初三数学 函数填空题 专题材料

合集下载

初三数学二次函数所有经典题型

初三数学二次函数所有经典题型

一、填空题:1、函数21(1)21my m x mx +=--+是抛物线,则m = . 2、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 .3、二次函数2y ax =的图象过点(-1,2),则它的解析式是 ,当x 时,y 随x 的增大而增大.4.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到.5.抛物线342++=x x y 在x 轴上截得的线段长度是 .6.抛物线()4222-++=m x x y 的图象经过原点,则=m .7.抛物线m x x y +-=2,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线相同,又过原点,那么a = ,b = ,c = .9、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时,对应x 的取值范围是 .10、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点A (-2,4)和B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 .二、选择题:11.下列各式中,y 是x 的二次函数的是 ( )A .21xy x +=B . 220x y +-=C . 22y ax -=-D .2210x y -+= 12.在同一坐标系中,作22y x =、22y x =-、212y x =的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点13.抛物线122+--=m mx x y 的图象过原点,则m 为( ) A .0B .1C .-1D .±1 14.把二次函数122--=x x y 配方成为( )223x y -=A .2)1(-=x yB . 2)1(2--=x yC .1)1(2++=x yD .2)1(2-+=x y 15.已知原点是抛物线2(1)y m x =+的最高点,则m 的范围是( )A . 1-<mB . 1<mC . 1->mD . 2->m16、函数221y x x =--的图象经过点( )A 、(-1,1)B 、(1 ,1)C 、(0 , 1)D 、(1 , 0 )17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A 、23(1)2y x =--B 、23(1)2y x =+-C 、23(1)2y x =++D 、23(1)2y x =-+ 18、已知h 关于t 的函数关系式212h gt =( g 为正常数,t 为时间)如图,则函数图象为 ( )19、下列四个函数中, 图象的顶点在y 轴上的函数是( )A 、232y x x =-+B 、25y x =-C 、22y x x =-+ D 、244y x x =-+20、已知二次函数2y ax bx c =++,若0a <,0c >,那么它的图象大致是( )21、根据所给条件求抛物线的解析式:(1)、抛物线过点(0,2)、(1,1)、(3,5)(2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0)22.已知二次函数c bx x y ++=2的图像经过A (0,1),B (2,-1)两点.(1)求b 和c 的值; (2)试判断点P (-1,2)是否在此函数图像上?23、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1) 求出S 与x 之间的函数关系式,并确定自变量x 的取值范围;(2) 请你设计一个方案,使获得的设计费最多,并求出这个费用.24、某工厂现有80台机器,每台机器平均每天生产384•产总量,在试生产中发现,•少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出 (225、如图,有一个抛物线的拱形立交桥,•这个桥拱的最大高度为16m ,跨度为40m ,现把它放在如图所示的直角坐标系里,•若要在离跨度中心点M5m 处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?24、如图,抛物线n x x y ++-=52经过点A(1,0),与y 轴交于点B.⑴求抛物线的解析式;⑵P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求P 点坐标.。

初三数学二次函数专题训练(含答案)-

初三数学二次函数专题训练(含答案)-

二次函数专题训练(含答案)一、填空题1.把抛物线221x y -=向左平移2个单位得抛物线 ,接着再向下平移3个 单位,得抛物线 .2.函数x x y +-=22图象的对称轴是 ,最大值是 .3.正方形边长为3,如果边长增加x 面积就增加y ,那么y 与x 之间的函数关系是 .4.二次函数6822-+-=x x y ,通过配方化为k h x a y +-=2)(的形为 . 5.二次函数c ax y +=2(c 不为零),当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则 x 1与x 2的关系是 .6.抛物线c bx ax y ++=2当b=0时,对称轴是 ,当a ,b 同号时,对称轴在y 轴 侧,当a ,b 异号时,对称轴在y 轴 侧.7.抛物线3)1(22-+-=x y 开口 ,对称轴是 ,顶点坐标是 .如果y 随x 的增大而减小,那么x 的取值范围是 .8.若a?0,则函数522-+=ax x y 图象的顶点在第 象限;当x?4a-时,函数值随x 的增大而 .9.二次函数c bx ax y ++=2(a ≠0)当a?0时,图象的开口a?0时,图象的开口 ,顶点坐标是 . 10.抛物线2)(21h x y --=,开口 ,顶点坐标是 ,对称轴是 . 11.二次函数)()(32+-=x y 的图象的顶点坐标是(1,-2).12.已知2)1(312-+=x y ,当x 时,函数值随x 的增大而减小. 13.已知直线12-=x y 与抛物线k x y +=25交点的横坐标为2,则k= ,交点坐标为 . 14.用配方法将二次函数x x y 322+=化成k h x a y +-=2)(的形式是 . 15.如果二次函数m x x y +-=62的最小值是1,那么m 的值是 . 二、选择题:16.在抛物线1322+-=x x y 上的点是( )A.(0,-1)B.⎪⎭⎫ ⎝⎛0,21 C.(-1,5) D.(3,4) 17.直线225-=x y 与抛物线x x y 212-=的交点个数是( ) A.0个 B.1个 C.2个 D.互相重合的两个18.关于抛物线c bx ax y ++=2(a ≠0),下面几点结论中,正确的有( ) ① 当a?0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,当a?0时,情况相反.② 抛物线的最高点或最低点都是指抛物线的顶点.③ 只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④ 一元二次方程02=++c bx ax (a ≠0)的根,就是抛物线c bx ax y ++=2与x 轴交点的横坐标.A.①②③④B.①②③C. ①②D.① 19.二次函数y=(x+1)(x-3),则图象的对称轴是( )A.x=1B.x=-2C.x=3D.x=-320.如果一次函数b ax y +=的图象如图代13-3-12中A 所示,那么二次函+=2ax ybx -3的大致图象是( )图代13-2-1221.若抛物线c bx ax y ++=2的对称轴是,2-=x 则=ba( ) A.2 B.21 C.4 D.41 22.若函数xa y =的图象经过点(1,-2),那么抛物线3)1(2++-+=a x a ax y 的性 质说得全对的是( ) A. 开口向下,对称轴在y 轴右侧,图象与正半y 轴相交 B. 开口向下,对称轴在y 轴左侧,图象与正半y 轴相交 C. 开口向上,对称轴在y 轴左侧,图象与负半y 轴相交 D. 开口向下,对称轴在y 轴右侧,图象与负半y 轴相交23.二次函数c bx x y ++=2中,如果b+c=0,则那时图象经过的点是( ) A.(-1,-1) B.(1,1) C.(1,-1) D.(-1,1)24.函数2ax y =与xay =(a?0)在同一直角坐标系中的大致图象是( )图代13-3-1325.如图代13-3-14,抛物线c bx x y ++=2与y 轴交于A 点,与x 轴正半轴交于B , C 两点,且BC=3,S △ABC =6,则b 的值是( )A.b=5B.b=-5C.b=±5D.b=4图代13-3-1426.二次函数2ax y =(a?0),若要使函数值永远小于零,则自变量x 的取值范围是 ( )A .X 取任何实数 B.x?0 C.x?0 D.x?0或x?027.抛物线4)3(22+-=x y 向左平移1个单位,向下平移两个单位后的解析式为 ( )A.6)4(22+-=x y B.2)4(22+-=x y C.2)2(22+-=x y D.2)3(32+-=x y 28.二次函数229k ykx x y ++=(k?0)图象的顶点在( ) A.y 轴的负半轴上 B.y 轴的正半轴上 C.x 轴的负半轴上 D.x 轴的正半轴上 29.四个函数:xy x y x y 1,1,-=+=-=(x?0),2x y -=(x?0),其中图象经过原 点的函数有( )A.1个B.2个C.3个D.4个30.不论x 为值何,函数c bx ax y ++=2(a ≠0)的值永远小于0的条件是( ) A.a?0,Δ?0 B.a?0,Δ?0C .a?0,Δ?0 D.a?0,Δ?0 三、解答题31.已知二次函数1222+-+=b ax x y 和1)3(22-+-+-=b x a x y 的图象都经过x 轴上两上不同的点M ,N ,求a ,b 的值.32.已知二次函数c bx ax y ++=2的图象经过点A (2,4),顶点的横坐标为21,它 的图象与x 轴交于两点B (x 1,0),C (x 2,0),与y 轴交于点D ,且132221=+x x ,试问:y 轴上是否存在点P ,使得△POB 与△DOC 相似(O 为坐标原点)?若存在,请求出过P ,B 两点直线的解析式,若不存在,请说明理由.33.如图代13-3-15,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A ,B 两点,该 抛物线的对称轴x=-21与x 轴相交于点C ,且∠ABC=90°,求:(1)直线AB 的解析式;(2)抛物线的解析式.图代13-3-15图代13-3-1634.中图代13-3-16,抛物线c x ax y +-=32交x 轴正方向于A ,B 两点,交y 轴正方 向于C 点,过A ,B ,C 三点做⊙D ,若⊙D 与y 轴相切.(1)求a ,c 满足的关系;(2)设∠ACB=α,求tg α;(3)设抛物线顶点为P ,判断直线PA 与⊙O 的位置关系并证明. 35.如图代13-3-17,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示 意图,横断面的地平线为x 轴,横断面的对称轴为y 轴,桥拱的DGD '部分为一段抛物线,顶点C 的高度为8米,AD 和A 'D '是两侧高为5.5米的支柱,OA 和OA '为两个方向的汽车通行区,宽都为15米,线段CD 和C 'D '为两段对称的上桥斜坡,其坡度为1∶4.求(1)桥拱DGD '所在抛物线的解析式及CC '的长;(2)BE 和B 'E '为支撑斜坡的立柱,其高都为4米,相应的AB 和A 'B '为两个方 向的行人及非机动车通行区,试求AB 和A 'B '的宽;(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米,车 载大型设备的顶部与地面的距离均为7米,它能否从OA (或OA ')区域安全通过?请说明理由.图代13-3-1736.已知:抛物线2)4(2+++-=m x m x y 与x 轴交于两点)0,(),0,(b B a A (a?b ).O 为坐标原点,分别以OA ,OB 为直径作⊙O 1和⊙O 2在y 轴的哪一侧?简要说明理由,并指出两圆的位置关系.37.如果抛物线1)1(22++-+-=m x m x y 与x 轴都交于A ,B 两点,且A 点在x 轴 的正半轴上,B 点在x 同的负半轴上,OA 的长是a ,OB 的长是b. (1) 求m 的取值范围;(2) 若a ∶b=3∶1,求m 的值,并写出此时抛物线的解析式;(3) 设(2)中的抛物线与y 轴交于点C ,抛物线的顶点是M ,问:抛物线上是否存 在 点P ,使△PAB 的面积等于△BCM 面积的8倍?若存在,求出P 点的坐标;若不存在,请 说明理由. 38.已知:如图代13-3-18,EB 是⊙O 的直径,且EB=6,在BE 的延长线上取点P ,使EP=EB.A 是EP 上一点,过A 作⊙O 的切线AD ,切点为D ,过D 作DF ⊥AB 于F ,过B 作AD 的垂线BH ,交AD 的延长线于H ,连结ED 和FH.图代13-3-18(1) 若AE=2,求AD 的长.(2) 当点A 在EP 上移动(点A 不与点E 重合)时,①是否总有FHEDAH AD =?试证 明 你的结论;②设ED=x ,BH=y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.39.已知二次函数)294(2)254(222+--+--=m m x m m x y 的图象与x 轴的交点为 A ,B (点A 在点B 右边),与y 轴的交点为C. (1) 若△ABC 为Rt △,求m 的值; (2) 在△ABC 中,若AC=BC ,求∠ACB 的正弦值; (3) 设△ABC 的面积为S ,求当m 为何值时,S 有最小值,并求这个最小值. 40.如图代13-3-19,在直角坐标系中,以AB 为直径的⊙C 交x 轴于A ,交y 轴于B , 满足OA ∶OB=4∶3,以OC 为直径作⊙D ,设⊙D 的半径为2.图代13-3-19(1) 求⊙C 的圆心坐标. (2) 过C 作⊙D 的切线EF 交x 轴于E ,交y 轴于F ,求直线EF 的解析式. (3) 抛物线c bx ax y ++=2(a ≠0)的对称轴过C 点,顶点在⊙C 上,与y 轴交点为B ,求抛物线的解析式. 41.已知直线x y 21=和m x y +-=,二次函数q px x y ++=2图象的顶点为M. (1)若M 恰在直线x y 21=与m x y +-=的交点处,试证明:无论m 取何实数值,二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点. (2)在(1)的条件下,若直线m x y +-=过点D (0,-3),求二次函数q px x y ++=2的表达式,并作出其大致图象.图代13-3-20(3) 在(2)的条件下,若二次函数q px x y ++=2的图象与y 轴交于点C ,与x同的左交点为A ,试在直线x y 21=上求异于M 点P ,使P 在△CMA 的外接圆上. 42.如图代13-3-20,已知抛物线b ax x y ++-=2与x 轴从左至右交于A ,B 两点, 与y 轴交于点C ,且∠BAC=α,∠ABC=β,tg α-tg β=2,∠ACB=90°. (1) 求点C 的坐标; (2) 求抛物线的解析式;(3) 若抛物线的顶点为P ,求四边形ABPC 的面积.参 考 答 案动脑动手 1. 设每件提高x 元(0≤x ≤10),即每件可获利润(2+x )元,则每天可销售(100-10x ) 件,设每天所获利润为y 元,依题意,得)10100)(2(x x y -+=.360)4(10200801022+--=++-=x x x∴当x=4时(0≤x ≤10)所获利润最大,即售出价为14元,每天所赚得最大利润360元. 2.∵43432+⎪⎭⎫⎝⎛+-=x m mx y , ∴当x=0时,y=4. 当0,043432≠=+⎪⎭⎫ ⎝⎛+-m x m mx 时mm m 34,321==. 即抛物线与y 轴的交点为(0,4),与x 轴的交点为A (3,0),⎪⎭⎫⎝⎛0,34m B . (1)当AC=BC 时,94,334-=-=m m . ∴ 4942+-=x y(2)当AC=AB 时,5,4,3===AC OC AO .∴ 5343=-m. ∴ 32,6121-==m m . 当61=m 时,4611612+-=x x y ; 当32-=m 时,432322++-=x x y .(3)当AB=BC 时,22344343⎪⎭⎫⎝⎛+=-m m ,∴ 78-=m .∴ 42144782++-=x x y . 可求抛物线解析式为:43232,461161,494222+--=+-=+-=x x y x x y x y 或42144782++-=x x y .3.(1)∵)62(4)]5([222+---=∆m m)1(122222φ+=++=m m m图代13-3-21 ∴不论m 取何值,抛物线与x 轴必有两个交点. 令y=0,得062)5(222=+++-m x m x 0)3)(2(2=---m x x , ∴ 3,2221+==m x x .∴两交点中必有一个交点是A (2,0).(2)由(1)得另一个交点B 的坐标是(m 2+3,0).12322+=-+=m m d ,∵ m 2+10?0,∴d=m 2+1. (3)①当d=10时,得m 2=9.∴ A (2,0),B (12,0).25)7(241422--=+-=x x x y .该抛物线的对称轴是直线x=7,顶点为(7,-25),∴AB 的中点E (7,0). 过点P 作PM ⊥AB 于点M ,连结PE , 则2222)7(,,521a MEb PM AB PE -====, ∴ 2225)7(=+-b a . ① ∵点PD 在抛物线上,∴ 25)7(2--=a b . ② 解①②联合方程组,得0,121=-=b b .当b=0时,点P 在x 轴上,△ABP 不存在,b=0,舍去.∴b=-1. 注:求b 的值还有其他思路,请读者探觅,写出解答过程. ②△ABP 为锐角三角形时,则-25≤b?-1; △ ABP 为钝角三角形时,则b?-1,且b ≠0. 同步题库一、 填空题 1.3)2(21,)2(2122-+-=+-=x y x y ; 2.81,41=x ; 3.9)3(2-+=x y ; 4. 2)2(22+--=x y ; 5.互为相反数; 6.y 轴,左,右; 7.下,x=-1,(-1,-3),x?-1; 8.四,增大; 9.向上,向下,a bx a b ac a b 2,44,22-=⎪⎪⎭⎫ ⎝⎛--; 10.向下,(h,0),x=h ; 11.-1,-2; 12.x?-1; 13.-17,(2,3); 14.91312-⎪⎭⎫ ⎝⎛+=x y ; 15.10.二、选择题16.B 17.C 18.A 19.A 20.C 21.D 22.B 23.B 24.D 25.B 26.D 27.C 28. C 29.A 30.D 三、解答题31.解法一:依题意,设M (x 1,0),N (x 2,0),且x 1≠x 2,则x 1,x 2为方程x 2+2ax-2b+1=0 的两个实数根,∴ a x x 221-=+,1x ·122+-=b x . ∵x 1,x 2又是方程01)3(22=-+-+-b x a x 的两个实数根, ∴ x 1+x 2=a-3,x 1·x 2=1-b 2.∴ ⎩⎨⎧-=+--=-.112,322b b a a 解得 ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a当a=1,b=0时,二次函数的图象与x 轴只有一个交点, ∴a=1,b=0舍去.当a=1;b=2时,二次函数322-+=x x y 和322+--=x x y 符合题意. ∴ a=1,b=2.解法二:∵二次函数1222+-+=b ax x y 的图象对称轴为a x -=,二次函数1)3(22-+-+-=b x a x y 的图象的对称轴为23-=a x , 又两个二次函数图象都经过x 轴上两个不同的点M ,N , ∴两个二次函数图象的对称轴为同一直线.∴ 23-=-a a . 解得 1=a .∴两个二次函数分别为1222+-+=b x x y 和1222-+--=b x x y . 依题意,令y=0,得01222=+-+b x x , 01222=-+--b x x .①+②得022=-b b .解得 2,021==b b . ∴ ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a当a=1,b=0时,二次函数的图象与x 轴只有一个交点, ∴a=1,b=0舍去.当a=1,b=2时,二次函数为322-+=x x y 和322+--=x x y 符合题意. ∴ a=1,b=2.32.解:∵c bx ax y ++=2的图象与x 轴交于点B (x 1,0),C (x 2,0), ∴ acx x a b x x =⋅-=+2121,. 又∵132221=+x x 即132)(21221=-+x x x x ,∴ 132)(2=⋅--a cab . ① 又由y 的图象过点A (2,4),顶点横坐标为21,则有4a+2b+c=4, ② 212=-a b . ③ 解由①②③组成的方程组得a=-1,b=1,c=6.∴ y=-x 2+x+6.与x 轴交点坐标为(-2,0),(3,0).与y 轴交点D 坐标为(0,6).设y 轴上存在点P ,使得△POB ∽△DOC ,则有(1) 当B (-2,0),C (3,0),D (0,6)时,有6,3,2,====OD OC OB ODOP OC OB . ∴OP=4,即点P 坐标为(0,4)或(0,-4).当P 点坐标为(0,4)时,可设过P ,B 两点直线的解析式为y=kx+4.有 0=-2k-4.得 k=-2.∴ y=-2x-4.或 3,6,2,====OC OD OB OCOP OD OB . ∴OP=1,这时P 点坐标为(0,1)或(0,-1).当P 点坐标为(0,1)时,可设过P ,B 两点直线的解析式为y=kx+1.有 0=-2k+1.得 21=k . ∴ 121+-=x y . 当P 点坐标为(0,-1)时,可设过P ,B 两点直线的解析式为y=kx-1,有 0=-2k-1,得 21-=k . ∴ 121--=x y . (2) 当B (3,0),C (-2,0),D (0,6)时,同理可得y=-3x+9,或 y=3x-9,或 131+-=x y , 或 131-=x y . 33.解:(1)在直线y=k(x-4)中,令y=0,得x=4.∴A 点坐标为(4,0).∴ ∠ABC=90°.∵ △CBD ∽△BAO , ∴OBOA OC OB =,即OB 2=OA ·OC.又∵ CO=1,OA=4,∴ OB 2=1×4=4.∴ OB=2(OB=-2舍去)∴B 点坐标为(0,2).将点B (0,2)的坐标代入y=k(x-4)中,得21-=k . ∴直线的解析式为:221+-=x y . (2)解法一:设抛物线的解析式为h x a y ++=2)1(,函数图象过A (4,0),B (0,2),得⎩⎨⎧=+=+.2,025h a h a 解得 .1225,121=-=h a ∴抛物线的解析式为:1225)1(1212++-=x y . 解法二:设抛物线的解析式为:c bx ax y ++=2,又设点A (4,0)关于x=-1的对 称是D.∵ CA=1+4=5,∴ CD=5.∴ OD=6.∴D 点坐标为(-6,0).将点A (4,0),B (0,2),D (-6,0)代入抛物线方程,得 ⎪⎩⎪⎨⎧=+-==++.0636,2,0416c b a c c b a 解得 2,61,121=-=-=c b a . ∴抛物线的解析式为:2611212+--=x x y . 34.解:(1)A ,B 的横坐标是方程032=+-c x ax 的两根,设为x 1,x 2(x 2?x 1),C 的 纵坐标是C.又∵y 轴与⊙O 相切,∴ OA ·OB=OC 2.∴ x 1·x 2=c 2.又由方程032=+-c x ax 知 ac x x =⋅21,∴a c c =2,即ac=1. (2)连结PD ,交x 轴于E ,直线PD 必为抛物线的对称轴,连结AD 、BD ,图代13-3-22∴ AB AE 21=. α=∠=∠=∠ADE ADB ACB 21. ∵ a?0,x 2?x 1, ∴ aa ac x x AB 54912=-=-=. a AE 25=. 又 ED=OC=c ,∴ 25==DE AE tg α. (3)设∠PAB=β,∵P 点的坐标为⎪⎭⎫ ⎝⎛-a a 45,23,又∵a?0, ∴在Rt △PAE 中,aPE 45=. ∴ 25==AE PE tg β. ∴ tg β=tg α. ∴β=α.∴∠PAE=∠ADE.∵ ∠ADE+∠DAE=90°∴PA 和⊙D 相切.35.解:(1)设DGD '所在的抛物线的解析式为c ax y +=2,由题意得G (0,8),D (15,5.5).∴ ⎩⎨⎧+==.255.5,8c a c 解得⎪⎩⎪⎨⎧=-=.8,901c a∴DGD '所在的抛物线的解析式为89012+-=x y . ∵41=AC AD 且AD=5.5, ∴ AC=5.5×4=22(米).∴ 2215(2)(22+⨯=+⨯=='AC OA OC c c )=74(米).答:cc '的长为74米.(2)∵ 4,41==BE BC EB , ∴ BC=16.∴ AB=AC-BC=22-16=6(米).答:AB 和A 'B '的宽都是6米.(3) 在89012+-=x y 中,当x=4时, 45377816901=+⨯-=y . ∵ 4519)4.07(45377=+-?0. ∴该大型货车可以从OA (OA ')区域安全通过.36.解:(1)∵⊙O 1与⊙O 2外切于原点O ,∴A ,B 两点分别位于原点两旁,即a?0,b?0.∴方程02)4(2=+++-m x m x 的两个根a ,b 异号.∴ab=m+2?0,∴m?-2.(2)当m?-2,且m ≠-4时,四边形PO 1O 2Q 是直角梯形. 根据题意,计算得22121b S Q O PO =四边形(或221a 或1). m=-4时,四边形PO 1O 2Q 是矩形. 根据题意,计算得22121b S Q O PO =四边形(或221a 或1). (3)∵ 4)2()2(4)4(22++=+-+=∆m m m ?0∴方程02)4(2=+++-m x m x 有两个不相等的实数根.∵ m?-2,∴ ⎩⎨⎧+=+=+.02,04φφm ab m b a∴ a?0,b?0.∴⊙O 1与⊙O 2都在y 轴右侧,并且两圆内切.37.解:(1)设A ,B 两点的坐标分别是(x 1,0)、(x 2,0),∵A ,B 两点在原点的两侧,∴ x 1x 2?0,即-(m+1)?0,解得 m?-1.∵ )1()1(4)]1(2[2+⨯-⨯--=∆m m 7)21(484422+-=+-=m m m 当m?-1时,Δ?0,∴m 的取值范围是m?-1.(2)∵a ∶b=3∶1,设a=3k ,b=k (k?0),则 x 1=3k ,x 2=-k ,∴ ⎩⎨⎧+-=-⋅-=-).1()(3),1(23m k k m k k解得 31,221==m m . ∵31=m 时,3421-=+x x (不合题意,舍去), ∴ m=2 ∴抛物线的解析式是32++-=x x y .(3)易求抛物线322++-=x x y 与x 轴的两个交点坐标是A (3,0),B (-1,0) 与y 轴交点坐标是C (0,3),顶点坐标是M (1,4).设直线BM 的解析式为q px y +=,则 ⎩⎨⎧+-⋅=+⋅=.)1(0,14q p q p 解得 ⎩⎨⎧==.2,2q p∴直线BM 的解析式是y=2x+2.设直线BM 与y 轴交于N ,则N 点坐标是(0,2),∴ MNC BCN BCM S S S ∆∆∆+= .111211121=⨯⨯+⨯⨯=设P 点坐标是(x,y ),∵ BCM ABP S S ∆∆=8,∴ 1821⨯=⨯⨯y AB . 即 8421=⨯⨯y . ∴ 4=y .∴4±=y .当y=4时,P 点与M 点重合,即P (1,4),当y=-4时,-4=-x 2+2x+3,解得 221±=x .∴满足条件的P 点存在.P 点坐标是(1,4),)4,221(),4,221(---+.38.(1)解:∵AD 切⊙O 于D ,AE=2,EB=6,∴ AD 2=AE ·AB=2×(2+6)=16.∴ AD=4.图代13-2-23(2)①无论点A 在EP 上怎么移动(点A 不与点E 重合),总有FHED AH AD =. 证法一:连结DB ,交FH 于G ,∵AH 是⊙O 的切线,∴ ∠HDB=∠DEB.又∵BH ⊥AH ,BE 为直径,∴ ∠BDE=90°有 ∠DBE=90°-∠DEB=90°-∠HDB=∠DBH.在△DFB 和△DHB 中,DF ⊥AB ,∠DFB=∠DHB=90°,DB=DB ,∠DBE=∠DBH ,∴ △DFB ∽△DHB.∴BH=BF , ∴△BHF 是等腰三角形.∴BG ⊥FH ,即BD ⊥FH.∴ED ∥FH ,∴FH ED AH AD =.图代13-3-24证法二:连结DB ,∵AH 是⊙O 的切线,∴ ∠HDB=∠DEF.又∵DF ⊥AB ,BH ⊥DH ,∴ ∠EDF=∠DBH.以BD 为直径作一个圆,则此圆必过F ,H 两点,∴∠DBH=∠DFH ,∴∠EDF=∠DFH.∴ ED ∥FH.∴ FHED AH AD =. ②∵ED=x ,BH=,BH=y ,BE=6,BF=BH ,∴EF=6y.又∵DF 是Rt △BDE 斜边上的高,∴ △DFE ∽△BDE ,∴EBED ED EF =,即EB EF ED ⋅=2. ∴)6(62y x -=,即6612+-=x y . ∵点A 不与点E 重合,∴ED=x?0.A 从E 向左移动,ED 逐渐增大,当A 和P 重合时,ED 最大,这时连结OD ,则OD ⊥PH. ∴ OD ∥BH.又 12,936==+=+=PB EO PE PO ,4,=⋅==POPB OD BH PB PO BH OD , ∴ 246,4=-=-===BF EB EF BH BF ,由ED 2=EF ·EB 得12622=⨯=x ,∵x?0,∴32=x .∴ 0?x ≤32.(或由BH=4=y ,代入6612+-=x y 中,得32=x )故所求函数关系式为6612+-=x y (0?x ≤32). 39.解:∵]294)[2(2942254222⎪⎭⎫ ⎝⎛+--+=⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--=m m x x m m x m m x y , ∴可得⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--2942,0,0,294),0,2(22m m C m m B A . (1)∵△ABC 为直角三角形,∴OB AO OC⋅=2, 即⎪⎭⎫ ⎝⎛+-⨯=⎪⎭⎫ ⎝⎛+-22942294422m m m m , 化得0)2(2=-m .∴m=2.(2)∵AC=BC ,CO ⊥AB ,∴AO=BO ,即22942=+-m m . ∴429422=⎪⎭⎫ ⎝⎛+-=m m OC .∴25==BC AC . 过A 作AD ⊥BC ,垂足为D ,∴ AB ·OC=BC ·AD.∴ 58=AD .∴ 545258sin ===∠AC AD ACB .图代13-3-25(3)CO AB S ABC ⋅=∆21 .1)1()2(2942229421222-+=+=⎪⎭⎫ ⎝⎛+-⋅⎪⎭⎫ ⎝⎛++-=u u u m m m m ∵ 212942≥+-=m m u ,∴当21=u ,即2=m 时,S 有最小值,最小值为45. 40.解:(1)∵OA ⊥OB ,OA ∶OB=4∶3,⊙D 的半径为2,∴⊙C 过原点,OC=4,AB=8.A 点坐标为⎪⎭⎫ ⎝⎛0,532,B 点坐标为⎪⎭⎫ ⎝⎛524,0. ∴⊙C 的圆心C 的坐标为⎪⎭⎫⎝⎛512,516. (2)由EF 是⊙D 切线,∴OC ⊥EF.∵ CO=CA=CB ,∴ ∠COA=∠CAO ,∠COB=∠CBO.∴ Rt △AOB ∽Rt △OCE ∽Rt △FCO.∴OBOC AB OF OA OC AB OE ==,. ∴ 320,5==OF OE . E 点坐标为(5,0),F 点坐标为⎪⎭⎫ ⎝⎛320,0, ∴切线EF 解析式为32034+-=x y . (3)①当抛物线开口向下时,由题意,得抛物线顶点坐标为⎪⎭⎫⎝⎛+4512,516,可得 ⎪⎪⎩⎪⎪⎨⎧==-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-.524,1,325.52453244,51622c b a c a b ac a b ∴ 5243252++-=x x y . ②当抛物线开口向上时,顶点坐标为⎪⎭⎫ ⎝⎛-4512,516,得⎪⎪⎩⎪⎪⎨⎧=-==⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-.524,4,85.524,5844,51622c b a c a b ac a b ∴ 5244852+--=x x y . 综合上述,抛物线解析式为5243252++-=x x y 或5244852+-=x x y . 41.(1)证明:由⎪⎩⎪⎨⎧+-==,,21m x y x y 有m x x +-=21, ∴ m y m x m x 31,32,23===. ∴交点)31,32(m m M . 此时二次函数为m m x y 31322+⎪⎭⎫ ⎝⎛-= m m mx x 31943422++-=. 由②③联立,消去y ,有 0329413422=-+⎪⎭⎫ ⎝⎛--m m x m x . ⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=∆m m m 3294413422 .013891613891622>=+-+-=m m m m∴无论m 为何实数值,二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点.图代13-3-26(2)解:∵直线y=-x+m 过点D (0,-3),∴ -3=0+m ,∴ m=-3.∴M (-2,-1).∴二次函数为)1)(3(341)2(22++=+-=-+=x x x x x y .图象如图代13-3-26.(3)解:由勾股定理,可知△CMA 为Rt △,且∠CMA=Rt ∠,∴MC 为△CMA 外接圆直径.∵P 在x y 21=上,可设⎪⎭⎫ ⎝⎛n n P 21,,由MC 为△CMA 外接圆的直径,P 在这个圆上, ∴ ∠CPM=Rt ∠.过P 分别作PN ⊥y ,轴于N ,PQ ⊥x 轴于R ,过M 作MS ⊥y 轴于S ,MS 的延长线与PR 的 延长线交于点Q.由勾股定理,有222QP MQ MP +=,即222121)2(⎪⎭⎫ ⎝⎛+++=n n MP . 22222213n n NP NC CP +⎪⎭⎫ ⎝⎛-=+=. 202=CM. 而 222CM CPMP =+, ∴ 20213121)2(2222=+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+++n n n n , 即 062252=-+n n , ∴ 012452=-+n n ,0)2)(65(=+-n n .∴ 2,5621-==n n . 而n 2=-2即是M 点的横坐标,与题意不合,应舍去.∴ 56=n , 此时 5321=n . ∴P 点坐标为⎪⎭⎫ ⎝⎛53,56. 42.解:(1)根据题意,设点A (x 1,0)、点(x 2,0),且C (0,b ),x 1?0,x 2?0,b?0, ∵x 1,x 2是方程02=++-b ax x 的两根,∴ b x x a x x -=⋅=+2121,.在Rt △ABC 中,OC ⊥AB ,∴OC 2=OA ·OB.∵ OA=-x 1,OB=x 2,∴ b 2=-x 1·x 2=b.∵b?0,∴b=1,∴C (0,1).(2)在Rt △AOC 的Rt △BOC 中, 211212121==+-=--=-=-ba x x x x x x OB OC OA OC tg tg βα. ∴ 2=a .∴抛物线解析式为122++-=x x y .图代13-3-27(3)∵122++-=x x y ,∴顶点P 的坐标为(1,2),当0122=++-x x 时,21±=x .∴)0,21(),0,21(+-B A .延长PC 交x 轴于点D ,过C ,P 的直线为y=x+1,∴点D 坐标为(-1,0).∴ DCA DPB ABPC S S S ∆∆-=四边形).(22321)22(212)22(212121平方单位+=⨯-⨯-⨯+⨯=⋅-⋅⋅=yc AD y DB p。

