f(x)] / h其中,f(x) 表示函数,f"(x) 表示函数在 x 点的导数,h 表示自变量的增量。
当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限即为函数在 x 点的导数。
二、导数的两种定义公式1.函数在某点的导数函数在某点的导数可以通过导数的定义公式求解。
例如,对于函数f(x) = x^2,我们可以求得在 x=1 处的导数:f"(1) = lim(h->0) [f(1+h) - f(1)] / h= lim(h->0) [(1+h)^2 - 1] / h= lim(h->0) [h^2 + 2h] / h= lim(h->0) h + 2= 2因此,函数 f(x) = x^2 在 x=1 处的导数为 2。
2.函数在某区间的平均导数函数在某区间的平均导数可以通过以下公式求解:f"(a) = (f(b) - f(a)) / (b - a)其中,a 和 b 分别表示函数在某区间的端点。
例如,对于函数 f(x) = x^2,我们可以求得在区间 [0, 1] 上的平均导数:f"(0) = (f(1) - f(0)) / (1 - 0)= (1 - 0) / (1 - 0)= 1因此,函数 f(x) = x^2 在区间 [0, 1] 上的平均导数为 1。
导数的概念导数公式与应用
导数的概念导数公式与应用一、导数的概念导数是微积分中的重要概念之一,表示函数在其中一点处的变化率。
具体来说,对于函数f(x),在点x处的导数可以用极限表示为:f'(x) = lim┬(Δx→0)〖(f(x+Δx) - f(x))/Δx 〗其中,Δx表示自变量x的一个增量。
导数表示了在自变量x发生微小变化的过程中,函数f(x)相应地发生的变化。
二、导数的公式1.常数的导数公式:如果f(x)=c是一个常数函数,其中c是常数,则f'(x)=0。
这是因为无论x如何变化,函数的值始终保持不变。
2.幂函数的导数公式:如果f(x)=x^n,其中n是任意实数,则f'(x)=nx^(n-1)。
3.指数函数的导数公式:如果f(x)=a^x,其中a>0且a≠1,则f'(x)=a^xln(a)。
这个公式表明指数函数的导数与指数函数的底数有关。
4.对数函数的导数公式:如果f(x)=logₐ(x),其中a>0且a≠1,则f'(x)=1/((xln(a))。
5.三角函数的导数公式:- sin(x)的导数:(sin(x))'=cos(x)。
- cos(x)的导数:(cos(x))'=-sin(x)。
- tan(x)的导数:(tan(x))'=sec^2(x)。
6.反三角函数的导数公式:- arcsin(x)的导数:(arcsin(x))'=1/√(1-x^2)。
- arccos(x)的导数:(arccos(x))'=-1/√(1-x^2)。
- arctan(x)的导数:(arctan(x))'=1/(1+x^2)。
以及其他常用函数的导数公式,如指数函数、对数函数的复合函数求导法则等。
三、导数的应用导数作为一种变化率的度量,有许多实际应用。
1.切线与法线:通过计算函数的导数,可以求得函数曲线在特定点处的导数值,从而得到曲线上该点处的切线方程。
(完整word版)导数及其应用(1)
强化提升一 导数及其应用层次一:导数的概念、意义及简单应用突破点(一) 导数的运算八个公式+三个法则+复合函数求导[例1] (1)y =(1-x )⎝⎛⎭⎫1+1x ;(2)y =ln xx ;(3)y =tan x ;(4)y =3x e x -2x +e ;(5)y =ln (2x +3)x 2+1. [方法技巧]00A .e 2 B .1 C .ln 2 D .e(2)已知f (x )=12x 2+2xf ′(2 017)+2 017ln x ,则f ′(1)=________.[解析] (1)由题意可知f ′(x )=2 017+ln x +x ·1x =2 018+ln x .由f ′(x 0)=2 018,得ln x 0=0,解得x 0=1.(2)由题意得f ′(x )=x +2f ′(2 017)+2 017x , 所以f ′(2 017)=2 017+2f ′(2 017)+2 0172 017, 即f ′(2 017)=-(2 017+1)=-2 018. 故f ′(1)=1+2×(-2 018)+2 017=-2 018. [答案] (1)B (2)-2 018[方法技巧]对抽象函数求导的解题策略在求导问题中,常涉及一类解析式中含有导数值的函数,即解析式类似为f (x )=f ′(x 0)x +sin x +ln x (x 0为常数)的函数,解决这类问题的关键是明确f ′(x 0)是常数,其导数值为0.因此先求导数f ′(x ),令x =x 0,[例1]已知函数f(x)=x3-(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.[解](1)∵f′(x)=3x2-8x+5,∴f′(2)=1,又f(2)=-2,∴曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y-4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),∵f′(x0)=3x20-8x0+5,∴切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),∴x30-4x20+5x0-2=(3x20-8x0+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,∴经过A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.[方法技巧][例2]设曲线y=e x在点(0,1)处的切线与曲线y=1x(x>0)上点P处的切线垂直,则点P的坐标为________.[解析] y =e x 的导数为y ′=e x ,则曲线y =e x 在点(0,1)处的切线斜率k 1=e 0=1.y =1x (x >0)的导数为y ′=-1x 2(x >0),设P (m ,n ),则曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).[答案] (1,1)[例3] 直线y =kx +1b 的值等于( ) A .2 B .-1 C .1D .-2[解析] 依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a ×1+b =3,3×12+a =k ,k ×1+1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1,选C.[答案] C[方法技巧]根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解. 层次二:函数的单调性、极值最值突破点(一) 利用导数讨论函数的单调性或求函数的单调区间[解] f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x .(1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; (2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; (3)当0<a <1时,令f ′(x )=0,解得x =1-a 2a ,则当x ∈⎝ ⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ 1-a 2a ,+∞时,f ′(x )>0,故f (x )在⎝⎛⎭⎪⎫0, 1-a 2a 上单调递减,在 1-a2a,+∞上单调递增.[方法技巧][例2]已知函数f(x)=x4+ax-ln x-32,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=12x,求函数f(x)的单调区间.[解]对f(x)求导得f′(x)=14-ax2-1x,由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=12x,知f′(1)=-34-a=-2,解得a=54.所以f(x)=x4+54x-ln x-32,则f′(x)=x2-4x-54x2,令f′(x)=0,解得x=-1或x=5,因x=-1不在f(x)的定义域(0,+∞)内,故舍去.当x∈(0,5)时,f′(x)<0,故f(x)在(0,5)内为减函数;当x∈(5,+∞)时,f′(x)>0,故f(x)在(5,+∞)内为增函数.所以函数f(x)的单调递增区间为(5,+∞),单调递减区间为(0,5).[方法技巧]用导数求函数单调区间的三种类型及方法(1)当不等式f′(x)>0或f′(x)<0可解时,确定函数的定义域,解不等式f′(x)>0或f′(x)<0求出单调区间.(2)当方程f′(x)=0可解时,确定函数的定义域,解方程f′(x)=0,求出实数根,把函数f(x)的间断点(即f(x)的无定义点)的横坐标和实根按从大到小的顺序排列起来,把定义域分成若干个小区间,确定f′(x)在各个区间内的符号,从而确定单调区间.(3)不等式f′(x)>0或f′(x)<0及方程f′(x)=0均不可解时求导并化简,根据f′(x)的结构特征,选择相应基本初等函数,利用其图象与性质确定f′(x)的符号,得单调区间.突破点(二)利用导数解决函数单调性的应用问题利用导数解决函数单调性的应用问题主要有:(1)已知函数的单调性求参数范围问题:此类问题是近几年高考的热点,一般为解答题的第二问,难度中档.有时也以选择题、填空题的形式出现,难度中高档.解决此类问题的关键是转化为恒成立问题,再参变分离,转化为最值问题求解.(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围;(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围;(3)若已知f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围.[例1] 已知函数f (x )=x 3-ax -1.(1)若f (x )在区间(1,+∞)上为增函数,求a 的取值范围; (2)若f (x )在区间(-1,1)上为减函数,求a 的取值范围; (3)若f (x )的单调递减区间为(-1,1),求a 的值.[解] (1)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立,所以a ≤3x 2在(1,+∞)上恒成立,所以a ≤3,即a 的取值范围为(-∞,3].(2)因为f (x )在区间(-1,1)上为减函数,所以f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,即a ≥3x 2在(-1,1)上恒成立.因为-1<x <1,所以3x 2<3,所以a ≥3.即a 的取值范围为[3,+∞).(3)因为f (x )=x 3-ax -1,所以f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a3(a ≥0). 因为f (x )的单调递减区间为(-1,1), 所以3a3=1,即a =3. 应用结论“函数f (x )在(a ,b )上单调递增⇔f ′(x )≥0恒成立;函数f (x )在(a ,b )上单调递减⇔f ′(x )≤0恒成立”时,切记检验等号成立时导数是否在(a ,b )上恒为0. [易错提醒][例2] (1)若0<x 1<x 2A .e x 2-e x 1>ln x 2-ln x 1 B .e x 2-e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2 D .x 2e x 1<x 1e x 2(2)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] (1)构造函数f (x )=e x-ln x ,则f ′(x )=e x-1x =x e x -1x .令f ′(x )=0,得x e x -1=0.根据函数y=e x 与y =1x 的图象可知两函数图象交点x 0∈(0,1),因此f (x )=e x -ln x 在(0,1)上不是单调函数,无法判断f (x 1)与f (x 2)的大小,故A ,B 错;构造函数g (x )=e x x ,则g ′(x )=x e x -e x x 2=e x (x -1)x 2,故函数g (x )=e xx 在(0,1)上单调递减,故g (x 1)>g (x 2),即e x 1x 1>e x 2x 2,则x 2e x 1>x 1e x 2,故选C. (2)设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12, ∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). [答案] (1)C (2)(-∞,-1)∪(1,+∞)[方法技巧]利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.