初中数学函数三大专题复习

合集下载

初中函数知识点总结(全面)

初中函数知识点总结(全面)

初中函数知识点总结(全面)1. 函数的概念函数是一种特殊的关系,它将一个自变量的值映射到唯一的因变量的值。

函数通常用来描述两个变量之间的依赖关系。

2. 函数的表示方式函数可以通过方程、表格和图像等方式来表示。

方程表示函数时,可以使用变量和常数来描述自变量和因变量之间的关系。

表格则将自变量和因变量的值以表格形式列出。

图像则以直线、曲线或者其他形状来表示函数的变化规律。

3. 函数的定义域和值域函数的定义域是自变量可能取值的集合,而值域是因变量可能取值的集合。

定义域和值域的确定需要根据函数的实际情况来分析和判断。

4. 常见的函数类型初中阶段研究的函数类型包括线性函数、二次函数、反比例函数和指数函数等。

线性函数是一种最简单的函数类型,它的方程形式为y = kx + b,其中k和b分别代表斜率和截距。

二次函数的方程形式为y = ax^2 + bx + c,其中a、b和c分别代表二次项、一次项和常数项的系数。

5. 函数的图像特征函数的图像可以通过斜率和截距、顶点坐标、对称轴和开口方向等特征来描述。

对于线性函数,斜率代表图像的倾斜程度,截距代表图像与y轴的交点;对于二次函数,顶点坐标代表图像的最高点或者最低点的位置,对称轴代表图像的对称线。

6. 函数的应用函数在数学和实际生活中都有广泛的应用。

在数学中,函数可以用来解决各种关系和变化的问题,例如求解方程、确定最大值和最小值等。

在实际生活中,函数可以用来描述各种现象和规律,例如汽车的加速度、温度的变化等。

总结:初中函数知识点包括函数的概念、表示方式、定义域和值域、常见的函数类型、图像特征和应用。

掌握这些知识点可以帮助学生更好地理解和应用函数,提高数学能力。

以上是初中函数知识点的全面总结,希望对你的学习有所帮助!。

八年级下册数学函数知识点总结

八年级下册数学函数知识点总结

八年级下册数学函数知识点总结一、函数的概念。

1. 变量与常量。

- 在一个变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量。

例如,汽车以60km/h的速度匀速行驶,行驶时间t和行驶路程s是变量,速度60km/h就是常量。

2. 函数的定义。

- 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

例如,y = 2x+1,对于x的每一个值,都能通过这个式子计算出唯一的y值。

- 函数的表示方法有三种:解析式法(如y = 3x - 2)、列表法(列出x和y的对应值表格)、图象法(画出y关于x的图象)。

二、一次函数。

1. 一次函数的概念。

- 形如y=kx + b(k,b是常数,k≠0)的函数,叫做一次函数。

当b = 0时,y=kx(k为常数,k≠0),y = kx是正比例函数,它是特殊的一次函数。

2. 一次函数的图象和性质。

- 图象:一次函数y = kx + b(k≠0)的图象是一条直线。

当b = 0时,y=kx的图象是经过原点(0,0)的直线。

例如,y = 2x的图象是过原点的直线,y=2x + 1的图象是y = 2x向上平移1个单位得到的直线。

- 性质。

- 当k>0时,y随x的增大而增大。

例如在y = 3x+2中,k = 3>0,y随x的增大而增大。

- 当k<0时,y随x的增大而减小。

例如在y=-2x + 3中,k=-2<0,y随x的增大而减小。

3. 一次函数图象的平移。

- 对于一次函数y = kx + b,向上(下)平移m个单位长度得到y=kx + b± m;向左(右)平移n个单位长度得到y = k(x± n)+b。

例如,y = 2x+1向上平移3个单位得到y = 2x+4,向左平移2个单位得到y = 2(x + 2)+1=2x + 5。

4. 求一次函数的解析式。

初中数学函数知识点汇总

初中数学函数知识点汇总

初中数学函数知识点汇总(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初中数学函数知识点汇总函数作为数学基础知识点之一,学习好并且掌握函数是我们学习好数学的基础,下面是本店铺给大家带来的初中数学函数知识点汇总,希望能够帮助到大家!初中数学函数知识点汇总1、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 y=kx (k不为零) ① k不为零② x 指数为1 ③ b取零当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x 的增大y也增大;当k (1) 解析式:y=kx(k是常数,k≠0)(2) 必过点:(0,0)、(1,k)(3) 走向:k>0时,图像经过一、三象限;k (4) 增减性:k>0,y随x的增大而增大;k (5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴2、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx b (k不为零) ① k不为零②x指数为1 ③ b取任意实数一次函数y=kx b的图象是经过(0,b)和(-k/b,0)两点的一条直线,我们称它为直线y=kx b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b (1)解析式:y=kx b(k、b 是常数,k0)(2)必过点:(0,b)和(-k/b,0)(3)走向:k>0,图象经过第一、三象限;k b>0,图象经过第一、二象限;b (4)增减性:k>0,y随x的增大而增大;k (5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;当b 初中数学一次函数知识点汇总3、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),(-k/b,0).即横坐标或纵坐标为0的点。