初三数学总复习:填空题精选150题(附参考答案)

初三数学总复习:填空题精选150题(附参考答案)

初三数学总复习:填空题精选150题(附参考答案)1.-8的绝对值是8.2.若∠α=35°,则∠α的补角为55°。

3.若分式(x-1)/(x-3)有意义,则实数x的取值范围是x≠3.4.若分式5/(x+3)有意义,则x的取值范围是x≠-3.5.二次根式的自变量x的取值范围是x≥0.6.若在实数范围内有意义,则x的取值范围是x≥1.7.在函数y=x中,自变量x的取值范围是(-∞,+∞)。

8.函数y=x-1的自变量x的取值范围是(-∞,+∞)。

9.函数y=x+3的自变量x的取值范围是(-∞,+∞)。

10.若二次根式√(x-1)有意义,则x的取值范围是x≥1.11.函数y=(x-1)/x中,自变量x的取值范围是x≠0.12.若x-y-3和x-2y+9互为相反数,则x+y的值为-6.13.已知点P(-2,1),则点P关于x轴对称的点的坐标是(-2,-1)。

14.地球与月球的平均距离大约km,用科学计数法表示这个距离为3.84×10^5 km。

15.长城是我国第一批成功入选世界文化遗产的古迹之一,它的总长经过“四舍五入”精确到十万位的近似数约为xxxxxxx 米,将xxxxxxx用科学记数法表示为6.7×10^6 m。

16.目前,世界上能制造出的最小晶体管的长度只有0.xxxxxxxxm,将0.xxxxxxxx用科学记数法表示为4×10^-8 m。

17.在人体血液中,红细胞的直径约为7.7×10^-4 cm,7.7×10^-4用小数表示为0. cm。

18.已知圆锥的底面直径为6,母线长为4,则它的侧面积等于12π。

19.一个多边形每个外角都是36°,则这个多边形的边数是10.20.已知菱形的两条对角线分别为2cm,3cm,则它的面积是3 cm^2.21.若点P(x,y)是平面直角坐标系xOy中第四象限内的一点,且满足2x-y=4,x+y=m,则m的取值范围是m>0.22.真命题的有①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等,即命题①、②、③、④都是真命题。

中考数学 专题17 四川中考填空题压轴专题(解析版)

中考数学 专题17  四川中考填空题压轴专题(解析版)

