1.1认识三角形复习

合集下载

八年级上册1.1认识三角形

八年级上册1.1认识三角形

02
证明方法
通过作辅助线,将外角平分线与对边平行线相交,利用平行线的性质和
平行线的交角性质进行证明。
03
应用实例
在解决几何问题时,常常需要利用三角形内外角的关系来确定某些角的
度数或边的长度。
04 三角形的边长关系
三边关系定理
三角形任意两边之和大于第三 边
三角形任意两边之差小于第三 边
三角形三边关系定理的应用: 判断三条线段能否构成三角形
三角形的高、中线与角平分线
高的定义
从三角形的一个顶点垂直 到对边的线段
中线的定义
连接三角形两边中点的线 段
角平分线的定义
将一个角平分为两个相等
面积 = (底 × 高) / 2
面积公式的应用
计算三角形的面积,判断两个三角形是否等面积
3
特殊三角形的面积计算
八年级上册1.1认识三角形
contents
目录
• 三角形的定义与性质 • 三角形的分类 • 三角形的内外角和定理 • 三角形的边长关系 • 三角形的实际应用
01 三角形的定义与性质
三角形的定义
由不在同一直线上的 三条线段首尾顺次连 接而成的图形。
三角形是平面图形中 最简单的多边形。
三角形是具有三条边 的多边形。
三角形中,等角对应等边,即如果两个角相等,则它们所对的边也相等。
02 三角形的分类
按边分类
等边三角形
不等边三角形
三边长度相等的三角形,每个角都是 60度。
三边长度都不相等,三个角也不相等。
等腰三角形
两边长度相等,另一边不等,有两个 相等的角。
按角分类
锐角三角形
01
所有内角都小于90度。

1.1.1 认识三角形(同步课件)-八年级数学上册(浙教版)_1

1.1.1 认识三角形(同步课件)-八年级数学上册(浙教版)_1
只要把最长的一条线段与另外两条线段的和作比较
解: (1)最长线段是c=5cm,a+b=2.5+3=5.5(cm) ∴a+b>c,所以线段a,b,c能组成三角形 (2)∵最长线段是g=12.6cm e+f=6.3+6.3=12.6(cm), e+f=g,所以线段e,f,g不能组成三角形
题型二 三角形的内角和
过A作ED∥BC,
则∠B=∠BAE (两直线平行,内错角相等)
∠C=∠CAD (两直线平行,内错角相等)
∵∠BAE+∠CAD+∠BAC=180°
E
D
A
(平角的定义)
∴∠B+∠C+∠BAC=180°
(等量代换)
B
C
三角形的性质
三角形的内角和等于180° 在△ABC中,∠A+∠B+∠C=180°
三角形三边的关系
3、如图,在△BCD中,BC=4,BD=5.
(1)求CD的取值范围; 解:∵在△BCD中,BC=4,BD=5,
∴1<DC<9.
(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数. ∵AE∥BD,∠BDE=125°,
∴∠AEC=180°-∠BDE=55°, 又∵∠A=55°,∴∠C=180°-55°-55°=70°.
题型四 三角形的分类
4、下面三角形被遮住的两个内角是什么角? 试着说明理由。
(1)
(2)
(3)
在三角形中,最多有几个锐角?几个钝角?几个直角呢?
_看__三___角__形___中__最__大___角__的___大__小__:___________________ _最__大___角__是___锐__角__,___三__角___形__就__是___锐__角___三__角__形___;____ _最__大___角__是___直__角__,___三__角___形__就__是___直__角___三__角__形___;____ _最__大___角__是___钝__角__,___三__角___形__就__是___钝__角___三__角__形___.____

1.1认识三角形(2)

1.1认识三角形(2)
A
“>”、“<”或“=”号填空: = (1)BE___EC
1 =― (2)∠CAF___ 2 ∠BAC B E F C
A
已知△ABC中,BC=3,要求
△ABC的面积,还需添加什么条件?
B
D
C
从三角形的一个顶点向它的对边所在的直线作垂线,顶点 和垂足之间的线段叫做三角形的高。 如图,AD⊥BC于点D,AD就是△ABC的BC边上的高。 ∵AD就是△ABC的BC边上的高。 ∴AD⊥BC
(2)当∠A=40 时,求∠BOC的度数 (3)当∠A= x 时,求∠BOC的度数 (用含 x 代数式表示)
B
如图,三角形ABC的角平分线可 以画三条,它们交于一点。 A
B
D
C
在三角形中,连接一个顶点与它对边 中点的线段,叫做三角形的中线。
A
如图,D为BC的中点, 线段AD就是ΔABC的 BC边上的中线。 B
D
C
在三角形中,连接一个顶点与它对边 中点的线段,叫做三角形的中线。
A 如图,三角形ABC的中线 可以画三条,它们交于 一点。 B
例1:
在△ABC中,AD是△ABC的高,AE是△ABC的角平分 线. 已知∠BAC=80°,∠C=40°, 求∠DAE.
A
B
40°
DE
C
如图,已知:△ABC中,BD、CE分别是
△ABC的两条角平分线,相交于点O。
O O
(1)当∠ABC=60 ,∠ACB=80 时,求∠BOC的度数
O
A E O D C
1.1(2) 认识三角形
1、什么是角平分线? 2、如何画一个角的平分线? 所用的工具是什么?
在三角形中,一个内角的角平分线与 它的对边相交,这个角的顶点与交点 之间的线段叫做三角形的角平分线。

浙教版数学八年级上册《1.1认识三角形》说课稿4

浙教版数学八年级上册《1.1认识三角形》说课稿4

浙教版数学八年级上册《1.1 认识三角形》说课稿4一. 教材分析浙教版数学八年级上册《1.1 认识三角形》这一节的内容,是在学生已经学习了平面几何的基本概念和性质的基础上进行讲解的。