2024初中数学知识点复习提纲

2024初中数学知识点复习提纲

2024初中数学知识点复习提纲一、代数与函数1.一元一次方程与一元一次不等式•含有绝对值的一元一次不等式的解法•解一元一次方程和不等式时的变形方法•应用一元一次方程和不等式解决实际问题2.一次函数与一次函数图像•一次函数的定义、性质和图像表示•利用一次函数解决实际问题•一次函数和一元一次方程、不等式的关系3.二次根式•关于二次根式的定义、性质和化简方法•二次根式的运算和求值•应用二次根式解决实际问题4.整式的定义、性质和运算•多项式的基本概念、性质和表示方法•多项式的加、减、乘和整式除法运算•利用整式解决实际问题二、几何与测量1.平面几何初步•直线、线段、射线、角的基本概念及刻画方法•同位角、对顶角、内错角等角度关系•垂直、平行、相交、交错等线段关系•用角度关系和线段关系解决几何问题2.平面图形初步•三角形的基本性质、分类和判定方法•四边形、多边形、圆的定义和性质•识别和绘制各种平面图形•应用平面图形解决实际问题3.直线、角、面积测量•直线的测量方法和误差控制•利用角度测量解决几何问题•平面图形的面积计算及其应用4.立体几何•空间图形的基本概念、分类以及基本变换方法•立体图形的体积和表面积计算•应用立体几何解决实际问题三、数据与概率1.统计基础知识•数据和变量的定义、分类及其表示方法•统计描述性分析方法(频数、频率、中位数、平均数等)•数据图表的绘制和分析2.概率初步•随机事件和样本空间的定义、性质及表示方法•概率的定义、性质和计算方法•统计与概率的关系及其应用3.统计与概率的实际应用•利用统计和概率解决实际问题•假设检验及其应用以上是2024初中数学知识点复习提纲,希望对广大中学生有所帮助。

初中数学函数知识点汇总

初中数学函数知识点汇总

初中数学函数知识点汇总函数是数学中的一个概念,它描述了一个数集和另一个数集之间的对应关系。

在初中数学中,函数是一个重要的知识点,它包含了很多基本概念和性质。

下面是初中数学函数知识点的汇总。

1.函数的定义与表示函数定义为:设有两个非空数集A,B,如果按照其中一种确定的方法,对于A中的每个元素a,都能找到B中唯一确定的一个元素b和它对应,则称这种对应关系为函数,记作y=f(x)。