专题17 四川中考填空题压轴专题【典例1】(2019•眉山)如图,反比例函数y =kx (x >0)的图象经过矩形OABC 对角线的交点M ,分别交AB ,BC 于点D 、E .若四边形ODBE 的面积为12,则k 的值为 4 .【点拨】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、▱OABC 的面积与|k |的关系,列出等式求出k 值.【解答】解:由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =12|k |,S △OAD =12|k |, 过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S ▱ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S ▱ONMG =4|k |, 由于函数图象在第一象限, ∴k >0,则k2+k 2+12=4k ,∴k =4.【点睛】本题考查了反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |.本知识点是中考的重要考点,同学们应高度关注.【典例2】(2019•凉山州)如图,正方形ABCD 中,AB =12,AE =14AB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 4 .【点拨】先证明△BPE ∽△CQP ,得到与CQ 有关的比例式,设CQ =y ,BP =x ,则CP =12﹣x ,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值. 【解答】解:∵∠BEP +∠BPE =90°,∠QPC +∠BPE =90°, ∴∠BEP =∠CPQ . 又∠B =∠C =90°, ∴△BPE ∽△CQP . ∴BE PC=BP CQ.设CQ =y ,BP =x ,则CP =12﹣x . ∴912−x=xy ,化简得y =−19(x 2﹣12x ),整理得y =−19(x ﹣6)2+4, 所以当x =6时,y 有最大值为4. 故答案为4.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.【典例3】(2019•自贡)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)=√217.【点拨】给图中相关点标上字母,连接DE ,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE =∠CED =30°=∠α,由∠AEC =60°结合∠AED =∠AEC +∠CED 可得出∠AED =90°,设等边三角形的边长为a ,则AE =2a ,DE =√3a ,利用勾股定理可得出AD 的长,再结合余弦的定义即可求出cos (α+β)的值.【解答】解:给图中相关点标上字母,连接DE ,如图所示. 在△ABC 中,∠ABC =120°,BA =BC , ∴∠α=30°.同理,可得出:∠CDE =∠CED =30°=∠α. 又∵∠AEC =60°,∴∠AED =∠AEC +∠CED =90°.设等边三角形的边长为a ,则AE =2a ,DE =2×sin60°•a =√3a , ∴AD =√AE 2+DE 2=√7a , ∴cos (α+β)=DE AD =√217. 故答案为:√217.【点睛】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.【典例4】(2019•雅安)已知函数y ={−x 2+2x(x >0)−x(x ≤0)的图象如图所示,若直线y =x +m 与该图象恰有三个不同的交点,则m 的取值范围为 0<m <14 .【点拨】直线与y =﹣x 有一个交点,与y =﹣x 2+2x 有两个交点,则有m >0,x +m =﹣x 2+2x 时,△=1﹣4m >0,即可求解.【解答】解:直线y =x +m 与该图象恰有三个不同的交点, 则直线与y =﹣x 有一个交点, ∴m >0,∵与y=﹣x2+2x有两个交点,∴x+m=﹣x2+2x,△=1﹣4m>0,∴m<1 4,∴0<m<1 4;故答案为0<m<1 4.【点睛】本题考查二次函数与一次函数的图象及性质;能够根据条件,数形结合的进行分析,可以确定m的范围.【典例5】(2019•广元)如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是﹣6<M<6.【点拨】将(﹣1,0)与(0,2)代入y=ax2+bx+c,可知b=a+2,利用对称轴可知:a>﹣2,从而可知M的取值范围.【解答】解:将(﹣1,0)与(0,2)代入y=ax2+bx+c,∴0=a﹣b+c,2=c,∴b=a+2,∵−b2a>0,a<0,∴b>0,∴a>﹣2,∴﹣2<a<0,∴M=4a+2(a+2)+2 =6a+6=6(a+1)∴﹣6<M<6,故答案为:﹣6<M<6;【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.【典例6】(2019•巴中)如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=24+16√3.【点拨】将△BPC绕点B逆时针旋转60°后得△AP'B,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.【解答】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=√34BP2+12×PP'×AP=24+16√3故答案为:24+16√3【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等边三角形和直角三角形是解题的关键,也是本题的难点.【典例7】(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为2π3+√3.【点拨】连接OE ,作OF ⊥DE ,先求出∠COE =2∠D =60°、OF =12OD =1,DF =OD cos ∠ODF =√3,DE =2DF =2√3,再根据阴影部分面积是扇形与三角形的面积和求解可得. 【解答】解:如图,连接OE ,作OF ⊥DE 于点F ,∵四边形ABCD 是平行四边形,且∠A =150°, ∴∠D =30°,则∠COE =2∠D =60°, ∵CD =4, ∴CO =DO =2,∴OF =12OD =1,DF =OD cos ∠ODF =2×√32=√3, ∴DE =2DF =2√3, ∴图中阴影部分的面积为60⋅π⋅22360+12×2√3×1=2π3+√3, 故答案为:2π3+√3.【点睛】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S =nπr 2360是解题的关键.【典例8】(2019•泸州)如图,在等腰Rt △ABC 中,∠C =90°,AC =15,点E 在边CB 上,CE =2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为 9√2 .【点拨】过D 作DH ⊥AC 于H ,根据等腰三角形的性质得到AC =BC =15,∠CAD =45°,求得AH =DH ,得到CH =15﹣DH ,根据相似三角形的性质即可得到结论.【解答】解:过D 作DH ⊥AC 于H , ∵在等腰Rt △ABC 中,∠C =90°,AC =15, ∴AC =BC =15, ∴∠CAD =45°, ∴AH =DH , ∴CH =15﹣DH , ∵CF ⊥AE ,∴∠DHA =∠DF A =90°, ∴∠HAF =∠HDF , ∴△ACE ∽△DHC , ∴DH AC=CH CE,∵CE =2EB , ∴CE =10, ∴DH 15=15−DH 10,∴DH =9, ∴AD =9√2, 故答案为:9√2.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.【典例9】(2019•乐山)如图1,在四边形ABCD 中,AD ∥BC ,∠B =30°,直线l ⊥AB .当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是 .【点拨】根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.【解答】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×√32=2√3,BC=5,AD=7﹣4=3,由图象可得,AN=5﹣4=1,ND=CM=7﹣5=2,DM=2,∵∠B=30°,EF⊥AB,∴∠M=60°,又∵DM=MC=2,∴△DMC是等边三角形,∴DC=DM=2,∴四边形ABCD的周长是:AB+BC+AD+CD=2√3+5+3+2=10+2√3,故答案为:10+2√3.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.【典例10】(2019•攀枝花)正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是(47,16),.【点拨】由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,即可得到C1,C2,C3,C4,C5的纵坐标,根据图象得出C1(2,1),C2(5,2),C3(11,4),即可得到C1,C2,C3,C4,C5…在一条直线上,直线的解析式为y=13x+13,把C5的纵坐标代入即可求得横坐标.【解答】解:由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,∵A1和C1,A2和C2,A3和C3,A4和C4的纵坐标相同,∴C1,C2,C3,C4,C5的纵坐标分别为1,2,4,8,16,…∴根据图象得出C1(2,1),C2(5,2),C3(11,4),∴直线C1C2的解析式为y=13x+13,∵A5的纵坐标为16,∴C5的纵坐标为16,把y=16代入y=13x+13,解得x=47,∴C5的坐标是(47,16),故答案为(47,16).【点睛】此题考查了待定系数法求一次函数的解析式、等腰直角三角形和正方形的性质.此题难度适中,属于规律型题目,注意掌握数形结合思想的应用.【典例11】(2019•广安)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt △OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为(﹣22017,22017√3).【点拨】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.【解答】解:由题意得,A1的坐标为(1,0),A2的坐标为(1,√3),A3的坐标为(﹣2,2√3),A4的坐标为(﹣8,0),A5的坐标为(﹣8,﹣8√3),A6的坐标为(16,﹣16√3),A7的坐标为(64,0),…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2√3,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2√3,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2√3,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣2√3,∵2019÷6=336…3,∴点A2019的方位与点A3的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,纵坐标为22017√3,故答案为:(﹣22017,22017√3).【点睛】本题主点的坐标的规律题,主要考查了解直角三角形的知识,关键是求出前面7个点的坐标,找出其存在的规律.【典例12】(2019•南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5.给出下列结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积最大值为144;③当OD 最大时,点D 的坐标为(25√2626,125√2626).其中正确的结论是 ②③ .(填写序号)【点拨】①由条件可知AB =24,则AB 的中点E 的运动轨迹是圆弧,最后根据弧长公式即可计算出点E 所经过的路径长;②当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB ,可求出最大面积为144;③当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,可求出OD =25,证明△DF A ∽△AOB 和△DFO ∽△BOA ,可求出DF 长,则D 点坐标可求出. 【解答】解:∵点E 为AB 的中点,AB =24, ∴OE =12AB =12,∴AB 的中点E 的运动轨迹是以点O 为圆心,12为半径的一段圆弧, ∵∠AOB =90°, ∴点E 经过的路径长为90×12×π180=6π,故①错误;当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB , ∵E 为AB 的中点,∴OE ⊥AB ,OE =12AB =12,∴S △AOB =12×24×12=144,故②正确;如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,∵AD =BC =5,AE =12AB =12, ∴DE =√AD 2+AE 2=√52+122=13, ∴OD =DE +OE =13+12=25, 设DF =x ,∴OF =√OD 2−DF 2=√252−x 2, ∵四边形ABCD 是矩形, ∴∠DAB =90°, ∴∠DF A =∠AOB , ∴∠DAF =∠ABO , ∴△DF A ∽△AOB ∴DF OA =DA AB ,∴x OA=524,∴OA =24x5, ∵E 为AB 的中点,∠AOB =90°, ∴AE =OE , ∴∠AOE =∠OAE , ∴△DFO ∽△BOA , ∴OD AB =OF OA,∴2524=√252−x 224x 5,解得x =25√2626,x =−25√2626舍去,∴OF=125√26 26,∴D(25√2626,125√2626).故③正确.故答案为:②③.【点睛】本题考查四边形综合题、直角形的性质、矩形的性质、相似三角形的判定和性质等知识.解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.【典例13】(2019•绵阳)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=√2+√6.【点拨】如图,连接CE′,根据等腰三角形的性质得到AB=BC=2√2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.【解答】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2,∴AB=BC=2√2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=√22BE′=√2,在Rt△BCH中,CH=√BC2−BH2=√6,∴CE′=√2+√6,故答案为:√2+√6.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.【典例14】(2019•宜宾)如图,△ABC 和△CDE 都是等边三角形,且点A 、C 、E 在同一直线上,AD 与BE 、BC 分别交于点F 、M ,BE 与CD 交于点N .下列结论正确的是 ①③④ (写出所有正确结论的序号).①AM =BN ;②△ABF ≌△DNF ;③∠FMC +∠FNC =180°;④1MN=1AC+1CE【点拨】①根据等边三角形性质得出AC =BC ,CE =CD ,∠ACB =∠ECD =60°,求出∠BCE =∠ACD ,根据SAS 推出两三角形全等即可;②根据∠ABC =60°=∠BCD ,求出AB ∥CD ,可推出△ABF ∽△DNF ,找不出全等的条件; ③根据角的关系可以求得∠AFB =60°,可求得MFN =120°,根据∠BCD =60°可解题; ④根据CM =CN ,∠MCN =60°,可求得∠CNM =60°,可判定MN ∥AE ,可求得MN AC=DN CD=CD−CN CD,可解题.【解答】证明:①∵△ABC 和△CDE 都是等边三角形, ∴AC =BC ,CE =CD ,∠ACB =∠ECD =60°, ∴∠ACB +∠ACE =∠ECD +∠ACE , 即∠BCE =∠ACD , 在△BCE 和△ACD 中, {BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD (SAS ),∴AD =BE ,∠ADC =∠BEC ,∠CAD =∠CBE , 在△DMC 和△ENC 中, {∠MDC =∠NEC DC =BC ∠MCD =∠NCE =60°, ∴△DMC ≌△ENC (ASA ), ∴DM =EN ,CM =CN ,∴AD ﹣DM =BE ﹣EN ,即AM =BN ; ②∵∠ABC =60°=∠BCD , ∴AB ∥CD , ∴∠BAF =∠CDF , ∵∠AFB =∠DFN ,∴△ABF ∽△DNF ,找不出全等的条件;③∵∠AFB +∠ABF +∠BAF =180°,∠FBC =∠CAF , ∴∠AFB +∠ABC +∠BAC =180°, ∴∠AFB =60°, ∴∠MFN =120°, ∵∠MCN =60°, ∴∠FMC +∠FNC =180°; ④∵CM =CN ,∠MCN =60°, ∴△MCN 是等边三角形, ∴∠MNC =60°, ∵∠DCE =60°, ∴MN ∥AE , ∴MN AC=DN CD=CD−CN CD,∵CD =CE ,MN =CN , ∴MN AC =CE−MN CE ,∴MNAC=1−MNCE ,两边同时除MN 得1AC=1MN−1CE,∴1MN=1AC+1CE.故答案为①③④【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.【典例15】(2019•资阳)如图,在△ABC 中,已知AC =3,BC =4,点D 为边AB 的中点,连结CD ,过点A 作AE ⊥CD 于点E ,将△ACE 沿直线AC 翻折到△ACE ′的位置.若CE ′∥AB ,则CE ′=95.【点拨】如图,作CH ⊥AB 于H .首先证明∠ACB =90°,解直角三角形求出AH ,再证明CE ′=AH 即可.【解答】解:如图,作CH ⊥AB 于H .由翻折可知:∠AE ′C =∠AEC =90°,∠ACE =∠ACE ′, ∵CE ′∥AB , ∴∠ACE ′=∠CAD , ∴∠ACD =∠CAD , ∴DC =DA , ∵AD =DB , ∴DC =DA =DB , ∴∠ACB =90°, ∴AB =√AC 2+BC 2=5, ∵12•AB •CH =12•AC •BC ,∴CH =125,∴AH =√AC 2−CH 2=95, ∵CE ′∥AB ,∴∠E ′CH +∠AHC =180°, ∵∠AHC =90°, ∴∠E ′CH =90°, ∴四边形AHCE ′是矩形, ∴CE ′=AH =95, 故答案为95.【点睛】本题考查翻折变换,平行线的性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考常考题型.【典例16】(2019•达州)如图,抛物线y =﹣x 2+2x +m +1(m 为常数)交y 轴于点A ,与x 轴的一个交点在2和3之间,顶点为B .①抛物线y =﹣x 2+2x +m +1与直线y =m +2有且只有一个交点;②若点M (﹣2,y 1)、点N (12,y 2)、点P (2,y 3)在该函数图象上,则y 1<y 2<y 3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y =﹣(x +1)2+m ; ④点A 关于直线x =1的对称点为C ,点D 、E 分别在x 轴和y 轴上,当m =1时,四边形BCDE 周长的最小值为√34+√2.其中正确判断的序号是 ①③④ .【点拨】①把y =m +2代入y =﹣x 2+2x +m +1中,判断所得一元二次方程的根的情况便可得判断正确; ②根据二次函数的性质进行判断;③根据平移的公式求出平移后的解析式便可;④因BC 边一定,只要其他三边和最小便可,作点B 关于y 轴的对称点B ′,作C 点关于x 轴的对称点C′,连接B′C′,与x轴、y轴分别交于D、E点,求出B′C′便是其他三边和的最小值.【解答】解:①把y=m+2代入y=﹣x2+2x+m+1中,得x2﹣2x+1=0,∵△=4﹣4=0,∴此方程两个相等的实数根,则抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点,故此小题结论正确;②∵抛物线的对称轴为x=1,∴点P(2,y3)关于x=1的对称点为P′(0,y3),∵a=﹣1<0,∴当x<1时,y随x增大而增大,又∵﹣2<0<12,点M(﹣2,y1)、点N(12,y2)、点P′(0,y3)在该函数图象上,∴y2>y3>y1,故此小题结论错误;③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:y=﹣(x+2)2+2(x+2)x+m+1﹣2,即y=﹣(x+1)2+m,故此小题结论正确;④当m=1时,抛物线的解析式为:y=﹣x2+2x+2,∴A(0,2),C(2,2),B(1,3),作点B关于y轴的对称点B′(﹣1,3),作C点关于x轴的对称点C′(2,﹣2),连接B′C′,与x轴、y轴分别交于D、E点,如图,则BE+ED+CD+BC=B′E+ED+C′D+BC=B′C′+BC,根据两点之间线段最短,知B′C′最短,而BC的长度一定,∴此时,四边形BCDE周长=B′C′+BC最小,为:√B′M2+C′M2+√BM2+CM2=√32+52+√12+12=√34+√2,故此小题结论正确;故答案为:①③④.【点睛】本题考查二次函数的应用、二次函数的图象与性质、二次函数与坐标轴的交点、求线段和的最小值等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.【典例17】(2019•遂宁)如图,在平面直角坐标系中,矩形OABC的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段OA上一点,将△OCG沿CG翻折,O点恰好落在对角线AC上的点P处,反比例函数y=12x经过点B.二次函数y=ax2+bx+c(a≠0)的图象经过C(0,3)、G、A三点,则该二次函数的解析式为y=12x2−114x+3.(填一般式)【点拨】点C (0,3),反比例函数y =12x 经过点B ,则点B (4,3),由勾股定理得:(4﹣x )2=4+x 2,故点G (32,0),将点C 、G 、A 坐标代入二次函数表达式,即可求解.【解答】解:点C (0,3),反比例函数y =12x经过点B ,则点B (4,3), 则OC =3,OA =4, ∴AC =5,设OG =PG =x ,则GA =4﹣x ,P A =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2, 解得:x =32,故点G (32,0),将点C 、G 、A 坐标代入二次函数表达式得:{c =394a +32b +c =014a +4b +c =0,解得:{ a =12b =−114c =3,故答案为:y =12x 2−114x +3.【点睛】本题考查的是二次函数综合运用,涉及到矩形基本性质、反比例函数基本性质与应用,其中用勾股定理求OG 的长度,是本题解题的关键.【典例18】(2018•凉山州)△AOC 在平面直角坐标系中的位置如图所示,OA =4,将△AOC 绕O 点,逆时针旋转90°得到△A 1OC 1,A 1C 1,交y 轴于B (0,2),若△C 1OB ∽△C 1A 1O ,则点C 1的坐标 (43,83) .【点拨】如图作C 1H ⊥x 轴于H .由△C 1OB ∽△C 1A 1O ,推出OC 1A 1C 1=OB OA 1=12,由tan ∠C 1A 1H =OBOA 1=C 1K A 1H =12,设C 1H =m ,则A 1H =2m ,OH =2m ﹣4,构建方程即可解决问题; 【解答】解:如图作C 1H ⊥x 轴于H .∵△C 1OB ∽△C 1A 1O , ∴OC 1A 1C 1=OB OA 1=12,∵tan ∠C 1A 1H =OBOA 1=C 1HA 1H =12,设C 1H =m ,则A 1H =2m ,OH =2m ﹣4,∴A 1C 1=√5m ,OC 1=√m 2+(2m −4)2, ∴√5m =2√m 2+(2m −4)2, 解得m =83或85(舍弃),∴C 1(43,83).(本题也可以证明tan ∠OC 1H =OH HC 1=12,S 设C 1(m ,2m ),根据A 1H =4m ,构建方程)【点睛】本题考查相似三角形的性质、坐标与图形的旋转等知识,解题的关键是学会利用参数构建方程解决问题,属于中考填空题中的压轴题.【精练1】(2019秋•河东区期末)如图,在反比例函数y =−6x (x <0)的图象上任取一点P ,过P 点分别作x 轴,y 轴的垂线,垂足分别为M ,N ,那么四边形PMON 的面积为 .【点拨】设出点P 的坐标,四边形PMON 的面积等于点P 的横纵坐标的积的绝对值,把相关数值代入即可.【解答】解:设点P 的坐标为(x ,y ),∵点P 的反比例函数解析式上, ∴xy =﹣6,易得四边形PMON 为矩形, ∴四边形PMON 的面积为|xy |=6, 故答案为6.【点睛】考查反比例函数的比例系数的意义;用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.注意面积应为正值.【精练2】(2016秋•江阴市校级月考)如图,正方形ABCD 的边长为1cm ,M 、N 分别是BC 、CD 上两个动点,且始终保持AM ⊥MN ,则△ADN 的最小面积为 .【点拨】设BM =xcm ,则MC =(1﹣x )cm ,当AM ⊥MN 时,利用互余关系可证△ABM ∽△MCN ,利用相似比求CN ,根据三角形的面积公式表示出△ADN 的面积,用二次函数的性质求面积的最小值. 【解答】解:设BM =xcm ,则MC =(1﹣x )cm , ∵∠AMN =90°,∴∠AMB +∠NMC =90°,∠NMC +∠MNC =90°, ∴∠AMB =∠MNC , 又∵∠B =∠C , ∴△ABM ∽△MCN ,则AB MC=BM CN,即11−x=x CN,解得:CN =x(1−x)1=x (1﹣x ), ∴S △ADN =S 正方形ABCD =12×1×[1﹣x (1﹣x )]=12x 2−12x +12, ∵12<0,∴当x =12cm 时,S △ADN 最小,最小值是4×12×12−(−12)24×12=38(cm 2).故答案是:38cm 2.【点睛】本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.【精练3】(2019秋•香坊区期末)等边△ABC 中,点P 是BC 所在直线上一点,且PC :BC =1:4,则tan ∠APB 的值是 .【点拨】过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC =2a ,AD =2√3a ,PC =a ,分类讨论:当P 在BC 的延长线上时,DP =DC +CP =2a +a =3a ;当P 点在线段BC 上,即在P ′的位置,则DP ′=DC ﹣CP ′=a ,然后分别利用正切的定义求解即可. 【解答】解:如图,过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC =2a ,AD =2√3a ,PC =a , 当P 在BC 的延长线上时,DP =DC +CP =2a +a =3a , 在Rt △ADP 中,tan ∠APD =AD DP =2√3a 3a =2√33; 当P 点在线段BC 上,即在P ′的位置,则DP ′=DC ﹣CP ′=a , 在Rt △ADP ′中,tan ∠AP ′D =AD DP′=2√3aa =2√3.故答案为2√3或2√33.【点睛】本题考查了解直角三角形:利用三角函数和勾股定理求三角形中未知的边或角的过程叫解直角三角形.也考查了分类讨论思想的运用.【精练4】(2019秋•长清区期中)如图,在△ABC 中,∠BAC =90°,AB =AC =√2,点D 、E 分别在BC 、AC 上(点D 不与点B 、C 重合),且∠ADE =45°,若△ADE 是等腰三角形,则CE = .【点拨】可得∠B =∠C =45°,可证得△DCE ∽△ABD ,由于D 与B 、C 不重合,显然∠ADE =∠AED=45°不符合题意,即AD≠AE,所以此题分两种情况讨论:①AD=DE,此时(2)的相似三角形全等,由此可求得CD、BD的长,进而可得CE、AE的值.【解答】解:∵点D不能与B点重合,∴AD=AE不能成立,(或:∵∠ADE=45°,若AD=AE,则∠AED=ADE=45°,从而∠DAE=90°,即B与D重合,这与已知条件矛盾).①当AE、DE为腰,即AE=DE时(如图1),∠EAD=∠EDA=45°,此时,AD平分∠BAC,∴D为BC边的中点(“三线合一”性质),且E也为AC边的中点,∴CE=AE=√2 2;②当AD、DE为腰,即AD=DE时(如图2),∵∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADE=45°,∴∠B=∠C=∠ADE.∵∠ADB=∠C+∠DAC,∠DEC=∠ADE+∠DAC,∴∠ADB=∠DEC.∵∠ADC +∠B +∠BAD =180,∠DEC +∠C +∠CDE =180°, ∴∠ADC +∠B +∠BAD =∠DEC +∠C +∠CDE , ∴∠EDC =∠BAD , ∴△ABD ∽△DCE 此时AD 与DE 为对应边,∴△ABD ≌△DCE ,DC =AB =√2, CE =BD =BC ﹣CD =2−√2. 因此CE 的长为2−√2或√22. 故答案为:2−√2或√22. 【点睛】本题考查了相似三角形的判定与性质,等腰三角形的判定,解答时证明三角形相似是关键. 【精练5】(2019秋•江岸区校级月考)我们把函数y ={x 2−2x −3(x ≥0)x 2+2x −3(x ≤0)的图象记为C ,若直线y =x +b与图象C 有且只有三个公共点,则b 的取值是 .【点拨】画出分段函数的图象,结合图象找到直线与该图象有三个交点的两端情况:直线经过点(0,﹣3)时;直线y =x +b 与y =x 2+2x ﹣3(x ≤0)部分只有一个交点时. 【解答】解:根据函数解析式分别画出函数图象,如图所示: 当直线经过点(0,﹣3)时,此时函数与直线y =x +b 恰有三个交点, ∴b =﹣3,当直线y =x +b 与y =x 2+2x ﹣3(x ≤0)部分只有一个交点时, ∴x 2+2x ﹣3=x +b , ∴b =−134; ∴b =﹣3或b =−134时两图象有三个交点; 故答案为−134或﹣3.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.【精练6】(2018秋•越秀区期末)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④6a﹣2b+c<0;⑤若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确的判断是(填写所有正确判断的序号)【点拨】根据抛物线的开口方向,对称轴,抛物线与x轴的交点情况,二次函数图象上点的坐标特征判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴−b2a=−1,a+b+c=0,∴b=2a,c=﹣3a,∵抛物线开口向上,∴a>0,∴b>0,c<0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确;∵9a﹣3b+c=0,b=2a,c=﹣3a,∴6a﹣2b+c=6a﹣4a﹣3a=﹣a<0,故④正确;∵抛物线对称轴x=﹣1,∴x=﹣0.5与x=﹣1.5的函数值相等,∵﹣1.5>﹣2,∴则y1<y2;故⑤错误;故答案为:②③④.【点睛】本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,灵活运用数形结合思想.【精练7】(2019春•东海县期中)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°,得到线段AQ,连接BQ,若P A=3,PB=4,PC=5,则四边形APBQ的面积为【点拨】连结PQ,如图,根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得AP=AQ=3,∠P AQ=60°,则可判断△APQ为等边三角形,所以PQ=AP=3,接着证明△APC≌△ABQ得到PC=QB=5,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式,利用S=S△BPQ+S△APQ进行计算.四边形APBQ【解答】解:连结PQ,如图,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=AQ=3,∠P AQ=60°,∴△APQ为等边三角形,∴PQ=AP=3,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,且AC=AB,AP=AQ∴△APC≌△ABQ(SAS),∴PC=QB=5,在△BPQ中,∵PB2=42=16,PQ2=32=9,BQ2=52=25,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=12BP×PQ+√34×PQ2=6+9√34故答案为:6+9√3 4【点睛】本题考查了旋转的性质,全等三角形的性质,勾股定理以及逆定理,证明△APQ为等边三角形是本题的关键.【精练8】(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在AB̂上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).【点拨】连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,∵∠AOB=90°,四边形ODCE是平行四边形,∴▱ODCE是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=90⋅π×102360−8×6=25π﹣48.故答案为:25π﹣48.【点睛】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.【精练9】(2019•虞城县一模)如图1,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s.设P、Q出发ts时,△BPQ的面积为ycm2,已知y与t的函数关系如图2所示(其中曲线OM为抛物线的一部分,其余各部分均为线段)当点P在ED上运动时,连接QD,若QD平分∠PQC,则t的值为.【点拨】根据题意和函数图象可以得到BE和BC的长,然后根据当t=5时,y=10可以得到AB的长,然后根据QD平分∠PQC,可得DG=DC,进而可以求得相应的t的值.【解答】解:由题意可得,BE =5,BC =12, ∵当t =5时,S =10, ∴10=5×AB2,得AB =4, 作EH ⊥BC 于点H ,作EF ∥PQ ,P 1Q 2∥EF ,作DG ⊥P 1Q 2于点G , 则EH =AB =4,BE =BF =5, ∵∠EHB =90°, ∴BH =√52−42=3, ∴HF =2,∴EF =√42+22=2√5, ∴P 1Q 2=2√5,设当点P 运动到P 1时,Q 2D 平分∠P 1Q 2C ,则DG =DC =4,P 1D =17﹣AE ﹣EP 1=12﹣3﹣(t ﹣5)=14﹣t , ∴(14−t)×42=2√5×42,解得,t =14﹣2√5, 故答案为:14﹣2√5.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.【精练10】(2018秋•市中区期末)将正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2按如图所示方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 2019的横坐标是 .【点拨】根据直线y=x+1可求与x轴、y轴的交点坐标,得出第一个正方形的边长,得出点B1的横坐标,根据第二个正方形与第一个正方形的关系,可求出第二个正方形的边长,进而确定B2的横坐标,依此类推,可得出B2019的横坐标.【解答】解:当x=0时,y=x+1=1,∴A(0,1),当y=0时,x=﹣1,∴直线与x轴的交点(﹣1,0)∴B1(1,1),易得△A1B1A2、△A2B2A3、△A3B3A4、△A4B4A5……均是等腰直角三角形,可得:每一个正方形的边长都是它前一个正方形边长的2倍,因此:B2的横坐标为1+1×2=1+2=20+21=3=22﹣1,B3的横坐标为1+1×2+2×2=1+2+4=20+21+22=7=23﹣1,B4的横坐标为24﹣1,B5的横坐标为25﹣1,……B2019的横坐标为22019﹣1,故答案为:22019﹣1.【点睛】此题主要考查了一次函数图形上的点与坐标特征,规律型问题常用的方法是,分别求出前几个数据,然后依据变化规律,得出一般的结论.本题就是先求出B1的横坐标为21﹣1,B2的横坐标为22﹣1,B3的横坐标为23﹣1,B4的横坐标为24﹣1,……进而得到B n的横坐标为2n﹣1.【精练11】(2019•鄂尔多斯模拟)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得,第56个点的坐标为.【点拨】根据题意和图象中的点的坐标,可以发现这些点的变化规律,从而可以求得第56个点的坐标.【解答】解:由题意可得,横坐标是1的点有1个,横坐标是2的点有2个,横坐标是3的点有3个,…,∵56=(1+2+3+…+10)+1,∴第56个点的坐标为(11,10),故答案为:(11,10)【点睛】本题考查规律性:点的坐标,解答本题的关键是明确题意,发现题目中点的变化规律,求出相应的点的坐标.【精练12】(2019春•徐州期中)如图,在矩形ABCD中,AB=2cm,BC=3cm,现有一根长为2cm的棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P 在运动过程中所经过的路径长度为cm.【点拨】根据题意可以判断出点P的运动轨迹是4段弧长和2段线段的长度.【解答】解:连接BP,如图所示:∵P是EF的中点,∴BP=12EF=12×2=1,如图所示,点P的运动轨迹是4段弧长+2段线段的长度,即4×90π×1180+2×1=2π+2.故答案为:2π+2.【点睛】本题考查了轨迹、矩形的性质、直角三角形斜边上的中线等于斜边的一半的性质以及弧长的计算.判断出点的P运动的轨迹是解题的关键.【精练13】(2018秋•雨花区校级期末)如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D是AC的中点,直角∠EDF的两边分别交AB、BC于点E、F,给出以下结论:①AE=BF;②S四边形BEDF=12S△ABC;③EF=BD;④∠BFE=∠CDF;⑤△DEF是等腰直角三角形,当∠EDF在△ABC内绕顶点D旋转时(点E不与点A、B重合),上述结论始终成立的有个.。

2021中考数学微专题:一次函数填空题专项(一)

2021中考数学微专题:一次函数填空题专项(一)