通过这一节的内容,希望学生能够掌握三角形的定义、分类和性质,以及三角形的判定方法。

在教材的安排上,首先通过引入实际生活中的三角形实例,让学生感受三角形在实际生活中的应用,激发学生的学习兴趣。

然后通过讲解和探究,让学生掌握三角形的定义、分类和性质。

最后,通过练习和应用,让学生能够运用所学的知识解决实际问题。

二. 学情分析在教学之前,我观察到学生对平面几何的基本概念和性质有一定的了解,但部分学生在数学思维和逻辑推理方面还有待提高。

因此,在教学过程中,我需要关注这部分学生的学习情况,通过引导和帮助,让他们能够更好地理解和掌握三角形的相关知识。

同时,我发现学生对于实际生活中的几何问题比较感兴趣,因此在教学过程中,我会结合生活中的实例,激发学生的学习兴趣,提高他们的学习积极性。

三. 说教学目标根据教材和学情分析,我设定了以下教学目标:1.知识与技能目标:让学生掌握三角形的定义、分类和性质,以及三角形的判定方法。

2.过程与方法目标:通过观察、操作、探究等活动,培养学生的观察能力、操作能力和探究能力。

3.情感态度与价值观目标:激发学生学习三角形的兴趣,培养他们积极思考、合作交流的学习态度。

四. 说教学重难点根据教材和学情分析,我确定了以下教学重难点:1.重点:三角形的定义、分类和性质,三角形的判定方法。

2.难点:三角形性质的证明和应用,三角形判定方法的灵活运用。

五. 说教学方法与手段为了实现教学目标,突破重难点,我采用了以下教学方法与手段:1.情境教学法:通过引入实际生活中的三角形实例,激发学生的学习兴趣。

2.启发式教学法:在讲解和探究过程中,引导学生主动思考、提问,提高他们的数学思维和逻辑推理能力。

3.合作学习法:学生进行小组讨论和合作交流,培养他们的团队协作能力。

初中数学精品试题:认识三角形(二)

初中数学精品试题:认识三角形(二)

C B A (第6题) 1.1 认识三角形(二)A 组1.如图,CD ⊥AB ,则图中直角三角形有( )A .1个B .2个C .3个D .4个2.如图,在△ABC 中,∠B=60°,AD 是△ABC 的角平分线,∠DAC=31°,则∠C 的度数为( )A .58°B .60°C .62°D .92°3.在△ABC 中,D 为BC 上的一点,且S △ABD =S △ACD ,则AD 为△ABC 的( )A .高B .角平分线C .中线D .不能确定4.如图,在△ABC 中,BO ,CO 分别是∠ABC ,∠ACB 的平分线,∠A =50°,则∠BOC 等于( )A .110°B .115°C .120°D .130°5.下面四个图形中,线段BE 是△ABC 的高的图是( )A .B .C .D .6.如图,在△ABC 中,AB =5厘米,BC =3厘米,BM 为中线,则△ABM 与 △BCM 的周长之差是 厘米.★7.如图,在△ABC 中,点D 、E 、F 分别为BC 、AD 、CE 的中点.若S △BFC =1,则S △ABC = . 8.如图, 在△ABC 中, 请作图:①画出△ABC 的一条角平分线CD ;②画出△ABC 中AC 边上的中线BE ;③画出△ABC 中BC 边上的高AF .9.如图,在△ABC 中,AB=AC ,AC 边上的中线BD 将这个三角形的周长分为15cm 和6cm 两部分,求三角形三边的长。

(第1题) (第2题) (第4题) (第7题)B 组★10.如图,在△ABC 中,AB =AC ,P 是BC 边上任意一点,PF ⊥AB 于 点F ,PE ⊥AC 于点E ,BD 为△ABC 的高线,BD =8,求PF +PE 的值.11.如图,在△ABC 中,BO 、CO 分别是∠ABC 、∠ACB 的平分线.(1)若∠ABC=60°,∠ACB=50°,求∠BOC 的度数.(2)若∠A=60°,求∠BOC 的度数.(3)若∠A =α,求∠BOC 的度数(用α的代数式表示).★12.如图,在△ABC 中,E 为BC 上一点,EC =2BE ,D 为AC 的中点. 设△ABC ,△ADF ,△BEF 的面积分别为,,,BEF ADF ABC S S S △△△若12=ABC S △,则BEF ADF S S △△-=_______.★13.如图,在△ABC 中,AD 是BC 边上的高线,AE 是△ABC 的角平分线.若α=∠B ,)(βαβ<=∠C ,用含βα,的代数式表示∠EAD .2。

八年级上册数学 1.1认识三角形(一) 基础训练(含答案)

八年级上册数学 1.1认识三角形(一) 基础训练(含答案)