其中,x是自变量,y是因变量。

2.函数的图像函数的图像是用平面直角坐标系表示函数的形状和特点。

横坐标表示自变量x,纵坐标表示因变量y,函数的图像是由平面上的一些点构成的。

3.定义域和值域函数的定义域是指自变量取值的范围,值域是指因变量取值的范围。

4.一次函数(线性函数)一次函数的定义为:f(x)=kx+b,其中,k为斜率,b为截距。

一次函数的图像是一条直线,斜率越大,直线越陡峭;斜率为0时,直线平行于x轴,斜率不存在时,直线垂直于x轴。

5.二次函数(抛物线函数)二次函数的定义为:f(x)=ax²+bx+c,其中,a不等于0。

二次函数的图像是一个抛物线,开口方向取决于a的正负,抛物线的顶点坐标为(-b/2a,f(-b/2a))。

6.幂函数幂函数的定义为:f(x)=x^a,其中,a为常数。

幂函数的图像取决于幂指数a的值:当a>1时,图像上升得很快;当0<a<1时,图像上升得很慢;当a<0时,图像在y轴下方,但是a为负偶数时,图像在y轴上方。

7.反比例函数反比例函数的定义为:f(x)=a/x,其中,a为常数,且a不等于0。

反比例函数的图像是一个通过原点的开口向右上或右下的双曲线。

8.复合函数复合函数是指一个函数的自变量是另一个函数的因变量。

9.奇偶函数奇函数的定义为:f(-x)=-f(x),即函数关于原点对称。

偶函数的定义为:f(-x)=f(x),即函数关于y轴对称。

10.函数的单调性和极值函数的单调性是指函数在一些区间上的变化趋势,可以分为增函数和减函数。

函数初中知识点总结

函数初中知识点总结

函数初中知识点总结一、函数的基本概念1. 函数的定义函数是一个或多个自变量和一个因变量之间的对应关系。

通常用f(x)或者y来表示函数,其中x是自变量,y是因变量。

函数的定义可以用一个简单的公式表示,例如f(x) = x^2,也可以用一个表格来表示。

2. 自变量和因变量自变量是函数中的输入变量,因变量是函数中的输出变量。

自变量通常用x表示,因变量通常用y表示。

3. 定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。

函数的定义域和值域可以通过函数的公式或者图像来确定。

4. 初等函数的分类在初中数学中,我们学习了常见的初等函数,包括一次函数、二次函数、绝对值函数、指数函数、对数函数、幂函数、三角函数等。

这些函数在实际问题中都有着重要的应用。

5. 函数的符号表示除了用f(x)或者y来表示函数外,我们还可以用其他字母或者符号来表示函数,例如g(x)、h(x)、p(x)等。

二、函数的性质1. 奇偶性函数的奇偶性是指函数图像关于原点对称还是关于y轴对称。

具体来说,如果对于任意的x,有f(-x) = -f(x),则称函数是奇函数;如果对于任意的x,有f(-x) = f(x),则称函数是偶函数。

2. 增减性函数的增减性是指函数图像在定义域上的变化趋势。

如果对于任意的x1和x2,当x1<x2时有f(x1)<f(x2),则称函数是增函数;如果当x1<x2时有f(x1)>f(x2),则称函数是减函数。

3. 单调性函数的单调性是指函数在定义域上的增减性。

如果一个函数在定义域上是增函数或者减函数,则称函数在该定义域上是单调的。

4. 周期性如果对于任意的x,有f(x+T) = f(x),其中T是一个常数,则称函数是周期函数,T称为函数的周期。

5. 有界性如果存在一个常数M,对于函数的定义域上的任意x,有|f(x)|≤M,则称函数是有界的。

三、函数的图像1. 直角坐标系中的函数在直角坐标系中,函数的图像是一个曲线或曲线段。

初中数学函数知识点梳理

初中数学函数知识点梳理

初中数学函数知识点梳理函数是数学中一个重要的概念,它在初中数学中也占有重要的地位。

函数是一种数学关系,它将一个集合的元素映射到另一个集合的元素上。

初中数学中的函数主要包括函数的定义、函数的图像、函数的性质以及函数的运算等内容。

下面我们来逐一进行梳理。

首先,函数的定义是我们学习函数的基础。

在初中数学中,我们通常用f(x)表示函数,其中x是自变量,f(x)是因变量。

函数的定义包括定义域、值域和对应规律三个要素。

定义域指的是自变量的取值范围,而值域则指的是因变量的取值范围。

对应规律则是指自变量和因变量之间的关系,通常以一个公式或算法表示。

其次,函数的图像是我们理解函数性质的重要工具。

函数的图像是指将函数的自变量和因变量的取值通过直角坐标系表示出来的图形。

对于一元函数,我们可以用一条曲线来表示。

而对于二元函数,我们则需要使用三维坐标系来表示。

通过观察函数的图像,我们可以了解到函数的单调性、奇偶性以及极值等性质。

函数的性质包括单调性、奇偶性以及极值等。

单调性是指函数在定义域内的取值趋势,可以分为增函数和减函数。

增函数是指函数的取值随着自变量的增大而增大,减函数则相反。

奇偶性是指函数的对称性,奇函数在原点对称,即f(-x)=-f(x),偶函数在y轴上对称,即f(-x)=f(x)。

极值是指函数在某一区间内取得的最大值或最小值,由极值定理可知,极值点处的导数为0或不存在。

另外,函数的运算也是我们在初中数学中需要掌握的内容之一。

函数的运算包括函数的四则运算、复合函数的求解以及反函数的求解等。

函数的四则运算是指对于两个函数f(x)和g(x),我们可以进行加法、减法、乘法和除法的运算。

复合函数是指将一个函数的输出作为另一个函数的输入,我们可以通过复合函数的求解来研究函数之间的关系。

反函数是指对于一个函数f(x),如果存在一个函数g(x),使得f(g(x))=x,且g(x)也是一个函数,那么我们称g(x)为f(x)的反函数。

初中数学函数知识点归纳

初中数学函数知识点归纳

初中数学函数知识点归纳一、函数的定义和性质函数是一个数到数的映射关系,通常用f(x)表示。

函数的定义域是指所有能够使函数有意义的x的取值范围,值域是函数所有可能输出的值的集合。

函数可分为一对一函数、多对一函数和一对多函数。

二、常见函数1. 线性函数线性函数的函数图像为一条直线,表达式为f(x) = ax + b,其中a和b为常数。

a决定了直线的斜率,b决定了直线与y轴的交点。

2. 平方函数平方函数的函数图像为一条抛物线,表达式为f(x) = ax² + bx + c,其中a、b和c为常数。

a的正负决定了抛物线的开口方向,c决定了抛物线与y轴的交点。

3. 根号函数根号函数的函数图像为一条开口向上的抛物线,表达式为f(x) = √x。

函数图像只有非负数的x值对应有效。

4. 反比例函数反比例函数的函数图像为一条非零常数的双曲线,表达式为f(x) = k/x,其中k 为常数。

函数图像不包括x = 0这一点。

三、函数的变换1. 平移变换平移变换可以将函数的图像沿着x轴或y轴上下左右移动。

平移的规律如下:- 向左平移a个单位:f(x) → f(x + a)- 向右平移a个单位:f(x) → f(x - a)- 向上平移b个单位:f(x) → f(x) + b- 向下平移b个单位:f(x) → f(x) - b2. 压缩与拉伸变换压缩与拉伸变换可以改变函数图像在x或y方向的大小。