2021中考数学微专题:一次函数填空题专项1.已知M (﹣3,y 1),N (2,y 2)是直线y =﹣3x +1上的两个点,则y 1,y 2的大小关系是y 1 y 2.(填“>”,“=”或“<”)2.若x ,y 是变量,且函数y =(k ﹣1)是正比例函数,则k 的值为 .3.已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1 x 2(填“>”“<”或“=”).4.若y =(m ﹣2)x +m 是正比例函数,则: (1)常数m = ;(2)y 随x 的增大而 (填“增大”或“减小”).5.已知直线y 1=2x 与直线y 2=﹣2x +4相交于点A .有以下结论:①点A 的坐标为A (1,2);②当x =1时,两个函数值相等;③当x <1时,y 1<y 2;④直线y 1=2x 与直线y 2=2x ﹣4在平面直角坐标系中的位置关系是平行.其中正确的是 .6.直线y =x +4与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B 1处,则直线AM 的解析式为 .7.如图,直线y =﹣x +m 与y =nx +4n (n ≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x +m >nx +4n 的解集是 .8.若方程组无解,则y =kx ﹣2图象不经过第 象限.9.如图,正方形OABC 的面积为50,对角线OB 在直线y =2x 上,则点C 的坐标是 .10.在平面直角坐标系中,解析式为y =x +1的直线a 、解析式为y =x 的直线b 如图所示,直线a 交y 轴于点A ,以OA 为边作第一个等边三角形△OAB ,过点B 作y 轴的平行线交直线a 于点A 1,以A 1B 为边作第二个等边三角形△A 1BB 1,……顺次这样做下去,第2020个等边三角形的边长为 .11.我国很多城市水资源缺乏,为了加强居民的节水意识,某自来水公司采取分段收费标准,某市居民月交水费y (元)与用水量x (吨)之间的关系如图所示,若某户居民4月份用水20吨,则应交水费 元.12.已知一次函数y =kx ﹣3的图象与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则k 的取值范围是 .13.若一次函数y =2x +2的图象经过点(3,m ),则m = .14.如图,在平面直角坐标系中,四边形OA 1B 1C 1,A 1A 2B 2C 2,A 2A 3B 3C 3.…都是菱形,点A 1,A 2,A 3,…都在x 轴上,点C 1,C 2,C 3,…都在直线y =x +上,OA 1=1,则点C 2020的纵坐标是 .15.如图,直线y =kx +1经过点A (﹣2,0)交y 轴于点B ,以线段AB 为一边,向上作等腰Rt △ABC ,将△ABC 向右平移,当点C 落在直线y =kx +1上的点F 处时,平移的距离是 .16.如图,已知直线l :y =x ,点A 1(2,0),过点A 1作x 轴的垂线交直线l 于点B 1,以A 1B 1为边,向右侧作正方形A 1B 1C 1A 2,延长A 2C 1交直线l 于点B 2;以A 2B 2为边,向右侧作正方形A 2B 2C 2A 3,延长A 3C 2交直线l 于点B 3;以A 3B 3为边,向右侧作正方形A 3B 3C 3A 4,延长A 4C 3交直线l 于点B 4;…;按照这个规律继续作下去,点B n 的横坐标为 .(结果用含正整数n 的代数式表示)17.A ,B 两地相距240km ,甲货车从A 地以40km /h 的速度匀速前往B 地,到达B 地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD ﹣DE ﹣EF 所示.其中点C 的坐标是(0,240),点D 的坐标是(2.4,0),则点E 的坐标是 .18.某函数满足当自变量x =﹣1时,函数的值y =2,且函数y 的值始终随自变量x 的增大而减小,写出一个满足条件的函数表达式 .19.若以二元一次方程x +3y =b 的解为坐标的点(x ,y )都在直线y =﹣x +b ﹣1上,则常数b 的值为 .20.在同一平面直角坐标系中,函数y =|3x ﹣1|+2的图象记为l 1,y =x ﹣7的图象记为l 2,把l 1、l 2组成的图形记为图形M .若直线y =kx ﹣5与图形M 有且只有一个公共点,则k 应满足的条件是 .21.在一段长为1000m 的笔直道路AB 上,甲、乙两名运动员分别从A ,B 两地出发进行往返跑训练.已知甲比乙先出发30秒钟,甲距A 点的距离y /m 与其出发的时间x /分钟的函数图象如图所示.乙的速度是200m /分钟,当乙到达A 点后立即按原速返回B 点.当两人第二次相遇时,乙跑的总路程是 m .22.如图,平面直角坐标系中,已知直线y =x 上一点P (1,1),C 为y 轴上一点,连接PC ,以PC 为边做等腰直角三角形PCD ,∠CPD =90°,PC =PD ,过点D 作线段AB ⊥x 轴,垂足为B ,直线AB 与直线y =x 交于点A ,且BD =2AD ,连接CD ,直线CD 与直线y =x 交于点Q ,则Q 点的坐标是 .23.直线y =x +1与x 轴交于点D ,与y 轴交于点A 1,把正方形A 1B 1C 1O 1、A 2B 2C 2C 1和A 3B 3C 3C 2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2020B2020C2020C2019中的点B2020的坐标为.24.如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP 的值最小时,直线AP的解析式为.25.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.2元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.1元计算(不足1分钟按1分钟计算).在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分钟)之间的函数关系式为.参考答案1.解:当x=﹣3时,y1=﹣3×(﹣3)+1=10;当x=2时,y2=﹣3×2+1=﹣5.∵10>﹣5,∴y1>y2.故答案为:>.2.解:∵函数y=(k﹣1)是正比例函数,∴k2=1且k﹣1≠0,解得k=﹣1,故答案为:﹣1.3.解:(解法一)∵k=2>0,∴y随x的增大而增大.又∵1<3,∴x1<x2.故答案为:<.(解法二)当y=1时,2x1﹣1=1,解得:x1=1;当y=3时,2x2﹣1=3,解得:x2=2.又∵1<2,∴x1<x2.故答案为:<.4.解:(1)当m=0且m﹣2≠0时,y是x的正比例函数,解得m=0;(2)由(1)得,y=﹣2x,∵﹣2<0,∴y随x的增大而减小;故答案为:(1)0;(2)减小.5.解:联立y 1=2x ,y 2=﹣2x +4得,解得:,∴点A 的坐标为(1,2),故①正确; 当x =1时,y 1=2,y 2=2,故②正确; 如图:当x <1时,y 1<y 2故③正确;直线y 1=2x 与直线y 2=2x ﹣4平行,故④正确; 故答案为:①②③④.6.解:∵直线y =x +4与x 轴、y 轴分别交于点A 和点B , ∴当y =0时,x =﹣3;当x =0时,y =4, ∴A (﹣3,0),B (0,4), ∴OA =3,OB =4,∴在Rt △AOB 中,由勾股定理得AB =5.∵将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B 1处, ∴AB 1=AB =5,MB 1=MB , 又∵OA =3, ∴OB 1=5﹣3=2,设OM =a ,则MB 1=MB =4﹣a , ∴在Rt △MOB 1中,由勾股定理得:a 2+22=(4﹣a )2,解得:a =,∴M(0,),设直线AM的解析式为y=kx+b,将A(﹣3,0)、M(0,)代入得:,∴,∴直线AM的解析式为y=x+.故答案为:y=x+.7.解:当x<﹣2时,﹣x+m>nx+4n,∴关于x的不等式﹣x+m>nx+4n的解集为x<﹣2.故答案为:x<﹣2.8.解:∵方程组无解,∴k=3k+1,解得k=﹣,∴一次函数y=kx﹣2为y=﹣x﹣2,一次函数y=﹣x﹣2经过第二、三、四象限,不经过第一象限.故答案为一.9.解:作AE⊥x轴于E,CF⊥x轴于F,BH⊥AE于H,∵四边形OABC是正方形,∴OC=OA=AB,∠AOC=∠OAB=90°∴∠OCF+∠COF=∠COF+∠AOE=∠AOE+∠OAE=∠OAE+∠BAH,∴∠OCF=∠AOE=∠BAH,∵∠CFO=∠OEA=∠AHB=90°∴△OAE≌△ABH≌△COF(AAS),∴CF =OE =AH ,OF =AE =BH ,设(m ,n ),则H (m ,m +n ),B (m ﹣n ,m +n ),C (﹣n ,m ), 将B (m ﹣n ,m +n )代入y =2x ,得2(m ﹣n )=m +n , ∴m =3n ,①∵正方形OABC 的面积为50, ∴OA 2=50, ∴m 2+n 2=50,②,把①代入②,得9n 2+n 2=50,即10n 2=50, ∴n 2=5, ∴n =, ∴m =3, ∴C (﹣,3).10.解:延长A 1B 交x 轴于D ,A 2B 1交x 轴于E ,如图, ∵△OAB 、△BA 1B 1、△B 1A 2B 2均为等边三角形, ∴OA =OD ,A 1B =BB 1,A 2B 1=B 2B 1, ∵直线OB 的解析式为y =x ,∴∠BOD =30°, 由直线a :y =x +1可知OA =1,∴OB =1, ∴OD =,BD =, 把x =代入y =x +1得y =,∴A 1D =, ∴A 1B =2,∴BB 1=A 1B =2, ∴OB 1=3, ∴OE =,B 1E =, 把x =代入y =x +1得y =,∴A 2E =,∴A 2B 1=4,同理得到A 3B 2=23,…,按照此规律得到第2020个等边三角形的边长为22019, 故答案为22019.11.解:由图象可知,超出10吨的部分,每吨水的价格是(31﹣18)÷(15﹣10)=2.6(元), 当用水20吨时,应交水费:18+(20﹣10)×2.6=44(元), 故答案为:44.12.解:将(2,0)代入y =kx ﹣3得:0=2k ﹣3, ∴k =.将(3,0)代入y =kx ﹣3得: 0=3k ﹣3 ∴k =1.∵一次函数y =kx ﹣3过定点(0,﹣3),函数图象与x 轴的交点坐标为(x 0,0),且2≤x 0≤3, ∴1≤k ≤. 故答案为:1≤k ≤.13.解:∵一次函数y=2x+2的图象经过点(3,m),∴m=2×3+2=8.故答案为:8.14.解:∵OA1=1,∴OC1=1,∴∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,设C1(m,m+),∴=1,∴m=,m=﹣1(不合题意舍去),∴C1(,),∵四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,∴A1C2=2,A2C3=4,A3C4=8,…,同理得到C2(2,),∴C3(5,2),∴C4(11,4),C5(23,8),∴C6(47,16);…,∁n(3×2n﹣2﹣1,2n﹣2),∴点C2020的纵坐标是22018,故答案为22018.15.解:把A(﹣2,0)代入y=kx+1得﹣2k+1=0,解得k=,则直线AB的解析式为y =x+1,当x=0时,y=x=1=1,则B点坐标为(0,1),作CH⊥x轴于H,如图,∵△ABC为等腰直角三角形,∴AC=AB,∠BAC=90°,∴∠BAO +∠CAH =90°,而∠BAO +∠ABO =90°,∴∠ABO =∠CAH ,在△ABO 和△CAH 中,,∴△ABO ≌△CAH ,∴OB =AH =1,OA =CH =2,∴OH =OA +AH =3,∴C 点坐标为(﹣3,2),∵△ABC 向右平移,∴F 的纵坐标与C 点的纵坐标相等,把y =2代入y =x +1得x +1=2,解得x =2,∴F 点的坐标为(2,2),∴点C 向右平移了2﹣(﹣3)=5个单位.故答案为5.16.解:∵A 1(2,0),∴B 1(2,1),由正方形的性质,可求A 2(3,0),B 2(3,),A 3(,0),B 2(,),A 4(,0),B 2(,),…… A 1(,0),B n (,),∴点B n的横坐标为,故答案为.17.解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).18.解:y=﹣2x,当x=﹣1时,y=2且函数y的值始终随自变量x的增大而减小,故答案为:y=﹣2x.19.解:因为以二元一次方程x+3y=b的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,直线解析式乘以3得3y=﹣x+3b﹣3,变形为:x+3y=3b﹣3,所以b=3b﹣3,解得:b=,故答案为:.上,﹣3≤k≤3 20.解:根据题意画出图形M,直线y=kx﹣5过定点(0,5),交点在l2且k≠1.故答案是:﹣3≤k≤3且k≠1.21.解:甲的速度为:1000÷4=250(米/分钟),两人第一次相遇时处于两人都未跑完一个1000m时,由图象可知时间处于4分钟以内;∵甲比乙先出发30秒钟,∴当x=5分钟时,乙跑了4.5分钟,此时乙跑了200×4.5=900<1000(m);设甲返回时再经过m分钟,两人第二次相遇,此时甲返回的速度为200,根据题意得:(200+200)m=1100,解得m=,∴200×+900=1450(米),∴乙总路程为1450米.故答案为:1450.22.解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中,∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴DN=2a﹣1,则2a﹣1=1,∴a =1,即BD =2.∵直线y =x ,∴AB =OB =3,∴点D (3,2)∴PC =PD ===,在Rt △MCP 中,由勾股定理得:CM ===2, 则C 的坐标是(0,3),设直线CD 的解析式是y =kx +3,把D (3,2)代入得:k =﹣,即直线CD 的解析式是y =﹣x +3, ∴组成方程组 解得:∴点Q (,), 故答案为:(,).23.解:直线y =x +1与x 轴,y 轴交点坐标为:A 1(0,1),即正方形OA 1B 1C 1的边长为1,∵△A 1B 1A 2、△A 2B 2A 3,……都是等腰直角三角形,边长依次为1,2,4,8,16…… ∴B 1(1,1),B 2(3,2),B 3(7,4),B 4(15,8)……即:B 1(21﹣1,20),B 2(22﹣1,21),B 3(23﹣1,22),B 4(24﹣1,23)…… 故答案为:B 2020(22020﹣1,22019)24.解:∵四边形ABCO 是正方形,∴点A ,C 关于直线OB 对称,连接CD 交OB 于P ,连接PA ,PD ,则此时,PD +AP 的值最小,∵OC =OA =AB =4,∴C(0,4),A(4,0),∵D为AB的中点,∴AD=AB=2,∴D(4,2),设直线CD的解析式为:y=kx+b,∴,∴,∴直线CD的解析式为:y=﹣x+4,∵直线OB的解析式为y=x,∴,解得:x=y=,∴P(,),设直线AP的解析式为:y=mx+n,∴,解得:,∴直线AP的解析式为y=﹣2x+8,故答案为:y=﹣2x+8.25.解:超过3分钟的话费为0.1×(x﹣3),所以:通话时间超过3分钟,话费y(元)与通话时间x之间的函数关系式为y=0.2+0.1x(x﹣3)=0.1x﹣0.1.故答案为:y=0.1x﹣0.1.。

中考数学《函数基础知识》专项练习题(带答案)

中考数学《函数基础知识》专项练习题(带答案)

中考数学《函数基础知识》专项练习题(带答案)一、单选题1.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5 y/cm1010.51111.51212.5A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm2.若矩形的面积为125,则矩形的长y 关于宽x(x >0)的函数关系式为( )A .y =125xB .y =512xC .y =12x 5D .y =5x 123.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度 ℎ 与时间 t 之间的关系的图象是( )A .B .C .D .4.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(m)与时间t(min)之间函数关系的图象大致是( )A .B .C.D.5.若代数式√x−1x−2有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠26.等腰三角形ABC中,AB=CB=5,AC=8,P为AC边上一动点,PQ⊥AC,PQ与△ABC的腰交于点Q,连结CQ,设AP为x,△CPQ的面积为y,则y关于x的函数关系的图象大致是()A.B.C.D.7.若直线y=kx上每一点都能在直线y=−6x上找到关于x轴对称的点,则它的解析式是()A.y=6x B.y=16x C.y=−6x D.y=−1 6x8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.9.函数y=√2−x+1x+1中,自变量x的取值范围是()A.x⩽2B.x⩽2且x≠−1 C.x⩾2D.x⩾2且x≠−110.在下列四个图形中,能作为y是x的函数的图象的是()A.B.C.D.11.如图,小磊老师从甲地去往10千米的乙地,开始以一定的速度行驶,之后由于道路维修,速度变为原来的四分之一,过了维修道路后又变为原来的速度到达乙地.设小磊老师行驶的时间为x(分钟),行驶的路程为y(千米),图中的折线表示y与x之间的函数关系,则小磊老师从甲地到达乙地所用的时间是()A.15分钟B.20分钟C.25分钟D.30分钟12.下列图象中,y是x的函数的是()A.B.C.D.二、填空题13.如图1,在平面直角坐标系中,将▱ABCD(AB>AD)放置在第一象限,且AB∥x轴,直线y=−x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为.14.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地. 如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系式;折线B−C−D表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.下几种说法:①货车的速度为60千米/小时;②轿车与货车相遇时,货车恰好从甲地出发了3. 9小时;③若轿车到达乙地后,马上沿原路以CD段速度返回,则轿车从乙地出发317小时再次与货车相遇;其中正确的个数是. (填写序号)15.某商城为促进同一款衣服的销量,当同一个人购买件数达到一定数目的时候,超过的件数,每件打8折,现任意挑选5个顾客的消费情况制定表格,其中x表示购买件数,y表示消费金额,根据表格数据请写出一个y关于x的函数解析式是:.x(件)23456y(元)10015020024028016.函数y=2√x−1的自变量x的取值范围是.17.甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:(1)图中m的值是;(2)第天时,甲、乙两个车间加工零件总数相同.18.如图,△O的半径为5,点P在△O上,点A在△O内,且PA=3,过点A作AP的垂线交△O于点B,C.设PB= x ,PC=y,则y与x之间的函数解析式为三、综合题19.某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.行李的重量xkg快递费不超过1kg10元超过1kg但不超过5kg的部分3元/kg超过5kg但不超过15kg的部分5元/kg(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?20.小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶,若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系,如图所示,根据图象回答下列问题;(1)小汽车行驶小时后加油,中途加油升;(2)求加油前邮箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点300km,车速为80km/h,要到达目的地,油箱中的油是否够用请说明理由.21.一农民带了若干千克自产的萝卜进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出萝卜千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)降价前他每千克萝卜出售的价格是多少?(2)降价后他按每千克0.4元将剩余萝卜售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克萝卜?22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x人,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y1、y2与x之间的函数关系式;(3)导游小王5月2日(五一假日)带A旅游团,5月8日(非节假日)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.在“世界读书日”这周的周末,小张同学上午8时从家里出发,步行到公园锻炼了一段时间后以相同的速度步行到图书馆看书,看完书后直接回到了家里,如图是他离家的距离s(米)与时间t(时)的函数关系,根据图象回答下列问题:(1)小张同学家离公园的距离是多少米?锻炼身体用了多少分钟?在图书馆看了多少分钟的书?从图书馆回到家里用了多少分钟?(2)图书馆离小张同学的家多少米?(3)小张同学从图书馆回到家里的速度是多少千米/时?24.甲、乙两车早上从A城车站出发匀速前往B城车站,在整个行程中,两车离开A城的距离s与时间t的对应关系如图所示.(1)A,B两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B城车站这一时间段,在何时间点两车相距40km?参考答案1.【答案】B 2.【答案】A 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】D 7.【答案】A 8.【答案】B 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】B 13.【答案】8 14.【答案】①②③15.【答案】{y =50x(0≤x ≤4)y =40x +40(x >4)16.【答案】x >1 17.【答案】(1)770(2)818.【答案】y =30x19.【答案】(1)解:设托运费y 1(元)与行李重量xkg 的函数关系式为y 1=kx+b将(30,300)、(50,900)代入y 1=kx+b , {30k +b =30050k +b =900 ,解得: {k =30b =−600 ∴托运费y 1(元)与行李质量xkg 的函数关系式为y 1=30x ﹣600. 当y 1=30x ﹣600=0时,x =20.答:可携带的免费行李的最大重量为20kg . (2)解:根据题意得:当0<x≤1时,y 2=10; 当1<x≤5时,y 2=10+3(x ﹣1)=3x+7;当5<x≤15时,y 2=10+3×(5﹣1)+5(x ﹣5)=5x ﹣3.综上所述:快递费y 2(元)与行李重量xkg 的函数关系式为y 2= {10(0<x ≤1)3x +7(1<x ≤5)5x −3(5<x ≤15) .(3)解:当10≤m <20时,5<25﹣m≤15∴y =y 1+y 2=0+5×(25﹣m)﹣3=﹣5m+122. ∵10≤m <20 ∴22<y≤72;当20≤m <24时,1<25﹣m≤5∴y =y 1+y 2=30m ﹣600+3×(25﹣m)+7=27m ﹣518. ∵20≤m <24 ∴22≤y <130.综上可知:当m =20时,总费用y 的值最小,最小值为22.答:当托运20kg 、快递5kg 行李时,总费用最少,最少费用为22元.20.【答案】(1)3;24(2)解:设直线解析式为Q=kt+b ,把(0,36)和(3,6)代入得: {3k +b =6b =36解得 {k =−10b =36 ∴Q=-10t+36,(0≤t≤3);(3)解:根据题意,每小时耗油量为10升 ∵加油站到景点用时间为:300÷80=3.75(小时) ∴需要的油量为:3.75×10=37.5升>30升 故不够用.21.【答案】(1)解:设降价前每千克萝卜价格为k 元则农民手中钱y 与所售萝卜千克数x 之间的函数关系式为:y=kx+5 ∵当x=30时,y=20 ∴20=30k+5 解得k=0.5.答:降价前每千克萝卜价格为0.5元. (2)解:(26-20)÷0.4=15 15+30=45kg.所以一共带了45kg 萝卜.22.【答案】(1)解: 800÷10=80 (元 / 人)答:不打折的门票价格是80元 / 人; (2)解:设 y 1=10k 解得: k =48 ∴y 1=48x当0⩽x⩽10时,设y2=80x 当x>10时,设y2=mx+b则{10m+b=80020m+b=1440解得:m=64∴y2=64x+160∴y2={80x(0⩽x⩽10)64x+160(x>10);(3)解:设A旅游团x人,则B旅游团(50−x)人若0⩽x⩽10,则80x+48(50−x)=3040解得:x=20,与x⩽10不相符若x>10,则64x+160+48(50−x)=3040解得:x=30,与x>10相符,50−30=20(人)答:A旅游团30人,B旅游团20人.23.【答案】(1)解:观察图象得:小张同学8时离开家,8:10到达公园,小张同学家离公园的距离是500米∵小张同学8:10到达公园,9:10离开公园∴小张同学锻炼身体用了60分钟∵小张同学9:30到达图书馆,11:40离开图书馆∴小张同学在图书馆看了130分钟的书∵小张同学11:40离开图书馆,12时回到家∴小张同学从图书馆回到家里用了20分钟∴小张同学家离公园的距离是500米,锻炼身体用了60分钟,在图书馆看了130分钟的书,从图书馆回到家里用了20分钟;(2)解:∵小张同学8时离开家,8:10到达公园,距离500米,用时10分钟∴小张同学从家到公园的速度为500÷10=50(米/分)∵步行到公园锻炼了一段时间后以相同的速度步行到图书馆着书∴小张同学从公园到图书馆的速度为50米/分∵小张同学9:10离开公园,9:30到达图书馆∴公园离图书馆的距离为:50×20=1000(米)∴图书馆离小张同学的家的距离为:1000+500=1500(米)∴图书馆离小张同学的家1500米;(3)解:∵小张同学从图书馆到家的距离为1500米,即1.5千米,从图书馆回到家里用了20分钟,即时13小时 ∴小张同学从图书馆回到家里的速度是:1.5÷13=4.5千米/时 ∴小张同学从图书馆回到家里的速度是4.5千米/时.24.【答案】(1)解:由图象可知A 、B 两城之间距离是300千米;(2)解:由图象可知,甲的速度= 3005=60(千米/小时) 乙的速度= 3003=100(千米/小时) ∴甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)解:设乙车出发x 小时追上甲车由题意:60(x+1)=100x解得:x =1.5∴乙车出发1.5小时追上甲车;(4)解:设乙车出发后到甲车到达B 城车站这一段时间内,甲车与乙车相距40千米时甲车行驶了m 小时①当甲车在乙车前时得:60m ﹣100(m ﹣1)=40解得:m =1.5此时是上午6:30;②当甲车在乙车后面时100(m ﹣1)﹣60m =40解得:m =3.5此时是上午8:30;③当乙车到达B 城后300﹣60m =40解得:m = 133此时是上午9:20.∴分别在上午6:30,8:30,9:20这三个时间点两车相距40千米.。

初三数学填空专练(全册)

初三数学填空专练(全册)