第1章三角形的初步知识1.1 认识三角形(一)(第1题)1.如图,图中共有__6__个三角形,以AD为边的三角形有△ABD,△ADE,△ADC,以E为顶点的三角形有△ABE,△ADE,△AEC,∠ADB是△ABD的内角,△ADE的三个内角分别是∠ADE,∠AED,∠DAE.2.三角形的两边长分别是2和3,若第三边的长是奇数,则第三边的长为__3__;若第三边的长是偶数,则三角形的周长为7或9.3.在现实生活中,有些人为抄近路而践踏了草坪,这是一种不文明的现象,我们应予以制止或劝解.请你用数学知识解释这一现象的原因:两点之间线段最短.4.(1)已知在△ABC中,AB=6,BC=4,则边AC的长可能是(B)A. 11B. 5C. 2D. 1(2)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为(B)A. 9B. 12C. 7或9D. 9或125.在三个内角互不相等的△ABC中,最小的内角为∠A,则在下列四个度数中,∠A最大可取(B)A. 30°B. 59°C. 60°D. 89°6.若一个三角形三个内角的度数之比是2∶3∶7,则这个三角形一定是(C)A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定(第7题)7.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围.(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【解】(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°.又∵∠A=55°,∴∠C=180°-∠AEC-∠A=70°.8.若a,b,c是三角形的三边长,则化简|a-b-c|+|a+c-b|-|c-a-b|=(B)A. 3a-b-cB. -a-b+3cC. a+b+cD. a-3b+c【解】∵a+b>c,b+c>a,a+c>b,∴原式=b+c-a+a+c-b-a-b+c=-a -b+3c.9.三角形纸片上有100个点,连同三角形的顶点共103个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,则这样的三角形共有201个.【解】从最大的三角形纸片计数,任意选中纸片内一点,沿顶点与该点连线剪开,可以得到3个小三角形,即增加了2个小三角形.同理,再从中任取一点,剪开,也是增加了2个三角形,因此每多取一个点,三角形就增加2个,所以共有100×2+1=201(个)三角形.10.各边长都是整数,且最大边长为8的三角形共有多少个?【解】∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8.故各边长都是整数,且最大边长为8的三角形共有20个.(第11题)11.在农村电网改造中,四个自然村分别位于如图所示的A,B,C,D处,现计划安装一台变压器,使到四个自然村的输电线路的总长最短,那么这个变压器应安装在AC,BD 的交点E处,你知道这是为什么吗?【解】如图,另任取一点E′(异于点E),分别连结AE′,BE′,CE′,DE′.在△BDE′中,DE′+BE′>D B.在△ACE′中,AE′+CE′>A C.∴AE′+BE′+CE′+DE′>AC+BD,即AE+BE+CE+DE最短.12.观察并探求下列各问题:(1)如图①,在△ABC中,P为边BC上一点,则BP+PC__<__AB+AC(填“>”“<”或“=”).(2)将(1)中的点P移到△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.(3)将(2)中的点P变为两个点P1,P2,得图③,试观察比较四边形BP1P2C的周长与△ABC 的周长的大小,并说明理由.(第12题)【解】(1)BP+PC<AB+A C.理由:三角形两边的和大于第三边.(2)△BPC的周长<△ABC的周长.理由如下:如解图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM,在△PMC中,PC<PM+MC,两式相加,得BP+PC<AB+AC,∴BP+PC+BC<AB+AC+BC,即△BPC的周长<△ABC的周长.(第12题解)(3)四边形BP1P2C的周长<△ABC的周长.理由如下:如解图②,分别延长BP1,CP2交于点M.由(2)知,BM+CM<AB+A C.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC,∴BP1+P1P2+P2C+BC<AB+AC+BC,即四边形BP1P2C的周长<△ABC的周长.。

1.1认识三角形复习课

1.1认识三角形复习课
变式:将点D改为BC的三等分点, 且DC=2BD,求原题的结论
等高的两个三角形,面积之比等 于底之比
• 2、如图,AD、BE分别是△ABC的中线, 连结BE 交AD于点F,若S△ABC=12, 求△AEF 和四边形CDEF的面积
1 变式:将中点E改为AE = AC呢? 3
五、有关计算
• 1、已知,如图,在△ABC中AD平分 ∠BAC,DE,DF分别是△ADC的高和角平分线 ( ∠ C>∠DAC) ,若∠B=80°,∠C=40°。 • (1)求∠DAE的度数 • (2)试猜想∠EDF、∠C和∠DAC • 有何关系?并说明理由
• 2、如图、已知∠BDC=100°,∠C=40°, ∠B=25°,则∠A= 。
• 3、如图,∠A=40°,∠BDC=120°,BD1和 CD1分别平分∠ABD和∠ACD, 求∠D1的度数
变式:继续作∠ABD1和 ∠ACD1的角平分线交予D2, 求∠D2的度数
两角之和(差)等于第三个角
两角之和 大于 第三个角
直角三角形
锐角三角形 钝角三角形
两角之和 小于 第三个角
三、三边关系
• 1、若三角形两边长为2,3.则第三边c的取值范围 是 。 • 2、若三角形两边长为3,4,第三边为偶数,则三 角形的周长是 。 • 3、若三角形三边分别为5,x,12,且周长为偶 数,则x= 。 • 4、若一个三角形有两边长相等,一边是4,一边 是8,则三角形的周长为 。
四、面积问题
• 1、AD是△ABC的中线 • S△ABD= S△ADC
1 2、若 ABC中,BD DC, 2 1 1 S△ABD S△ADC = S底之比
• 1、如图,AD是△ABC的中线, 点E是AD的中点,连结BE并延长 交AC于点F,若S△ABC=12, 求△ABE、△AEF 和四边形CDEF的面积

(完整版)解三角形1.1正弦定理和余弦定理知识点总结

(完整版)解三角形1.1正弦定理和余弦定理知识点总结

第一章 解三角形1.1正弦定理和余弦定理一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba 。

二、正弦定理(一)知识与工具:正弦定理:在△ABC 中, R Cc B b A a 2sin sin sin ===。

(外接圆圆半径) 在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角。

注明:正弦定理的作用是进行三角形中的边角互化,在变形中,注意三角形中其他条件的应用:(1)三内角和为180°(2)两边之和大于第三边,两边之差小于第三边(3)面积公式:S=21absinC=Rabc 4=2R 2sinAsinBsinC 111sin ()222a S ah ab C r a bc ===++(其中r 为三角形内切圆半径) )(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)(4)三角函数的恒等变形。

(5) sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)sin(A+B)=sinC ,cos(A+B)=-cosC ,sin 2B A +=cos 2C ,cos 2B A +=sin 2C 2sin ,2sin ,2sin a R A b R B c R C ===(6)(边化角公式)sin ,sin ,sin 222a b c A B C R R R===(7)(角化边公式) ::sin :sin :sin a b c A B C =(8)sin sin sin (9),,sin sin sin a A a A b B b B c C c C === (10)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)(二)题型 使用正弦定理解三角形共有三种题型题型1 利用正弦定理公式原型解三角形题型2 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化。

鲁教版数学七年级上册1.1《认识三角形

鲁教版数学七年级上册1.1《认识三角形

想一想
A
1.这些三角形有什么共同的特点?
三角形有三条边、三个内角 、三
F
G
个顶点、三条线段首尾顺次相接.
2.什么叫做三角形?
B
由不在同一直线上的三条线段首尾
DE
C
顺次相接所组成的图形叫做三角形.
3.如何表示三角形?
A
三角形可用符号“△”表示,如右

