(完整word版)初三数学函数专项练习题及答案

合集下载

初三数学函数的试卷含答案

初三数学函数的试卷含答案

一、选择题(每题5分,共25分)1. 下列函数中,自变量x的取值范围是实数集的是()A. y = √(x - 2)B. y = 1/xC. y = log2(x + 3)D. y = |x|2. 函数y = -2x + 5的图像是()A. 一次函数的图像是一条直线B. 一次函数的图像是一条斜率为负的直线C. 一次函数的图像是一条斜率为正的直线D. 一次函数的图像是一条经过原点的直线3. 若函数y = kx + b(k≠0)的图像与x轴、y轴都相交,则k、b的取值范围是()A. k > 0, b > 0B. k > 0, b < 0C. k < 0, b > 0D. k < 0, b < 04. 函数y = (1/2)^x的图像是()A. 递增函数B. 递减函数C. 非单调函数D. 周期函数5. 若函数y = 3x - 1在x=2时取得最小值,则该函数的图像是()A. 递增函数B. 递减函数C. 非单调函数D. 周期函数二、填空题(每题5分,共25分)6. 函数y = 2x - 3的图像与y轴的交点坐标是______。

7. 若函数y = 3x^2 - 4x + 5在x=1时取得最大值,则该函数的图像是______。

8. 函数y = -5x + 10的图像在y轴上的截距是______。

9. 函数y = (1/4)^x的图像是______。

10. 函数y = x^3 - 3x的图像是______。

三、解答题(每题15分,共45分)11. (10分)已知函数y = -3x + 4,求以下问题:(1)当x=1时,函数的值是多少?(2)函数的图像与x轴、y轴的交点坐标分别是什么?12. (15分)已知函数y = 2x^2 - 5x + 2,求以下问题:(1)函数的图像与x轴的交点坐标。

(2)函数在x=2时的值。

(3)函数的最大值是多少?13. (15分)已知函数y = (1/2)^x,求以下问题:(1)当x=3时,函数的值是多少?(2)函数的图像是否经过第一象限?(3)函数的图像是否关于y轴对称?答案:一、选择题1. C2. B3. B4. B5. A二、填空题6. (0, -3)7. 递减8. 109. 递减函数10. 递增函数三、解答题11. (1)当x=1时,y = -31 + 4 = 1。

初中函数测试题及答案

初中函数测试题及答案

初中函数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是函数的定义?A. 函数是数集到数集的映射B. 函数是一种特殊的关系C. 函数是一种运算D. 函数是数集到数集的对应关系答案:C2. 如果一个函数的自变量x的取值范围是x>0,那么下列哪个选项是正确的?A. 函数的定义域为所有实数B. 函数的定义域为非负实数C. 函数的定义域为正实数D. 函数的定义域为负实数答案:C3. 函数y=2x^2+3x+1的图像是:A. 抛物线B. 直线C. 双曲线D. 圆答案:A4. 下列哪个函数是奇函数?A. y=x^2B. y=x^3C. y=x^4D. y=x答案:D5. 函数y=1/x的图像在第一象限内:A. 向右上方倾斜B. 向左上方倾斜C. 向右下方倾斜D. 向左下方倾斜答案:B6. 如果函数f(x)=x^2-4x+3,那么f(1)的值是多少?A. -2B. 0C. 2D. 4答案:A7. 函数y=3x-2的图像与y轴的交点坐标是:A. (0, -2)B. (0, 3)C. (2, 0)D. (-2, 0)答案:A8. 函数y=1/x的图像经过第几象限?A. 第一象限和第三象限B. 第二象限和第四象限C. 第一象限和第二象限D. 第三象限和第四象限答案:A9. 函数y=x+1与y=x-1的图像之间的距离是:A. 1B. 2C. 3D. 4答案:B10. 函数y=x^2的图像在x=0处的切线斜率是:A. 0B. 1C. 2D. -1答案:A二、填空题(每题4分,共20分)1. 函数y=2x+3的图像在x=2时的y值是_________。

答案:72. 如果函数f(x)=x^2-6x+8,那么f(3)的值是_________。

答案:13. 函数y=1/x的图像在x=-1处的切线斜率是_________。

答案:-14. 函数y=x^3-3x^2+2的图像在x=1处的切线斜率是_________。

中考数学《函数基础知识》专项练习题(带答案)

中考数学《函数基础知识》专项练习题(带答案)