压缩与拉伸的规律如下:- x方向压缩:f(x) → f(kx),其中k > 1- x方向拉伸:f(x) → f(kx),其中0 < k < 1- y方向压缩:f(x) → kf(x),其中k > 1- y方向拉伸:f(x) → kf(x),其中0 < k < 1四、函数的性质和运算1. 函数的奇偶性- 奇函数:f(-x) = -f(x),即关于原点对称- 偶函数:f(-x) = f(x),即关于y轴对称2. 函数的复合函数的复合是指将一个函数作为另一个函数的输入,即f(g(x))。

初中数学函数三大专题复习

初中数学函数三大专题复习

初中数学函数三大专题复习
一、函数的定义与性质
1. 函数的定义:函数是一个将一个集合的每一个元素映射到另
一个集合的规则。

2. 函数的性质:
- 定义域:函数定义中的所有可能输入的集合称为定义域。

- 值域:函数所有可能的输出值的集合称为值域。

- 单调性:函数是递增的或递减的,称为函数的单调性。

- 奇偶性:函数在定义域内的奇偶性可以根据函数的对称性来
确定。

二、函数的图像与性质
1. 函数的图像:函数的图像是表示函数值和自变量之间对应关
系的图形。

2. 基本函数的图像:
- 幂函数、指数函数、对数函数、三角函数等函数的图像特点。

- 图像的对称性特点,如奇函数关于原点对称,偶函数关于y
轴对称。

3. 函数的性质与图像:
- 函数的最大值和最小值可以通过图像上的关键点来确定。

- 函数的奇偶性可以通过图像的对称性来判断。

三、函数的运算与应用
1. 函数之间的运算:
- 函数的加法、减法、乘法和除法的定义与性质。

- 复合函数的概念和计算方法。

2. 函数的应用:
- 实际问题中常用的函数模型,如线性函数、二次函数、指数函数等。

- 函数的图像在实际问题中的应用,如求函数的最小值、最大值等。

总结:
初中数学函数的三大专题复习包括函数的定义与性质、函数的图像与性质以及函数的运算与应用。

掌握这些知识可以帮助我们理解函数的基本概念和特点,提高数学问题的解题能力。

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练函数及其图象1、坐标与象限定义1:我们把有顺序的两个数a与b所组成的数对,叫做有序数对,记作(a,b)。

定义2:平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴。

水平的数轴称为x轴或横轴,取向右方向为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向。

两坐标轴的交点为平面直角坐标系的原点。

建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限。

2、函数与图象定义1:在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量。

定义2:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

定义3:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。

定义4:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法。

这种式子叫做函数的解析式。

表示函数的方法:解析式法、列表法和图象法。

解析式法可以明显地表示对应规律;列表法直接给出部分函数值;图象法能直观地表示变化趋势。

画函数图象的方法——描点法:第1步,列表。

表中给出一些自变量的值及其对应的函数值;第2步,描点。

在直角坐标系中,以自变量的值为横坐标、相应的函数值为纵坐标,描出表格中数值对应的各点;第3步,连线。

按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来。

1、结合实例进一步体会用有序数对可以表示物体的位置。

2、理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。

初三(九年级)数学复习知识点函数的归总

初三(九年级)数学复习知识点函数的归总

初三 (九年级 )数学复习知识点函数的归总中考数学知识考点:函数的归总变量:因变量,自变量。

在用图象表示变量之间的关系时,平时用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X , Y 间的关系式能够表示成Y=KX+B(B 为常数, K 不等于 0)的形式,则称 Y 是 X 的一次函数。

②当 B=0 时,称 Y 是 X 的正比率函数。

一次函数的图象:①把一个函数的自变量X 与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比率函数 Y=KX 的图象是经过原点的一条直线。

③在一次函数中,当 K〈 0,B〈 O,则经 234 象限 ;当 K〈0,B〉0 时,则经124 象限 ;当 K 〉0, B〈0 时,则经 134 象限 ;当 K〉 0,B〉0 时,则经 123 象限。

④当K 〉0 时, Y 的值随 X 值的增大而增大,当X 〈 0 时, Y 的值随 X 值的增大而减少。

二空间与图形A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面组成的。

②面与面订交得线,线与线订交得点。

③点动成线,线动成面,面动成体。

张开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N 棱柱就是底面图形有N 条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆能够切割成若干个扇形。