C
B 4.三三角角形形的记边作可:以△怎AB么C表示?
如图三角形中三边可表示为AB、BC、AC,顶点A所对的边BC
也可表示为a,顶点B所对的边AC表示为b,顶点C所对的边AB表
示c
注意:
1.表示三角形时,字母没有先后顺序;
2.如下 图,我们把BC(或a)叫做 A的对 边,把AB(或c)、AC(或b) 分别叫 做 A的邻边.
A
c
b
a B
C
议一议
如果我说三角形有三 A
感悟文本
• 1.作者说“在儿童时期,人们的差异并不大”而 民间说“三岁看大,七岁看老”,这是怎么一回事 呢?
• 2.作者认为人生最重要的是哪个时期?为什么? • 3.作者在文中所要表明的观点是什么? • 4.作者多次强调自己并不企求每个人都成大业,
只要能尽力燃烧,请你在下面写出一例。
优秀典型
• 百姓满意的好医生——王争艳 汉口金桥社区卫生中心的普通社区医生,从医25年,
• 人生---人生是一片宁静的湖水,偶尔泛起阵阵涟漪; 人生是一缕阳光,照亮每一寸土地;人生是一方广袤 的土地,包容着世间的一切。
• 幸福---幸福是老人眉头上的笑纹,幸福是儿女成绩单 上的满分,幸福是那金灿灿的军功章,幸福是那红彤 彤的大红花。
排比句

1.1认识三角形(2)

1.1认识三角形(2)

问题导学:
直角三角形可以用符号 “Rt△”表示,直角三角形 ABC可以写成“Rt△ABC”. 把直角所对的边称为直角三 角形的斜边, 夹直角的两条 边称为直角边.
C
直 角 边A
直角边 B
直角三角形有许多性质,你能发现它的两个 锐角之间有什么关系吗?
直角三角形的两个锐角互余.
自学检测:
如图,在△ABC中,D为BC上的一点, ∠ADB=90°,∠1=∠B。若按角分类,△ABC 是什么形状的三角形?为什么?
A 2
1
B
D
C
巩固练习: 认一认:将下面的这些三角形进行分类


锐角三角形
直角三角形
钝角三角形
③⑤
① ④ ⑥
②⑦
巩固练习:
1、在△ABC中∠A:∠B:∠C=1:2:3,则 △ABC是( B ) A、锐角三角形 B、直角三角形 C、钝角三角形 D、不能确定
2、判断: (1)一个三角形的三个内角可以都小于 60°; ( × ) (2)一个三角形最多只能有一个内角是钝 角或直角; ( √ )
1.1认识三角形(2)
温故互查:(二人小组完成)
1、三角形的定义
? ?。
由不在同一直线上的三条线段,首尾顺次相接 所组成的图形叫做三角形.
2、三角形的三个内角有什么关系
三角形三个内角的和等于180
在△ABC中,∠A+∠B+∠C=1800
问题导学:
(1)下图中小明所拿三角形被遮住的两个内 角是什么角?小颖的呢?试着说明理由.
∠A+∠B+∠C+∠D+∠E+∠F= A B C H D G F 360 度
M
E

1.1认识三角形练习

1.1认识三角形练习

1.1 认识三角形(二)【知识提要】1.三角形三内角和为180°.2.三角形的外角性质:(1)三角形的一个外角等于和它不相邻的两个内角和;(2)三角形的三外角和为360°.3.三角形按角分类:三角形⎧⎪⎧⎨⎨⎪⎩⎩直角三角形锐角三角形斜三角形钝角三角形【学法指导】1.通过折叠,动手操作理解三角形三内角和为180°.2.运用三角形外角性质可以沟通三角形内、外角之间的关系.范例积累【例1】在△ABC中,∠A是∠B的2倍,∠C比∠A与∠B的和大12°,•求这个三角形的三个内角的度数..【例2】如图,求∠A+∠B+∠C+∠D+∠E的度数.【例3】如图,试说明∠A+∠ABC+∠C=∠ADC.基础训练1.如图1,在△ABC中,与△ACB相邻的一个外角等于110°,∠A=40°,•则∠B的度数是()A.30° B.50° C.60° D.70°(1) (2) (3) (4)2.在△ABC中,∠A:∠B:∠C=1:2:3,则△ABC是()A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定形状3.如图2,∠1、∠2、∠3是△ABC的外角,若∠1:∠2:∠3=4:3:2,则∠ABC等于()(注意:三角形三内角和为180°,三外角和为360°)A.60° B.80° C.90° D.100°4.已知如图3,∠A、∠B、∠C、∠D、∠E五个角的和的度数是()(注意:五角星之和为180°)A.100° B.180° C.360° D.540°5.已知在△ABC中,∠A+∠B=107°,则∠C的外角度数为___.6.如图4,用“<”连结∠A、∠1、∠2:_ _.7.已知在△ABC中,若∠A比∠B大20°,外角∠ACD=96°,则∠A=•_ _,•∠B=__.8.如图,在四边形ABCD中,∠B=70°,∠C=50•°,•在顶点D•的一个外角为100°,则在顶点A的一个外角∠x=__ .(注意:四边形角度之和为360°)9.如图,试求∠A+∠B+∠C+∠D+∠E+∠F的度数.10.如图,已知∠B=∠ACB=75°,∠BDE=3∠E,试求∠ADE的值.提高训练11.如图,△ABC中,D为△ABC内一点,已知∠BDC=100°,∠1=30•°,•∠2=20°,求∠A的度数.12.如图:(1)图甲是一个五角星,求∠A+∠B+∠C+∠D+∠E 的度数;(2)图甲中的点A 向下移到BE 上(如图乙),五个角的和有无变化?说说你的理由;(3)图乙中的点C 向上移到BD 上(如图丙),五个角的和有无变化?说说你的理由.应用拓展13.如图,△ABC 内有三个点D 、E 、F ,分别以A 、B 、C、D 、E 、F 这六个点为顶点画三角形.如果每个三角形的顶点都不在另一个三角形内部,那么这些三角形的所有的内角之和为( )A .360°B .900°C .1260°D .1440°14.设A 、B 、C 、D 为平面上的任意四点,如果其中任何三点不在一条直线上,•则△ABC 、△ABD 、△ACD 、△BCD 中至少有一个三角形的某个内角满足( )A .不超过15°B .不超过30°C .不超过45°D .都不对。