中考数学《函数基础知识》专项练习题(带答案)一、单选题1.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5 y/cm1010.51111.51212.5A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm2.若矩形的面积为125,则矩形的长y 关于宽x(x >0)的函数关系式为( )A .y =125xB .y =512xC .y =12x 5D .y =5x 123.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度 ℎ 与时间 t 之间的关系的图象是( )A .B .C .D .4.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(m)与时间t(min)之间函数关系的图象大致是( )A .B .C.D.5.若代数式√x−1x−2有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠26.等腰三角形ABC中,AB=CB=5,AC=8,P为AC边上一动点,PQ⊥AC,PQ与△ABC的腰交于点Q,连结CQ,设AP为x,△CPQ的面积为y,则y关于x的函数关系的图象大致是()A.B.C.D.7.若直线y=kx上每一点都能在直线y=−6x上找到关于x轴对称的点,则它的解析式是()A.y=6x B.y=16x C.y=−6x D.y=−1 6x8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.9.函数y=√2−x+1x+1中,自变量x的取值范围是()A.x⩽2B.x⩽2且x≠−1 C.x⩾2D.x⩾2且x≠−110.在下列四个图形中,能作为y是x的函数的图象的是()A.B.C.D.11.如图,小磊老师从甲地去往10千米的乙地,开始以一定的速度行驶,之后由于道路维修,速度变为原来的四分之一,过了维修道路后又变为原来的速度到达乙地.设小磊老师行驶的时间为x(分钟),行驶的路程为y(千米),图中的折线表示y与x之间的函数关系,则小磊老师从甲地到达乙地所用的时间是()A.15分钟B.20分钟C.25分钟D.30分钟12.下列图象中,y是x的函数的是()A.B.C.D.二、填空题13.如图1,在平面直角坐标系中,将▱ABCD(AB>AD)放置在第一象限,且AB∥x轴,直线y=−x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为.14.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地. 如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系式;折线B−C−D表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.下几种说法:①货车的速度为60千米/小时;②轿车与货车相遇时,货车恰好从甲地出发了3. 9小时;③若轿车到达乙地后,马上沿原路以CD段速度返回,则轿车从乙地出发317小时再次与货车相遇;其中正确的个数是. (填写序号)15.某商城为促进同一款衣服的销量,当同一个人购买件数达到一定数目的时候,超过的件数,每件打8折,现任意挑选5个顾客的消费情况制定表格,其中x表示购买件数,y表示消费金额,根据表格数据请写出一个y关于x的函数解析式是:.x(件)23456y(元)10015020024028016.函数y=2√x−1的自变量x的取值范围是.17.甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:(1)图中m的值是;(2)第天时,甲、乙两个车间加工零件总数相同.18.如图,△O的半径为5,点P在△O上,点A在△O内,且PA=3,过点A作AP的垂线交△O于点B,C.设PB= x ,PC=y,则y与x之间的函数解析式为三、综合题19.某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.行李的重量xkg快递费不超过1kg10元超过1kg但不超过5kg的部分3元/kg超过5kg但不超过15kg的部分5元/kg(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?20.小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶,若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系,如图所示,根据图象回答下列问题;(1)小汽车行驶小时后加油,中途加油升;(2)求加油前邮箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点300km,车速为80km/h,要到达目的地,油箱中的油是否够用请说明理由.21.一农民带了若干千克自产的萝卜进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出萝卜千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)降价前他每千克萝卜出售的价格是多少?(2)降价后他按每千克0.4元将剩余萝卜售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克萝卜?22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x人,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y1、y2与x之间的函数关系式;(3)导游小王5月2日(五一假日)带A旅游团,5月8日(非节假日)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.在“世界读书日”这周的周末,小张同学上午8时从家里出发,步行到公园锻炼了一段时间后以相同的速度步行到图书馆看书,看完书后直接回到了家里,如图是他离家的距离s(米)与时间t(时)的函数关系,根据图象回答下列问题:(1)小张同学家离公园的距离是多少米?锻炼身体用了多少分钟?在图书馆看了多少分钟的书?从图书馆回到家里用了多少分钟?(2)图书馆离小张同学的家多少米?(3)小张同学从图书馆回到家里的速度是多少千米/时?24.甲、乙两车早上从A城车站出发匀速前往B城车站,在整个行程中,两车离开A城的距离s与时间t的对应关系如图所示.(1)A,B两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B城车站这一时间段,在何时间点两车相距40km?参考答案1.【答案】B 2.【答案】A 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】D 7.【答案】A 8.【答案】B 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】B 13.【答案】8 14.【答案】①②③15.【答案】{y =50x(0≤x ≤4)y =40x +40(x >4)16.【答案】x >1 17.【答案】(1)770(2)818.【答案】y =30x19.【答案】(1)解:设托运费y 1(元)与行李重量xkg 的函数关系式为y 1=kx+b将(30,300)、(50,900)代入y 1=kx+b , {30k +b =30050k +b =900 ,解得: {k =30b =−600 ∴托运费y 1(元)与行李质量xkg 的函数关系式为y 1=30x ﹣600. 当y 1=30x ﹣600=0时,x =20.答:可携带的免费行李的最大重量为20kg . (2)解:根据题意得:当0<x≤1时,y 2=10; 当1<x≤5时,y 2=10+3(x ﹣1)=3x+7;当5<x≤15时,y 2=10+3×(5﹣1)+5(x ﹣5)=5x ﹣3.综上所述:快递费y 2(元)与行李重量xkg 的函数关系式为y 2= {10(0<x ≤1)3x +7(1<x ≤5)5x −3(5<x ≤15) .(3)解:当10≤m <20时,5<25﹣m≤15∴y =y 1+y 2=0+5×(25﹣m)﹣3=﹣5m+122. ∵10≤m <20 ∴22<y≤72;当20≤m <24时,1<25﹣m≤5∴y =y 1+y 2=30m ﹣600+3×(25﹣m)+7=27m ﹣518. ∵20≤m <24 ∴22≤y <130.综上可知:当m =20时,总费用y 的值最小,最小值为22.答:当托运20kg 、快递5kg 行李时,总费用最少,最少费用为22元.20.【答案】(1)3;24(2)解:设直线解析式为Q=kt+b ,把(0,36)和(3,6)代入得: {3k +b =6b =36解得 {k =−10b =36 ∴Q=-10t+36,(0≤t≤3);(3)解:根据题意,每小时耗油量为10升 ∵加油站到景点用时间为:300÷80=3.75(小时) ∴需要的油量为:3.75×10=37.5升>30升 故不够用.21.【答案】(1)解:设降价前每千克萝卜价格为k 元则农民手中钱y 与所售萝卜千克数x 之间的函数关系式为:y=kx+5 ∵当x=30时,y=20 ∴20=30k+5 解得k=0.5.答:降价前每千克萝卜价格为0.5元. (2)解:(26-20)÷0.4=15 15+30=45kg.所以一共带了45kg 萝卜.22.【答案】(1)解: 800÷10=80 (元 / 人)答:不打折的门票价格是80元 / 人; (2)解:设 y 1=10k 解得: k =48 ∴y 1=48x当0⩽x⩽10时,设y2=80x 当x>10时,设y2=mx+b则{10m+b=80020m+b=1440解得:m=64∴y2=64x+160∴y2={80x(0⩽x⩽10)64x+160(x>10);(3)解:设A旅游团x人,则B旅游团(50−x)人若0⩽x⩽10,则80x+48(50−x)=3040解得:x=20,与x⩽10不相符若x>10,则64x+160+48(50−x)=3040解得:x=30,与x>10相符,50−30=20(人)答:A旅游团30人,B旅游团20人.23.【答案】(1)解:观察图象得:小张同学8时离开家,8:10到达公园,小张同学家离公园的距离是500米∵小张同学8:10到达公园,9:10离开公园∴小张同学锻炼身体用了60分钟∵小张同学9:30到达图书馆,11:40离开图书馆∴小张同学在图书馆看了130分钟的书∵小张同学11:40离开图书馆,12时回到家∴小张同学从图书馆回到家里用了20分钟∴小张同学家离公园的距离是500米,锻炼身体用了60分钟,在图书馆看了130分钟的书,从图书馆回到家里用了20分钟;(2)解:∵小张同学8时离开家,8:10到达公园,距离500米,用时10分钟∴小张同学从家到公园的速度为500÷10=50(米/分)∵步行到公园锻炼了一段时间后以相同的速度步行到图书馆着书∴小张同学从公园到图书馆的速度为50米/分∵小张同学9:10离开公园,9:30到达图书馆∴公园离图书馆的距离为:50×20=1000(米)∴图书馆离小张同学的家的距离为:1000+500=1500(米)∴图书馆离小张同学的家1500米;(3)解:∵小张同学从图书馆到家的距离为1500米,即1.5千米,从图书馆回到家里用了20分钟,即时13小时 ∴小张同学从图书馆回到家里的速度是:1.5÷13=4.5千米/时 ∴小张同学从图书馆回到家里的速度是4.5千米/时.24.【答案】(1)解:由图象可知A 、B 两城之间距离是300千米;(2)解:由图象可知,甲的速度= 3005=60(千米/小时) 乙的速度= 3003=100(千米/小时) ∴甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)解:设乙车出发x 小时追上甲车由题意:60(x+1)=100x解得:x =1.5∴乙车出发1.5小时追上甲车;(4)解:设乙车出发后到甲车到达B 城车站这一段时间内,甲车与乙车相距40千米时甲车行驶了m 小时①当甲车在乙车前时得:60m ﹣100(m ﹣1)=40解得:m =1.5此时是上午6:30;②当甲车在乙车后面时100(m ﹣1)﹣60m =40解得:m =3.5此时是上午8:30;③当乙车到达B 城后300﹣60m =40解得:m = 133此时是上午9:20.∴分别在上午6:30,8:30,9:20这三个时间点两车相距40千米.。