2、角线:①线段有两个端点。

②将线段向一个方向无量延长就形成了射线。

射线只有一个端点。

③将线段的两端无量延长就形成了直线。

直线没有端点。

④经过两点有且只有一条直线。

初中数学函数知识点总结

初中数学函数知识点总结

初中数学函数知识点总结一、函数的定义及性质:1.函数的定义:函数是一个或多个自变量(输入)与一个因变量(输出)之间的对应关系。

2.函数的三要素:定义域、值域和对应关系。

3.函数的表示方法:函数表达式、函数图象和函数关系式。

4.函数的分类:一次函数、二次函数、反比例函数、指数函数、对数函数等。

5.确定函数的条件:给定函数的表达式、图象、关系式或特定点坐标等。

二、函数的运算法则:1.函数的和、差、积、商运算规则。

2.函数的复合运算规则。

3.函数的反函数及其性质。

4.函数的平移、翻折和伸缩等运算。

三、常见的函数类型及性质:1.一次函数(线性函数):(1)函数的定义:y = kx + b,k为斜率,b为截距。

(2)函数的图象:直线。

(3)性质:对称性、单调性、与坐标轴的交点。

2.二次函数:(1)函数的定义:y = ax^2 + bx + c,a不等于0。

(2)函数的图象:抛物线。

(3)性质:对称轴、顶点坐标、单调性、与坐标轴的交点、方程的根。

3.反比例函数:(1)函数的定义:y=k/x,k不等于0。

(2)函数的图象:双曲线的一支。

(3)性质:对称性、单调性、与坐标轴的交点。

4.指数函数:(1)函数的定义:y=a^x,a大于0且不等于1(2)函数的图象:以原点为中心对称的曲线。

(3)性质:单调性、与坐标轴的交点。

5.对数函数:(1)函数的定义:y = loga(x),a大于0且不等于1(2)函数的图象:一条斜率小于1的直线。

(3)性质:单调性、与坐标轴的交点。

四、函数的应用:1.函数在数学模型中的应用:解决实际问题时,可以建立函数模型进行分析和求解。

2.函数的最值问题:通过函数的图象或导数来确定函数的最大值、最小值。

3.函数的相关性分析:通过分析变量之间的函数关系,判断相关性并探究其影响因素。

4.函数的综合应用:如面积、体积、速度、加速度等问题的求解。

五、函数的图象与函数的性质:1.函数图象的绘制:根据函数的定义和性质,确定关键点,描绘出精确的函数图象。

初中数学函数知识点总结

初中数学函数知识点总结

初中数学函数知识点总结在初中数学中,函数是一个非常重要的知识点,它涉及到数学的各个方面,并且在实际生活中也有广泛的应用。

在本文中,我将总结一些初中数学中关于函数的知识点,希望对大家的学习有所帮助。

一、常见的函数类型1. 一次函数:一次函数是指具有形如y=ax+b的函数,其中a和b是常数,a不能为0。

一次函数的图像是一条直线,斜率为a,截距为b。

2. 二次函数:二次函数是指具有形如y=ax²+bx+c的函数,其中a、b和c是常数,a不能为0。

二次函数的图像是一条抛物线,开口方向取决于a的正负。

3. 平方函数:平方函数是指具有形如y=x²的函数。

平方函数的图像是一条抛物线,开口朝上。

4. 立方函数:立方函数是指具有形如y=x³的函数。

立方函数的图像呈现S型曲线。

5. 绝对值函数:绝对值函数是指具有形如y=|x|的函数。

绝对值函数的图像是一条V型曲线,关于y轴对称。

二、函数的性质1. 定义域和值域:函数的定义域是指所有可以作为函数自变量的数值的集合,而值域是指所有可能的函数值的集合。

2. 奇偶性:函数的奇偶性是指函数的对称性。

若对于任意x,有f(x)=f(-x),则函数是偶函数;若对于任意x,有f(x)=-f(-x),则函数是奇函数。

3. 单调性:函数的单调性是指函数的增减性质。

若对于定义域内的任意两个数x₁和x₂,当x₁<x₂时有f(x₁)<f(x₂),则函数是递增的;若对于定义域内的任意两个数x₁和x₂,当x₁<x₂时有f(x₁)>f(x₂),则函数是递减的。

4. 极值和最值:函数在定义域内达到的最大值和最小值称为函数的极值和最值。

三、函数的图像和方程1. 函数的图像:函数的图像可以通过绘制函数的各个点来得到。

为了更准确地绘制函数的图像,可以根据函数的性质和特点,分析关键点、拐点、零点等。

2. 函数的方程:已知函数的图像,可以通过观察图像的特点,得出函数的方程。

初中数学函数知识点归纳

初中数学函数知识点归纳

初中数学函数知识点归纳一、函数的概念和性质1.函数的定义:函数是一个由一个或多个自变量和一个因变量组成的数学关系。

对于每一个自变量的取值,函数都有一个确定的因变量值与之对应。

2.函数的表示:函数可以用函数表、函数图、函数解析式等形式来表示。

3.函数的自变量和因变量:自变量是输入值,因变量是对应的输出值。

4.定义域:函数可以接受的自变量的取值范围称为函数的定义域。

5.值域:函数所有可能的因变量值的集合称为函数的值域。

二、常见函数的性质和图像1.奇偶性:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

2.单调性:增函数在定义域内满足f(x1)<f(x2)当x1<x2,减函数在定义域内满足f(x1)>f(x2)当x1<x23.分段函数:定义域被分为不同区间,每个区间内可以使用不同的函数关系来表达。