突破点(三) 利用导数解决函数的极值问题根据函数图象判断函数极值的情况[例1] 设函数象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)[解析] 由图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.[答案] D [方法技巧]知图判断函数极值情况的策略知图判断函数极值情况的思路是:先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x 轴交点的横坐标为函数的极值点.求函数的极值[例2] (2017·桂林、崇左联考)设a >0,函数f (x )=12x 2-(a +1)x +a ln x .(1)当a =2时,求曲线y =f (x )在点(3,f (3))处切线的斜率; (2)求函数f (x )的极值.[解] (1)由已知x >0.当a =2时,f ′(x )=x -3+2x ,∴曲线y =f (x )在点(3,f (3))处切线的斜率为f ′(3)=23.(2)f ′(x )=x -(a +1)+a x =x 2-(a +1)x +a x =(x -1)(x -a )x .由f ′(x )=0得x =1或x =a .①若0<a <1,当x ∈(0,a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(a,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增. ∴当x =a 时,f (x )取极大值f (a )=-12a 2-a +a ln a ,当x =1时,f (x )取极小值f (1)=-a -12.②若a >1,当x ∈(0,1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(1,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. ∴当x =1时,f (x )取极大值f (1)=-a -12;当x =a 时,f (x )取极小值f (a )=-12a 2-a +a ln a .③当a =1时,x >0时,f ′(x )>0,函数f (x )单调递增,f (x )没有极值. 综上,当0<a <1时,f (x )的极大值为-12a 2-a +a ln a ,极小值为-a -12;当a >1时,f (x )的极大值为-a -12,极小值为-12a 2-a +a ln a ;当a =1时,f (x )没有极值. [方法技巧][例3] (1)(2017·a 的取值范围是( )A .(-∞,0) B.⎝⎛⎭⎫0,12C .(0,1) D .(0,+∞)(2)(2017·太原五中检测)函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则a 的值为________. [解析] (1)∵f (x )=x (ln x -ax ),∴f ′(x )=ln x -2ax +1,由函数f (x )有两个极值点,可知f ′(x )在(0,+∞)上有两个不同的零点, 令f ′(x )=0,则2a =ln x +1x ,设g (x )=ln x +1x ,则g ′(x )=-ln xx 2,∴g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 又∵当x →0时,g (x )→-∞,当x →+∞时,g (x )→0, 而g (x )max =g (1)=1,∴只需0<2a <1,即0<a <12.(2)由题意得f ′(x )=3x 2+2ax +b ,因为在x =1处,f (x )有极值10, 所以f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 解得a =4,b =-11或a =-3,b =3,当a =-3,b =3时,在x =1处,f (x )无极值,不符合题意; 当a =4,b =-11时,符合题意,所以a =4. [答案] (1)B (2)4 [方法技巧]已知函数极值点或极值求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为某点处的导数值等于0不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.突破点(四) 利用导数解决函数的最值问题[例1] 已知函数f (x )=(x (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.[解] (1)由题意知f ′(x )=(x -k +1)e x .令f ′(x )=0,得x =k -1. f (x )与f ′(x )的情况如下:所以,f (x )(2)当k -1≤0,即k ≤1时,f (x )在[0,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k -1<1,即1<k <2时,f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1; 当k -1≥1,即k ≥2时,f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e. 综上,当k ≤1时,f (x )在[0,1]上的最小值为f (0)=-k ; 当1<k <2时,f (x )在[0,1]上的最小值为f (k -1)=-e k -1; 当k ≥2时,f (x )在[0,1]上的最小值为f (1)=(1-k )e. [方法技巧]利用导数求函数最值的规律求函数f (x )在区间[a ,b ]上的最值时:(1)若函数在区间[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.(2)若函数在闭区间[a ,b ]上有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值,最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极值点,这个极值点就是最大(或小)值点,此结论在导数的实际应用中经常用到.[例2] 已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.[解] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 当x =1时,切线l 的斜率为3,可得2a +b =0,①当x =23时,y =f (x )有极值,则f ′⎝⎛⎭⎫23=0,可得4a +3b +4=0,② 由①②,解得a =2,b =-4.由于切点的横坐标为1,所以f (1)=4.所以1+a +b +c =4,得c =5.(2)由(1)可得f (x )=x 3+2x 2-4x +5,f ′(x )=3x 2+4x -4.令f ′(x )=0,解得x 1=-2,x 2=23.当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:所以y =f (x )在[-3,1]上的最大值为13,最小值为9527.[方法技巧]解决函数极值、最值问题的策略(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值. 1.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( ) A.⎝⎛⎭⎫0,12和(1,+∞) B .(0,1)和(2,+∞)C.⎝⎛⎭⎫0,12和(2,+∞) D .(1,2) 解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x =2x 2-5x +2x=(x -2)(2x -1)x >0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝⎛⎭⎫0,12,(2,+∞). 2.若函数f (x )=x 3-tx 2+3x 在区间[]1,4上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B.(]-∞,3C.⎣⎡⎭⎫518,+∞ D.[)3,+∞解析:选C f ′(x )=3x 2-2tx +3,由于f (x )在区间[]1,4上单调递减,则有f ′(x )≤0在[]1,4上恒成立,即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝⎛⎭⎫x +1x 在[]1,4上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[]1,4上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518,故选C.3.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3的单调递减区间为( )A.⎣⎡⎭⎫12,+∞ B .[3,+∞)C .[-2,3] D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d ,所以f ′(x )=3x 2+2bx +c ,由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1,由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <12时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3的单调递减区间为(-∞,-2). 4.(2017·甘肃诊断考试)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C 因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝⎛⎭⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.5.若函数f (x )=x +bx (b ∈R)的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是( ) A .(-2,0) B .(0,1)C .(1,+∞)D .(-∞,-2)解析:选D 由题意知,f ′(x )=1-b x 2,∵函数f (x )=x +bx (b ∈R)的导函数在区间(1,2)上有零点,∴当1-bx 2=0时,b =x 2,又x ∈(1,2),∴b ∈(1,4).令f ′(x )>0,解得x <-b 或x >b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞),∵b ∈(1,4),∴(-∞,-2)符合题意,故选D.6.已知y =f (x )为(0,+∞)上的可导函数,且有f ′(x )+f (x )x >0,则对于任意的a ,b ∈(0,+∞),当a >b 时,有( )A .af (a )<bf (b ) B .af (a )>bf (b )C .af (b )>bf (a ) D .af (b )<bf (a )解析:选B 由f ′(x )+f (x )x >0得xf ′(x )+f (x )x >0,即[xf (x )]′x >0,即[xf (x )]′x >0.∵x >0,∴[xf (x )]′>0,即函数y =xf (x )为增函数,由a ,b ∈(0,+∞)且a >b ,得af (a )>bf (b ),故选B.二、填空题7.若幂函数f (x )的图象过点⎝⎛⎭⎫22,12,则函数g (x )=e x f (x )的单调递减区间为________.解析:设幂函数为f (x )=x α,因为图象过点⎝⎛⎭⎫22,12,所以12=⎝⎛⎭⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e x x =e x (x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).答案:(-2,0)8.已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________. 解析:f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立,∵⎝⎛⎭⎫-x +1x max =83,∴2a ≥83,即a ≥43. 答案:⎣⎡⎭⎫43,+∞ 9.已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)·f ′(x )>0的解集为________.解析:由题图可知,⎩⎪⎨⎪⎧f ′(x )>0,x ∈(1,+∞)∪(-∞,-1),f ′(x )<0,x ∈(-1,1),不等式(x 2-2x -3)f ′(x )>0等价于⎩⎪⎨⎪⎧ f ′(x )>0,x 2-2x -3>0或⎩⎪⎨⎪⎧f ′(x )<0,x 2-2x -3<0,解得x ∈(-∞,-1)∪(3,+∞)∪(-1,1). 