(word版)初三数学函数专项练习题及答案

(word版)初三数学函数专项练习题及答案

初三数学函数专项练习题及答案一、选择题(每题4分,共32分)1.函数y=x+2中,自变量x的取值范围是(A)A.x≥-2B.x<-2C.x≥0D.x≠-22.函数y=2x+1〔x≥0〕,当x=2时,函数值y为(A) 4x〔x<0〕,A.5B.6C.7D.8k3.点A(2,y1),B(4,y2)都在反比例函数y=x(k<0)的图象上,那么y1,y2的大小关系为(B)A.y1>y2B.y1<y2C.y1=y2D.无法比较4.如图,在物理课上,小明用弹簧秤将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,那么以下列图能反映弹簧秤的读数y〔单位:N〕与铁块被提起的高度x〔单位:cm〕之间的函数关系的大致图象是〔C〕A.B.C.D.5.假设一次函数y=(a+1)x+a 的图象过第一、三、四象限,那么二次函数y=ax2-ax(B)a a a aA.有最大值4B.有最大值-4C.有最小值4D.有最小值-46.如图,二次函数224x的图象与正比例函数2y1=x-y2=x的图象交于点A(3,2),与x轴交于点B(2,0).假设3330<y1<y2,那么x的取值范围是(C)A.0<x<2B.0<x<3C.2<x<3D.x<0或x>37.二次函数y=ax2+bx+c(a≠0)的图象如下列图,那么正比例函数y=(b+c)x与反比例函数y=a-b+c在同一坐x标系中的大致图象是(C)18.如图是抛物线12+bx +c(a ≠0)图象的一局部,抛物线的顶点坐标是 A(1,3),与x 轴的一个交点是 B(4,0),y =ax 直线y 2=mx +n(m ≠0)与抛物线交于A ,B 两点,以下结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(-1,0);⑤当1<x <4时,有y 2<y 1.其中正确的选项是(C)A .①②③B .①③④C .①③⑤D .②④⑤二、填空题(每题4分,共16分)9.点A(3,-2)关于x 轴对称的点的坐标是(3,2).k10.假设反比例函数y =x (k ≠0)的图象经过点(1,-3),那么一次函数 y =kx -k(k ≠0)的图象经过一、二、四象限.11.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如下列图的平面直角坐标系,双曲线 3经过点D ,y =x那么正方形ABCD 的面积是12.12.如图是一座拱桥,当水面宽 AB 为12m 时,桥洞顶部离水面4m ,桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,假设选取点 A 为坐标原点时的抛物线解析式是 y =- 1 (x -6)2+4,那么选取点B 为坐标原点9时的抛物线解析式是 y =- 1 2+4. (x +6) 92三、解答题(共52分)13.(12分)如图,正比例函数y1=-3x的图象与反比例函数k的图象交于A,B两点.点C在x轴负半轴上,y2=xAC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.解:(1)过点A作AD⊥OC于点D.又∵AC=AO,CD=DO.1S△ADO=2S△ACO=6.k=-12.(2)x<-2或0<x<2.14.(12分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如下列图.请根据图象答复以下问题:(1)小敏去超市途中的速度是多少?在超市逗留了多长时间?(2)小敏几点几分返回到家?解:(1)小敏去超市途中的速度是3000÷10=300(米/分),3在超市逗留的时间为 40-10=30(分).(2)设返回家时,y 与x 的函数表达式为y =kx +b ,把(40,3000),(45,2000)代入,得40k +b =3 000, k =-200,45k +b =2 解得b =11000. 000. ∴y 与x 的函数表达式为y =-200x +11000.令y =0,得-200x +11000=0,解得x =55.∴小敏8点55分返回到家.15.(14分)一名在校大学生利用“互联网+〞自主创业,销售一种产品,这种产品的本钱价为10元/件,销售价 不低于本钱价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销 售价x(元/件)之间的函数关系如下列图.(1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售 利润最大?最大利润是多少?解:(1)设y 与x 的函数解析式为y =kx +b ,10k +b =30,将(10,30),(16,24)代入,得16k +b =24,k =-1,解得b =40.所以y 与x 的函数解析式为y =-x +40(10≤x ≤16).∵ (2)根据题意知,W =(x -10)y ∵ (x -10)(-x +40) ∵ =-x 2+50x -400 ∵ =-(x -25)2+225. ∵ ∵a =-1<0,∵ ∴当x <25时,W 随x 的增大而增大.∵ 10≤x ≤16,4∴当x=16时,W取得最大值,最大值为144.答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.16.(14分)在平面直角坐标系中,O为原点,直线 y=-2x-1与y轴交于点A,与直线y=-x交于点B,点B关于原点的对称点为点 C.(1)求过点A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.当四边形PBQC为菱形时,求点P的坐标.解:(1)由题意,得y=-2x-1,x=-1,y=-x.解得y=1.∴B(-1,1).∵点B关于原点的对称点为点C,∴C(1,-1).∵直线y=-2x-1与y轴交于点A,∴A(0,-1).设抛物线解析式为y=ax2+bx+c,∵抛物线过A,B,C三点,c=-1,a=1,∴a-b+c=1,解得b=-1,a+b+c=-1.c=-1.∴抛物线解析式为y=x2-x-1.(2)∵对角线互相垂直平分的四边形为菱形,点B关于原点的对称点为点C,点P关于原点的对称点为点Q,且与BC垂直的直线为y=x,y=x,∴P(x,y)需满足y=x2-x-1.x1=1+2,x2=1-2,解得=1-2.y=1+2,y12∴P点坐标为(1+2,1+2)或(1-2,1-2).5。