三、常见的数学函数1. 线性函数:f(x)=ax+b,其中a和b为常数,表示一条直线的函数关系。

2. 幂函数:f(x)=ax^n,其中a和n为常数,表示自变量的n次幂关系。

3.反比例函数:f(x)=a/x,其中a为常数,表示自变量和因变量之间的反比例关系。

4.指数函数:f(x)=a^x,其中a为常数且大于0且不等于1,表示指数和对数之间的关系。

5. 对数函数:f(x)=log_a(x),其中a为常数且大于0且不等于1,表示指数和对数之间的关系。

6.三角函数:如正弦函数、余弦函数、正切函数等,主要描述角度和边长之间的关系。

7.复合函数:由多个函数通过代数运算组合而成的函数。

四、函数的性质和运算1.函数的相等:两个函数f(x)和g(x)在其定义域内的每个点上的值都相等时,称这两个函数相等。

2.函数的复合:将一个函数的输出作为另一个函数的输入,得到的新函数称为复合函数。

3.函数的逆函数:若一个函数f(x)的定义域和值域互换,且满足f(f^(-1)(x))=x和f^(-1)(f(x))=x,则f(x)的逆函数为f^(-1)(x)。

初中数学函数知识点和常见题型总结

初中数学函数知识点和常见题型总结

函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。

函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。

函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。

换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。

一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。

注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。

平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。

2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。

3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。

3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。

2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。

初三数学函数知识归纳总结

初三数学函数知识归纳总结

初三数学函数知识归纳总结函数是数学中非常重要的一个概念,是数理统计、物理学、经济学等多个学科的基础。

在初三的数学课程中,函数是一个重要的内容,学好函数对于日后的学习及解题能力的提升至关重要。

下面对初三数学函数知识进行归纳总结。

一、函数的概念与表示函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

函数通常用符号表示,常见的表示方式有函数图像、解析式以及函数关系式等。

1.1 函数的基本定义函数是自变量与因变量之间的一种特殊关系,其中自变量的值确定时,因变量的值也随之确定。

1.2 函数的表示方式函数可以通过以下方式表示:- 函数图像:图像可以将自变量和因变量的关系以图像的形式展现出来,有助于直观了解函数特性。

- 解析式:使用数学表达式来表示函数,通常形如 f(x) = 表达式。

- 函数关系式:使用自变量和因变量之间的关系式来表示函数,如 y = 2x + 3。

二、函数的性质函数作为数学中的一个重要概念,具有一些常见的性质,了解这些性质有助于更好地理解和使用函数。

2.1 定义域与值域- 定义域:函数中自变量的所有取值范围构成的集合。

- 值域:函数中因变量的所有可能取值组成的集合。

2.2 奇偶性- 奇函数:当函数满足 f(-x) = -f(x),即函数关于原点对称时,称该函数为奇函数。

- 偶函数:当函数满足 f(-x) = f(x),即函数关于y轴对称时,称该函数为偶函数。

2.3 单调性- 单调递增:当函数中的任意两个不同的自变量取值时,对应的因变量值满足递增关系。

- 单调递减:当函数中的任意两个不同的自变量取值时,对应的因变量值满足递减关系。

2.4 对称性- 函数关于y轴对称:当函数满足 f(-x) = f(x),即函数关于y轴对称时,称函数具有关于y轴的对称性。

- 函数关于x轴对称:当函数满足 f(x) = -f(x),即函数关于x轴对称时,称函数具有关于x轴的对称性。

三、常见函数类型初三数学课程中,我们遇到了很多常见的函数类型,每种类型的函数都有其特定的特性和应用。

初中函数复习专题 适合初三学生

初中函数复习专题 适合初三学生

初中函数复习一、基本概念1、常量和变量:在变化过程中,数值保持不变的量叫做常量,可以取不同数值的量叫做变量。

2、函数:⑴定义:一般的,设在一个变化过程中有两个变量x 与y ,如果对于变量x 的每一个值,变量y 都有唯一..的值与它对应,我们称y 是x 的函数。

其中x 是自变量,y 是因变量。

⑵函数的表示方法:列表法、图象法和解析法。

⑶自变量取使函数关系式有意义的值,叫做自变量的取值范围。

①函数的解析式是整式时,自变量可以取全体实数;②函数的解析式是分式时,自变量的取值要使分母不为0;③函数的解析式是二次根式时,自变量的取值要使被开方数是非负数; ④对实际问题中的函数关系,要使实际问题有意义。

二、初中所学的函数 1、正比例函数:(1)、正比例函数的定义:形如)0(≠=k kx y 的形式。

自变量与函数之间是k 倍的关系一般情况下,x 当作自变量,y 作为函数(2)、正比例函数的性质①正比例函数y=kx 的图象是经过(0,0),(1,k )的一条直线。