答案:(-∞,-1)∪(3,+∞)∪(-1,1)10.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是________. 解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a .当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝⎛⎭⎫-19,+∞.答案:⎝⎛⎭⎫-19,+∞ 三、解答题11.已知函数f (x )=x -2x +1-a ln x ,a >0.讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0,即a =2 2 时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:此时f ⎭⎪⎫∞上单调递增.12.(2017·郑州质检)已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t,3)上总不是单调函数,求m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x . 当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞); 当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.g ′(t )<0,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立,由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0,即m <-5且m <-9,即m <-9;由g ′(3)>0,得m >-373. 所以-373<m <-9.即实数m 的取值范围是⎝⎛⎭⎫-373,-9.。
导数的两种定义公式法
导数的两种定义公式法摘要:一、导数的定义1.导数的概念2.导数的两种定义公式二、导数公式法1.常见导数公式2.导数公式应用举例三、求导法则1.求导的基本法则2.求导法则的运用四、导数在实际问题中的应用1.导数在物理中的应用2.导数在化学中的应用3.导数在经济学中的应用正文:导数是微积分学中的一个重要概念,它表示函数在某一点处的变化率。
导数可以帮助我们了解函数的增减性、极值点和曲率等信息。
在求导过程中,通常会使用导数公式法,它是一种利用已知的导数公式来求解导数的方法。
导数的定义有多种,这里我们介绍两种常用的定义公式。
第一种定义公式为:如果给定一个函数f(x),那么其在x 处的导数f"(x) 等于函数在x 处的增量Δy 与自变量增量Δx 之比,即f"(x)=Δy/Δx。
第二种定义公式为:如果给定一个函数f(x),那么其在x 处的导数f"(x) 等于函数在x 处的极限值,即f"(x)=lim(Δx→0) [f(x+Δx)-f(x)]/Δx。
在实际求导过程中,我们通常会使用一些常见的导数公式。
例如,对于幂函数f(x)=x^n,其导数为f"(x)=n*x^(n-1);对于三角函数f(x)=sin(x) 和cos(x),其导数为f"(x)=cos(x) 和-sin(x),等等。
通过运用这些导数公式,我们可以很方便地求解一些复杂函数的导数。
求导是微积分学中的基本操作之一,它可以帮助我们研究函数的性质和变化规律。
在实际问题中,导数在许多领域都有着广泛的应用。
例如,在物理学中,导数可以用来描述物体的速度和加速度;在化学中,导数可以用来描述化学反应的速率和浓度的变化;在经济学中,导数可以用来描述价格、产量和消费量等经济变量之间的关系。
总之,导数是微积分学中的一个重要概念,它具有广泛的应用价值。
导数的原理与应用
导数的原理与应用一、导数的定义•导数是微积分中的重要概念,用于描述函数在某点处的变化率。
•函数在某点处的导数,表示该点处函数曲线的切线斜率。
二、导数的计算方法1.利用极限–导数f′(x)可以通过极限 $f'(x) = \\lim_{\\Delta x \\to 0} \\frac{f(x+\\Delta x)-f(x)}{\\Delta x}$ 来计算。
–这种方法适用于所有类型的函数,但计算较为繁琐。
2.常用的导数公式–f(x)=C,其中C为常数,导数f′(x)=0。
–f(x)=x n,其中n为常数,导数f′(x)=nx n−1。
–$f(x)=\\sin(x)$ ,导数 $f'(x)=\\cos(x)$。
–$f(x)=\\cos(x)$ ,导数 $f'(x)=-\\sin(x)$。
三、导数的性质1.导数的可加性–若函数 f(x) 和 g(x) 都在某点处可导,则(f+g)′(x)=f′(x)+ g′(x)。
2.导数的乘法法则–若函数 f(x) 和 g(x) 都在某点处可导,则 $(f \\cdot g)'(x)=f'(x) \\cdot g(x)+f(x) \\cdot g'(x)$。
3.导数的链式法则–若函数 y=f(u) 和 u=g(x) 都在某点处可导,则 $(f \\circg)'(x)=f'(g(x)) \\cdot g'(x)$。
四、导数的应用1.切线和切线方程–导数可以描述函数曲线在某点处的切线斜率。
–切线方程为y=f′(x)(x−x0)+f(x0),其中x0为切线与函数曲线的交点横坐标。
2.极值和拐点–导数可以用来判断函数的极大值、极小值和拐点。
–在导数图像中,极大值对应导数从正数到负数的转折点,极小值对应导数从负数到正数的转折点,拐点对应导数的极值点。
3.函数图像的性态–导数可以用来研究函数的递增、递减和凹凸性。
(完整word)(整理)导数的概念及导数的几何意义.
<<高等数学〉>教案课型:讲授章节第二章导数与微分第一节导数及其运算 1·导数的概念及导数的几何意义教学目的:1、理解导数定义,能够运用定义求解简单函数的导数2、了解导数的几何意义,会求曲线在某点的切线和法线方程3、掌握可导与连续的关系,判别函数在某点的可导性与连续性教学重点:1、导数定义,包括函数在某点与在某区间的定义,单侧导数的定义2、导数的几何意义,求切线方程与法线方程教学难点:1、导数定义,包括函数在某点与在某区间的定义,单侧导数的定义2、导数的几何意义,求切线方程与法线方程教学过程:1、简介微积分的组成,微分与积分的区别2、引入导数概念3、给出导数定义(1)函数在某点导数的定义(2)函数在某区间导数的定义(3)单侧导数的定义4、求导数举例5、导数的几何意义6、求切线和法线方程举例7、可导与连续的关系8、举例判别函数在某点处的连续性和可导性9、课堂小结10、布置作业§1 导数及其运算一、 导数的概念1、导数的引入设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s f (t ),求动点在时刻t 0的速度. 考虑比值000)()(t t t f t f t t s s --=--,这个比值可认为是动点在时间间隔t t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践中也可用来说明动点在时刻t 0的速度。
但这样做是不精确的, 更确地应当这样: 令t t 0®0, 取比值00)()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 00)()(limt t t f t f v t t --=→,这时就把这个极限值v 称为动点在时刻t 0的速度. 2、导数的定义从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00)()(lim 0x x x f x f x x --→.令x x x 0, 则y f (x 0x )f (x 0) f (x )f (x 0), x ®x 0相当于x ®0, 于是00)()(limx x x f x f x x --→成为 x yx ∆∆→∆0lim或xx f x x f x ∆-∆+→∆)()(lim 000。
导数的概念及运算知识点讲解(含解析)
导数的概念及运算一、知识梳理1.函数y =f(x)在x =x 0处的导数(1)定义:称函数y =f(x)在x =x 0处的瞬时变化率0lim x ∆→f (x 0+Δx )-f (x 0)Δx=lim x ∆→ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx称为函数y =f (x )在开区间内的导函数.3.导数公式表4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1) [f (x )±g (x )]′=f ′(x )±g ′(x ); (2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3) ⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为 y x ′=y u ′·u x ′.知识点小结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2. ⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2. 3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( ) 解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错.(3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错. 答案 (1)× (2)× (3)× (4)√2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9B.-3C.9D.15解析 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9. 答案 C3.在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________ m/s ,加速度a =______ m/s 2.解析 v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8. 答案 -9.8t +6.5 -9.84.(2019·青岛质检)已知函数f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A.e 2B.1C.ln 2D.e解析 f ′(x )=2 018+ln x +x ×1x =2 019+ln x .由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1. 答案 B5.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析 由题意得f ′(x )=e xln x +e x·1x ,则f ′(1)=e.答案 e6.(2017·全国Ⅰ卷)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +1考点一 导数的运算角度1 根据求导法则求函数的导数 【例1-1】 分别求下列函数的导数: (1)y =e x ln x ; (2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)f (x )=ln 1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e xx =e x ⎝⎛⎭⎪⎫ln x +1x .(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x 3. (3)因为y =ln1+2x =12ln ()1+2x ,所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2 抽象函数的导数计算【例1-2】 (2019·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x ,则f (1)=( ) A.-eB.2C.-2D.e解析 由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2. 答案 B【训练1】 (1)若y =x -cos x 2sin x2,则y ′=________. (2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析 (1)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4,∴f ′(0)=-4. 