初三函数测试题目及答案

初三函数测试题目及答案

初三函数测试题目及答案一、选择题(每题3分,共30分)1. 下列哪个选项是一次函数的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A2. 函数y=2x+3的斜率是多少?A. 2B. 3C. -2D. -3答案:A3. 如果一个函数的图象经过点(2,5),那么这个点一定在函数的:A. 定义域内B. 值域内C. 函数图象上D. 函数图象外答案:C4. 函数y=x^2的反函数是:A. y=√xB. y=x^2C. y=1/xD. y=-x^2答案:A5. 函数y=1/x的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D6. 函数y=3x-2的零点是多少?A. 0.5B. 1C. 2D. 3答案:B7. 函数y=2x+1的图象与y轴的交点坐标是:A. (0, 1)B. (0, 2)C. (1, 0)D. (1, 2)答案:A8. 函数y=x^2-4x+3的最大值是多少?A. -1B. 0C. 1D. 3答案:B9. 函数y=|x|的图象是:A. 一条直线B. 一个V形C. 一个W形D. 一个倒V形答案:B10. 如果函数y=f(x)是奇函数,那么f(-x)等于:A. f(x)B. -f(x)C. xD. -x答案:B二、填空题(每题4分,共20分)11. 函数y=3x+5的图象与x轴的交点坐标是________。

答案:(-5/3, 0)12. 函数y=x^2-6x+9的最小值是________。

答案:013. 函数y=1/x的图象在x=2处的斜率是________。

答案:1/414. 函数y=x^3-3x^2+3x-1的零点是________。

答案:115. 函数y=2x^2-4x+1的顶点坐标是________。

答案:(1, -1)三、解答题(每题10分,共50分)16. 已知函数y=2x^2-4x+3,求该函数的顶点坐标。

答案:顶点坐标为(1, 1)。

初三函数练习题及答案

初三函数练习题及答案

初三函数练习题及答案函数是数学中一个重要的概念,也是初中数学学习的重点内容之一。

通过解决函数练习题,可以帮助学生更好地理解和掌握函数的概念和性质。

下面是一些初三函数练习题及答案,供同学们参考。

练习一:函数的定义与判断1. 函数的定义是什么?函数是两个集合之间的一种特殊对应关系。

对于定义域内的每一个元素,都有唯一对应的值域元素与之对应。

2. 下列哪些对应关系是函数?(1) (1, 2), (2, 3), (3, 4), (1, 5)(2) (1, 2), (2, 3), (1, 4), (2, 5)(3) (1, 2), (2, 3), (3, 4), (4, 2)(4) (1, 2), (2, 3), (3, 2), (4, 1)答案:(1) 是函数。