三角形的题

三角形的题

三角形的题目录一、三角形的基本概念1.1 三角形的定义1.2 三角形的性质1.3 三角形的分类二、三角形的周长和面积公式2.1 周长公式2.2 面积公式三、特殊的三角形3.1 等边三角形3.2 等腰三角形3.3 直角三角形四、解决常见的三角形问题4.1 判断是否为直角三角形4.2 求解未知边长或未知角度大小4.3 求解高度和中线等问题五、练习题与答案解析一、三角形的基本概念1.1 三角形的定义在平面直角坐标系内,如果存在由任意两条线段所组成的一个闭合图形,并且这个闭合图形不在同一条直线上,那么这个图形就是一个三角形。

1.2 三角形的性质(1)任意两边之和大于第三边;(2)任意两边之差小于第三边;(3)任意两个内部夹着一个顶点的夹角之和等于180度。

1.3 三角形的分类按照边长分类:(1)等边三角形:三边相等;(2)等腰三角形:两边相等;(3)普通三角形:三边都不相等。

按照角度分类:(1)锐角三角形:三个内角都小于90度;(2)直角三角形:一个内角为90度;(3)钝角三角形:一个内角大于90度。

二、三角形的周长和面积公式2.1 周长公式任意一个三角形的周长等于其三条边长之和,即C=a+b+c。

2.2 面积公式任意一个三角形的面积可以用海伦公式或底高公式来计算。

海伦公式:S=sqrt[p(p-a)(p-b)(p-c)]其中,p=(a+b+c)/2。

底高公式:S=1/2bh其中,b表示底边长,h表示对应的高线段长度。

三、特殊的三角形3.1 等边三角形在等边三角形中,每个内部夹着顶点的夹角都是60度。

此外,等边三角形还有以下性质:(1)每个内部夹着顶点的中线长度相等;(2)每个内部夹着顶点的高线段长度相等;(3)外心、重心、垂心和质心都重合于三角形的重心。

3.2 等腰三角形在等腰三角形中,两个底角相等。

此外,等腰三角形还有以下性质:(1)等腰三角形的高线段、中线和边长之间存在一定的关系;(2)如果一个三角形的两个内角相等,则它是一个等腰三角形。

三角形的初步认识及全等证明

三角形的初步认识及全等证明
A、3B、4或5C、6或7D、8
4、如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条(图中的AB,CD两根木条),这样做是运用了三角形的( )
A、全等性B、灵活性C、稳定性D、对称性
5、下列图形中具有稳定性的是( )
A、菱形B、钝角三角形C、长方形D、正方形
6、(2010•荆门)给出以下判断:(1)线段的中点是线段的重心
14、锐角三角形的最大内角α的范围和钝角三角形的最大内角β的范围分别是( )
A、0°<α<90°,90°<β<180°B、60°≤α<90°,90°<β<180°
C、0°<α<90°,90°<β<150°D、0°<α≤60°,90°<β<180°
15、△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,则∠A的度数为( )
10、(2006•威海)如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2006,最少经过_________次操作.
A、30°B、45°C、60°D、以上都有可能
填空题
1、三角形具有稳定性,所以要使六边形木架不变形,至少要钉上_________根木条.
2、已知点G是△ABC的重心,AD是中线,AG=6,那么DG=_________.
3、观察下面两图形的形成过程,若AD=3,DB=4,则△ADE和△BDF面积的和为_________.

烟台七年级数学第一章-三角形全等

烟台七年级数学第一章-三角形全等

第一章 三角形1.1 认识三角形知识点1:三角形及其有关概念1、三角形:由不在同一条直线上的三个点首位顺次相接组成的图形叫做三角形。

例1:如图所示,图中共有多少个三角形?请写出这些三角形并指出所有以E 为顶 点的三角形。

知识点2:三角形的内角和定理三角形三个内角的和等于180°。

几何语言:在△ABC 中,∠A+∠B+∠C=180° 题型一:利用三角形内角和求角度例1:在△ABC 中,若∠A=95°,∠B=40°,则∠C=_____________.例2:如图,在△ABC 中,∠ABC=∠ACB ,点P 为△ABC 内的一点,且∠PBC=∠PCA ,∠PBC=110°,则∠A 的大小为()A 40°B 50°C 60°D 70°跟踪练习:1:在△ABC 中,∠B=∠A+10°,∠C=∠B+10°,求△ABC 各内角的度数。

2:如图,EF//BC ,AC 平分∠BAF ,∠B=80°,求∠C 的度数。

A3:如图,已知∠B=40°,则∠BEF+∠BFE+∠A+∠C= ______________.知识点3:三角形分类题型一:按角判断三角形形状例1:若一个三角形的三个内角度数比为2:3:4,则这个三角形是()A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形跟踪练习:1:三角形三个内角满足∠A=21∠B=31∠C ,则这个三角形是() A 锐角三角形 B 直角三角形 C 钝角三角形 D 等腰三角形2:在△ABC 中,∠A -∠B = ∠C ,则△ABC 是()A 锐角三角形B 直角三角形C 钝角三角形D 无法确定知识点4:三角形按边分类及三边关系1、三角形按边分类2、三角形三边关系:任意两边之和小于第三边,任意两边之差大于第三边;注:判断技巧:两条最短边之和大于第三边;最长边与最短边之差小于第三边。