答案 (1)1-12cos x (2)-4考点二 导数的几何意义 角度1 求切线方程【例2-1】 (2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) A.y =-2x B.y =-x C.y =2xD.y =x解析 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x . 答案 D角度2 求切点坐标【例2-2】 (1)(2019·聊城月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A.3B.2C.1D.12(2)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________. 解析 (1)设切点的横坐标为x 0(x 0>0),∵曲线y =x 24-3ln x 的一条切线的斜率为12, ∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3. (2)∵函数y =e x 的导函数为y ′=e x ,∴曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·⎝ ⎛⎭⎪⎫-1x 20=-1,解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x (x >0)上,∴y 0=1,故点P 的坐标为(1,1). 答案 (1)A (2)(1,1)角度3 求参数的值或取值范围【例2-3】 (1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)(2)(2019·河南六市联考)已知曲线f (x )=x +ax +b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b =________.解析 (1)由题意知f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x . 因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). (2)f ′(x )=1-ax 2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有⎩⎪⎨⎪⎧1-a =2,2a +b =5,解得⎩⎪⎨⎪⎧a =-1,b =7,∴a -b =-1-7=-8. 答案 (1)B (2)-8规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A.(0,0)B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________.解析 (1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax . 根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,可列方程组⎩⎪⎨⎪⎧x 30+ax 20=-x 0, ①3x 20+2ax 0=-1, ②解得⎩⎪⎨⎪⎧x 0=1,a =-2或⎩⎪⎨⎪⎧x 0=-1,a =2.当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1. ∴点P 的坐标为(1,-1)或(-1,1). (2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 (1)D (2)y =2x三、课后练习1.(2019·深圳二模)设函数f (x )=x +1x +b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab =( ) A.1B.0C.-1D.-2解析 由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a -b =⎝⎛⎭⎪⎫1-1a 2(x -a ),将(0,0)代入得-a -1a -b=⎝ ⎛⎭⎪⎫1-1a 2(-a ),故b =-2a ,故ab =-2. 答案 D2.已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________. 解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时, 由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在[0,1]上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎪⎨⎪⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1]. 答案 [-2,-1]3.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________. 解析 设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0),∴最短距离为(1,0)到直线y =x 的距离, 即为|1-0|1+1=22. 答案 224.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)。
《导数的概念教案》
《导数的概念教案》word版第一章:导数的概念1.1 导入利用实际例子引入变化率的概念,如物体运动的速度、温度变化等。
引导学生思考如何描述函数在某一点的“变化率”。
1.2 导数的定义介绍导数的定义:函数在某一点的导数是其在该点的切线斜率。
解释导数的几何意义:函数图像在某一点的切线斜率。
强调导数表示函数在某一点的瞬时变化率。
1.3 导数的计算介绍导数的计算方法:极限法、导数的基本公式、导数的运算法则。
强调导数计算中需要注意的问题,如函数的连续性、可导性等。
1.4 导数的应用介绍导数在实际问题中的应用,如最优化问题、物理运动问题等。
引导学生思考如何利用导数解决实际问题。
第二章:导数的性质与法则2.1 导数的性质介绍导数的性质,如单调性、连续性、可导性等。
通过实例引导学生理解导数性质的应用。
2.2 导数的运算法则介绍导数的运算法则,如四则运算法则、复合函数运算法则等。
利用导数的运算法则进行函数求导。
2.3 导数的应用利用导数研究函数的单调性、极值、拐点等。
引导学生思考如何利用导数解决实际问题。
第三章:函数的单调性与极值3.1 函数的单调性介绍函数单调性的概念,如何判断函数的单调性。
利用导数判断函数的单调性。
3.2 函数的极值介绍函数极值的概念,如何求解函数的极值。
利用导数求解函数的极值。
3.3 函数的拐点介绍函数拐点的概念,如何求解函数的拐点。
利用导数求解函数的拐点。
第四章:导数在实际问题中的应用4.1 运动物体的瞬时速度与加速度利用导数求解运动物体的瞬时速度与加速度。
解释瞬时速度与加速度的概念及物理意义。
4.2 函数的最值问题利用导数求解函数的最值问题。
解释最值问题的实际意义,如成本最小化、收益最大化等。
4.3 曲线的切线与法线利用导数求解曲线的切线与法线。
解释切线与法线的概念及几何意义。
第五章:高阶导数与隐函数求导5.1 高阶导数介绍高阶导数的概念,如何求解高阶导数。
强调高阶导数在实际问题中的应用,如加速度与瞬时加速度的关系。
高中数学公式大全导数的计算与应用公式
高中数学公式大全导数的计算与应用公式高中数学公式大全:导数的计算与应用公式1. 导数的定义与计算在微积分中,导数是用来描述函数变化率的重要工具。
对于函数f(x),导数可以用极限来定义,并可以使用以下公式进行计算:(1) 一阶导数:f'(x) = lim (h→0) [f(x+h) - f(x)] / h(2) 高阶导数:f''(x) = (d/dx) [f'(x)](3) 链式法则:若函数f(x)和g(x)都可导,则复合函数 (f(g(x))) 的导数可以计算为:(f(g(x)))' = f'(g(x)) * g'(x)2. 常用导数公式(1) 常数函数导数:如果f(x)是一个常数c,则f'(x) = 0(2) 幂函数导数:对于函数f(x) = x^n,其中n是实数常数,则f'(x) = n * x^(n-1)(3) 指数函数导数:对于函数f(x) = a^x,其中a是常数且a>0且a≠1,则f'(x) = a^x * ln(a)(4) 对数函数导数:对于函数f(x) = log_a(x),其中a是常数且a>0且a≠1,则f'(x) = 1 / (x * ln(a))(5) 三角函数导数:sin'(x) = cos(x)cos'(x) = -sin(x)tan'(x) = sec^2(x)cot'(x) = -csc^2(x)sec'(x) = sec(x) * tan(x)csc'(x) = -csc(x) * cot(x)3. 导数的应用导数在数学中有广泛的应用,以下介绍几个常见的应用领域。
(1) 切线与法线:导数可以用来求解函数在某一点的切线和法线。
函数在某一点的导数即为该点切线的斜率,法线的斜率为切线斜率的负倒数。
(2) 极值点与拐点:通过求解函数的导数为零的点,可以判断函数的极大值和极小值。
(word完整版)导数的概念、导数公式与应用
导数的概念及运算知识点一:函数的平均变化率(1)概念:+△x)函数中,如果自变量在处有增量,那么函数值y也相应的有增量△y=f(x—f(x),其比值叫做函数从到+△x的平均变化率,即。
若,,则平均变化率可表示为,称为函数从到的平均变化率。
注意:①事物的变化率是相关的两个量的“增量的比值”。
如气球的平均膨胀率是半径的增量与体积增量的比值;②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。
③是自变量在处的改变量,;而是函数值的改变量,可以是0。
函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。
(2)平均变化率的几何意义函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。
如图所示,函数的平均变化率的几何意义是:直线AB的斜率。
事实上,.作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。
知识点二:导数的概念: 1.导数的定义: 对函数,在点处给自变量x 以增量,函数y 相应有增量。
若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。
即:(或)注意: ①增量可以是正数,也可以是负数;②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。
2.导函数: 如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数.注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在处的函数值,反映函数在附近的变化情况。
3.导数几何意义: (1)曲线的切线曲线上一点P(x 0,y 0)及其附近一点Q (x 0+△x ,y 0+△y),经过点P 、Q 作曲线的割线PQ ,其倾斜角为当点Q(x 0+△x,y 0+△y)沿曲线无限接近于点P(x 0,y 0),即△x →0时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线。
若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。
导数的概念、导数公式与应用
导数的概念、导数公式与应用在我们学习数学的过程中,导数是一个极其重要的概念,它不仅在数学领域有着广泛的应用,还在物理学、工程学、经济学等众多学科中发挥着关键作用。
让我们一起来深入了解一下导数的概念、导数公式以及它的各种应用。
首先,我们来谈谈导数的概念。
导数可以简单地理解为函数在某一点的变化率。
想象一下,你正在开车,车速表显示的就是汽车行驶速度的瞬时变化率,而这个变化率在数学中就可以用导数来表示。
假设我们有一个函数 f(x) ,那么函数在点 x₀处的导数记作 f'(x₀) 。
从几何角度来看,导数就是函数图像在该点处切线的斜率。
比如说,对于一个直线函数 y = mx + b ,它的斜率 m 就是其导数。
但对于更复杂的函数,如二次函数、三角函数等,求导数就没那么直观了。
那么,导数是怎么计算的呢?这就涉及到导数公式。
常见的基本导数公式有:1、常数函数的导数为 0 ,即若 f(x) = C ( C 为常数),则 f'(x) = 0 。
2、幂函数的导数,若 f(x) =xⁿ ,则 f'(x) =n xⁿ⁻¹。
3、指数函数的导数,若 f(x) =eˣ ,则 f'(x) =eˣ 。
4、对数函数的导数,若 f(x) = ln x ,则 f'(x) = 1 / x 。
这些只是导数公式中的一部分,通过这些基本公式,再结合导数的运算规则,如加法法则、乘法法则、链式法则等,我们就能够求出各种复杂函数的导数。