《一元二次方程》(选择填空专练一)1.给出以下方程的解题过程,其中正确的有( )①解方程(x ﹣2)2=16,开方,得x ﹣2=±4,移项得x 1=6,x 2=﹣2;②解方程x (x ﹣)=(x ﹣),两边同时除以(x ﹣)得x =1,所以原方程的根为x 1=x 2=1;③解方程(x ﹣2)(x ﹣1)=5,由题得x ﹣2=1,x ﹣1=5,解得x 1=3,x 2=6; ④方程(x ﹣m )2=n 的解是n m x +=1,n m x -=2.A .0个B .2个C .3个D .4个2.把方程x 2﹣12x +33=0化成(x +m )2=n 的形式,则式子m +n 的值是 3.关于x 的一元二次方程0122=--x kx 有两个不相等实根,则k 的取值范围是4.若等腰三角形一条边的边长为3,另两条边的边长是关于x 的一元二次方程x 2﹣12x +k =0的两个根,则k 的值是5.若关于x 的一元二次方程ax 2+bx +6=0(a ≠0)的其中一个解是x =1,则2018﹣a ﹣b 的值是6.若06)(5)(22222=-+-+y x y x ,则=+22y x __________.7.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数为 .8.有一个人收到短信后,再用手机转发短消息,每人只转发一次,经过两轮转发后共有133人收到短消息,问每轮转发中平均一个人转发给个人9.在实数范围内定义运算“⊕”,其法则为:22b a b a -=⊕,则方程(4⊕3)⊕24=x 的解为.10.关于的方程068)6(2=+--x x a 有实数根,则整数a 的最大值是11.已知关于x 的一元二次方程02=--k )h x (m (m 、h ,k 均为常数且m ≠0)的解是x 1=2,x 2=5,则关于x 的一元二次方程k )h x (m =+-23的解是12.已知m ,n 是方程020*******=+-x x 的两个根,则)n n )m m 201820192018201922+-+-((的值是13.如图,在矩形ABCD 中,AB =10cm ,AD =8cm .点P 从点A 出发沿AB 以2cm /s 的速度向终点B 运动,同时点Q 从点B 出发以1cm /s 的速度向终点C 运动,当其中一点到达终点后另一点也停止运动.(1)当运动到秒时,△DPQ 的面积是28; (2)当运动到 秒时,△DPQ 是直角三角形.x《二次函数》(选择填空专练二)1.若点(2,5),(4,5)是抛物线cbxaxy++=2上的两个点,那么抛物线的对称轴是2.函数362+-=xkxy的图象与x轴有交点,则k的取值范围是3.若A(1,413y-),B(2,45y-),C(3,41y)为二次函数245y x x=+-的图象上的三点,则1,y2,y3y的大小关系是4.二次函数2(0)y ax bx c a=++≠的图象如下图,当0y<时,x的取值范围是()5.已知二次函数)0(2≠++=acbxaxy的图象如图,有下列6个结论:①0<abc;②cab-<;③024>++cba;④bc32<;⑤)(bammba+<+,(m≠1的实数⑥02>++cba,其中正确的结论的有6.如图,抛物线y=﹣x2+x+2与x轴交于A,B两点(A在B的左侧),与y轴交于点C,P 为此抛物线对称轴l上任意一点,则△APC的周长的最小值是8.将抛物线23y x=-先向下平移3个单位,再向左平移2个单位后,所得到的抛物线的解析式是 .9. 把二次函数2243y x x=-+化成2()y a x h k=-+的形式 .10.已知抛物线,若点(,5)与点关于该抛物线的对称轴对称,则点的坐标是.11.已知a<0,b>0,那么抛物线22++=bxaxy的顶点在第象限.12.抛物线228y x x m=++与x轴只有一个公共点,则m的值为.13.已知抛物线2y ax bx c=++(a>0)的对称轴为直线1x=,且经过),1(1y-,),2(2y,试比较1y和2y的大小:1y2y(填“>”,“<”或“=”)322--=xxy P2-Q Q《圆》(选择填空专练三)1.如图中△ABC 外接圆的圆心坐标是2.如图,⊙O 是正五边形ABCDE 的外接圆,点P 是上的一点,则∠CPD 的度数是3.如图,AB 、AC 、BD 是⊙O 的切线,切点分别是P 、C 、D .若AB=5,AC=3,则BD 的长是 4.如图,一个宽为2 cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm ),那么该圆的半径为第4题图 第5题图 第6题图 5.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为6.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD .已知DE=6, ∠BAC+∠EAD=180°,则弦BC 的弦心距等于7.△ABC 是直径为10cm 的⊙O 的内接等腰三角形,如果此等腰三角形的底边BC=8cm ,则该△ABC 的面积为8.如图,扇形OAB 中,OA=10,∠AOB=36°.若固定B 点,将此扇形以顺时针方向旋转,得一新扇形O′A′B,其中A 点在O′B 上,则O 点旋转至O′点所经过的轨迹长度 9.如图,O 为△ABC 的外心,△OCP 为正三角形,OP 与AC 相交于D 点,连接OA .若∠BAC=70°,AB=AC ,则∠ADP 的度数为第8题图 第9题图 第10题图 10.如图,⊙O 的半径为1,点A 是半圆上的一个三等分点,点B 是弧的中点,P 是直径MN 上的一个动点,则PA+PB 的最小值为11.如图,⊙O 的半径为5cm ,弦AB 为8cm ,P 为弦AB 上的一动点,若OP 的长度为整数,则12.如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒1度的速度旋转,CP 与量角器的半圆弧交于点E ,第30秒时,点E 在量角器上对应的读数是 度. 第11题图 第12题图 第13题图13.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则BD 的长为.14.已知一点到圆上的最短距离是2,最长距离是4,则圆的半径为 .15.如图,△ABC 的内切圆⊙O 分别切BC ,AB ,AC 于点D ,E ,F ,△ABC 的周长为28cm ,BC=12cm ,则AF= cm .第15题图 第16题图 第17题图16.如图,点A 、B 、C 、D 、E 都在⊙O 上,AB 是⊙O 的直径,则∠A+∠B+∠D 度数为 . 17.在平面直角坐标系中,点P 的坐标为(﹣4,0),半径为1的动圆⊙P 沿x 轴正方向运动,若运动后⊙P 与y 轴相切,则点P 的运动距离为 .20.如图,⊙A 过点O (0,0),C (3,0),D (0,1),点B 是x 轴下方⊙A 上的一点,连接BO 、BD ,则∠OBD 的度数是 .21.如图,在△ABC 中,AC= 4,将△ABC 绕点C 按逆时针旋转30°得到△FGC ,则图中阴影部分的面积为 .第20题图 第21题图 第22题图 第23题图22.在2×2的正方形网格中,每个小正方形的边长为1.以点O 为圆心,2为半径画弧,交图中网格线于点A ,B ,则扇形OAB 的面积是.CA '' 《旋转与概率》(选择填空专练四)1.在五张完全相同的卡片上分别画上:等边三角形、平行四边形、等腰梯形、圆和正方形,在看不见图形的情况下随机抽出1张卡片,这张卡片上的图形是中心对称图形的概率是2.现有长度为2,3,4,5的四条线段,从中任选三条,能组成三角形的概率是3.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是4.如图,直线与轴、轴分别交于、两点,把△90°后得到△,则点的坐标是5.若点P (m+1,8﹣2m )关于原点的对称点Q 在第三象限,那么m 的取值范围是 . 6.从-1,1,2三个数中任取一个,作为一次函数3y kx =+的k 值,则所得一次函数y 随x 的增大而增大的概率是 .7.新定义运算“◎”,对于任意有理数a 、b ,都有a ◎b =a2﹣ab+b ﹣1,例如:3◎5=32﹣3×5+5﹣1=﹣2,若任意投掷一枚印有数字1~6的质地均匀的骰子,将朝上的点数作为x 的值,则代数式(x ﹣3)◎(3+x )的值为非负数的概率是 . 8.如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过_____次旋转而得到,每一次旋转_____度.9.如图,一块等腰直角的三角板,在水平桌面上绕点按顺时针方向旋转到△的位置,使三点共线,若BC =4,则点A 所经过的路径长为 .10.如图,四边形ABCD 是菱形,E 、F 、G 、H 分别是各边的中点,随机地向菱形ABCD 内掷一粒米,则米粒落到阴影区域内的概率是 .11.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB1C1的位置,点B 、O 分别落在点B1、C1处,点B1在x 轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x 轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x 轴上,依次进行下去…,若点A (53,0),B (0,4),则点B2019的横坐标为443y x =-+x y A B AOB AO B ''B 'ABC C A B C ''A C B ',,第10题《相似》(选择填空专练五)1.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为2.如图,Rt △ABC 内接于⊙O ,AB=3,BC=4,点D 为的中点,连结AD 与BC 相交于点E ,则DE :AE 等于 3.如图,矩形ABCD 中,AB=3,BC=4,动点P 从B 点出发,在BC 上移动至点C 停止.记PA=x ,点D 到直线PA 的距离为y ,则y 关于x 的函数解析式是4.如图,菱形ABCD 中,AB=AC ,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,则下列结论:①△ABF ≌△CAE ;②∠AHC=120°;③△AEH ∽△CEA ; ④AE •AD=AH •AF ;其中结论正确的个数是5.如图,矩形ABCD 中,DE ⊥AC ,E 为垂足,图中相似三角形共有(全等三角形除外) 6.如图,在正方形网格上有两个相似三角形△ABC 和△DEF ,则∠BAC 的度数为 7.如图,△ABC 中,P 为AB 上的一点,在下列四个条件中:①∠ACP=∠B ;②∠APC=∠ACB ;③AC 2=AP ⋅AB ;④AB •CP=AP •CB ,能满足△APC 和△ACB 相似的条件是9.如图,D 、E 是AB 的三等分点,DF ∥EG ∥BC ,图中三部分的面积分别为S 1,S 2,S 3, 则S 1:S 2:S 3=10.已知a3=b4=c5≠0,则 a +b +ca−b +c = .11.如图在Rt △ABC 中,∠A=90°,斜边上的高AD 交BC 于D ,若BD=9,CD=4,则AD 的长度等于 .12.如图,在⊙O 中,弦AB 与弦CD 交于点M ,且CM :BM=3:2,则DM :AM= . 13.如图,△ABC 三个顶点的坐标分别为A (2,2),B (4,0),C (6,4)以原点为位似中心,将△ABC 缩小,位似比为12,则线段AC 中点P 变换后对应点的坐标为 .《反比例函数》(选择填空专练六)1.若M(,)、N(,)、P(,)三点都在函数y=k2+5x的图象上,则、、的大小关系是2. 如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数6yx=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为3.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是4. 若与-3成反比例,与成反比例,则是的函数.5.若直线)0(11≠=kxky和双曲线22(0)ky kx=≠在同一坐标系内的图象无交点,则1k、2k的关系是6.点A在双曲线1yx=上,点B在双曲线3yx=上,且AB∥x轴,C,D在x轴上,若四边形ABCD是矩形,则矩形ABCD的面积为 .7.如图,点A(a,1)、B(-1,b)都在双曲线y=-2x(x<0)上,点P、Q分别是x轴、y 轴上的动点,当四边形PABQ的周长取最小值时,P、Q两点的坐标为.8.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数kyx=的图像上,OA=1,OC=6,则正方形ADEF的边长为.9.如图,Rt△ABO中,∠AOB=90°,点A在第一象限、点B在第四象限,且AO:BO=1:2,若点A(x,y)的坐标x,y满足1yx=,则点B(x,y)的坐标x,y所满足的关系式为.12-1y14-2y123y1y2y3y y x x z4y z数学综合(选择填空专练七)1.抛物线96432---=x x y 的顶点坐标为 .2.等腰△ABC 中,BC =8,若AB 、AC 的长是关于x 的方程x2-10x +m =0的根,则m 的值等于______.3.有一人患了流感,经过两轮传染后共有81人患了流感.则每轮传染中平均一个人传染了 个人; 如果不及时控制,第三轮将又有 人被传染.4.正六边形的外接圆的半径与内切圆的半径之比为 .5.如图,⊙O 的直径是AB ,CD 是⊙O 的弦,若∠D =70°,则∠ABC 等于______.6.如图,PA 、PB 与⊙O 相切,切点分别为A 、B ,PA =3,∠P =60°,若AC 为⊙O 的直径,则图中阴影部分的面积为7.若n 是方程022=--x x 的一个根,则n n -2+1=8.如图,AB 、AC 是⊙O 的两条弦,30A ∠=°,过点C 的切线与OB 的延长线交于点D ,则 ∠D 的度数为 . 9.如图,在△ABC 中,∠B=90°,∠A=30°,AC=4cm ,将△ABC 绕顶点C 顺时针方向旋转△A ′B ′C 的位置,且三点A 、C 、B ′在同一条直线上,则点A 所旋转的最小角为.在旋转过程中点B 所走过的路径长为,线段AB 所扫过的图形的面积为10.如图,正方形ABCD 的边长为2,AE=EB ,MN=1,线段MN 的两端分别在CB 、CD 上滑动,那么当CM=________时,△ADE 与△MNCA '11.如图,四边形木框ABCD 在灯泡发出的光照射下形成的影子是四边形A B C D '''',若:1:2AB A B ''=,则四边形ABCD 的面积∶四边形A B C D ''''的面积为. BA。

填空压轴题(函数篇)-2023年中考数学压轴题专项训练(解析版)

填空压轴题(函数篇)-2023年中考数学压轴题专项训练(解析版)