浙教版数学八年级上册1.1《认识三角形》教案1

浙教版数学八年级上册1.1《认识三角形》教案1

浙教版数学八年级上册1.1《认识三角形》教案1一. 教材分析《认识三角形》是浙教版数学八年级上册第一章的第一节内容。

本节内容主要让学生了解三角形的定义、性质和分类,掌握三角形的基本概念,为后续学习三角形的相关知识打下基础。

教材通过生动的实例和丰富的图示,引导学生探索三角形的性质,培养学生的观察能力、思考能力和动手能力。

二. 学情分析八年级的学生已经学习了平面几何的基本概念和性质,对图形的认知有一定的基础。

但是,对于三角形的定义和性质,学生可能还存在模糊的认识,需要通过实例和操作来进一步巩固。

此外,学生对于图形的分类和判定可能还不够熟练,需要在教学中加强练习和引导。

三. 教学目标1.了解三角形的定义、性质和分类,掌握三角形的基本概念。

2.培养学生的观察能力、思考能力和动手能力。

3.提高学生对于图形的认知水平,培养学生解决问题的能力。

四. 教学重难点1.重点:三角形的定义、性质和分类。

2.难点:三角形性质的证明和应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索三角形的性质。

2.运用实例和图示,直观地展示三角形的特征,帮助学生理解和记忆。

3.通过小组讨论和动手操作,培养学生的合作意识和实践能力。

4.运用归纳总结的方法,引导学生形成系统的知识体系。

六. 教学准备1.准备相关的实例和图示,以便在教学中进行展示和解释。

2.准备一些三角形实体模型,供学生观察和操作。

3.准备一些练习题,以便在教学中进行巩固和拓展。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾平面几何的基本概念和性质,为新课的学习做好铺垫。

例如:“你们已经学习了哪些平面图形的性质?它们之间有什么联系?”呈现(10分钟)教师通过展示三角形实例和图示,让学生观察和思考三角形的特征。

例如,展示一些生活中的三角形实例,如自行车三角架、三角尺等,引导学生关注三角形的形状和作用。

操练(10分钟)教师提出一些关于三角形的问题,让学生进行思考和讨论。

1.1 认识三角形第2课时 三角形的角平分线、中线与高线 浙教版数学八年级上册课件

1.1 认识三角形第2课时 三角形的角平分线、中线与高线 浙教版数学八年级上册课件
问题1:如图,若OC是∠AOB的平分线,你能得到什么结论? A
你能用同样的方法画
C
出任意一个三角形的
O
B
一个内角的平分线吗?
新课讲解
问题2:画出△ABC中∠A的平分线,试说明什么是三角
形的角平分线?
在三角形中,一个内角的角平分
线与它的对边相交,这个角的顶
点与交点之间的线段叫做三角形
的角平分线.
B
A C
B
A DC
新课讲解
问题2:由三角形的高你能得到什么结论?
∠ADB=∠ADC=90°
高的叙述方法:
A
①AD是△ABC的高;
②AD⊥BC,垂足为D;
③点D在BC上,且
∠BDC=∠CDA=90°
B
D
C
合作学习
用三角尺分别作如下锐角三角形,直角三角形和钝角三角 形的各边上的高.
观察你所作的图形,比较三个三角形中三条高的 位置,与三角形之间有什么关系?
1.1 认识三角形
第2课时 三角形的角平分线、中线与高线
学习目标
1.了解三角形的高线、中线、角平分线的概念. 2.会利用量角器、刻度尺画三角形高线、中线、角平分线. 3.会利用三角形的高线、中线、角平分线的概念,解决有 关角度、面积计算等问题.
情景导入
你还记得“过 一点画已知直 线的垂线”吗?
新课导入
课下练习
数学趣味题:要栽7棵树,请你来帮忙,每行栽3棵, 恰好成6行.(提示:排成三角形形状)
感谢观看!
想一想 三角形的角平分线与角的角平分线相同吗? 相同点:都是将一个角分成了两个相等的角. 不同点:前者是线段,后者是射线.
合画作一探画究 观察锐角三角形、直角三角形、钝角三角形的三条角平分 线,你又发现了什么规律?

初中三角形知识点整理

初中三角形知识点整理

初中三角形知识点整理
目录:
1. 三角形的定义
1.1 三角形的构成要素
1.1.1 三角形的三条边
1.1.2 三角形的三个顶点
1.1.3 三角形的三个内角
1.2 三角形的分类
1.2.1 根据边长分类
1.2.2 根据角度分类
1.2.3 根据边和角的关系分类
1.3 三角形的性质
1.3.1 三角形内角和
1.3.2 三角形外角和
1.3.3 三角形的周长
2. 三角形的特殊情况
2.1 等边三角形
2.2 等腰三角形
2.3 直角三角形
2.4 斜角三角形
3. 三角形的相关定理
3.1 直角三角形的勾股定理
3.2 等腰三角形的性质
3.3 等边三角形的性质
4. 三角形的周长和面积计算
4.1 周长的计算方法
4.2 面积的计算方法
5. 三角形的应用
5.1 三角形在建筑中的应用
5.2 三角形在工程中的应用
5.3 三角形在日常生活中的应用
6. 三角形的综合题型解析
6.1 三角形的基础题型
6.2 三角形的综合题型
7. 三角形的拓展知识
7.1 三角形的外接圆和内切圆
7.2 钝角三角形的性质
7.3 锐角三角形的性质
8. 总结讨论
(注:具体内容请使用文字描述,并不得出现任何数字和符号。

)。

1.1认识三角形(知识清单+经典例题+夯实基础+提优训练+中考链接)

1.1认识三角形(知识清单+经典例题+夯实基础+提优训练+中考链接)