(2) 不是函数。

(3) 不是函数。

(4) 是函数。

练习二:函数的图像与性质3. 画出函数 y = 2x + 1 的图像,并描述其特点。

答案:函数 y = 2x + 1 的图像为一条直线,通过点 (0, 1)。

斜率为 2,表示函数图像上任意两点的纵坐标之差与横坐标之差的比例为 2:1。

函数图像是上升的,斜率大于 0,表示随着自变量的增大,因变量也增大。

练习三:函数的性质应用4. 已知函数 f(x) 的定义域为实数集 R,值域为区间 [-1, 3]。

若函数g(x) = f(2x),求函数 g(x) 的定义域和值域。

答案:因为 f(x) 的定义域为实数集 R,所以 g(x) 的定义域为实数集 R。

对于任意的 x,有 2x 在 R 上取值。

因此,g(x) 的定义域也为实数集 R。

对于任意的 x,2x 都在定义域内,根据 f(x) 的值域为 [-1, 3],得出f(2x) 的值域也为 [-1, 3]。

因此,函数 g(x) 的值域为 [-1, 3]。

练习四:函数关系的综合应用5. 已知函数 h(x) = |x - 2| + |3 - x|,求使 h(x) 最小的 x 的值,及最小值是多少。

九年级函数专题试卷及答案

九年级函数专题试卷及答案

九年级函数专题试卷及答案专业课原理概述部分一、选择题(每题1分,共5分)1. 下列函数中,哪个是正比例函数?A. y = 2x + 3B. y = 3x 2C. y = x^2 + 1D. y = 1/x2. 如果函数y = kx + b的图像是一条经过原点的直线,那么k和b的关系是?A. k = 0, b ≠ 0B. k ≠ 0, b = 0C. k = 0, b = 0D. k ≠ 0, b ≠ 03. 下列函数中,哪个是反比例函数?A. y = 2/xB. y = x^2C. y = 3x + 1D. y = 1/x^24. 如果函数y = kx的图像是一条经过原点的直线,那么k的值是?A. k = 0B. k > 0C. k < 0D. k ≠ 05. 下列函数中,哪个是一次函数?A. y = x^2B. y = 2/xC. y = 3x + 1D. y = 1/x^2二、判断题(每题1分,共5分)1. 正比例函数的图像是一条经过原点的直线。

()2. 反比例函数的图像是一条经过原点的直线。

()3. 一次函数的图像是一条直线。

()4. 二次函数的图像是一条抛物线。

()5. 函数y = kx + b是一次函数当且仅当b = 0。

()三、填空题(每题1分,共5分)1. 如果函数y = kx的图像是一条经过原点的直线,那么k的值是______。

2. 如果函数y = kx + b的图像是一条经过原点的直线,那么b的值是______。

3. 反比例函数的一般形式是______。

4. 二次函数的一般形式是______。

5. 一次函数的图像是一条______。

四、简答题(每题2分,共10分)1. 请简述正比例函数的定义。

2. 请简述反比例函数的定义。

3. 请简述一次函数的定义。

4. 请简述二次函数的定义。

5. 请简述函数图像的斜率是什么。

五、应用题(每题2分,共10分)1. 如果函数y = 2x的图像是一条经过原点的直线,那么当x = 3时,y的值是多少?2. 如果函数y = 3/x的图像是一条经过原点的直线,那么当x = 2时,y的值是多少?3. 如果函数y = kx + b的图像是一条经过原点的直线,那么当x = 1时,y的值是多少?4. 如果函数y = x^2的图像是一条抛物线,那么当x = 2时,y的值是多少?5. 如果函数y = 1/x^2的图像是一条经过原点的直线,那么当x = 3时,y的值是多少?六、分析题(每题5分,共10分)1. 请分析一次函数和二次函数的图像有什么不同。

初三数学函数练习题及答案

初三数学函数练习题及答案

初三数学函数练习题及答案1. 已知函数 y = 2x + 3,求当 x 为 4 时的函数值。

解答:将 x = 4 代入函数中,得到 y = 2(4) + 3 = 11,所以当 x 为 4 时,函数值为 11。

2. 求函数 y = 3x - 1 的解析式。

解答:已知函数的解析式为 y = 3x - 1,其中 3 是函数的斜率,-1 是y 轴的截距。

所以函数的解析式为 y = 3x - 1。

3. 已知函数 y = 4x + 2,求当 y = 14 时的 x 的值。

解答:将 y = 14 代入函数中,得到 14 = 4x + 2,然后移项得到 4x = 14 - 2,即 4x = 12。

最后除以 4 得到 x = 3,所以当 y = 14 时,x 的值为3。

4. 求函数 y = 2x^2 - 3x + 1 的最大值或最小值,并说明是最大值还是最小值。

解答:首先,可以通过计算函数的导数来确定最大值或最小值。

对函数 y = 2x^2 - 3x + 1 求导得到 y' = 4x - 3。

令 y' = 0,解得 x = 3/4。

将x = 3/4 代入原函数,得到 y = 2(3/4)^2 - 3(3/4) + 1 = 7/8。

所以函数的最大值或最小值为 7/8,由于函数的二次项系数为正数,所以该值为最小值。

5. 求函数 y = x^3 - 2x^2 + 3x 的零点。

解答:函数的零点即为使 y = 0 的 x 值。

将 y = 0 代入函数中,得到x^3 - 2x^2 + 3x = 0。

通过因式分解,可得到 x(x - 1)(x - 3) = 0。

因此,函数的零点为 x = 0, x = 1, x = 3。

6. 求函数 y = log2(x) 的定义域和值域。

解答:对于函数 y = log2(x),由于对数函数的定义需满足 x > 0,所以该函数的定义域为 x > 0。

而对数函数的值域为实数集,所以函数 y= log2(x) 的值域为实数集。

初三数学函数精选练习题及答案一

初三数学函数精选练习题及答案一

初三数学函数精选练习题及答案一
1. 函数定义和性质
题目
1. 函数f(x)在定义域[1, 4]上的最大值是多少?
2. 已知函数f(x)的定义域为[-2, 5],值域为[0, 3],则这个函数的性质是什么?
答案
1. 函数f(x)在定义域[1, 4]上的最大值可以通过求导数来确定。