接下来,让我们看看导数在实际中的应用。
在物理学中,导数有着广泛的应用。
比如,位移对时间的导数就是速度,速度对时间的导数就是加速度。
通过对位移函数求导,我们可以得到物体在某一时刻的瞬时速度和瞬时加速度,这对于研究物体的运动状态至关重要。
在经济学中,导数可以用来分析成本函数、收益函数等。
边际成本和边际收益就是成本函数和收益函数的导数。
通过研究边际成本和边际收益,企业可以做出更合理的生产和销售决策,以实现利润最大化。
导数的定义与应用
导数的定义与应用导数是微积分中的一个重要概念,它描述了函数在某一点上的变化率。
在现实生活和科学研究中,导数有着广泛的应用。
本文将介绍导数的定义以及它在不同领域的应用。
一、导数的定义导数表示了函数在某一点上的变化率。
对于函数f(x),它在点x处的导数可以用极限的概念来定义。
如果这个极限存在,那么函数在点x处可导,其导数记为f'(x)或dy/dx。
导数的定义公式为:f'(x) = lim(h->0) (f(x+h) - f(x))/h其中,h表示自变量x的增量。
该定义表示,当自变量的增量趋近于0时,函数在该点上的变化率。
导数可以理解为函数曲线在某一点上的切线斜率。
二、导数的应用1. 函数的极值导数在函数的极值问题中有着重要的应用。
函数的极值点是函数曲线上的局部最大值或最小值点。
通过求导可以找到函数的极值点。
对于函数f(x),如果f'(x)=0或者f'(x)不存在,那么点x就是函数的极值点。
通过求解方程f'(x)=0,可以找到函数的极值点。
进一步分析导数的正负性,可以判断函数在极值点的增减性。
2. 函数图像的性态导数可以帮助我们了解函数图像的性态。
通过分析导数的正负性和零点,可以确定函数的增减区间和凹凸区间。
如果导数f'(x)>0,表示函数在该点上递增;如果导数f'(x)<0,表示函数在该点上递减。
通过导数的正负性,可以画出函数的增减图。
另外,通过导数的二阶导数(即导数的导数),可以判断函数的凹凸性。
如果二阶导数f''(x)>0,表示函数在该点上凹;如果二阶导数f''(x)<0,表示函数在该点上凸。
3. 物理学中的速度与加速度导数在物理学中有着广泛的应用,特别是在描述物体运动的速度和加速度方面。
对于物体的位移函数s(t),它的导数s'(t)表示物体在时间t处的速度。
速度的正负性表示了物体的运动方向。
【高中数学】高中数学导数的定义,公式及应用总结
【高中数学】高中数学导数的定义,公式及应用总结高中数学导数的定义,公式及应用总结导数的定义:当自变量的增量δx=x-x0,δx→0时函数增量δy=f(x)-f(x0)与自变量增量之比的音速存有且非常有限,就说道函数f在x0点可微,称作f在x0点的导数(或变化率).函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在p0[x0,f(x0)]点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
通常地,我们得出结论用函数的导数去推论函数的多寡性(单调性)的法则:设y=f(x)在(a,b)内可微。
如果在(a,b)内,f'(x)>0,则f(x)在这个区间就是单调减少的(该点切线斜率减小,函数曲线显得“平缓”,持续上升状)。
如果在(a,b)内,f'(x)<0,则f(x)在这个区间就是单调增大的。
所以,当f'(x)=0时,y=f(x)存有极大值或极小值,极大值中最大者就是最大值,极小值中最轻者就是最小值求导数的步骤:求函数y=f(x)在x0处为导数的步骤:①求函数的增量δy=f(x0+δx)-f(x0) ②求平均变化率③取极限,得导数。
导数公式:①c'=0(c为常数函数); ②(x^n)'=nx^(n-1)(n∈q*);熟记1/x的导数③(sinx)'=cosx;(cosx)'=-sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx(cscx)'=-cotx·cscx(arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(x(x^2-1)^1/2) (arccscx)'=-1/(x(x^2-1)^1/2) ④(sinhx)'=hcoshx(coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2(sechx)'=-tanhx·sechx(cschx)'=-cothx·cschx(arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1)(x<1) (arcothx)'=1/(x^2-1)(x>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)⑤(e^x)'=e^x;(a^x)'=a^xlna(ln为自然对数) (inx)'=1/x(ln为自然对数) (logax)'=(xlna)^(-1),(a>0且a不等于1)(x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2)导数的应用领域:1.函数的单调性(1)利用导数的符号推论函数的多寡性利用导数的符号推论函数的多寡性,这就是导数几何意义在研究曲线变化规律时的一个应用领域,它体现了数形融合的思想.通常地,在某个区间(a,b)内,如果f'(x)>0,那么函数y=f(x)在这个区间内单调递减;如果f'(x)<0,那么函数y=f(x)在这个区间内单调递增. 如果在某个区间内恒存有f'(x)=0,则f(x)就是常数函数. 特别注意:在某个区间内,f'(x)>0就是f(x)在此区间上以增函数的充分条件,而不是必要条件,如f(x)=x3在r内就是增函数,但x=0时f'(x)=0。
(完整word版)【助力高考】2019年高考数学专题复习第13讲《导数的概念及运算》(含详细答案和教师用书)
♦♦♦学生用书(后跟详细参考答案和教师用书)♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第三章 导数及其应用第13讲 导数的概念及运算★★★核心知识回顾★★★知识点一、导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作 或 0x x y ='|,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区(a ,b )间内的 ,记作 或y ′. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k = . 3.基本初等函数的导数公式4.导数的运算法则若f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′= ; (2)[f (x )·g (x )]′= ;(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′= ,即y 对x 的导数等于 的导数与 的导数的乘积.★★★高考典例剖析★★★考点一、导数的计算例1:(2018•天津)已知函数f (x )=e x lnx ,f′(x )为f (x )的导函数,则f′(1)1.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2D .e2.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .03.已知f (x )=x 2+2xf ′(1),则f ′(0)= . 考点二、导数的几何意义命题点①求切线方程例2:(2018•新课标Ⅰ)设函数f (x )=x 3+(a-1)x 2+ax .若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A .y=-2x B .y=-xC .y=2xD .y=x 解:函数f (x )=x 3+(a-1)x 2+ax ,若f (x )为奇函数, 可得a=1,所以函数f (x )=x 3+x ,可得f′(x )=3x 2+1, 曲线y=f (x )在点(0,0)处的切线的斜率为:1, 则曲线y=f (x )在点(0,0)处的切线方程为:y=x . 故选:D . ♦♦♦跟踪训练♦♦♦4.曲线f (x )=e xx -1在x =0处的切线方程为 .5.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 . 命题点②求参数的值例3:直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b = . 解: 由题意知,y =x 3+ax +b 的导数y ′=3x 2+a , 则⎩⎪⎨⎪⎧13+a +b =3,3×12+a =k ,k +1=3,由此解得k =2,a =-1,b =3,∴2a +b =1. ♦♦♦跟踪训练♦♦♦6.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m = . 命题点③导数与函数图象例3:已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )答案: B解: 由y =f ′(x )的图象是先上升后下降可知,函数y =f (x )图象的切线的斜率先增大后减小,故选B. ♦♦♦跟踪训练♦♦♦7.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)= .8.(2017·山西孝义模拟)已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是 . 9.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a = .★★★知能达标演练★★★一、选择题1.(2018•德阳模拟)已知函数f (x )在R 上存在导数f′(x ),下列关于f (x ),f′(x )的描述正确的是( )A .若f (x )为奇函数,则f′(x )必为奇函数B .若f (x )为周期函数,则f′(x )必为周期函数C .若f (x )不为周期函数,则f′(x )必不为周期函数D .若f (x )为偶函数,则f′(x )必为偶函数2.若f (x )=xe x +1,则f′(1)=( ) A .0 B .e+1C .2eD .e 2 3.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)4.设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数f ′(x )的图象可能是( )5.函数f (x )=xlnx+2f'(1)x ,则f (1)=( ) A .-2 B .−12 C .-1 D .126.(2017·西安质检)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)或(-1,3)D .(1,-3)7.设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a 等于( ) A .0 B .1 C .2D .38.(2018·广州调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e9.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3t 2+8t ,那么速度为零的时刻是( ) A .1秒末 B .1秒末和2秒末 C .4秒末D .2秒末和4秒末10.(2018•延安模拟)己知函数f (x )=220191x +sinx ,其中f′(x )为函数f (x )的导数,求f (2018)+f (-2018)+f′(2019)-f′(-2019)=( ) A .2 B .2019 C .2018 D .011.(2018•青羊区校级模拟)若函数y=f (x )的图象上存在不同的两点,使得函数的图象在这两点处的切线的斜率之和等于常数t ,则称函数y=f (x )为“t 函数”.下列函数中为“2函数”的个数有( )①y=x-x 3 ②y=x+e x ③y=xlnx ④y=x+cosx A .1个 B .2 个C .3 个D .4个二、填空题12.(2017·西安模拟)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a = . 13.(2018届云南红河州检测)已知曲线f (x )=x ln x 在点(e ,f (e))处的切线与曲线y =x 2+a 相切,则a = . 14.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为 .15.(2018·成都质检)已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示. (1)若f (1)=1,则f (-1)= ;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为 .