填空压轴题(函数篇)1.压轴题速练1一.填空题(共40小题)1(2023•上虞区模拟)已知点A 在反比例函数y =12x(x >0)的图象上,点B 在x 轴正半轴上,若△OAB 为等腰直角三角形,则AB 的长为23或26 .【答案】23或26.【分析】因为等腰三角形的腰不确定,所以分三种情况分别计算即可.【详解】解:当AO =AB 时,此时∠OAB =90°;∵A 在函数y =12x(x >0)上,∴S △OAB =12,∴12×OA ×AB =12,即12AB 2=12,∴AB =24=26;当AB =BO 时,此时∠ABO =90°;∵A 在函数y =12x (x >0)上,∴S △AOB =122=6,∴12×OB ×AB =6,即12AB 2=6,∴AB =23,当OA =OB 时,A 点落在y 轴上,故不合题意,综上所述,AB 的长为23或26.故答案为:23或26.2(2023•姑苏区校级一模)在平面直角坐标系xOy 中,对于点P (a ,b ),若点P '的坐标为ka +b ,a +b k(其中k 为常数且k ≠0),则称点P '为点P 的“k -关联点”.已知点A 在函数y =3x (x >0)的图象上运动,且A 是点B 的“3-关联点”,若C (-1,0),则BC 的最小值为 3105 .【答案】3105.【分析】由A 是点B 的“3-关联点”,可设点B 坐标,表示出点A 坐标,由点A 在函数y =3x(x >0)的图象上,就得到点B 在一个一次函数的图象上,可求出这条直线与坐标轴的交点M 、N ,过C 作这条直线的垂线,这点到垂足之间的线段CB ,此时CB 最小,由题中的数据,可以证明出△MON ∽△MBC ,进而得出MNMC =ONBC,进而求出BC .【详解】解:过点B 作QB ⊥MN ,垂足为B ,设B (x ,y ),∵A 是点B 的“3-关联点”,∴A 3x +y ,x +y3 ,∵点A 在函数y =3x (x >0)的图象上,∴(3x +y )x +y3=3,即:3x +y =3或2x +y =-3(舍去x <0,y <0),∴y =-3x +3,∴点B 在直线y =-3x +3上,直线y =-3x +3与x 轴、y 轴相交于点M 、N ,则M (1,0)、N (0,3),∴MN =12+32=10,MC =MO +OC =1+1=2,当CB ⊥MN 时,线段BC 最短,∵∠CBM =∠NOM =90°,∠CMB =∠NMO ,∴△MON ∽△MBC ,∴MN MC =ON BC ,即102=3BC,解得:BC =3105,故答案为:3105.3(2023•海门市一模)如图,在平面直角坐标系xOy 中,已知点A (m ,n ),B (m +4,n -2)是函数y =kx(k >0,x >0)图象上的两点,过点B 作x 轴的垂线与射线OA 交于点C .若BC =8,则k 的值为6.​【答案】6.【分析】作AD ⊥x 轴于点D ,设直线CB 与x 轴交于点E ,根据AD ∥CE ,得AD CE =ODOE,所以n =32m ,即可得到点A m ,32m ,B m +4,32m -2 ,代入y =kx (k >0,x >0)即可求出答案.【详解】解:如图,作AD ⊥x 轴于点D ,设直线CB 与x 轴交于点E ,∵点A (m ,n ),B (m +4,n -2),BC =8,∴点D (m ,0),E (m +4,0),CE =n +6,∵AD ∥CE ,∴AD CE =ODOE ,∴n n +6=m m +4,∴n =32m ,∴点A m ,32m ,B m +4,32m -2 ,∵点A ,B 是函数y =kx(k >0,x >0)图象上的两点,∴k =m ⋅32m =(m +4)•32m -2 ,解得m =2,∴k =m ⋅32m =6,故答案为:6.【点睛】此题考查了反比例函数图象上点的坐标特征,平行线分线段成比例定理,关键是根据AD ∥CE ,得AD CE =OD OE,求出n =32m .4(2023•建昌县一模)如图,在平面直角坐标系中,点A ,B 在反比例函数y =kx(k ≠0,x >0)的图象上,点C 在y 轴上,AB =AC ,AC ∥x 轴,BD ⊥AC 于点D ,若点A 的横坐标为5,BD =3CD ,则k 值为 154 .【答案】154.【分析】延长BD 交x 轴于点E ,过点B 作BG ⊥y 轴于点G ,过点A 作AF ⊥x 轴于点F ,设B (m ,n ),可得BD =3m ,AD =5-m ,根据勾股定理求出m =1,进一步得出AF =n -3,再根据n =5(n -3)求出n =154即可得出结论.【详解】解:延长BD 交x 轴于点E ,过点B 作BG ⊥y 轴于点G ,过点A 作AF ⊥x 轴于点F ,则四边形BGCD ,COED ,ADEF 均为矩形,∴BG =CD ,AF =DE ,CD =OE ,设B (m ,n ),则有BG =CD =OE =m ,BE =n ,∵AC =AB =5,∴AD =AC -CD =5-m ,∵BD =3CD =3m ,∴AF =DE =n -3m ,在Rt △ABD 中,BD 2+AD 2=AB 2,∴(3m )2+(5-m )2=52,解得m 1=1,m 2=0(不符合题意,舍去),∴DE =n -3,AF =n -3,∴B (1,n ),A (5,n -3),∵点A ,B 在反比例函数y =kx(k ≠0,k >0)的图象上,∴n =5(n -3),解得n =154,∴k =1×154=154.故答案为:154.【点睛】本题主要考查了反比例函数图象上点的坐标特征,矩形的判定与性质以及勾股定理等知识,熟练掌握反比例函数图象上点的坐标一定满足该函数解析式是解答本题的关键.5(2023•碑林区校级模拟)如图,等腰直角△ABC的顶点A 坐标为(-3,0),直角顶点B 坐标为(0,1),反比例函数y =kx(x <0)的图象经过点C ,则k =-4.【答案】-4.【分析】先利用等角的余角相等证明∠CBD =∠BAO ,则可根据“AAS ”判断△AOB ≌△BDA ,所以OB =CD =1,OA =BD =3,则OD =OC +CD =4,从而得到点C 的坐标,代入y =kx(x <0)即可求得k 的值.【详解】解:作CD ⊥y 轴于D ,∵A (3,0),B (0,1),∴OA =3,OB =1,∵∠ABC =90°,∴∠ABO +∠CBD =90°,∵∠ABO +∠BAO =90°,∴∠CBD =∠BAO ,在△AOB 和△BDC 中,∠CBD =∠BAO ∠AOB =∠BDC =90°AB =BC ,∴△AOB ≌△BDA (AAS ),∴OB =CD =1,OA =BD =3,∴点C 的坐标(-1,4),∵反比例函数y =kx(x <0)的图象经过点C ,∴k =-1×4=-4.故答案为:-4.6(2023•宁波模拟)如图,在平面直角坐标系xOy 中,△OAB 为等腰直角三角形,且∠A =90°,点B 的坐标为(4,0).反比例函数y =kx(k ≠0)的图象交AB 于点C ,交OA 于点D .若C 为AB 的中点,则OD OA=32 .【答案】32.【分析】由等腰直角三角形的性质得到A (2,2),直线OA 为y =x ,进一步求得点C (3,1),利用待定系数法求得反比例函数的解析式,与直线OA 的解析式联立,解方程组求得点D 的坐标,从而求得ODOA=32.【详解】解:∵点B 的坐标为(4,0),∴OB =4,∵△OAB 为等腰直角三角形,且∠A =90°,∴A (2,2),∴直线OA 为y =x ,∵C 为AB 的中点,∴C (3,1),∵反比例函数y =kx(k ≠0)的图象交AB 于点C ,交OA 于点D ,∴k =3×1=3,∴反比例函数为y =3x,由y =3x y =x,解得x =3y =3 或x =-3y =-3 ,∴D (3,3),∴OD OA=32.故答案为:32.7(2023•龙港市二模)如图,Rt △ABO 放置在平面直角坐标系中,∠ABO =Rt ∠,A 的坐标为(-4,0).将△ABO 绕点O 顺时针旋转得到△A ′B ′O ,使点B 落在边A ′O 的中点.若反比例函数y =kx(x >0)的图象经过点B ',则k 的值为 3 .【答案】3.【分析】连接BB′,交y轴于D,由题意可知OB=12OA,得出∠A′OB′=∠AOB=60°,证得△BOB′是等边三角形,然后证得BB′垂直于y轴,BD=B′D,从而求得BD=B′D=1,OD=3,得到B′(1,3),代入y=k x(x>0)即可求得k的值.【详解】解:连接BB′,交y轴于D,由题意可知OB=12OA,∴∠OAB=30°,∴∠A′OB′=∠AOB=60°,∵BO=B′O,∴△BOB′是等边三角形,∵∠BOD=90°-60°=30°,∴OD平分∠BOB′,∴BB′垂直于y轴,BD=B′D,∴BB′∥x轴,∵A的坐标为(-4,0),∴OA=4,∴OB=2,∴等边△BOB′的边长为2,∴BD=B′D=1,OD=3,∴B′(1,3),∵反比例函数y=k x(x>0)的图象经过点B',∴k=1×3=3,故答案为:3.8(2023•温州二模)如图,点A在x轴上,以OA为边作矩形OABC,反比例函数y=kx(k>0,x>0)的图象经过AB的中点E,交边BC于点D,连结OE.若OE=OC,CD=2,则k的值为 1633 .​【答案】1633.【分析】设OC =AB =m ,则AE =12OE =12m ,利用勾股定理求得OA =32m ,即可得到D (2,m ),E 32m ,12m,由k =xy 得到k =2m =32m •12m ,解得m =833,即可求得k =2m =1633.【详解】解:设OC =AB =m ,∵点E 是AB 的中点,∴AE =12AB∵OE =OC ,CD =2,∴AE =12OE =12m ,∴OA =OE 2-12OE 2=32OE =32m ,∴D (2,m ),E 32m ,12m ,∵反比例函数y =kx (k >0,x >0)的图象经过点D 、E ,∴k =2m =32m •12m ,解得m 1=833,m 2=0(舍去),∴k =2m =1633,故答案为:1633.9(2023•石家庄二模)已知A ,B ,C 三点的坐标如图所示.​(1)若反比例函数y =kx的图象过点A ,B ,C 中的两点,则不在反比例函数图象上的是点C ;(2)当反比例函数的图象与线段AC (含端点)有且只有一个y =kx公共点时,k 的取值范围是3≤k <4或k =12424 .【答案】(1)C ;(2)3≤k <4或k =12124.【分析】(1)根据反比例函数系数k =xy 判断即可;(2)求得直线AC 的解析式,与反比例函数解析式联立,整理得3x 2-11x +2k =0,当Δ=0时,反比例函数的图象与直线AC 有且只有一个公共点,求得此时k 的值,根据k =4时,反比例函数经过A 、B 两点,k =3时,反比例函数经过C 点,根据图象即可得出3≤k <4时,反比例函数y =kx的图象与线段AC (含端点)有且只有一个公共点,从而得出3≤k <4或k =12124.【详解】解:(1)由坐标系可知,A (1,4),B (2,2),C (3,1),∵1×4=2×2≠3×1,∴反比例函数y =kx的图象过点A 、B ,点C 不在反比例函数图象上,故答案为:C ;(2)设直线AC 为y =kx +b ,代入A 、C 的坐标得k +b =43k +b =1 ,解得k =-32b =112,∴直线AC 为y =-32x +112,令k x =-32x +112,整理得3x 2-11x +2k =0,当反比例函数的图象与直线AC 有且只有一个公共点时,Δ=0,∴(-11)2-4×3×2k =0,解得k =12124,由(1)可知k =4时,反比例函数图象过A (1,4),B (2,2)两点,k =3时,反比例函数图象过C 点,∴3≤k <4时,反比例函数y =kx 的图象与线段AC (含端点)有且只有一个公共点,综上,当反比例函数y =kx的图象与线段AC (含端点)有且只有一个公共点时,k 的取值范围是3≤k<4或k =12124.故答案为:3≤k <4或k =12124.10(2023•郫都区二模)定义:若一个函数图象上存在横纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(-1,-1)是函数y =2x +1的图象的“等值点”.若函数y =x 2-2(x ≥m )的图象记为W 1,将其沿直线x =m 翻折后的图象记为W 2.当W 1、W 2两部分组成的图象上恰有2个“等值点”时,m 的取值范围为m <-98或-1<m <2.【答案】m <-98或-1<m <2.【分析】先求出函数y =x 2-2的图象上有两个“等值点”(-1,-1)或(2,2),再利用翻折的性质分类讨论即可.【详解】解:令x =x 2-2,解得:x 1=-1,x2=2,∴函数y =x 2-2的图象上有两个“等值点”(-1,-1)或(2,2),①当m <-1时,W 1,W 2两部分组成的图象上必有2个“等值点”(-1,-1)或(2,2),W 1:y =x 2-2(x ≥m ),W 2:y =(x -2m )2-2(x <m ),令x =(x -2m )2-2,整理得:x2-(4m+1)x+4m2-2=0,∵W2的图象上不存在“等值点”,∴Δ<0,∴(4m+1)2-4(4m2-2)<0,∴m<-98,②当m=-1时,有3个“等值点”(-2,-2)、(-1,-1)、(2,2),③当-1<m<2时,W1,W2两部分组成的图象上恰有2个“等值点”,④当m=2时,W1,W2两部分组成的图象上恰有1个“等值点”(2,2),⑤当m>2时,W1,W2两部分组成的图象上没有“等值点”,综上所述,当W1,W2两部分组成的图象上恰有2个“等值点”时,m<-98或-1<m<2.故答案为:m<-98或-1<m<2.11(2023•双阳区一模)如图,抛物线y=-0.25x2+4与y轴交于点A,过AO的中点作BC∥x轴,交抛物线y=x2于B、C两点(点B在C的左边),连接BO、CO,若将△BOC向上平移使得B、C两点恰好落在抛物线y=-0.25x2+4上,则点O平移后的坐标为(0,1.5).【答案】(0,1.5).【分析】先求得A的坐标,进而根据题意得到B、C两点的纵坐标为2,把y=2代入y=x2得x=±2,即可求得B(-2,2),进一步求得x=-2时,函数y=-0.25x2+4的值,即可求得平移的距离,得到点O平移后的坐标.【详解】解:∵抛物线y=-0.25x2+4与y轴交于点A,∴A(0,4),∴OA=4,∵过AO的中点作BC∥x轴,交抛物线y=x2于B、C两点(点B在C的左边),∴B、C两点的纵坐标为2,把y=2代入y=x2得x=±2,∴B(-2,2),把x=-2代入y=-0.25x2+4得y=-0.5+4=3.5,∴此时点B的坐标为(-2,3.5),∴平移的距离为3.5-2=1.5,∴点O平移后的坐标为(0,1.5),故答案为:(0,1.5).12(2023•衡水二模)如图,点A a,-3 a(a<0)是反比例函数y=k x图象上的一点,点M(m,0),将点A绕点M顺时针旋转90°得到点B,连接AM,BM.(1)k的值为-3;(2)当a=-3,m=0时,点B的坐标为(1,3);(3)若a=-1,无论m取何值时,点B始终在某个函数图象上,这个函数图象所对应的表达式.​【答案】(1)-3;(2)(1,3);(3)点B始终在函数y=x-2的图象上.【分析】(1)把A的坐标代入反比例函数反比例函数y=kx即可求得;(2)作AC⊥x轴于C,BD⊥x轴于D,根据旋转的性质得出△BDM≌△MCA,从而得出AC=MD,CM=BD,即可得出点B的坐标;(3)由(2)可知AC=MD,CM=BD,根据题意得出B(3+m,m+1),从而得出点B始终在函数y= x-2的图象上.【详解】解:(1)∵点A a,-3 a(a<0)是反比例函数y=k x图象上的一点,∴k=a•-3a=-3.故答案为:-3;(2)作AC⊥x轴于C,BD⊥x轴于D,∵∠AMB=90°,∴∠AMC+∠BMD=90°,∵∠AMC+∠MAC=90°,∴∠BMD=∠MAC,∵∠BDM=∠MCA=90°,BM=AM,∴△BDM≌△MCA(AAS),∴AC=MD,CM=BD,∵a=-3,m=0,∴A(-3,1),M(0,0),∴AC=1,MC=3,∴MD=1,BD=3,∴B(1,3);故答案为:(1,3);(3)若a=-1,则A(-1,3),由(2)可知AC=MD,CM=BD,∵M(m,0),∴B(3+m,m+1),∴点B始终在函数y=x-2的图象上.13(2023•市中区二模)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)⋯根据这个规律,第2023个点的坐标(45,2).【答案】(45,2).【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,横坐标是奇数时,最后以横坐标为该数,纵坐标以0结束;据此求解即可.【详解】解:观察图形可知,到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,∴横坐标以n结束的有n2个点,∵452=2025,∴第2025个点的坐标是(45,0),∴2023个点的纵坐标往上数2个单位为2,∴2023个点的坐标是(45,2);故答案为:(45,2).【点睛】本题考查了点坐标规律探究,观察出点的个数与横坐标存在平方关系是解题的关键.14(2023•沈阳二模)某商厦将进货单价为70元的某种商品,按销售单价100元出售时,每天能卖出20个,通过市场调查发现,这种商品的销售单价每降价1元,日销量就增加1个,为了获取最大利润,该种商品的销售单价应降5元.【答案】5.【分析】设降价x元时,则日销售可以获得利润为W,由销售问题的数量关系表示出W与x之间的关系,根据关系式的性质就可以求出结论.【详解】解:设该种商品的销售单价应降价x元时,日销售可以获得利润为W元,由题意,得W=(100-70-x)(20+x)=-x2+10x+600=-(x-5)2+625,∵a=-1<0,∴当x=5时,W=625.最大故答案为:5.【点睛】本题考查了销售问题的数量关系的运用,利润=(售价-进价)×销量的运用,二次函数的顶点式的运用,解答时求出二次函数的解析式是解题的关键15(2023•贵港二模)如图,抛物线y1截得坐标轴上的线段长AB=OD=6,D为y1的顶点,抛物线y2由y 1平移得到,y2截得x轴上的线段长BC=9.若过原点的直线被抛物线y1,y2所截得的线段长相等,则这条直线的解析式为y =x .【答案】y =x .【分析】根据已知条件,待定系数求得抛物线y 1,y 2的解析式,设过原点的直线解析式为y =kx ,过原点的直线被抛物线y 1,y 2所截得的线段长相等,即可求解.【详解】解:∵抛物线y 1截得坐标轴上的线段长AB =OD =6,D 为y 1的顶点,∴A (-3,0),B (3,0),D (0,6),设y 1的解析式为y =ax 2+6,代入(3,0),得9a +6=0,解得:a =-23,∴y 1的解析式为y 1=-23x 2+6,∵抛物线y 2由y 1平移得到,y 2截得x 轴上的线段长BC =9,∴C (12,0),则y 2的解析式为y =-23(x -3)(x -12),即y 2=-23x 2+10x -24,设过原点的直线解析式为y =kx ,与y 1,y 2分别交于点F ,G ,H ,K ,如图所示,联立y =kx y 1=-23x 2+6,即-23x 2-kx +6=0,∴x 1+x 2=-3k2,x 1•x 2=-9,∴F 、G 两点横坐标之差为|x 1-x 2|=(x 1+x 2)2-4x 1⋅x 2=94k 2+36,联立y =kx y 2=-23x 2+10x -24,即-23x 2+(10-k )x -24=0,∴x 1+x 2=-3k -302,x 1⋅x 2=36,∴H 、K 两点横坐标之差为|x 1-x 2|=(x 1+x 2)2-4x 1⋅x 2=-3k -302 2-144,∵FG =HK ,∴94k 2+36=-3k -3022-144,解得k =1,故直线解析式为y =x .故答案为:y =x .16(2023•江都区一模)如图,在平面直角坐标系中,点A ,B 坐标分别为(3,4),(-1,1),点C 在线段AB 上,且AC BC=13,则点C 的坐标为 2,134 .【答案】2,134.【分析】分别过点A ,B ,C 作x 轴的垂线垂足分别为E ,D ,F ,过点B 作BG ⊥AE 于点G ,交CF 于点H ,则CF ∥AE ,BH ⊥CF ,BD =HF =EG ,设点C 的坐标为(m ,n ),则CF =n ,OF =m ,可得CH=n -1,BH =m +1,根据△BHC ∽△BGA ,可得m +14=n -13=34,即可求解.【详解】解:如图,分别过点A ,B ,C 作x 轴的垂线垂足分别为E ,D ,F ,过点B 作BG ⊥AE 于点G ,交CF 于点H ,则CF ∥AE ,BH ⊥CF ,BD =HF =EG ,∵点A ,B 坐标分别为(3,4),(-1,1),∴BD =HF =EG =1,AE =4,BG =4,∴AG =3,设点C 的坐标为(m ,n ),则CF =n ,OF =m ,∴CH =n -1,BH =m +1,∵AC BC=13,∴BC AB=34,∵CF ∥AE ,∴△BHC ∽△BGA ,∴BH BG =CH AG =BC AB ,∴m +14=n -13=34,解得:m =2,n =134,∴点C 的坐标为2,134 .故答案为:2,134 .17(2023•龙华区二模)如图,在平面直角坐标系中,OA =3,将OA 沿y 轴向上平移3个单位至CB ,连接AB ,若反比例函数y =kx(x >0)的图象恰好过点A 与BC 的中点D ,则k =25 .【答案】25.【分析】设A (m ,n ),则由题意B (m ,n +3),进而求得D m 2,n +62,根据反比例函数系数k =xy ,得到k =mn =m 2•n +62,解得n =2,利用勾股定理求得m 的值,得到A (5,2),代入解析式即可求得k 的值.【详解】解:设A (m ,n ),则B (m ,n +3),∵点D 是BC 的中点,C (0,3),∴D m 2,n +62,∵反比例函数y =kx (x >0)的图象恰好过点A 与BC 的中点D ,∴k =mn =m 2•n +62,解得n =2,∴A (m ,2),∵OA =3,∴m 2+22=32,∴m =5(负数舍去),∴A (5,2),∴k =5×2=25,故答案为:25.18(2023•乐至县模拟)如图,在平面直角坐标系中,点A 、A 1、A 2、A 3⋯A n 在x 轴上,B 1、B 2、B 3⋯B n 在直线y =-33x +33上,若A (1,0),且△A 1B 1O 、△A 2B 2A 1⋯△A n B n A n -1都是等边三角形,则点B n 的横坐标为1-3×2n -2(n 为正整数).【答案】1-3×2n -2(n 为正整数).【分析】过点B n 作B n ∁n ⊥x 轴于点∁n ,利用一次函数图象上点的坐标特征,可得出该直线与y 轴的交点,解直角三角形,可得出∠OAB 1=30°,利用等边三角形的性质及三角形的外角性质,可得出OA 1的长度,结合B 1C 1=32OA 1可得出B 1C 1的长,同理,可求出B n ∁n =3•2n -2(n ≥2,且n 为整数),再结合一次函数图象上点的坐标特征,即可求出点B n 的横坐标.【详解】解:过点B n 作B n ∁n ⊥x 轴于点∁n ,如图所示.∵直线的解析式为y =-33x +33,∴该直线与y 轴交于点0,33,∴tan ∠OAB 1=331=33,∴∠OAB 1=30°.∵△A 1B 1O 是等边三角形,∴∠A 1OB 1=60°,∴∠AB 1O =30°=∠OAB 1,∴OA 1=OB 1=OA =1,∴B 1C 1=32OA 1=32;同理:A 1A 2=AA 1=2,A 2A 3=AA 2=4,A 3A 4=AA 3=8,⋯,∴A n -1A n =AA n -1=2n -1(n ≥2,且n 为整数),∴B n ∁n =32A n -1A n =3•2n -2(n ≥2,且n 为整数),∴点B n 的纵坐标为3•2n -2(n 为正整数).当y =3•2n -2时,3•2n -2=-33x +33,解得:x =1-3×2n -2,∴点B n 的横坐标为1-3×2n -2(n 为正整数).故答案为:1-3×2n -2(n 为正整数).19(2023•玄武区一模)已知函数y =2x 2-(m +2)x +m (m 为常数),当-2≤x ≤2时,y 的最小值记为a .a 的值随m 的值变化而变化,当m =2时,a 取得最大值.【答案】2.【分析】分类讨论抛物线对称轴的位置确定出m 的范围即可.【详解】解:由二次函数y =2x 2-(m +2)x +m (m 为常数),得到对称轴为直线x =m +24,抛物线开口向上,当m +24≥2,即m ≥6时,由题意得:当x =2时,a =8-2m -4+m =4-m ,a 随m 增大而减小,a 的最大值为-2;当-2<m +24<2,-10<m <6时,由题意得:当x =m +24时,a =2×m +24 2-(m +2)•m +24 +m =-18(m -2)2+32,则m =2时,a 取得最大值32;当m +24≤-2,即m ≤-10时,由题意得:当x =-2时,a =8+2m +4+m =3m +12,a 随m 增大而增大,a 的最大值为-18;综上,当m =2时,a 取得最大值.故答案为:2.20(2023•萧山区一模)已知点P (x 1,y 1)Q (x 2,y 2)在反比例函数y =6x图象上.(1)若x 1x 2=2,则y 1y 2= 12 .(2)若x 1=x 2+2,y 1=3y 2,则当自变量x >x 1+x 2时,函数y 的取值范围是y <-32 .【答案】(1)12;(2)y <-32.【分析】(1)把P 、Q 代入解析式得到y 1=6x 1,y 2=6x 2,进一步得到y 1y 2=6x 16x 2=x 2x 1=12;(2)由x 1=x 2+2,y 1=3y 2得到x 1=-1,x 2=-3,即可得到x 1+x 2=-4,求得x =-4时的函数值,然后根据反比例函数的性质即可得到函数y 的取值范围.【详解】解:(1)∵点P (x 1,y 1)Q (x 2,y 2)在反比例函数y =6x图象上,∴y 1=6x 1,y 2=6x 2,∵x 1x 2=2,∴y 1y 2=6x 16x 2=x 2x 1=12,故答案为:12;(2)∵点P (x 1,y 1)Q (x 2,y 2)在反比例函数y =6x图象上,∴y 1=6x 1,y 2=6x 2,∵y 1=3y 2,∴6x 1=3×6x 2,∴x 2=3x 1,∵x 1=x 2+2,∴x 1=3x 1+2,∴x 1=-1,x 2=-3,∴x 1+x 2=-4,当x =-4时,y =6-4=-32,∵反比例函数y =6x中k >0,∴x <0时,y 随x 的增大而减小,∴当自变量x >x 1+x 2时,函数y 的取值范围是y <-32,故答案为:y <-32.21(2023•灞桥区校级模拟)如图,点A ,B 分别在y 轴正半轴、x 轴正半轴上,以AB 为边构造正方形ABCD,点C,D恰好都落在反比例函数y=k x(k≠0)的图象上,点E在BC延长线上,CE=BC,EF⊥BE,交x轴于点F,边EF交反比例函数y=k x(k≠0)的图象于点P,记△BEF的面积为S,若S=k2+12,则k的值为8.【答案】8.【分析】作DM⊥y轴于M,CN⊥x轴于N.设OA=b,OB=a.首先利用全等三角形的性质求出D、C两点坐标,再证明a=b,再构建方程求出k的值.【详解】解:如图作DM⊥y轴于M,CN⊥x轴于N.设OA=b,OB=a.∵四边形ABCD是正方形,∴∠DAB=90°,AD=AB,∴∠DAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠DAM=∠ABO,∵∠AOB=∠DAM=90°,∴△AOB≌△BNC(AAS),同理△BNC≌△DMA,∴DM=OA=BN=b,AM=OB=CN=a,∴D(b,a+b),C(a+b,a),∵点C,D恰好都落在反比例函数y=k x(k≠0)的图象上,∴b(a+b)=a(a+b),∵a+b≠0,∴a=b,∴OA=OB,∴∠ABO=45°,∠EBF=45°,∵BE⊥EF,∴△BEF是等腰直角三角形,∵BC=EC,∴可得E(3a,2a),F(5a,0),∴12×4a×2a=k2+12,∴4a2=k2+12,∵D(a,2a),∴2a2=k,∴2k=k2+12,∴k =8.故答案为:8.【点睛】本题考查反比例函数图象的点的特征,正方形的性质、全等三角形的判定和性质,解题的关键是学会利用参数解决问题,属于中考选择题中的压轴题.22(2023•东莞市校级一模)如图,在平面直角坐标系中,点A 在y 轴上,点B 在x 轴上.以AB 为边长作正方形ABCD ,S 正方形ABCD =50,点C 在反比例函数y =k /x (k ≠0,x >0)的图象上,将正方形沿x 轴的负半轴方向平移6个单位长度后,点D 刚好落在该函数图象上,则k 的值是8.【答案】8.【分析】作DF ⊥y 轴于点F ,CE ⊥x 轴于点E ,通过证得△OAB ≌△EBC ≌△FDA 可得出BE =OA =DF ,CE =OB =AF ,设OA =a ,OB =b ,即可得出C (a +b ,b ),D (a ,a +b ),进而把点C 和平移后的D 点坐标代入反比例函数的解析式求出k 的值即可.【详解】解:作DF ⊥y 轴于点F ,CE ⊥x 轴于点E ,正方形ABCD 中,AB =BC ,∠ABC =90°,∴∠ABO +∠CBE =90°,Rt △ABO 中,∠BAO +∠ABO =90°,∴∠CBE =∠BAO ,在△OAB 与△EBC 中,∠CBE =∠BAO ∠BEC =∠AOB =90°BC =AB ,∴△OAB ≌△EBC (AAS ),∴BE =OA ,CE =OB ,同理△OAB ≌△FDA ,∴DF =OA ,AF =OB ,设OA =a ,OB =b ,则C (a +b ,b ),D (a ,a +b ),∵点C 在反比例函数y =k /x (k ≠0,x >0)的图象上,将正方形沿x 轴的负半轴方向平移6个单位长度后,点D 刚好落在该函数图象上,∴k =b (a +b )=(a -6)•(a +b ),∴a -6=b ,∵S 正方形ABCD =50,∴AB 2=50,∵OA 2+OB 2=AB 2,∴a 2+b 2=50,即a 2+(a -6)2=50,解得a =7(负数舍去),∴b =a -6=1,∴k =b (a +b )=8.故答案为:8.23(2023•长春一模)如图,正方形ABCD 、CEFG 的顶点D 、F 都在抛物线y =-12x 2上,点B 、C 、E 均在y 轴上.若点O 是BC 边的中点,则正方形CEFG 的边长为1+2 .【答案】1+2.【分析】设OB =OC =12BC =a ,且a >0,即可得D (-2a ,-a ),根据D (-2a ,-a )在抛物线y =-12x 2上,可得a =12,设正方形CEFG 的边长为b ,且b >0,同理可得F b ,-12-b ,代入y =-12x 2中,问题得解.【详解】解:∵点O 是BC 边的中点,∴设OB =OC =12BC =a ,且a >0,在正方形ABCD 中,DC =BC =2a ,DC ⊥BC ,∴D (-2a ,-a ),∵D (-2a ,-a )在抛物线y =-12x 2上,∴-a =-12(-2a )2,解得:a =12,设正方形CEFG 的边长为b ,且b >0,∴CE =EF =b ,∴OE =OC +CE =12+b ,∴结合正方形的性质,可知F b ,-12-b ,∵F b ,-12-b 在抛物线y =-12x 2上,∴-12-b =-12b 2,解得:b =1+2(负值舍去),故答案为:1+2.24(2023•成都模拟)如图,在△AOB 中,AO =AB ,射线AB 分别交y 轴于点D ,交双曲线y =kx(k >0,x >0)于点B ,C ,连接OB ,OC ,当OB 平分∠DOC 时,AO 与AC 满足AO AC=23,若△OBD 的面积为4,则k = 407 .【答案】407.【分析】通过证得△AOD ∽△ACO ,得到AD AB=23,即可求得△AOB 的面积为12,进一步求得△BOC 的面积为6,根据S △BOC =S 梯形BMNC 得出k 的值即可.【详解】解:作BM ⊥x 轴于M ,CN ⊥x 轴于N ,∵AO =AB ,∴∠AOB =∠ABO ,∴∠AOD +∠BOD =∠OCB +∠BOC ,∵∠BOD =∠BOC ,∴∠AOD =∠ACO ,∵∠OAD =∠CAO ,∴△AOD ∽△ACO ,∴AD OA =AO AC=23,∴AD AB=23,∵△OBD 的面积为4,∴△AOB 的面积为12,∵AO AC=23,∴AB AC=23,∴△BOC 的面积为6,∴COD 的面积为10,∴x B x C =410=25,∴设B 2x ,k 2x ,则C 5x ,k5x,∵S △BOC =S △BOM +S 梯形BMNC -S △CON ,S △BOM =S △CON =12|k |,∴S △BOC =S 梯形BMNC =12k 2x +k5x⋅(5x -2x )=6,解得k =407,故答案为:407.25(2023•北仑区二模)如图,将矩形OABC 的顶点O 与原点重合,边AO 、CO 分别与x 、y 轴重合.将矩形沿DE 折叠,使得点O 落在边AB 上的点F 处,反比例函数y =kx(k >0)上恰好经过E 、F 两点,若B 点的坐标为(2,1),则k 的值为10-221 .【答案】10-221.【分析】连结OF ,过E 作EH ⊥OA 于H ,由B 点坐标为(2,1),即可得出E 点的坐标为(k ,1),F 点的坐标为2,k 2 ,证得△EHD ∽△OAF ,得到EH OA =HD AF,求得HD =k4,进而求得OD =HD +OH =k 4+k =5k 4,AD =2-5k 4,由折叠可得DF =OD =5k 4,利用勾股定理得到关于k 的方程,解方程即可求得k 的值.【详解】解:连结OF ,过E 作EH ⊥OA 于H .∵B 点坐标为(2,1),∴E 点的纵坐标为1,F 点的横坐标为2,∵反比例函数y =kx(k >0)上恰好经过E 、F 两点,∴E 点的坐标为(k ,1),F 点的坐标为2,k2,∵∠EDH +∠AOF =∠EDH +∠HED =90°,∴∠AOF =∠HED ,又∠EHD =∠OAF =90°,∴△EHD ∽△OAF ,∴EH OA =HD AF,即12=HD k 2,∴HD =k4,∴OD =HD +OH =k 4+k =5k 4,AD =2-5k4,由折叠可得DF =OD =5k4,在Rt △DAF 中,由勾股定理可得2-5k 4 2+k 2 2=5k 44,解得k 1=10-221,k 2=10+221(舍).∴k 的值为10-221.故答案为:10-221.26(2023•合肥二模)已知函数y =x 2+mx (m 为常数)的图形经过点(-5,5).(1)m =4.(2)当-5≤x ≤n 时,y 的最大值与最小值之和为2,则n 的值n =-3或n =10-2 .【答案】(1)4;(2)n =-3或n =10-2.【分析】(1)把已知坐标代入解析式计算即可.(2)根据抛物线额性质,分类计算.【详解】解:(1)∵函数y=x2+mx(m为常数)的图形经过点(-5,5),∴5=(-5)2-5m,解得m=4,故答案为:4;(2)由(1)得m=4,∴函数的解析式为y=x2+4x,∴y=x2+4x=(x+2)2-4,故抛物线的对称轴为直线x=-2,二次函数的最小值为-4,∵(-5,5)的对称点为(1,5),当-5≤x≤n时,y的最大值与最小值之和为2,当-5≤n<-2时,最大值为5,x=n时,取得最小值,且为y=n2+4n,根据题意,得n2+4n+5=2,解得n=-3,n=-1(舍去),故n=-3;当-2≤n≤1时,最大值为5,x=-2时,取得最小值,且为-4,根据题意,得5-4=1,不符合题意;当n>1时,x=-2时,取得最小值,且为-4,x=n时,取得最大值,且为y=n2+4n,根据题意,得n2+4n-4=2,解得n=10-2,n=-10-2(舍去),故n=10-2;故答案为n=-3或n=10-2.27(2023•仓山区校级模拟)下表记录了二次函数y=ax2+bx+2(a≠0)中两个变量x与y的6组对应值,x⋯-5x1x21x33⋯y⋯m020n m⋯其中-5<x1<x2<1<x3<3.根据表中信息,当-52<x<0时,直线y=k与该二次函数图象有两个公共点,则k的取值范围为2<k<83 .【答案】2<k<8 3.【分析】由抛物线经过(-5,m),(3,m)可得抛物线对称轴,从而可得a与b的关系,再将(1,0)代入解析式可得二次函数解析式,将二次函数解析式化为顶点式求解.【详解】解:∵抛物线经过(-5,m),(3,m),∴抛物线对称轴为直线x=-b2a=-1,∴b=2a,y=ax2+2ax+2,将(1,0)代入y=ax2+2ax+2得0=a+2a+2,解得a=-2 3,∴y =-23x 2-43x +2=-23(x +1)2+83,∴x =-1时,y =83为函数最大值,将x =-52代入y =-23x 2-43x +2得y =76,将x =0代入代入y =-23x 2-43x +2得y =2,∴2<k <83满足题意.故答案为:2<k <83.28(2023•西安二模)如图,在平面直角坐标系中,直线y =-x +1与x 轴,y 轴分别交于点A ,B ,与反比例函数y =kx(k <0)的图象在第二象限交于点C ,若AB =BC ,则k 的值为-2.【答案】-2.【分析】过点C 作CH ⊥x 轴于点H .求出点C 的坐标,可得结论.【详解】解:过点C 作CH ⊥x 轴于点H .∵直线y =-x +1与x 轴,y 轴分别交于点A ,B ,∴A (1,0),B (0,1),∴OA =OB =1,∵OB ∥CH ,∴△AOB ∽△AHC ,∴OA AH =AB AC ,∴AO OH =AB CB=1,∴OA =OH =1,∴CH =2OB =2,∴C (-1,2),∵点C 在y =kx的图象上,∴k =-2,故答案为:-2.29(2023•龙泉驿区模拟)在某函数的给定自变量取值范围内,该函数的最大值与最小值的差叫做该函数在此范围内的界值.当t ≤x ≤t +1时,一次函数y =kx +1(k >0)的界值大于3,则k 的取值范围是k >3;当t ≤x ≤t +2时,二次函数y =x 2+2tx -3的界值为2,则t =-1+22或-22 .【答案】k >3;-1+22或-22.【分析】y =kx +1:根据k >0时,y 随x 的增大而增大,根据最大值-最小值>3列不等式可解答;y=x2+2tx-3:先求得二次函数的对称轴,得到函数的增减性,分情况讨论,根据二次函数y=x2 +2tx-3的界值为2列方程可解答.【详解】解:当t≤x≤t+1时,一次函数y=kx+1(k>0)的界值大于3,∴y最大值-y最小值>3,∵k>0,y随x的增大而增大,∴x=t时,y最小值=tk+1,x=t+1时,y最大值=k(t+1)+1,∴k(t+1)+1-(tk+1)>3,∴k>3;y=x2+2tx-3=(x+t)2-3-t2,当x=-t时,y最小值=-3-t2,当x=t时,y=3t2-3,当x=t+2时,y=3t2+8t+1,①当-t≤t≤t+2时,t≥0,此时,当x=t时,y取最小值,当x=a+2时,y取最大值,∴y最大值=3t2+8t+1,y最小值=3t2-3,∴3t2+8t+1-(3t2-3)=2,解得t=-14(舍去);②当t≤-t≤t+2时,-1≤t≤0,当-12≤t≤0时,y最大值=3t2+8t+1,y最小值=-3-t2,∴3t2+8t+1-(-t2-3)=2,解得t=-1+22或t=-1-22(舍);当-1≤t≤-12时,y最大值=3t2-3,y最小值=-3-t2,3t2-3-(-t2-3)=2,解得t=-22或t=22(舍);③当t≤t+2≤-t时,t≤-1,y最小值=3t2+8t+1,y最大值=3t2-3,∴3t2-3-(3t2+8t+1)=2,解得t=-34(舍去);综上所述,t的值为-1+22或-22.故答案为:k>3;-1+22或-22.30(2023•姑苏区一模)如图①,四边形ABCD中,AB∥DC,AB>AD.动点P,Q均以1cm/s的速度同时从点A出发,其中点P沿折线AD-DC-CB运动到点B停止,点Q沿AB运动到点B停止,设运动时间为t(s),△APQ的面积为y(cm2),则y与t的函数图象如图②所示,则AB=15cm.【答案】15.【分析】结合图象可知当t =13时,点P 到达点D ,此时y =90,AQ =13cm ,从而可求出此时△APQ 的高DE =12cm ,当t =18时,点P 到达点C ,点Q 已经停止,此时y =90,AQ =AB .由AB ∥DC ,可知此时△APQ 的高也为12cm ,再根据三角形的面积公式即可求出AB 的长.【详解】解:过点D 作DE ⊥AB 于E ,如图所示:当t =13时,P 到达D 点,即AD =AQ =13cm ,此时y =78,∴12AQ •DE =12×13•DE =78,∴DE =12,当t =18时,点P 到达点C ,此时点Q 已停止运动,此时y =90cm 2,AQ =AB ,∵AB ∥DC ,∴此时△APQ 的高也为12cm ,∴S △APQ =12AB •DE =12AB ×12=90,∴AB =15(cm ),故答案为:15.【点睛】本题考查动点问题的函数图象,平行线间的距离,三角形的面积公式等知识.利用数形结合的思想是解题关键.31(2023•宁波模拟)如图,点B 是反比例函数y =8x(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数y =kx(x >0)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .则k =2;△BDF 的面积=3.【答案】2,3.【分析】连接OD ,表示出点M 的坐标,即可求得k 的值,根据△BDF 的面积=△OBD 的面积=S △BOA -S △OAD ,即可求得.【详解】解:连接OD ,设点B (m ,n ),则点M 12m ,12n,∵点B 是反比例函数y =8x(x >0)图象上一点,∴mn =8,∵反比例函数y =kx(x >0)的图象经过OB 的中点M ,∴k =12m ⋅12n =14mn =14×8=2,∴△BDF 的面积=△OBD 的面积=S △BOA -S △OAD =12×8-12×2=3.故答案为:2,3.32(2023•青羊区模拟)如图,在平面直角坐标系中,一次函数y =3x 与反比例函数y =kx(k ≠0)的图象交于A ,B 两点,C 是反比例函数位于第一象限内的图象上的一点,作射线CA 交y 轴于点D ,连接BC ,BD ,若CD BC=45,△BCD 的面积为30,则k =6.【答案】6.【分析】作CF ⊥y 于点I ,BF ⊥x ,交CI 的延长线于点F ,作AE ⊥CF 于点E ,设BC 交y 轴于点M ,设A (m ,3m ),则B (-m ,-3m ),k =3m 2,设点C 的横坐标为a ,则C a ,3m 2a,可证明tan ∠CAE =tan ∠CBF =a 3m ,则∠CAE =∠CBF ,即可推导出∠CDM =∠CMD ,则CD =CM ,所以CI CF =CMBC=CD BC=45,则CI =4FI ,所以a =4m ,C 4m ,3m 4 ,由CI MI =tan ∠CMD =tan ∠CBF =43,得DI=MI =3m ,则DM =6m ,于是得12×6m ×m +12×6m ×4m =30,则m 2=2,所以k =3m 2=6.【详解】解:作CF ⊥y 于点I ,BF ⊥x ,交CI 的延长线于点F ,作AE ⊥CF 于点E ,设BC 交y 轴于点M ,∵直线y =3x 经过原点,且与双曲线y =kx交于A ,B 两点,∴点A 与点B 关于原点对称,设A (m ,3m ),则B (-m ,-3m ),k =3m 2,设点C 的横坐标为a ,则C a ,3m 2a ,F -m ,3m 2a,∵tan ∠CAE =CE AE =a -m 3m -3m 2a =a 3m ,tan ∠CBF =CF BF =a +m 3m 2a+3m=a3m ,∴tan ∠CAE =tan ∠CBF ,∴∠CAE =∠CBF ,∵AE ∥BF ∥DM ,∠CAE =∠CDM ,∠CBF =∠CMD ,∴∠CDM =∠CMD ,∴CD =CM ,∵CI CF =CM BC =CD BC=45,∴CI =4FI ,∴a =4m ,∴C 4m ,3m4 ,∵CI MI=tan ∠CMD =tan ∠CBF =a 3m =4m 3m =43,∴DI =MI =34CI =34×4m =3m ,∴DM =DI +MI =6m ,∵12DM •FI +12DM •CI =S △BCD =30,∴12×6m ×m +12×6m ×4m =30,∴m 2=2,∴k =3m 2=3×2=6,故答案为:6.33(2023•锦江区模拟)已知关于x 的多项式ax 2+bx +c (a ≠0),二次项系数、一次项系数和常数项分别a ,b ,c ,且满足a 2+2ac +c 2<b 2.若当x =t +2和x =-t +2(t 为任意实数)时ax 2+bx +c 的值相同;当x =-2时,ax 2+bx +c 的值为2,则二次项系数a 的取值范围是 215<x <27 .【答案】215<a <27.【分析】先根据二次函数的对称性可得其对称轴是:-b 2a =t +2-t +22=2,得b 与a 的关系:b =-4a ,将(-2,2)代入y =ax 2+bx +c 中可得:c =2-12a ,代入a 2+2ac +c 2<b 2中可解答.【详解】解:∵当x =t +2和x =-t +2(t 为任意实数)时ax 2+bx +c 的值相同,∴-b 2a =t +2-t +22=2,∴b =-4a ,∵当x =-2时,ax 2+bx +c 的值为2,∴函数y =ax 2+bx +c 经过点(-2,2),∴4a -2b +c =2,∴4a +8a +c =2,∴c =2-12a ,∵a 2+2ac +c 2<b 2,∴(a +c )2<b 2,∴(a +c )2-b 2<0,∴(a +c +b )(a +c -b )<0,∵b =-4a ,c =2-12a ,∴(a +2-12a -4a )(a +2-12a +4a )<0,∴(2-15a )(2-7a )<0,∴215<a <27.故答案为:215<a <27.34(2023•江北区一模)如图,菱形ABCO 的顶点A 与对角线交点D 都在反比例函数y =kx(k >0)的图象上,对角线AC 交y 轴于点E ,CE =2DE ,且△ADB 的面积为15,则k =8;延长BA 交x 轴于点F ,则点F 的坐标为 607,0 .【答案】8,607,0.【分析】通过构造延长线得到直角三角形EOM ,再用射影定理求出ED 、DA 、DO 之间的数量关系,在通过△ODA 面积为15求出ED 、DA 、DO 实际长度,再通过求D 点到y 轴的距离求出D 点坐标,也解出k ,进而得出B 点坐标.再过点A 作AH ⊥ND 于H ,然后通过相似求出A 点坐标,进而得出AB 直线解析式,最后得出F 点坐标.【详解】解:延长DA 交x 轴于点M ,设DE =a ,则CE =2a ,CD =AD =3a ,∵ED =a ,∴AM =a ,∴Rt △MOE 中,OD ⊥EM ,OD 2=ED ⋅DM ,∴OD =2a ,∵S △AOD =12OD ⋅DA =15,∴2a ⋅3a 2=15,∴a =5过D 作DN ⊥y 轴,则tan ∠DOE =12,即ON =2DN ,∵OD =25,∴D (2,4),即k =8.∵D (2,4),∴B (4,8),过点A 作AH ⊥ND 于H ,∵∠OND =∠H =90°,∠EDN +∠NDO =90°,∠NDO +∠HDA =90°,∴∠NDO =∠HDA ,∴△DHA ∽△OND ,∵DA =35,∴DH =6,AH =3,。