首先,计算f'(x)的值,然后令f'(x)等于零,解得x的值为2。

再计算f(2)的值即可得到函数f(x)在定义域[1, 4]上的最大值。

2. 由于函数f(x)的定义域为[-2, 5],值域为[0, 3],则函数f(x)是有界函数且为增函数。

有界函数表示函数在特定区间内取值有上、下界;增函数表示当自变量增大时,函数值也随之增大。

2. 函数图像和性质
题目
1. 函数f(x)=x^2的图像是什么样的?
2. 函数f(x)=3^x的图像是什么样的?
答案
1. 函数f(x)=x^2的图像是一个开口向上的抛物线。

2. 函数f(x)=3^x的图像是逐渐上升的曲线,呈现指数增长的趋势。

3. 函数相关计算
题目
1. 已知函数f(x)=2x+5,求f(3)的值。

2. 已知函数f(x)=x^2-3x+2,求f(2)和f(0)的值。

答案
1. 将x=3代入函数f(x)=2x+5中,可以求得f(3)的值为
2×3+5=11。

2. 将x=2和x=0分别代入函数f(x)=x^2-3x+2中,可以求得f(2)的值为2^2-3×2+2=2,f(0)的值为0^2-3×0+2=2。

以上为初三数学函数精选练习题及答案一,请根据需要进行练习。

中考数学总复习《函数》专项测试卷-附参考答案

中考数学总复习《函数》专项测试卷-附参考答案

中考数学总复习《函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0)则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ 1 2.A.①②③④B.①②③C.①③④D.①④2.若y+3与x-2成正比例,则y是x的()A.正比例函数B.不存在函数关系C.一次函数D.以上都有可能3.关于函数y=2x﹣1,下列结论成立的是()A.当x<0时,则y<0B.当x>0时,则y>0C.图象必经过点(0,1)D.图象不经过第三象限4.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)5.点P(3,y1)、Q (4,y2)是二次函数y=x2−4x+5的图象上两点,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.快、慢两车分别从甲、乙两地同时出发,相向匀速行驶,两车在途中相遇时都停留了一段时间,然后分别按原速度原方向匀速行驶,快车到达乙地后休息半小时后,再以另一速度原路匀速返回甲地(掉头的时间忽略不计),慢车到达甲地以后即停在甲地等待快车.如图所示为快、慢两车间的距离y (千米)与快车的行驶时间x(小时)之间的函数图象.则下列说法:①两车在途中相遇时都停留了1小时;②快车从甲地去乙地时每小时比慢车多行驶40km;③快车从乙地返回甲地的速度为120km/h;④当慢车到达甲地的时候,快车与甲地的距离为400km.其中正确的有()A.4B.3C.2D.17.如图,动点A在抛物线y=−x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A做AC⊥ l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤68.如图,在平面直角坐标系中,函数y=kx,y=−2x的图像交于A,B两点,过A作y轴的垂线,交函数y=3x的图像于点C,连接BC,则ΔABC的面积为()A.2B.3C.5D.69.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x=1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11.如图,在平面直角坐标系中,ΔA1A2A3,ΔA3A4A5,ΔA5A6A7,…都是等边三角形,其边长依次为2,4,6,…,其中点A1的坐标为(2,0),点A2的坐标为(1,−√3),点A3的坐标为(0,0),点A4的坐标为(2,2√3),…,按此规律排下去,则点A2020的坐标为()A.(1,−1009√3)B.(1,−1010√3)C.(2,1009√3)D.(2,1010√3)12.如图,二次函数y=-x2+bx+c 图象上有三点A(-1,y1 )、B(1,y2) 、C(2,y3),则y1,y2,y3大小关系为()A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共6题;共6分)13.点P(1,1)向左平移两个单位后恰好位于双曲线y=k x上,则k=.14.将二次函数y=−x2+3的图像向下平移5个单位长度,所得图像对应的函数表达式为.15.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为.16.请写出一个二次函数,使它的图象同时满足下列两个条件:①开口向下,②与y轴的交点是(0,1),你写出的函数表达式是.17.若点P(n,1),Q(n+6,3)在正比例函数图象上,请写出正比例函数的表达式. 18.在−3,−2,−1,4,5五个数中随机选一个数作为一次函数y=kx−3中k的值,则一次函数y=kx−3中y随x的增大而减小的概率是.三、综合题(共6题;共67分)19.3−√(−3)2+|√3−2|(1)计算:(−1)2021+√16+√−27(2)如图所示的是某学校的平面示意图,已知旗杆的位置是(−1,2),实验室的位置是(2,3).①根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂,宿舍楼和大门的位置.②已知办公楼的位置是(−2,1),教学楼的位置是(3,1),在①中所画的图中标出办公楼和教学楼的位置.20.汽车出发1小时后油箱里有油40L,继续行驶若干小时后,在加油站加油若干升(加油时间忽略不计).图象表示出发1小时后,油箱中剩余测量(y)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余量y与行驶时间t的函数关系式;(3)若加油前后汽车都以80km/h匀速行驶,则汽车加油后最多能行驶多远?21.凤凰单丛(枞)茶,是潮汕的名茶,已有九百余年的历史.潮汕人将单丛茶按香型分为黄枝香、芝兰香、桃仁香、玉桂香、通天香、鸭屎香等多种.清明采茶季后,某茶叶店准备购买通天香和鸭屎香两种单丛茶进行销售,已知若购买4千克通天香单丛和3千克鸭屎香单丛需要2500元,购买2千克通天香单丛和5千克鸭屎香单丛需要2300元.(1)求通天香、鸭屎香两种茶叶的单价分别为多少元?(2)茶叶专卖店计划购买通天香、鸭屎香两种单丛茶共80千克,总费用不多于26000元,并且要求通天香茶叶数量不能低于10千克,那么应如何安排购买方案才能使总费用最少,最少费用应为多少元?22.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.23.