A.至少有一个直角
B. 至少有一个钝角 C. 至多有两个锐角
D.至少有两个锐角
3.如图,在△ABE 中,∠C=90°,CD⊥AB,垂足为点 D,有如下结论:①图中只有两个直角三角形;②∠1=∠2;③
∠1=∠B;④∠A 与∠B 互余.其中正确的个数为( )
A.1
B.2
C.3
D.4
4.能将一个三角形分成面积相等两部分的线是( )
三角形.
8.现有长度分别为 3cm,5cm,7cm,9cm 的木棒,从中任取三根,制成三角形支架的个数为
.
9.若三角形的三条高所在的直线的交点不在外部,则这样的三角形是
三角形.
10.将一副三角板的直角顶点 A 如图叠放在一起,则∠DAC+∠BAE=
°.
11.如图,在△ABC 中,作出 BC 边上的高线 AD(要求:标出垂足符号,写出垂足字母);作出∠B 的平分线 BE;作
B.三角形三条边上高线的交点
C.三角形三条边垂直平分线的交点 D.三角形三条内角平行线的交点
9.(2018 浙江萧山)若线段 AM、AN 分别是△ABC 的 BC 边上的高线和中线,则( )
A. AM>AN B.AM≥AN
C.AM<AN
D.AM≤AN
参考答案: 例 1 12 例 2 C 例 3 △ABE 的周长比△ACE 的周长大 4cm. △ABE 的面积等于△ACE 的面积. 例 4 ∠BOC=128°. ∠BOC=128°. BOC = 90 + 1 BAC 2
∴∠ADC=90°,
∴∠CAD=14°.
(2)∵CE 是∠BCA 的平分线, ∴ ACE = 1 ACB = 38 . 2 ∴ AEC =180 − BAC − ACE

2024年浙教版八上数学初一升初二预习——1.1认识三角形

2024年浙教版八上数学初一升初二预习——1.1认识三角形

形的周长为( D )
如果把“4”改
A.14
B.16
成“2”,其他 C.1条0件不变D,.那14或16
么等腰三角形
知识点:等腰三角形的概念. 的周长为__1_4__.
三角形两边的和大于第三边.
思想方法:分类讨论思想.
拓展提升 6.已知:a、b、c为三角形的三边长,化简:|b+c-a|
+|b-c-a|-|c-a-b|-|a-b+c|. 解:∵a、b、c为三角形三边的长,
条较短线段的和是否大于第三条线段即可
例 有两根长度分别为5 cm和8 cm的木棒,用长度为2 cm的
木棒与它们能组成三角形吗?为什么?长度为13 cm的木棒 呢?
解:∵5+2<8, ∴长度为2 cm的木棒与它们不能组成三角形. ∵5+8=13 , ∴长度为13 cm的木棒与它们也不能组成三角形.
初中数学
接所组成的图形叫做三角形.
A顶点
如图,顶点A所对的边BC用 a表示
c
∠B所对的边是__A__C___
AB边 所对的角是__∠__C___
B 顶点
a
b
C 顶点
初中数学
初中数学
三角形的有关概念
顶点: 点A 点B 点C
三边: BC
AC
AB
a
b
c
内角: ∠A ∠ B ∠ C
A
c
b
B
a
C
初中数学
三角形的有关概念
例 用一条长为18 cm的细绳围成一个等腰三角形.
(1)如果腰长是底边长的2倍,那么各边长是多少? (2)能围成有一边长为4 cm的等腰三角形吗?为什么? 分析:
等腰三角形的周长=18 cm,即2倍的腰长+底边长=18 cm. (1)腰长是底边长的2倍,可设底边长为x cm,列方程可求解. (2)可能腰长为4 cm, 也可能底边长为4 cm,需分类讨论.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①2cm,5cm,6cm
②4cm,4cm,9cm
师小结:也就是当两条较短边之和大于第三边,才能围成三角形。如果老师给你这样的9根小棒:3根3cm、3根5cm和3根8cm的小棒,要求摆出一个等边三角形和两个等腰三角形。
(2)想一想你准备先摆哪一个三角形?怎样选小棒?
预设①预设学生回答:我选3根一样的围成一个等边三角形,再从剩下的里面选两根一样的围等腰三角形。得到:等边:3 3 3等腰:5 5 8或者8 8 5
教学重点:复习三角形单元相关基础知识,初步掌握单元复习的基本方法。
教学难点:通过复习活动,提高学生上复习课的学习兴趣,培养学生积极的学习态度,并使学生获得成功的情感体验。
教具、学具:PPT、导学案、黑板、三角板
教学内容
教学过程
一、导入课题,回顾已学知识。
师:前几节课我们学习了三角形的有关知识(板书三角形),谁来说说什么是三角形?(三角形是由三条线段围成的图形)你知道三角形有哪些特征?
4、出示第四题
师:有了上面的知识,下面这些三角形你能判断各是什么三角形吗?在小组里说说它们各是什么三角形,按什么分类?学生活动。
交流:预设:生回答它们各是锐角三角形、直角三角形、钝角三角形、钝角三角形、直角三角形、锐角三角形。你是按什么分的?
师提醒:这里还有一些特殊的三角形,你能找出吗?(学生找)它们有什么关系?(等边三角形是特殊的等腰三角形)
③第2块玻璃呢?一学生口答第三个教师60°,所以是锐角三角形。除了是锐角三角形,它还是我们学过的什么三角形呢?等边三角形(等边三角形的三条边都相等,三个角都是60°。)师:所以等边三角形一定是锐角三角形。
师小结:在一个三角形中如果已知两个角的度数,根据内角和180°,我们可以求出第三个角,进而判断它是什么三角形。
课题
第一章复习
课型
复习
授课班级
七一、七三
授课时间