九年级函数专题试卷及答案

九年级函数专题试卷及答案

九年级函数专题试卷及答案专业课原理概述部分一、选择题(每题1分,共5分)1. 下列函数中,哪个是正比例函数?A. y = 2x + 3B. y = 3x 2C. y = x^2 + 1D. y = 1/x2. 如果函数y = kx + b的图像是一条经过原点的直线,那么k和b的关系是?A. k = 0, b ≠ 0B. k ≠ 0, b = 0C. k = 0, b = 0D. k ≠ 0, b ≠ 03. 下列函数中,哪个是反比例函数?A. y = 2/xB. y = x^2C. y = 3x + 1D. y = 1/x^24. 如果函数y = kx的图像是一条经过原点的直线,那么k的值是?A. k = 0B. k > 0C. k < 0D. k ≠ 05. 下列函数中,哪个是一次函数?A. y = x^2B. y = 2/xC. y = 3x + 1D. y = 1/x^2二、判断题(每题1分,共5分)1. 正比例函数的图像是一条经过原点的直线。

()2. 反比例函数的图像是一条经过原点的直线。

()3. 一次函数的图像是一条直线。

()4. 二次函数的图像是一条抛物线。

()5. 函数y = kx + b是一次函数当且仅当b = 0。

()三、填空题(每题1分,共5分)1. 如果函数y = kx的图像是一条经过原点的直线,那么k的值是______。

2. 如果函数y = kx + b的图像是一条经过原点的直线,那么b的值是______。

3. 反比例函数的一般形式是______。

4. 二次函数的一般形式是______。

5. 一次函数的图像是一条______。

四、简答题(每题2分,共10分)1. 请简述正比例函数的定义。

2. 请简述反比例函数的定义。

3. 请简述一次函数的定义。

4. 请简述二次函数的定义。

5. 请简述函数图像的斜率是什么。

五、应用题(每题2分,共10分)1. 如果函数y = 2x的图像是一条经过原点的直线,那么当x = 3时,y的值是多少?2. 如果函数y = 3/x的图像是一条经过原点的直线,那么当x = 2时,y的值是多少?3. 如果函数y = kx + b的图像是一条经过原点的直线,那么当x = 1时,y的值是多少?4. 如果函数y = x^2的图像是一条抛物线,那么当x = 2时,y的值是多少?5. 如果函数y = 1/x^2的图像是一条经过原点的直线,那么当x = 3时,y的值是多少?六、分析题(每题5分,共10分)1. 请分析一次函数和二次函数的图像有什么不同。

中考数学总复习《函数》专项测试卷-附参考答案

中考数学总复习《函数》专项测试卷-附参考答案

中考数学总复习《函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0)则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ 1 2.A.①②③④B.①②③C.①③④D.①④2.若y+3与x-2成正比例,则y是x的()A.正比例函数B.不存在函数关系C.一次函数D.以上都有可能3.关于函数y=2x﹣1,下列结论成立的是()A.当x<0时,则y<0B.当x>0时,则y>0C.图象必经过点(0,1)D.图象不经过第三象限4.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)5.点P(3,y1)、Q (4,y2)是二次函数y=x2−4x+5的图象上两点,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.快、慢两车分别从甲、乙两地同时出发,相向匀速行驶,两车在途中相遇时都停留了一段时间,然后分别按原速度原方向匀速行驶,快车到达乙地后休息半小时后,再以另一速度原路匀速返回甲地(掉头的时间忽略不计),慢车到达甲地以后即停在甲地等待快车.如图所示为快、慢两车间的距离y (千米)与快车的行驶时间x(小时)之间的函数图象.则下列说法:①两车在途中相遇时都停留了1小时;②快车从甲地去乙地时每小时比慢车多行驶40km;③快车从乙地返回甲地的速度为120km/h;④当慢车到达甲地的时候,快车与甲地的距离为400km.其中正确的有()A.4B.3C.2D.17.如图,动点A在抛物线y=−x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A做AC⊥ l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤68.如图,在平面直角坐标系中,函数y=kx,y=−2x的图像交于A,B两点,过A作y轴的垂线,交函数y=3x的图像于点C,连接BC,则ΔABC的面积为()A.2B.3C.5D.69.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x=1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11.如图,在平面直角坐标系中,ΔA1A2A3,ΔA3A4A5,ΔA5A6A7,…都是等边三角形,其边长依次为2,4,6,…,其中点A1的坐标为(2,0),点A2的坐标为(1,−√3),点A3的坐标为(0,0),点A4的坐标为(2,2√3),…,按此规律排下去,则点A2020的坐标为()A.(1,−1009√3)B.(1,−1010√3)C.(2,1009√3)D.(2,1010√3)12.如图,二次函数y=-x2+bx+c 图象上有三点A(-1,y1 )、B(1,y2) 、C(2,y3),则y1,y2,y3大小关系为()A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共6题;共6分)13.点P(1,1)向左平移两个单位后恰好位于双曲线y=k x上,则k=.14.将二次函数y=−x2+3的图像向下平移5个单位长度,所得图像对应的函数表达式为.15.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为.16.请写出一个二次函数,使它的图象同时满足下列两个条件:①开口向下,②与y轴的交点是(0,1),你写出的函数表达式是.17.若点P(n,1),Q(n+6,3)在正比例函数图象上,请写出正比例函数的表达式. 18.在−3,−2,−1,4,5五个数中随机选一个数作为一次函数y=kx−3中k的值,则一次函数y=kx−3中y随x的增大而减小的概率是.三、综合题(共6题;共67分)19.3−√(−3)2+|√3−2|(1)计算:(−1)2021+√16+√−27(2)如图所示的是某学校的平面示意图,已知旗杆的位置是(−1,2),实验室的位置是(2,3).①根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂,宿舍楼和大门的位置.②已知办公楼的位置是(−2,1),教学楼的位置是(3,1),在①中所画的图中标出办公楼和教学楼的位置.20.汽车出发1小时后油箱里有油40L,继续行驶若干小时后,在加油站加油若干升(加油时间忽略不计).图象表示出发1小时后,油箱中剩余测量(y)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余量y与行驶时间t的函数关系式;(3)若加油前后汽车都以80km/h匀速行驶,则汽车加油后最多能行驶多远?21.凤凰单丛(枞)茶,是潮汕的名茶,已有九百余年的历史.潮汕人将单丛茶按香型分为黄枝香、芝兰香、桃仁香、玉桂香、通天香、鸭屎香等多种.清明采茶季后,某茶叶店准备购买通天香和鸭屎香两种单丛茶进行销售,已知若购买4千克通天香单丛和3千克鸭屎香单丛需要2500元,购买2千克通天香单丛和5千克鸭屎香单丛需要2300元.(1)求通天香、鸭屎香两种茶叶的单价分别为多少元?(2)茶叶专卖店计划购买通天香、鸭屎香两种单丛茶共80千克,总费用不多于26000元,并且要求通天香茶叶数量不能低于10千克,那么应如何安排购买方案才能使总费用最少,最少费用应为多少元?22.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.23.直线y=kx+b经过A(0,-3))和B(-3,0)两点.(1)求这个一次函数的解析式;(2)画出图象,并根据图象说明不等式kx+b<0的解集.24.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,下面的函数图象表示“龟兔再次赛跑”时,则乌龟所走路程y1(米)和兔子所走的路程y2(米)分别与乌龟从起点出发所用的时间x(分)之间的函数图象,根据图象解答下列问题:(1)“龟兔再次赛跑”的路程是米,兔子比乌龟晚走了分钟,乌龟在途中休息了分钟,“龟兔再次赛跑”获胜的是.(2)分别求出乌龟在途中休息前和休息后所走的路程y1关于时间x的函数解析式,并写出自变量x的取值范围.(3)乌龟和兔子在距离起点米处相遇.参考答案1.【答案】B 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】C 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】A 13.【答案】-114.【答案】y =−x 2−2 15.【答案】(506,﹣505)16.【答案】y =−x 2+x +1 (不唯一) 17.【答案】y =13x 18.【答案】3519.【答案】(1)解:原式=−1+4−3−3+2−√3=−1−√3(2)解:①根据题意,建立如图所示的平面直角坐标系,如下:∴食堂(−4,4),宿舍楼(-5,1),大门(1,−1) ②办公楼和教学楼的位置如图所示.20.【答案】(1)4;35(2)解:设y 与x 的函数关系式为y =kt+b 把(1,40)和(4,10)代入得{k +b =404k +b =10解得 {k =−10b =50∴加油前油箱剩余油量y 与行驶时间t 的函数关系式y =﹣10t+50(3)解:由图象知,汽车加油前行驶了3小时,则用油40﹣10=30(L ) ∴汽车行驶1小时耗油量为 303=10(L/h )加油后邮箱中剩余油量45L ,可以行驶 4510 ×80=360(km ).∴汽车加油后最多能行驶360km .21.【答案】(1)解:设通天香茶叶每千克为x 元,鸭屎香茶叶每千克为y 元,根据题意,得{4x +3y =25002x +5y =2300解得{x =400y =300∴通天香茶叶每千克为400元,鸭屎香茶叶每千克为300元.(2)解:设购买通天香茶叶m 千克,鸭屎香茶叶(80-m )千克,总费用w 元 根据题意,得400m +300(80−m)≤26000 解得m ≤20 ∵m ≥10∴m 的取值范围是:10≤m ≤20总费用w =400m +300(80−m)=100m +24000 ∵100>0∴w 随着m 的增大而增大∴当m =10时,则w 最少,w 最少=1000+24000=25000(元)∴通天香茶叶购进10千克,鸭屎香茶叶购进70千克,总费用最少为25000元.22.【答案】(1)解:由题意可得,y 甲=0.85x ;乙商店:当0≤x≤300时,则y 乙与x 的函数关系式为y 乙=x ; 当x >300时,则y 乙=300+(x-300)×0.7=0.7x+90 由上可得,y 乙与x 的函数关系式为y 乙={x(0≤x ≤300)0.7x +90(x >300)(2)解:由{y 甲=0.85xy 乙=0.7x +90,解得{x =600y 乙=510点A 的坐标为(600,510);(3)解:由点A 的意义,当买的体育商品标价为600元时,则甲、乙商店优惠后所需费用相同,都是510元 结合图象可知当x <600时,则选择甲商店更合算; 当x=600时,则两家商店所需费用相同; 当x >600时,则选择乙商店更合算.23.【答案】(1)解:将A(0,−3),B(−3,0)代入y =kx +b 得{b =−3−3k +b =0解得:k =−1,b =−3∴y =−x −3一次函数的解析式为:y =−x −3. (2)解:作图如下:由图象可知:直线从左往右逐渐下降,即y 随x 的增大而减小 当x =−3时∴kx +b <0的解集为:x >−3.24.【答案】(1)1000;40;10;兔子(2)解:设乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=kx ∴600=30k ,解得k =20∴乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=20x (0≤x≤30) 设乌龟在途中休息后所走的路程y 1关于时间x 的函数解析式为y 1=k′x+b∴{40k ′+b =60060k ′+b =1000,解得{k ′=20b =−200∴乌龟在途中休息后所走的路程y1关于时间x的函数解析式为y1=20x﹣200(40≤x≤60);(3)750第11页共11。