直线y=kx+b经过A(0,-3))和B(-3,0)两点.(1)求这个一次函数的解析式;(2)画出图象,并根据图象说明不等式kx+b<0的解集.24.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,下面的函数图象表示“龟兔再次赛跑”时,则乌龟所走路程y1(米)和兔子所走的路程y2(米)分别与乌龟从起点出发所用的时间x(分)之间的函数图象,根据图象解答下列问题:(1)“龟兔再次赛跑”的路程是米,兔子比乌龟晚走了分钟,乌龟在途中休息了分钟,“龟兔再次赛跑”获胜的是.(2)分别求出乌龟在途中休息前和休息后所走的路程y1关于时间x的函数解析式,并写出自变量x的取值范围.(3)乌龟和兔子在距离起点米处相遇.参考答案1.【答案】B 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】C 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】A 13.【答案】-114.【答案】y =−x 2−2 15.【答案】(506,﹣505)16.【答案】y =−x 2+x +1 (不唯一) 17.【答案】y =13x 18.【答案】3519.【答案】(1)解:原式=−1+4−3−3+2−√3=−1−√3(2)解:①根据题意,建立如图所示的平面直角坐标系,如下:∴食堂(−4,4),宿舍楼(-5,1),大门(1,−1) ②办公楼和教学楼的位置如图所示.20.【答案】(1)4;35(2)解:设y 与x 的函数关系式为y =kt+b 把(1,40)和(4,10)代入得{k +b =404k +b =10解得 {k =−10b =50∴加油前油箱剩余油量y 与行驶时间t 的函数关系式y =﹣10t+50(3)解:由图象知,汽车加油前行驶了3小时,则用油40﹣10=30(L ) ∴汽车行驶1小时耗油量为 303=10(L/h )加油后邮箱中剩余油量45L ,可以行驶 4510 ×80=360(km ).∴汽车加油后最多能行驶360km .21.【答案】(1)解:设通天香茶叶每千克为x 元,鸭屎香茶叶每千克为y 元,根据题意,得{4x +3y =25002x +5y =2300解得{x =400y =300∴通天香茶叶每千克为400元,鸭屎香茶叶每千克为300元.(2)解:设购买通天香茶叶m 千克,鸭屎香茶叶(80-m )千克,总费用w 元 根据题意,得400m +300(80−m)≤26000 解得m ≤20 ∵m ≥10∴m 的取值范围是:10≤m ≤20总费用w =400m +300(80−m)=100m +24000 ∵100>0∴w 随着m 的增大而增大∴当m =10时,则w 最少,w 最少=1000+24000=25000(元)∴通天香茶叶购进10千克,鸭屎香茶叶购进70千克,总费用最少为25000元.22.【答案】(1)解:由题意可得,y 甲=0.85x ;乙商店:当0≤x≤300时,则y 乙与x 的函数关系式为y 乙=x ; 当x >300时,则y 乙=300+(x-300)×0.7=0.7x+90 由上可得,y 乙与x 的函数关系式为y 乙={x(0≤x ≤300)0.7x +90(x >300)(2)解:由{y 甲=0.85xy 乙=0.7x +90,解得{x =600y 乙=510点A 的坐标为(600,510);(3)解:由点A 的意义,当买的体育商品标价为600元时,则甲、乙商店优惠后所需费用相同,都是510元 结合图象可知当x <600时,则选择甲商店更合算; 当x=600时,则两家商店所需费用相同; 当x >600时,则选择乙商店更合算.23.【答案】(1)解:将A(0,−3),B(−3,0)代入y =kx +b 得{b =−3−3k +b =0解得:k =−1,b =−3∴y =−x −3一次函数的解析式为:y =−x −3. (2)解:作图如下:由图象可知:直线从左往右逐渐下降,即y 随x 的增大而减小 当x =−3时∴kx +b <0的解集为:x >−3.24.【答案】(1)1000;40;10;兔子(2)解:设乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=kx ∴600=30k ,解得k =20∴乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=20x (0≤x≤30) 设乌龟在途中休息后所走的路程y 1关于时间x 的函数解析式为y 1=k′x+b∴{40k ′+b =60060k ′+b =1000,解得{k ′=20b =−200∴乌龟在途中休息后所走的路程y1关于时间x的函数解析式为y1=20x﹣200(40≤x≤60);(3)750第11页共11。

初三函数复习题和答案

初三函数复习题和答案

初三函数复习题和答案一、选择题1. 函数y = f(x)中,自变量x的取值范围是:A. 所有实数B. 非负实数C. 正实数D. 0到1之间的实数答案:A2. 下列哪个表达式表示的是函数?A. y = 3x + 2B. y = x^2C. x = 2yD. y = √x答案:A3. 函数y = 2x - 3的图象在坐标平面上经过的象限是:A. 第一象限和第二象限B. 第一象限和第四象限C. 第二象限和第三象限D. 第三象限和第四象限答案:D二、填空题4. 函数y = kx + b中,k表示函数的________,b表示函数的________。

答案:斜率;截距5. 如果函数f(x) = ax^2 + bx + c的图像是一个开口向上的抛物线,那么a的取值范围是________。

答案:a > 06. 一次函数y = kx + b的图像是一条直线,当k > 0时,y随x的增大而________。

答案:增大三、解答题7. 已知函数f(x) = x^2 - 4x + 3,求f(2)的值。

答案:将x=2代入函数f(x) = x^2 - 4x + 3,得到f(2) = 2^2 - 4*2 + 3 = 4 - 8 + 3 = -1。

8. 某工厂生产的产品数量与成本之间的关系可以用函数C(x) = 100 + 50x表示,其中x表示产品数量。

求生产20件产品时的成本。

答案:将x=20代入函数C(x) = 100 + 50x,得到C(20) = 100 + 50*20 = 100 + 1000 = 1100。

9. 已知函数g(x) = 3x + 5,求g(x)的反函数,并求出当x=1时反函数的值。

答案:首先求反函数,设y = 3x + 5,解出x得x = (y - 5)/3,所以反函数为g^(-1)(y) = (y - 5)/3。

当x=1时,代入反函数得g^(-1)(1) = (1 - 5)/3 = -4/3。

中考数学专题复习:函数基础知识练习题(含答案)