(用“<”连接)16.(2017·上饶模拟)若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为 .17.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是 .三、解答题18.若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值.19.已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程.20.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限. (1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.21.(2018·福州质检)设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y-12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.♦♦♦详细参考答案♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第三章 导数及其应用第13讲 导数的概念及运算★★★核心知识回顾★★★知识点一、导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作 f ′(x 0) 或 0x x y='|,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区(a ,b )间内的 导函数 ,记作 f ′(x ) 或y ′. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k = f ′(x 0) . 3.基本初等函数的导数公式4.导数的运算法则若f ′(x ),g ′(x )存在,则有(1)[f (x )±g (x )]′= f ′(x )±g ′(x ) ;(2)[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) ; (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′= y u ′·u x ′ ,即y 对x 的导数等于 y 对u 的导数与 u 对x 的导数的乘积.★★★高考典例剖析★★★考点一、导数的计算 ♦♦♦跟踪训练♦♦♦ 1.答案: B解: f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1. 2.答案: B解: f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 3.答案: -4解: ∵f ′(x )=2x +2f ′(1), ∴f ′(1)=2+2f ′(1),即f ′(1)=-2. 考点二、导数的几何意义 ♦♦♦跟踪训练♦♦♦ 4.答案: 2x +y +1=0解: 根据题意可知切点坐标为(0,-1), f ′(x )=(x -1)(e x )′-e x (x -1)′(x -1)2=(x -2)e x(x -1)2,故切线的斜率k =f ′(0)=(0-2)e 0(0-1)2=-2,则直线的方程为y -(-1)=-2(x -0), 即2x +y +1=0. 5.答案: x -y -1=0解: ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点②求参数的值 ♦♦♦跟踪训练♦♦♦ 6.答案: -2 解: ∵f ′(x )=1x ,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, ∴m =-2.命题点③导数与函数图象 ♦♦♦跟踪训练♦♦♦ 7.答案: 0解: 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. ♦♦♦跟踪训练♦♦♦8.答案: y =0或4x +y +4=0 解: 设切点坐标为(x 0,x 20),∵f ′(x )=2x ,∴切线方程为y -0=2x 0(x +1),∴x 20=2x 0(x 0+1), 解得x 0=0或x 0=-2,∴所求切线方程为y =0或y =-4(x +1), 即y =0或4x +y +4=0. 9.答案: -1解: ∵y ′=-1-cos xsin 2x ,π2| 1.x y ='∴=-由条件知1a=-1,∴a =-1.★★★知能达标演练★★★一、选择题 1.答案: B解:对于A :例如:f (x )=x 3为奇函数,则f′(x )=3x 2,为偶函数,故A 错误; 对于B :f (x )是可导函数,则f (x+T )=f (x ),两边对x 求导得(x+T )′f'(x+T )=f'(x ),f'(x+T )=f'(x ),周期为T .故若f (x )为周期函数,则f′(x )必为周期函数.故B 正确;对于C :例如:f (x )=sinx+x 不是周期函数,当f′(x )=cosx+1为周期函数,故C 错误;对于D :例如:f (x )=x 2为偶函数,则f′(x )=2x 为奇函数,故D 错误; 故选:B . 2.答案: C解:∵f (x )=xe x +1,则f′(x )=(x+1)e x , 则f′(1)=2e , 故选:C . 3.答案: C解: f ′(x )=(x -a )2+(x +2a )·(2x -2a ) =(x -a )·(x -a +2x +4a )=3(x 2-a 2). 4.答案: C解: 原函数的单调性是当x <0时,f (x )单调递增; 当x >0时,f (x )的单调性变化依次为增、减、增,故当x <0时,f ′(x )>0;当x >0时,f ′(x )的符号变化依次为+,-,+.故选C. 5.答案: A解:根据题意,函数f (x )=xlnx+2f'(1)x , 其导数f′(x )=1+lnx+2f'(1),令x=1可得:f′(1)=1+2f'(1), 解可得f′(1)=-1; ∴f (1)=0-2=-2 故选:A . 6.答案: C解: f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. 7.答案: D解: ∵y =e ax -ln(x +1),∴y ′=a e ax -1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax -ln(x+1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.故选D. 8.答案: C解: y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则001|,x x y x ='=切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e .9.答案: D解: s ′(t )=t 2-6t +8,由导数的定义知v =s ′(t ), 令s ′(t )=0,得t =2或4, 即2秒末和4秒末的速度为零.可得f′(2019)-f′(-2019)=g′(2019)-g′(-2019)=0, 即有f (2018)+f (-2018)+f′(2019)-f′(-2019)=2, 故选:A . 11.答案: B12.答案: 3解: y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3.13.答案: 1-e解: 因为f ′(x )=ln x +1,所以曲线f (x )=x ln x 在x =e 处的切线斜率为k =2, 则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e. 由于切线与曲线y =x 2+a 相切, 故y =x 2+a 可联立y =2x -e , 得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e. 14.答案: x +4y -2=0解: y ′=-e x (e x +1)2=-1e x +1ex +2,因为e x >0,所以e x+1e x ≥2e x ×1e x =2(当且仅当e x =1ex ,即x =0时取等号),则e x +1e x +2≥4,故y ′=-1e x +1e x +2≥-14(当x =0时取等号).当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.15.答案: (1)1 (2)h (0)<h (1)<h (-1) 解: (1)由图可得f ′(x )=x ,g ′(x )=x 2, 设f (x )=ax 2+bx +c (a ≠0),g (x )=dx 3+ex 2+mx +n (d ≠0), 则f ′(x )=2ax +b =x , g ′(x )=3dx 2+2ex +m =x 2, 故a =12,b =0,d =13,e =m =0,所以f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1,得c =12,则f (x )=12x 2+12,故f (-1)=1.(2)h (x )=f (x )-g (x )=12x 2-13x 3+c -n ,则有h (-1)=56+c -n ,h (0)=c -n ,h (1)=16+c -n ,故h (0)<h (1)<h (-1).可得a =14,经检验,a =14满足题意.16.答案:2解: 由题意知y =x 2-ln x 的定义域为(0,+∞),当点P 是曲线的切线中与直线y =x -2平行的直线的切点时,点P 到直线y =x -2的距离最小,如图所示.故令y ′=2x -1x =1,解得x =1,故点P 的坐标为(1,1).故点P 到直线y =x -2的最小值d min =|1-1-2|2= 2. 17.答案: [2,+∞)解: ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).三、解答题18.解: 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,0|x x k y ='==3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意知Δ=116-4a =0,得a =164.综上,a =1或a =164.19.解: (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1, 又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2, 即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)·(x -2),又切线过点P (x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. 20.解: (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.21.解: (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.♦♦♦教师用书♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第三章 导数及其应用第13讲 导数的概念及运算★★★核心知识回顾★★★知识点一、导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作 f ′(x 0) 或 0x x y='|,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区(a ,b )间内的 导函数 ,记作 f ′(x ) 或y ′. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k = f ′(x 0) . 3.基本初等函数的导数公式4.导数的运算法则若f ′(x ),g ′(x )存在,则有(1)[f (x )±g (x )]′= f ′(x )±g ′(x ) ;(2)[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) ; (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′= y u ′·u x ′ ,即y 对x 的导数等于 y 对u 的导数与 u 对x 的导数的乘积.★★★高考典例剖析★★★考点一、导数的计算例1:(2018•天津)已知函数f (x )=e x lnx ,f′(x )为f (x )的导函数,则f′(1)1.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2 D .e答案: B解: f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1.2.