中考数学专题复习:函数基础知识练习题(含答案)

中考数学专题复习:函数基础知识练习题(含答案)

中考数学专题复习:函数基础知识练习题一.选择题1.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB 向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.2.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x (0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.3.如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.4.小亮饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小亮离家的时间与离家的距离之间关系的是()A.B.C.D.5.如图①,动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动到点C,图②是点P运动时,△ACP的面积y(cm2)随着时间x(s)的变化的关系图象,则正六边形的边长为()A.2cm B.cm C.1cm D.3cm6.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿B→C→D→A运动至点A 停止,如图②是点P运动时,△P AB的面积y(cm2)随点P运动的路程x(cm)变化的关系图象,则图②中H点的横坐标为()A.12B.14C.16D.7.如图所示的是一辆汽车行驶的速度(千米/时)与时间(分)之间的变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3分钟时,匀速运动C.汽车最快的速度是30千米/时D.汽车在3~8分钟静止不动8.小苏和小林在如图1所示的跑道上进行4×50米折返跑,在整个过程中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次9.小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20D.2410.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为()A.B.5C.7D.3二.填空题11.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.12.如图①,在平行四边形ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA 运动至点A停止.设点P运动的路程为xcm,△P AB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.13.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,小宇操作机器人以每秒1个单位长度的速度在图1中给出的线段路径上运行,他将机器人运行的时间设为t秒,机器人到点A的距离设为y,得到的函数图象如图2.通过观察函数图象,可以得到下列推断:①机器人一定经过点D;②机器人一定经过点E;③当t=3时,机器人一定位于点O;④存在符合图2的运行路线,使机器人能够恰好经过六边形的全部6个顶点;其中正确的是(填序号).14.在课本的阅读与思考中,科学家利用放射性物质的半衰期这个函数模型来测算岩石的年,生活中也有很多类似这样半衰的现象.请思考下面的问题:一个皮球从16m高处下落,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半.试写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式.皮球第次落地后的反弹高度是m?15.重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s(米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过分钟两人再次相距80米.三.解答题16.王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?17.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?请说明理由;(2)结合图象回答:①当=0.7s时,h的值是多少?并说明它的实际意义;②秋千摆第二个来回需多少时间?18.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?19.如图1,在△ABC中,点D是线段BC上的动点,将线段AD绕点D逆时针旋转90°得到线段DE,连接BE.若已知BC=8cm,设B,D两点间的距离为xcm,A,D两点间的距离为y1cm,B,E两点距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随x的变化而变化的规律进行了探究,请补充完整.下面是小明的探究过程的几组对应值.(1)按照下表中自变量x的值进行取点画图,测量分别得到了与x的几组对应值如下表:(说明补全表格时相关数值保留一位小数)(2)在同一平面直角坐标系xoy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象(如图2),解决问题:①当E在线段BC上时,BD的长约为cm;②当△BDE为等腰三角形时,BD的长x约为cm.20.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)参考答案一.选择题1.解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.2.解:过点H作HE⊥BC,垂足为E.∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.3.解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.4.解:依题意,0﹣20分钟散步,离家路程增加到900米,20﹣30分钟看报,离家路程不变,30﹣45分钟返回家,离家路程减少为0米.故选:D.5.解:如图,连接BE,AE,CE,BE交AC于点G由正六边形的对称性可得BE⊥AC,易证△ABC≌△CDE≌△AFE(SAS)∴△ACE为等边三角形,GE为AC边上的高线∵动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动∴当点P运动到点E时△ACP的面积y取最大值设AG=CG=a(cm),则AC=AE=CE=2a(cm),GE=a(cm)∴2a×a÷2=(cm)∴a2=3∴a=(cm)或a=﹣(舍)∵正六边形的每个内角均为120°∴∠ABG=×120°=60°∴在Rt△ABG中,=sin60°∴=∴AB=2(cm)∴正六边形的边长为2cm故选:A.6.解:图②显示,当BC=4时,y=6,即y=×AB×BC sin60°=AB×4×=6,解得:AB=6,点H的横坐标为:BC+CD+AD=4+4+6=14,故选:B.7.解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车最快速度是30千米/时,故选项C符合题意;汽车在3~8分钟,匀速运动,故选项D不合题意;故选:C.8.解:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A选项不符合题意;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B选项不符合题意;由函数图象可知:小苏前15s跑过的路程小于小林前15s跑过的路程,故C选项不符合题意;在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次,故D选项符合题意;故选:D.9.解:小聪步行的速度为:÷5=,改乘出租车后的速度为:(﹣)÷(7﹣5)=,小聪到校所花的时间比一直步行提前的时间=﹣5﹣=20(分钟),故选:C.10.解:由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=5,解得BC=2.所以AB==.故选:A.二.填空题(共5小题)11.解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.212.解:由图象可知,当x=4时,点P到达C点,此时△P AB的面积为6,∵∠B=120°,BC=4,∴×2×AB=6,解得AB=6,H点表示点P到达A时运动的路程为4+6+4=14,故答案为:14.13.解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1;①所有点中,只有点D到A距离为2个单位,故①正确;②因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故②错误.③观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故③正确;④由②知,机器人不经过点E,故④错误;故答案为:①③.14.解:表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式h=(n为正整数).=,2n=16×8=27,n=7.故皮球第7次落地后的反弹高度是m.故答案为:h=(n为正整数),7.15.解:由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则有:80x﹣40x=80,∴x=2,此时小欢一共走了40×(2+2)=160(米),(600﹣160﹣80)÷40=9(分).即小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.故答案为:9三.解答题(共5小题)16.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.17.解:(1)h是t的函数是两个变量、每一个时间t的确定值,高度h都有唯一的值与其对应,故变量h是否为关于t的函数;(2)①当t=0.7s时,h=0.5m,它的意义是:秋千摆动0.7s时,设地面的高度为0.5m.②从图象看前两个来回用时2.8,后面两个来回用时5.4﹣2.8=2.6,再后面两个来回用时7.8﹣5.4=2.4,为均匀减小,故第一个来回应该是1.5s,第二个来回2.6s.18.解:(1)根据函数的定义:距离地面高度是自变量,所在位置的温度是因变量,故答案为:距离地面高度,所在位置的温度;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,故答案为:y=20﹣6h,﹣10;(3)从图象上看,h=2时,持续的时间为2分钟,即返回途中飞机在2千米高空水平大约盘旋了2分钟;(4)h=2时,y=20﹣12=8,即飞机发生事故时所在高空的温度是8度.19.解:(1)当x=0时,a=AD=7.03≈7.0,b=3.0;(2)描绘后表格如下图:(3)①当E在线段BC上时,即:x=y1+y2,从图象可以看出,当x=6时,y1+y2=6,故答案为6;②当BE=DE时,即:y1=y2,此时x=7.5或0,故x=7.5;当BE=BD时,即:y2=x,在图上画出直线y=x,此时x≈3;当DE=BE时,即:y1=x,从上图可以看出x≈4.1;故答案为:3或4.1或7.5.20.解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=千米/分钟,小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:=10(千米/小时),小光的速度为:=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.。

初三数学函数试题及答案

初三数学函数试题及答案

初三数学函数试题及答案一、选择题(每题3分,共30分)1. 下列函数中,是一次函数的是()A. y = 3x + 2B. y = x^2 + 1C. y = 1/xD. y = √x2. 若函数y = 2x - 3的图象经过点(2,1),则该函数的解析式为()A. y = 2x - 5B. y = 2x - 3C. y = 2x + 1D. y = 2x - 13. 函数y = 3x + 1与y = -2x + 5的交点坐标是()A. (-1, 4)B. (1, 2)C. (-1, 2)D. (1, 4)4. 函数y = 4x - 1的图象在y轴上的截距为()A. 1B. -1C. 4D. -45. 函数y = 5x + 2的图象在x轴上的截距为()A. 0.4B. -0.4C. 2/5D. -2/56. 若一次函数y = kx + b的图象经过原点,则()A. k ≠ 0,b = 0B. k = 0,b ≠ 0C. k = 0,b = 0D. k ≠ 0,b ≠ 07. 函数y = 3x + 2的图象在x轴上的截距为()A. 2/3B. -2/3C. 2D. -28. 函数y = 2x - 3与x轴的交点坐标为()A. (1.5, 0)B. (-1.5, 0)C. (3, 0)D. (-3, 0)9. 函数y = -x + 4的图象在y轴上的截距为()A. 4B. -4C. 0D. -010. 函数y = x^2 - 4x + 3的顶点坐标为()A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)二、填空题(每题4分,共20分)1. 函数y = 2x + 3的图象在x轴上的截距为______。

2. 函数y = -3x + 4的图象在y轴上的截距为______。

3. 函数y = 4x - 2的图象与x轴的交点坐标为______。

4. 函数y = 5x - 6的图象与y轴的交点坐标为______。

2020-2021年中考数学专题复习9二次函数选择题和填空题(含答案)

2020-2021年中考数学专题复习9二次函数选择题和填空题(含答案)
【详解】
解:由抛物线过点(﹣5,6)、(2,6)、(0,﹣4),可得:
,解得: ,
∴二次函数的解析式是 ,
∴a=1>0,故①正确;
当 时,y有最小值 ,故②错误;
若点 ,点 在二次函数图象上,则 , ,∴ ,故③正确;
【详解】
由二次函数图象可知:a﹤0,对称轴 ﹥0,
∴a﹤0,b﹥0,
由反比例函数图象知:c﹥0,
∴ ﹤0,一次函数图象与y轴的交点在y轴的负半轴,
对照四个选项,只有B选项符合一次函数 的图象特征.
故选:B·
【点睛】
本题考查反比例函数的图象、二次函数的图象、一次函数的图象,熟练掌握函数图象与系数之间的关系是解答的关键·
6.B
【分析】
根据开口方向、对称轴、与 轴交点即可分别判断 符号,进而判断A选项;由 两点的横坐标分别为 和 可得两个方程,判断B选项;由当 时 判断C选项;由二次函数对称轴及增减性判断D选项.
【详解】
∵开口向下,与 轴交点在正半轴

∵ 两点的横坐标分别为 和


∴ ,故A选项正确,B选项错误
∵ 两点的横坐标分别为 和
专题九二次函数选择题和填空题
学校:___________姓名:__________班级:___________考号:___________
一、单选题
1.一次函数 与二次函数 在同一平面直角坐标系中的图象可能是()
A. B.
C. D.
2.已知在同一直角坐标系中二次函数 和反比例函数 的图象如图所示,则一次函数 的图象可能是()
∴正确的有①②④,共3个,
故选:C.
【点睛】
此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).

备考2021年中考数学复习专题:函数_二次函数_二次函数与一次函数的综合应用,填空题专训及答案

备考2021年中考数学复习专题:函数_二次函数_二次函数与一次函数的综合应用,填空题专训及答案

9、 (2019济宁.中考模拟) 如图,抛物线 的解集是________.
与直线
交于A(-1,P),B(3,q)两点,则不等式
10、
(2019武昌.中考模拟) 若直线
与函数
的图象有四个公共点,则m的取值范围为________.
11、
(2018武汉.中考模拟) 如图,抛物线y=x2﹣2x+k与x轴交于A、B两点,与y轴交于点C(0,﹣3).
与线段AB有
2、 (2018湛江.中考模拟) 如图是二次函数y1=ax2+bx+c和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.
3、 (2019.中考模拟) 如图,已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4) ,B(8,2),则关于x的不等式ax2+(b﹣k)x+c﹣m>0的解集是________.
若抛物线y=x2﹣2x+k上有点Q,使△BCQ是以BC为直角边的直角三角形,则点Q的坐标为________.
12、 (2018孝感.中考真卷) 如图,抛物线
的解是________.
与直线
的两个交点坐标分别为

,则方程
13、 (2018广东.中考模拟) 如图是二次函数 是________.
和一次函数
7、 (2018湖州.中考模拟) 已知抛物线y=ax2﹣4ax+c经过点A(0,2),顶点B的纵坐标为3.将直线AB向下平移,与x轴、 y轴分别交于点C、D,与抛物线的一个交点为P,若D是线段CP的中点,则点P的坐标为________ .
8、 (2015衢州.中考真卷) 如图,已知直线y=﹣ x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣ x2+2x+5的一个动点, 其横坐标为a,过点P且平行于y轴的直线交直线y=﹣ x+3于点Q,则当PQ=BQ时,a的值是________.

九年级数学中考复习:函数专题训练(含答案)

九年级数学中考复习:函数专题训练(含答案)

中考复习函数专题训练(含答案解析)1. 如图,已知A、B是反比例面数kyx=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形0MPN 的面积为S,P点运动时间为t,则S关于t的函数图象大致为【答案】A2.坐标平面上,二次函数362+-=xxy的图形与下列哪一个方程式的图形没有交点?A. x=50 B. x=-50 C. y=50 D. y=-50【答案】D3. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米 C.2米 D.1米【答案】D4. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A .50mB .100mC .160mD .200m【答案】C5. 一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2+--=)(,则小球距离地面的最大高度是( )A .1米B .5米C .6米D .7米【答案】C二、填空题 1. 出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大.【答案】42. 如图,已知函数x y 3-=与bx ax y +=2(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bx ax +2x 3+=0的解为【答案】-3三、解答题1. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。

2023中考数学冲刺专题: 二次函数综合类必考的填空题精炼(原卷版)

2023中考数学冲刺专题: 二次函数综合类必考的填空题精炼(原卷版)

2023年中考数学以三种题型出现必考(难点)压轴题27个小微专题精炼二次函数综合类必考的填空题精炼1.已知点(,)A a b,(4,)B c在直线3=+(k为常数,0y kxk≠)上,若ab的最大值为9,则c的值为_________.2.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.3.函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x 的增大而(填写“增大”或“减小”).4.如图,已知直线y=﹣x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣x+3于点Q,则当PQ=BQ时,a的值是.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是,0)、6.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1B(x,0)两点,则+的值为.27. 已知抛物线22=+-与x轴交于A,B两点,抛物线y x x n22y x x n =--与x 轴交于C ,D 两点,其中n >0,若AD =2BC ,则n 的值为______.8. 在平面直角坐标系中,点C 和点D 的坐标分别为(1,1)--和(4,)1-,抛物线222(0)y mx mx m =-+≠与线段CD 只有一个公共点,则m 的取值范围是______.9. 已知抛物线2y ax bx c =++(a ,b ,c 是常数)开口向下,过()1,0A -,(),0B m 两点,且12m <<.下列四个结论:①0b >; ②若32m =,则320a c +<;③若点()11,M x y ,()22,N x y 在抛物线上,12x x <,且121x x +>,则12y y >; ④当1a ≤-时,关于x 的一元二次方程21ax bx c ++=必有两个不相等的实数根.其中正确的是_________(填写序号).10. 已知函数231y mx mx m =++-的图象与坐标轴恰有两个公共点,则实数m 的值为____________.11. 如图,已知抛物线y =x 2+bx +c 经过点(0,﹣3),请你确定一个b 的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b 的值是 .12. 如图,是二次函数 y=ax 2+bx+c (a ≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是.(只要求填写正确命题的序号)13.孔明同学在解一元二次方程x2﹣3x+c=0时,正确解得x1=1,x2=2,则c的值为.14.如图,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y_____0(填“>”“=”或“<”号).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学函数填空题专题材料
第一专题动点函数图像综合题
两种思路1、通过观察、整体感知直接推理得到结论(非标准函数题目)
2、通过观察思考得出解析式进而解决问题的题目(标准函数题目)
第一种题型
例1 如图所示:边长分别为1和2的两个正方形,其一边在同一水平纸上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的函数图象大致应为()
A B C D
【观察与思考】“总体感知”:大正方形的面积为
4,小正方形的面积为1,在小正方形平移的整个过程中阴影部分面积变化的过程是
解:选A。

例2 已知:如图(1
),点G是BC的中点,点H在AF
上,动点P以每秒cm
2的速度沿图(1)的边线运动,运动路径为:
相应的ABP
∆的面积)
(2
cm
y关于运动时间)
(s
t的函数图象如图(2),若,
6cm
AB=则下列四个结论中正确的
个数有()
t t
t t
减至
4 3 3
定值
4
增值
G C D E F H
A 、 图(1)中的BC 边长是8cm
B 、 图(2)中的M 点表示第4秒时y 的值为242cm
C 、 图(1)中的C
D 长是4cm , D 、 图(2)中的N 点表示第12秒时y 的值为182cm
图(1) 图(2)
A 、 1个
B 、2个
C 、 3个
D 、 4个
【观察与思考】若把点 P 由 对应的图象分别记为
第Ⅰ段、
第Ⅱ段、第Ⅲ段、第Ⅳ段、第Ⅴ段,则从图(1)和图(2)的对应情况可知:
(1)由Ⅰ的两端点横坐标,知由G 到C 运动2秒,可得GD=4cm ,即BC=8cm ; (2)M 点的纵坐标等于 );(24862
1
2cm S ABD =⨯⨯=
∆ (3)图象Ⅱ两端点横坐标为2和4,可知)(4)(2)/(2cm s s cm CD =⨯=;
(4)由Ⅲ的两端点横坐标为4和7,知DE=6cm ,而EF=AB —CD=2cm ,可知Ⅳ的右端点的横坐标为8,再由Ⅴ的
两端点横坐标为8和12,推得FH=8cm ,从而
)(6814)(cm FH DE BC HA =-=-+=
所以,N 点的纵坐标等于2)(18662
1
cm S HAB =⨯⨯=∆ 解:应选D 。

例: 如图(1),E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线DC ED BE --运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是s cm /1.如果点P 、Q 同时开始运动,设运动时间为)(s t ,BPQ ∆的面积为)(2cm y ,已知y 与t 的函数关系的图象如图(2)所示,那么下列结论正确的是( )
)(s
O G C D E F
H
S
S
S
S
O
a O a O a O a。

图(2)
y/cm2
14
10
40
O
P
4 m
a m
D
C
A
B
Q
图(1)
P
D
C
B
A
A. 8
AE= B. 10
0≤
≤t
当时,2
5
4
t
y=
C.
4
sin
5
EBC
∠= D. 当s
t12
=时,BPQ
∆是等腰三角形
(丰二)8.如图,有一直角墙角,两边的长度足够长,在P处有一棵树
与两墙的距离分别是a 米(0<a<12)、4米.现在想用16米长的篱笆,
借助墙角围成一个矩形的花圃ABCD,且将这棵树围在花圃内(不考虑树的
粗细). 设此矩形花圃的最大面积为S,则S关于a的函数图象大致是
A. B. C. D.
(海二)8.如图1,在矩形ABCD中,1,3
AB BC
==.将射线AC绕着点A顺时针旋转α(0α
︒<≤180)︒
得到射线AE,点M与点D关于直线AE对称.若
15
x
α
=

,图中某点到点M的距离为y,表示y与x的函数关系的图象如图2所示,则这个点为图1中的
A.点A
B. 点B
C. 点C
D. 点D
图1 图2
A C
2-x
x
D
第二种题型
求解析式有几种思路:1)利用公式,如面积公式,周长公式等。

2)利用等量关系得到方程,类似于列方程解应用题。

3)标准函数,利用关键点坐标得到解析式。

4)利用相似等条件建立等式。

(门二)8.如图,在平行四边形ABCD 中,AC = 12,BD = 8,
P 是 AC 上的一个动点,过点P 作EF ∥BD ,与平行四边形的 两条边分别交于点E 、F .设CP=x ,EF=y ,则下列图象 中,能表示y
与x 的函数关系的图象大致是
A .
B .
C .
D .
思路:利用相似得到比例式
(昌二)8.正三角形ABC 的边长为2,动点P 从点A 出发,以每秒1个 单位长度的速度,沿A →B →C →A 的方向运动,到达点A 时停止.设运动 时间为x 秒,y =PC 2,则y 关于x 的函数的图象大致为
A B C D
思路:利用勾股定理等得到pc 与x 的关系式。

P
F E D
C
B
A
C
P
Q
B
A M N
(怀二)8.如图,等边△ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与
点A重合,点N到达点B时运动终止),过点M、N分别作
AB边的垂线,与△ABC的其它边交于P、Q两点.设线段
MN运动的时间为t秒,四边形MNQP的面积为S厘米2.
则表示S与t的函数关系的图象大致是()
(通2)12. 如图,Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上一动点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.
(东二)8. 如图,在平面直角坐标系中,已知⊙O的半径为1,动直线AB与x轴交于点(,0)
P x,直线AB 与x轴正方向夹角为45︒,若直线AB与⊙O有公共点,则x的取值范围是
A.11
x
-≤≤B.22
x
-<<
C.02
x
≤≤D.22
x
-≤≤
(大兴二)12. 如图,已知EF是O的直径,把A
∠为60的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与O交于点P,点B与点O重合.
将三角板ABC沿OE方向平移,使得点B与点E重合为止.
设POF x
∠=,则x的取值范围是
Q
P
C
B
A
A
F
O
(B)
P。

相关文档
最新文档