学目标
1、知识与技能
使学生进一步掌握三角形各部分名称与意义、三角形内角和、三角形分类的有关知识。
2、过程与方法
引导学生开展自主复习,初步掌握复习方法,形成基本复习技能。
3、情感态度价值观
提高复习课学习兴趣,培养积极的学习态度,使学生获得成功的情感体验。
我们已经知道等边三角形一定是锐角三角形,那么等腰三角形呢?我们一起来看一看。(老师手指:等腰三角形可以是钝角三角形,也可以是直角三角形,也可以是锐角三角形)
(二)、综合应用
(1)师:刚才我们主要解决了三角形角的一些实际问题,接下来让我们一起走进三角形边的实际问题。是不是任意三条线段都能围成一个三角形呢?请你来判断一下。
他们拼成的都是什么图形?内角和是360°吗?你是怎么想的?
师小结:由两块三角板拼成的三角形的内角和是360°,是不是所有的四边形的内角和都是360°?五边形、六边形的内角和又是多少?下面我们还要借助三角形来探究。
(2)思考题
①出示一个任意四边形,师:这是一个一般四边形,你能借助三角形知识求出它的内角和吗?同桌先说一说
三、全课总结
师:今天这节课我们主要复习了三角形的有关知识,相信大家对三角形已有了更深的理解。谁来说说你有哪些体会?
师小结:通过今天的学习,老师发现大部分同学能灵活运用解决实际问题,并能积极探索出一些规律。希望大家做个有心人,多发现多思考!
作业设计:
配套练习自我检测
板书设计:
三角形
①两边之和大于第三边
师:还有不同摆法吗?请大家在作业纸上写一写。
交流时你是怎样选小棒?
5 5 5 3 3 8 8 8 3(×)
8 8 8 3 3 5 5 5 3
问:为什么不选边长是5cm摆等边三角形?3 +3=6< 8,不能围成三角形。(教师演示这种情况)明确:判断三条线段是否围成三角形,只要看两较短边之和是否大于第三边。
②第3块玻璃呢?
预设1:因为50°+40°=90°,两个锐角的和是90°,第三个角一定是直角,所以是直角三角形。(师评价:我们知道在直角三角形中,两个锐角的和是90°。看来他已经会学以致用了,真不错,表扬他!)
预设2:因为180°-50°-40°=90°,第三个角一定是直角,所以是直角三角形。(你是根据什么来求的?三角形的内角和是180°,可以求出第三个角,在判断)
1.学生汇报师生共同整理知识点
①三角形有三条边,三个顶点,三个角
②三角形内角和180度;
③两边之和大于第三边。(学生如果想不到,可提示:是不是任意三条线段都可以围成一个三角形呢?)
④具有稳定性;
师:把三角形按角分可以分成:锐角、直角、钝角三角形
我们还学过一些特殊三角形,比如?
师:刚才我们一起把三角形的主要知识进行的梳理,下面我们就用学过的三角形有关知识进行练习。
师小结:如果在一个三角形中有一个角是钝角,它一定是钝角三角形
有一个角是直角,它一定是直角三角形
有一个角是锐角,则无法判断是什么三角形。
3、出示第三题
如果已知两个锐角该怎样判断?我们一起来看下面的题目。(师读题)
①第1块玻璃
生:三角形的内角和是180°。180°-30°-40°=110°,有一个角是钝角的三角形是钝角三角形。请大家来看看。
第三幅图:生说这个锐角三角形。师问:你是怎么知道的?生答:有一个角是锐角的三角形是锐角三角形。
师:题目还要求我们画出每个三角形底边上的高,你知道什么是三角形的高吗?(一生说:从三角形的一个顶点到对边所作的垂直线段叫做高)请大家在书上画一画。
师:谁来说说你是怎么画的?
生1:我是先用三角板的一条直角边和底重合,另一条直角边通过顶点,画一条虚线,最后标上直角符号。
师:我们一起来看一看(课件依次出示)问:你也是这样画的吗?画对的请举手。
师:如果以直角三角形中的一条直角边作为底,你能找出它的高吗?(课件出示)师指出:也就是直角三角形的两条直角边互为底和高。如果我以这条边为底,是从哪个顶点画高?(师指锐角三角形说,让学生指一指)如果我以这条边为底(指另一条边),是从哪个顶点画高?(师指锐角三角形说,让学生指一指)那么任意一个三角形的高都有几条?(3条)我们在画高时一定要注意和底边相对应。(老师演示)
二、巩固训练,拓展提升认识。
①基础训练
(一)、(PPT)出示第1题要求:判断下面各是什么三角形?
师:你知道它们各是什么三角形吗?说说你是怎样判断的?
预设生1:第一幅图:生说这个钝角三角形。师问:你是怎么知道的?生答:有一个角是钝角的三角形是钝角三角形。
第二幅图:生说这个直角三角形。师问:你是怎么知道的?如果直接看不出,还可以借助什么?引导学生说用三角尺直角去比最大角。
交流汇报:把四边形分成两个三角形,师边演示边说沿一个顶点把四边形分成2个三角形,它的内角和就是180°。
②五边形、六边形能否也借组三角形来求它们的内角和,请大家先画一画,再算一算,完成表格。(出示表格)
③交流完成表格(竖着填)
④师:观察表格中的数据,你能发现什么规律?(四人小组先说一说)
根据学生回答板书:180°×(边数-2)
②内角和180度
反思
二次备课
二次反思
2、出示第二题(PPT)
师:任意一个三角形大家能判断它是什么三角形?如果给定一个角,你能判断吗?
预设:第一幅图生说是钝角三角形。师追问:为什么?生:有一个钝角的三角形是钝角三角形。
第二幅图生说是直角三角形。师追问:为什么?生:有一个直角的三角形是直角三角形。
第三幅图生说是钝角三角形。师追问:有可能吗?还有不同想法吗?生:是直角三角形。生:是锐角三角形。师:你是怎么想的?生可能回答:在一个三角形中至少有两个锐角,根据一个锐角不能判断是什么三角形。
②图中哪两条路一样长?为什么?一生回答。师追问:你怎么知道的?引导通过计算得到。
(三)、拓展延伸
(1)师:关于三角形的基础知识,大家已经掌握的很不错了,下面让我们一起动动手,进行探索与发现吧!
①拼成内角和是180°(学生展示)
问:他们拼成的都是什么图形?三角形。所以内角和就是180°
②拼成的内角和是360°(学生展示)
师:接下来我们再来看一道实际问题。请一生读题
(3)第6题:彩霞小区有一个由三个大小不同的等边三角形组成的花园,从A地到B地,走哪条路最近?图中哪路最近?为什么?
预设生1:两点之间的所有连线中线段最短。
生2:在上面的三角形中,两条红色路线的和大于绿色路线,所以走绿色最路线近。
相关文档
最新文档