②当0>k 时,图象从左到右是上升的趋势,也即是y 随x 的增大而增大。

过一、三象限。

③当0<k 时,图象从左到右是下降的趋势,也即是y 随x 的增大而减小。

过二、四象限。

注意:因为正比例函数y=kx (k ≠0)中的待定系数只有一个k ,因此确定正比例函数的解析式只需x 、y 一组条件,列出一个方程,从而求出k 值。

2、一次函数(1)、一次函数的定义:形如)0,,(≠+=k b k b kx y 且为常数的形式;自变量与常量的乘积,再加上一个常量的形式。

(2)、一次函数与正比例函数的关系)0(≠=k kx y )0,,(≠+=k b k b kx y 且为常数属于正比例 一次函数不属于(3)、一次函数的图象性质①一次函数y=kx+b 的图象是经过(0,b )(—k/b ,0)的一条直线,也可由y=kx 平移得到② 当k>0时,y 随x 的增大而增大,b>0时,图象过第一、二、三象限,b<0时,图象过一、三、四象限 ③当k<0时,y 随x 的增大而减小,b>0时,图象过第一、二、四象限,b<0时,图象过二、三、四象限注意:一次函数y=kx+b(k ≠0)中的待定系数有两个k 和b ,因此要确定一次函数的解析式需x 、y 的两组条件,列出一个方程组,从而求出k 和b 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学函数三大专题复习目录专题一一次函数和反比例函数 (1)一、一次函数及其基本性质 (1)1、正比例函数 (1)2、一次函数 (1)3、待定系数法求解函数的解析式 (2)4、一次函数与方程、不等式结合 (3)5、一次函数的基本应用问题 (4)二、反比例函数及其基本性质 (7)1、反比例函数的基本形式 (7)2、反比例函数中比例系数k的几何意义 (8)3、反比例函数的图像问题 (9)4、反比例函数的基本应用 (11)专题二二次函数 (13)一、二次函数的基本性质以及二次函数中三大参数的作用 (13)1、二次函数的解析式及其求解 (13)2、二次函数的基本图像 (14)3、二次函数的增减性及其最值 (16)4、二次函数中三大参数的和函数图像的关系 (16)5、二次函数和不等式、方程的结合 (18)二、二次函数的基本应用 (19)1、二次函数求解最值问题 (19)2、二次函数中的面积问题 (21)3、涵洞桥梁隧道问题 (24)4、二次函数和圆相结合 (26)三、二次函数中的运动性问题 (27)1、动点问题 (27)2、折叠、旋转、平移问题 (33)专题三锐角三角函数以及解直角三角形 (36)1、锐角三角函数的基本定义及其计算 (36)2、锐角三角函数的基本应用 (37)专题一 一次函数和反比例函数一、一次函数及其基本性质1、正比例函数形如()0≠=k kx y 的函数称为正比例函数,其中k 称为函数的比例系数。

(1)当k>0时,直线y=kx 经过第一、三象限,从左向右上升,即随着x 的增大y 也增大; (2)当k<0时,直线y=kx 经过第二、四象限,从左向右下降,即随着x 的增大y 反而减小。

2、一次函数形如b kx y +=的函数称为一次函数,其中k 称为函数的比例系数,b 称为函数的常数项。

(1)当k>0,b>0,这时此函数的图象经过第一、二、三象限;y 随x 的增大而增大; (2)当k>0,b<0,这时此函数的图象经过第一、三、四象限;y 随x 的增大而增大; (3)当k<0,b>0,这时此函数的图象经过第一、二、四象限;y 随x 的增大而减小; (4)当k<0,b<0,这时此函数的图象经过第二、三、四象限;y 随x 的增大而减小。

例题1:在一次函数y =(m -3)x m -1+x +3中,符合x ≠0,则m 的值为 。

随堂练习:已知自变量为x 的函数y=mx +2-m 是正比例函数,则m =________,该函数的解析式为_______。

例题2:已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( ) A 、﹣2 B 、﹣1 C 、0D 、2随堂练习:1、直线y =x -1的图像经过象限是( )A 、第一、二、三象限B 、第一、二、四象限C 、第二、三、四象限D 、第一、三、四象限 2、一次函数y =6x +1的图象不经过...( ) A 、第一象限B 、第二象限C 、第三象限D 、第四象限例题3:已知一次函数2-+=n mx y 的图像如图所示,则m 、n 的取值范围是( ) A 、m >0,n <2 B 、m >0,n >2 C 、m <0,n <2 D 、m <0,n >2 随堂练习:已知关于x 的一次函数n mx y +=的图象如图所示,则2||m m n --可化简为 。

例题4:已知一次函数y =kx +b 的图像经过二四象限,如果函数上有点()()1122,,,x y x y ,如果满足12y y >,那么1x 2x 。

3、待定系数法求解函数的解析式(1)一次函数的形式可以化成一个二元一次方程,函数图像上的点满足函数的解析式,亦即满足二元一次方程。

(2)两点确定一条直线,因此要确定一次函数的图像,我们必须寻找一次函数图像上的两个点,列方程、。

组,解方程,最终求出参数k b=+的图象经过M(0,2),(1,3)两点。

例题5:已知:一次函数y kx b(1)求k、b的值;=+的图象与x轴的交点为A(a,0),求a的值。

(2)若一次函数y kx b随堂练习:1、直线1y kx =-一定经过点( )。

A 、(1,0)B 、(1,k )C 、(0,k )D 、(0,-1) 2、若点(m ,n )在函数y =2x +1的图象上,则2m ﹣n 的值是( ) A 、2 B 、-2 C 、1 D 、-1 3、一次函数24y x =-+的图象与y 轴的交点坐标是( ) A 、(0,4) B 、(4,0) C 、(2,0) D 、(0,2)4、已知一次函数()0≠+=k b kx y 图象过点)2,0(,且与两坐标轴围成的三角形面积为2,求此一次函数的解析式。