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2 D .0答案: B解: f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2.3.已知f (x )=x 2+2xf ′(1),则f ′(0)= . 答案: -4解: ∵f ′(x )=2x +2f ′(1), ∴f ′(1)=2+2f ′(1),即f ′(1)=-2. 考点二、导数的几何意义 命题点①求切线方程例2:(2018•新课标Ⅰ)设函数f (x )=x 3+(a-1)x 2+ax .若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A .y=-2x B .y=-xC .y=2xD .y=x 解:函数f (x )=x 3+(a-1)x 2+ax ,若f (x )为奇函数, 可得a=1,所以函数f (x )=x 3+x ,可得f′(x )=3x 2+1, 曲线y=f (x )在点(0,0)处的切线的斜率为:1, 则曲线y=f (x )在点(0,0)处的切线方程为:y=x . 故选:D . ♦♦♦跟踪训练♦♦♦4.曲线f (x )=e xx -1在x =0处的切线方程为 .答案: 2x +y +1=0解: 根据题意可知切点坐标为(0,-1), f ′(x )=(x -1)(e x )′-e x (x -1)′(x -1)2=(x -2)e x(x -1)2,故切线的斜率k =f ′(0)=(0-2)e 0(0-1)2=-2,则直线的方程为y -(-1)=-2(x -0), 即2x +y +1=0.5.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 . 答案: x -y -1=0解: ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点②求参数的值例3:直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b = . 解: 由题意知,y =x 3+ax +b 的导数y ′=3x 2+a , 则⎩⎪⎨⎪⎧13+a +b =3,3×12+a =k ,k +1=3,由此解得k =2,a =-1,b =3,∴2a +b =1. ♦♦♦跟踪训练♦♦♦6.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m = . 答案: -2 解: ∵f ′(x )=1x ,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, ∴m =-2.命题点③导数与函数图象例3:已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )答案: B解: 由y =f ′(x )的图象是先上升后下降可知,函数y =f (x )图象的切线的斜率先增大后减小,故选B. ♦♦♦跟踪训练♦♦♦7.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)= .答案: 0解: 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0.8.(2017·山西孝义模拟)已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是 . 答案: y =0或4x +y +4=0 解: 设切点坐标为(x 0,x 20),∵f ′(x )=2x ,∴切线方程为y -0=2x 0(x +1),∴x 20=2x 0(x 0+1), 解得x 0=0或x 0=-2,∴所求切线方程为y =0或y =-4(x +1), 即y =0或4x +y +4=0.9.设曲线y =1+cos x sin x 在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a = . 答案: -1解: ∵y ′=-1-cos x sin 2x ,π2| 1.x y ='∴=-由条件知1a=-1,∴a =-1.★★★知能达标演练★★★一、选择题1.(2018•德阳模拟)已知函数f (x )在R 上存在导数f′(x ),下列关于f (x ),f′(x )的描述正确的是( )A .若f (x )为奇函数,则f′(x )必为奇函数B .若f (x )为周期函数,则f′(x )必为周期函数C .若f (x )不为周期函数,则f′(x )必不为周期函数D .若f (x )为偶函数,则f′(x )必为偶函数 答案: B解:对于A :例如:f (x )=x 3为奇函数,则f′(x )=3x 2,为偶函数,故A 错误; 对于B :f (x )是可导函数,则f (x+T )=f (x ),两边对x 求导得(x+T )′f'(x+T )=f'(x ),f'(x+T )=f'(x ),周期为T .故若f (x )为周期函数,则f′(x )必为周期函数.故B 正确;对于C :例如:f (x )=sinx+x 不是周期函数,当f′(x )=cosx+1为周期函数,故C 错误;对于D :例如:f (x )=x 2为偶函数,则f′(x )=2x 为奇函数,故D 错误; 故选:B .2.若f (x )=xe x +1,则f′(1)=( ) A .0 B .e+1C.2e D.e2答案:C解:∵f(x)=xe x+1,则f′(x)=(x+1)e x,则f′(1)=2e,故选:C.3.函数f(x)=(x+2a)(x-a)2的导数为()A.2(x2-a2) B.2(x2+a2)C.3(x2-a2) D.3(x2+a2)答案:C解:f′(x)=(x-a)2+(x+2a)·(2x-2a)=(x-a)·(x-a+2x+4a)=3(x2-a2).4.设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数f′(x)的图象可能是()答案:C解:原函数的单调性是当x<0时,f(x)单调递增;当x>0时,f(x)的单调性变化依次为增、减、增,故当x<0时,f′(x)>0;当x>0时,f′(x)的符号变化依次为+,-,+.故选C.5.函数f(x)=xlnx+2f'(1)x,则f(1)=()A.-2 B.−12C.-1 D.12答案:A解:根据题意,函数f(x)=xlnx+2f'(1)x,其导数f′(x)=1+lnx+2f'(1),令x=1可得:f′(1)=1+2f'(1),解可得f′(1)=-1;∴f (1)=0-2=-2故选:A .6.(2017·西安质检)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)或(-1,3) D .(1,-3)答案: C解: f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C.7.设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a 等于( ) A .0 B .1 C .2 D .3 答案: D解: ∵y =e ax -ln(x +1),∴y ′=a e ax -1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax -ln(x+1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.故选D. 8.(2018·广州调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e答案: C解: y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则001|,x x y x ='=切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.9.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3t 2+8t ,那么速度为零的时刻是( ) A .1秒末 B .1秒末和2秒末 C .4秒末 D .2秒末和4秒末答案: D解: s ′(t )=t 2-6t +8,由导数的定义知v =s ′(t ), 令s ′(t )=0,得t =2或4,即2秒末和4秒末的速度为零.A.2 B.2019C.2018 D.0答案:A11.(2018•青羊区校级模拟)若函数y=f(x)的图象上存在不同的两点,使得函数的图象在这两点处的切线的斜率之和等于常数t,则称函数y=f(x)为“t函数”.下列函数中为“2函数”的个数有()①y=x-x3②y=x+e x③y=xlnx ④y=x+cosxA.1个B.2 个C.3 个D.4个答案:B二、填空题12.(2017·西安模拟)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a = . 答案: 3解: y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3.13.(2018届云南红河州检测)已知曲线f (x )=x ln x 在点(e ,f (e))处的切线与曲线y =x 2+a 相切,则a = . 答案: 1-e解: 因为f ′(x )=ln x +1,所以曲线f (x )=x ln x 在x =e 处的切线斜率为k =2, 则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e. 由于切线与曲线y =x 2+a 相切, 故y =x 2+a 可联立y =2x -e , 得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e.14.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为 .答案: x +4y -2=0解: y ′=-e x (e x +1)2=-1e x +1ex +2,因为e x >0,所以e x+1e x ≥2e x ×1e x =2(当且仅当e x =1ex ,即x =0时取等号),则e x +1e x +2≥4,故y ′=-1e x +1e x +2≥-14(当x =0时取等号).当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.15.(2018·成都质检)已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示. (1)若f (1)=1,则f (-1)= ;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为 .(用“<”连接) 答案: (1)1 (2)h (0)<h (1)<h (-1) 解: (1)由图可得f ′(x )=x ,g ′(x )=x 2, 设f (x )=ax 2+bx +c (a ≠0), g (x )=dx 3+ex 2+mx +n (d ≠0), 则f ′(x )=2ax +b =x ,g ′(x )=3dx 2+2ex +m =x 2, 故a =12,b =0,d =13,e =m =0,所以f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1,得c =12,则f (x )=12x 2+12,故f (-1)=1.(2)h (x )=f (x )-g (x )=12x 2-13x 3+c -n ,则有h (-1)=56+c -n ,h (0)=c -n ,h (1)=16+c -n ,故h (0)<h (1)<h (-1).可得a =14,经检验,a =14满足题意.16.(2017·上饶模拟)若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为 . 答案:2解: 由题意知y =x 2-ln x 的定义域为(0,+∞),当点P 是曲线的切线中与直线y =x -2平行的直线的切点时,点P 到直线y =x -2的距离最小,如图所示.故令y ′=2x -1x =1,解得x =1,故点P 的坐标为(1,1).故点P 到直线y =x -2的最小值d min =|1-1-2|2= 2. 17.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是 .答案: [2,+∞)解: ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).三、解答题18.若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 解: 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,0|x x k y ='==3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意知Δ=116-4a =0,得a =164.综上,a =1或a =164.19.已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. 解: (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1, 又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2, 即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)·(x -2),又切线过点P (x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0.20.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解: (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.21.(2018·福州质检)设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y-12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解: (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.。
(完整版)导数的概念、几何意义及其运算
导数的概念、几何意义及其运算常见基本初等函数的导数公式和常用导数运算公式 :+-∈==N n nx x C C n n ,)(;)(01''为常数;;sin )(cos ;cos )(sin ''x x x x -== a a a e e xx x x ln )(;)(''==;e x x x x a a log 1)(log ;1)(ln ''==法则1: )()()]()(['''x v x u x v x u ±=± 法则2: )()()()()]()(['''x v x u x v x u x v x u +=法则3: )0)(()()()()()(])()([2'''≠-=x v x v x v x u x v x u x v x u (一)基础知识回顾:1.导数的定义:函数)(x f y =在0x 处的瞬时变化率xx f x x f x y o x x ∆-∆+=∆∆→∆→∆)()(limlim 000称为函数)(x f y =在0x x =处的导数,记作)(0/x f 或0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f 。
称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/y ,即)(/x f =/y =xx f x x f x ∆-∆+→∆)()(lim0 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数)(x f y =在0x 处的导数0/x x y =,就是导函数)(/x f 在0x 处的函数值,即0/x x y ==)(0/x f 。
完整版)高中数学导数知识点归纳总结
完整版)高中数学导数知识点归纳总结导数的定义:对于函数y=f(x),在点x处的导数f'(x)定义为:f'(x)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Deltax}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}其中,$\Delta x$表示自变量的增量,$\Delta y$表示函数值的增量。
函数的连续性和可导性的关系:如果函数y=f(x)在点x处可导,则它在该点处必然连续。
但是,反过来并不成立,即函数在某点处连续并不一定可导。
导数的几何意义:函数y=f(x)在点x处的导数f'(x)表示曲线在该点处的切线的斜率。
因此,切线方程为:y-y_0=f'(x_0)(x-x_0)其中,$y_0=f(x_0)$表示曲线在点$(x_0,y_0)$处的纵坐标。
导数的四则运算法则:对于任意可导函数f(x)和g(x),有以下四则运算法则:1.$(f+g)'(x)=f'(x)+g'(x)$2.$(f-g)'(x)=f'(x)-g'(x)$3.$(fg)'(x)=f'(x)g(x)+f(x)g'(x)$4.$\left(\frac{f}{g}\right)'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$其中,除法的分母$g(x)$不能为0.导数的应用:导数可以用来求函数的单调性、极值和最值。
函数单调递增的条件是导数大于0,函数单调递减的条件是导数小于0.函数在极值点处的导数为0,但反之不一定成立。
函数的最值可以通过求导数来确定。
注①:若点x是可导函数f(x)的极值点,则f'(x)=0.但反过来不一定成立。
对于可导函数,其一点x是极值点的必要条件是若函数在该点可导,则导数值为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的概念及运算
知识点一:函数的平均变化率
(1)概念:
函数中,如果自变量在处有增量,那么函数值y也相应的有增量△
y=f(x
0+△x)-f(x
),其比值叫做函数从到+△x的平均变化率,即。
若,,则平均变化率可表示为,称为函数从
到的平均变化率。
注意:
①事物的变化率是相关的两个量的“增量的比值”。
如气球的平均膨胀率是半径的增量与体积增量的比值;
②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。
③是自变量在处的改变量,;而是函数值的改变量,可以是0。
函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。
(2)平均变化率的几何意义
函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。
如图所示,函数的平均变化率的几何意义是:直线AB的斜率。
事实上,。
作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。
知识点二:导数的概念:
1.导数的定义:
对函数,在点处给自变量x以增量,函数y相应有增量。
若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。
即:(或)
注意:
①增量可以是正数,也可以是负数;
②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。
2.导函数:
如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数。
注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在
处的函数值,反映函数在附近的变化情况。
3.导数几何意义:
(1)曲线的切线
曲线上一点P(x
0,y
)及其附近一点Q(x
+△x,y
+△y),经过点P、Q作曲线的割线PQ,
其倾斜角为当点Q(x
0+△x,y
+△y)沿曲线无限接近于点P(x
,y
),
即△x→0时,割线PQ的极限位置直线PT叫做曲线在点P处的切线。
若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。
即:。
(2)导数的几何意义:
函数在点x
的导数是曲线上点()处的切线的斜率。
注意:
①若曲线在点处的导数不存在,但有切线,则切线与轴垂直。
②,切线与轴正向夹角为锐角;,切线与轴正向夹角为钝角;
,切线与轴平行。
(3)曲线的切线方程
如果在点可导,则曲线在点()处的切线方程为:。
4.瞬时速度:
物体运动的速度等于位移与时间的比,而非匀速直线运动中这个比值是变化的,如何了解非匀速直线运动中每一时刻的运动快慢程度,我们采用瞬时速度这一概念。
如果物体的运动规律满足s=s(t)(位移公式),那么物体在时刻t的瞬时速度v,就是物体t到t+△t这段时间内,当△t→0时平均速度的极限,即。
如果把函数看作是物体的位移公式),导数表示运动物体在时刻的瞬时速度。
规律方法指导
1.如何求函数的平均变化率
求函数的平均变化率通常用“两步”法:
①作差:求出和
②作商:对所求得的差作商,即。
注意:
(1),式子中、的值可正、可负,但的值不能为零,的值可以为零。
若函数为常数函数时,。
(2)在式子中,与是相对应的“增量”,即在时,。
变化率不同;当取定值,取不同的数值时,函数的平均变化率也不一样。
2.如何求函数在一点处的导数
(1)利用导数定义求函数在一点处的导数,通常用“三步法”。
①计算函数的增量:;
②求平均变化率:;
③取极限得导数:。
(2)利用基本初等函数的导数公式求初等函数的导数。
3.导数的几何意义
①设函数在点的导数是,则表示曲线在点()处的切线的斜率。
②设是位移关于时间的函数,则表示物体在时刻的瞬时速度;
③设是速度关于时间的函数,则表示物体在时刻的加速度;
4.利用导数的几何意义求曲线的切线方程的步骤
①求出在处的导数;
②利用直线方程的点斜式得切线方程为。
类型一:求函数的平均变化率
1、求在到之间的平均变化率,并求,时平均变化率的值.
思路点拨:求函数的平均变化率,要紧扣定义式进行操作.
举一反三:
【变式1】求函数y=5x2+6在区间[2,2+]内的平均变化率。
【变式2】已知函数,分别计算在下列区间上的平均变化率:(1)[1,3];
(2)[1,2];
(3)[1,1.1];
(4)[1,1.001].
【变式3】自由落体运动的运动方程为,计算t从3s到3.1s,3.01s,3.001s各段内的平均速度(位移s的单位为m)。
【变式4】过曲线上两点和作曲线的割线,求出当
时割线的斜率.
类型二:利用定义求导数
2、用导数的定义,求函数在x=1处的导数。
举一反三:
【变式1】已知函数
(1)求函数在x=4处的导数.
(2)求曲线上一点处的切线方程。
【变式2】利用导数的定义求下列函数的导数:
(1);
(2);
(3);
(4)。
3、求曲线y=x3+2x在x=1处的切线方程.
思路点拨:从函数在一点处的导数定义可求得函数y=x3+2x在x=1处的导数值,再由导数的几何意义,得所求切线的斜率,将x=1代入函数可得切点坐标,从而建立切线方程.
举一反三:
【变式】在曲线y=x2上过哪一点的切线:
(1)平行于直线y=4x―5;
(2)垂直于直线2x―6y+5=0;
(3)与x轴成135°的倾斜角。
知识点三:常见基本函数的导数公式
(1)(C为常数),
(2)(n为有理数),
(3),
(4),
(6),
(7),
(8),
知识点四:函数四则运算求导法则
设,均可导
(1)和差的导数:
(2)积的导数:
(3)商的导数:()
知识点五:复合函数的求导法则
或
即复合函数对自变量的导数,等于已知函数对中间变量的导
数,乘以中间变量对自变量的导数。
注意:选择中间变量是复合函数求导的关键。
求导时需要记住中间变量,逐层求导,不遗漏。
求导后,要把中间变量转换成自变量的函数。
规律方法指导
1.求复合函数的导数的一般步骤
①适当选定中间变量,正确分解复合关系;
②分步求导(弄清每一步求导是哪个变量对哪个变量求导);
③把中间变量代回原自变量(一般是x)的函数。
整个过程可简记为分解——求导——回代,熟练以后,可以省略中间过程。
若遇多重复合,可以相应地多次用中间变量。
类型一:利用公式及运算法则求导数
1、求下列函数的导数:
(1);(2)
(3);(4)y=2x3―3x2+5x+4
举一反三:
【变式】求下列函数的导数:
(1);(2)(3)y=6x3―4x2+9x―6
2、求下列各函数的导函数
(1);(2)y=x2sinx;
(3)y=;(4)y=
举一反三:
【变式1】函数在处的导数等于( )
A.1 B.2 C.3 D.4
【变式2】下列函数的导数
(1);(2)
【变式3】求下列函数的导数.
(1);(2);(3).
类型四:复合函数的求导
3、求下列函数导数.
(1);(2);
(3);(4).
举一反三:
【变式1】求下列函数的导数:
(1);(2)
(3)y=ln(x+);(4)
类型五:求曲线的切线方程
4、求曲线y=x3+2x在x=1处的切线方程.
举一反三:
【变式1】求曲线在点处的切线的斜率,并写出切线方程.
【变式2】已知,是曲线上的两点,则与直线平行的曲线的切线方程是________.
【变式3】已知曲线.
(1)求曲线上横坐标为1的点处的切线的方程;
(2)第(1)小题中的切线与曲线是否还有其他的公共点?
【变式4】如果曲线的某一切线与直线平行,求切点坐标与切线方程
5、已知直线为曲线在点(1,0)处的切线,为该曲线的另一条切线,且.
(1)求直线的方程;
(2)求由直线、和轴所围成的三角形的面积.
举一反三:
【变式1】曲线在点(1,1)处的切线与轴、直线所围成的三角形的面积为
________.
【变式2】曲线在(0,1)处的切线与的距离为,求的方程.。