4、一次函数与方程、不等式结合(1)一次函数中的比较大小问题,主要考察(2)一次函数的交点问题:求解两个一次函数的交点,只需通过将两个一次函数联立,之后通过解答一个二元一次方程组即可。

例题1:已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为( )A 、x <-1B 、x > -1C 、x >1D 、x <1 随堂练习:1、若直线42--=x y 与直线b x y +=4的交点在第三象限,则b 的取值范围是( ) A 、84<<-b B 、04<<-b C 、4-<b 或8>b D 、84≤≤-b2、结合正比例函数y =4x 的图像回答:当x >1时,y 的取值范围是( ) A 、y =1 B 、1≤y <4 C 、y=4 D 、y >4例题2:在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标( ) A 、(-1,4) B 、(-1,2) C 、(2,-1) D 、(2,1)随堂练习:如图,一次函数y=k 1x+b 1的图象l 1与y=k 2x+b 2的图象l 2相交于点P,则方程组⎩⎨⎧+=+=2211,b x k y b x k y 的解是( )A 、⎩⎨⎧=-=3,2y xB 、⎩⎨⎧-==2,3y x C 、⎩⎨⎧==3,2y x D 、23x y =-⎧⎨=-⎩例题3:如图,直线y =kx +b 经过A (3,1)和B (6,0)两点,则不等式0<kx +b <x31的解集为________。

随堂练习:如图,已知函数y =3x +b 和y =ax -3的图象交于点P (-2,-5),则根据图象可得不等式3x +b >ax -3的解集是 。

5、一次函数的基本应用问题例题1:如图,正方形ABCD 的边长为a ,动点P 从点A 出发,沿折线A →B 一D → C →A 的路径运动,回到点A 时运动停止.设点P 运动的路程长为x ,AP 长为y ,则y 关于x 的函数图象大致是( )yxl 1L 2PO-2 3随堂练习:如图3,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,D (5,4),AD =2.若动点F E 、同时从点O 出发,E 点沿折线DC AD OA →→运动,到达C 点时停止;F 点沿OC 运动,到达C 点时停止,它们运动的速度都是每秒1个单位长度。

设E 运动秒x 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为( )例题2:某景区的旅游线路如图1所示,其中A 为入口,B ,C ,D 为风景点,E 为三岔路的交汇点,图1中所给数据为相应两点间的路程(单位:km ).甲游客以一定的速度沿线路“A →D →C →E →A ”步行游览,在每个景点逗留的时间相同,当他回到A 处时,共用去3h .甲步行的路程s (km )与游览时间t (h )之间的部分函数图象如图2所示.(1)求甲在每个景点逗留的时间,并补全图象; (2)求C ,E 两点间的路程;(3)乙游客与甲同时从A 处出发,打算游完三个景点后回到A 处,两人相约先到者在A 处等候, 等候时间不超过10分钟.如果乙的步行速度为3km/h ,在每个景点逗留的时间与甲相同,他们的约定能否实现?请说明理由。

随堂练习:煤炭是攀枝花的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划。

某煤矿现有1000吨煤炭要全部运往A 、B 两厂,通过了解获得A 、B 两厂的有关信息如下表(表中运费栏“元/km t ⋅”表示:每吨煤炭运送一千米所需的费用):(1)写出总运费y (元)与运往厂的煤炭量x (t )之间的函数关系式,并写出自变量的取值范围; (2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费(可用含a 的代数式表示)例题3:如图,直线y =kx -6经过点A (4,0),直线y =-3x +3与x 轴交于点B ,且两直线交于点C 。

(1)求k 的值;(第2题)图212图1(2)求△ABC 的面积。

随堂练习:如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(-4,0),点B 的坐标为(0,b )(b >0). P 是直线AB 上的一个动点,作PC ⊥x 轴,垂足为C .记点P 关于y 轴的对称点为P '(点P '不在y 轴上),连结PP ',P 'A ,P'C .设点P 的横坐标为a .(1)当b =3时,①求直线AB 的解析式; ②若点P'的坐标是(-1,m ),求m 的值; (2)若点P 在第一象限,记直线AB 与P'C 的交点为D . 当P'D :DC =1:3时,求a 的值;(3)是否同时存在a ,b ,使△P'CA 为等腰直角三角形?若存在,请求出所有满足要求的a ,b 的值;若不存在,请说明理由。

.二、反比例函数及其基本性质1、反比例函数的基本形式一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。

x k y =还可以写成kx y =1-。

相关文档
最新文档