中考数学专题复习:函数基础知识练习题(含答案)

中考数学专题复习:函数基础知识练习题一.选择题1.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB 向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.2.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x (0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.3.如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.4.小亮饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小亮离家的时间与离家的距离之间关系的是()A.B.C.D.5.如图①,动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动到点C,图②是点P运动时,△ACP的面积y(cm2)随着时间x(s)的变化的关系图象,则正六边形的边长为()A.2cm B.cm C.1cm D.3cm6.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿B→C→D→A运动至点A 停止,如图②是点P运动时,△P AB的面积y(cm2)随点P运动的路程x(cm)变化的关系图象,则图②中H点的横坐标为()A.12B.14C.16D.7.如图所示的是一辆汽车行驶的速度(千米/时)与时间(分)之间的变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3分钟时,匀速运动C.汽车最快的速度是30千米/时D.汽车在3~8分钟静止不动8.小苏和小林在如图1所示的跑道上进行4×50米折返跑,在整个过程中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次9.小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20D.2410.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为()A.B.5C.7D.3二.填空题11.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.12.如图①,在平行四边形ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA 运动至点A停止.设点P运动的路程为xcm,△P AB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.13.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,小宇操作机器人以每秒1个单位长度的速度在图1中给出的线段路径上运行,他将机器人运行的时间设为t秒,机器人到点A的距离设为y,得到的函数图象如图2.通过观察函数图象,可以得到下列推断:①机器人一定经过点D;②机器人一定经过点E;③当t=3时,机器人一定位于点O;④存在符合图2的运行路线,使机器人能够恰好经过六边形的全部6个顶点;其中正确的是(填序号).14.在课本的阅读与思考中,科学家利用放射性物质的半衰期这个函数模型来测算岩石的年,生活中也有很多类似这样半衰的现象.请思考下面的问题:一个皮球从16m高处下落,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半.试写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式.皮球第次落地后的反弹高度是m?15.重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s(米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过分钟两人再次相距80米.三.解答题16.王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?17.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?请说明理由;(2)结合图象回答:①当=0.7s时,h的值是多少?并说明它的实际意义;②秋千摆第二个来回需多少时间?18.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?19.如图1,在△ABC中,点D是线段BC上的动点,将线段AD绕点D逆时针旋转90°得到线段DE,连接BE.若已知BC=8cm,设B,D两点间的距离为xcm,A,D两点间的距离为y1cm,B,E两点距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随x的变化而变化的规律进行了探究,请补充完整.下面是小明的探究过程的几组对应值.(1)按照下表中自变量x的值进行取点画图,测量分别得到了与x的几组对应值如下表:(说明补全表格时相关数值保留一位小数)(2)在同一平面直角坐标系xoy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象(如图2),解决问题:①当E在线段BC上时,BD的长约为cm;②当△BDE为等腰三角形时,BD的长x约为cm.20.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)参考答案一.选择题1.解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.2.解:过点H作HE⊥BC,垂足为E.∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.3.解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.4.解:依题意,0﹣20分钟散步,离家路程增加到900米,20﹣30分钟看报,离家路程不变,30﹣45分钟返回家,离家路程减少为0米.故选:D.5.解:如图,连接BE,AE,CE,BE交AC于点G由正六边形的对称性可得BE⊥AC,易证△ABC≌△CDE≌△AFE(SAS)∴△ACE为等边三角形,GE为AC边上的高线∵动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动∴当点P运动到点E时△ACP的面积y取最大值设AG=CG=a(cm),则AC=AE=CE=2a(cm),GE=a(cm)∴2a×a÷2=(cm)∴a2=3∴a=(cm)或a=﹣(舍)∵正六边形的每个内角均为120°∴∠ABG=×120°=60°∴在Rt△ABG中,=sin60°∴=∴AB=2(cm)∴正六边形的边长为2cm故选:A.6.解:图②显示,当BC=4时,y=6,即y=×AB×BC sin60°=AB×4×=6,解得:AB=6,点H的横坐标为:BC+CD+AD=4+4+6=14,故选:B.7.解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车最快速度是30千米/时,故选项C符合题意;汽车在3~8分钟,匀速运动,故选项D不合题意;故选:C.8.解:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A选项不符合题意;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B选项不符合题意;由函数图象可知:小苏前15s跑过的路程小于小林前15s跑过的路程,故C选项不符合题意;在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次,故D选项符合题意;故选:D.9.解:小聪步行的速度为:÷5=,改乘出租车后的速度为:(﹣)÷(7﹣5)=,小聪到校所花的时间比一直步行提前的时间=﹣5﹣=20(分钟),故选:C.10.解:由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=5,解得BC=2.所以AB==.故选:A.二.填空题(共5小题)11.解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.212.解:由图象可知,当x=4时,点P到达C点,此时△P AB的面积为6,∵∠B=120°,BC=4,∴×2×AB=6,解得AB=6,H点表示点P到达A时运动的路程为4+6+4=14,故答案为:14.13.解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1;①所有点中,只有点D到A距离为2个单位,故①正确;②因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故②错误.③观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故③正确;④由②知,机器人不经过点E,故④错误;故答案为:①③.14.解:表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式h=(n为正整数).=,2n=16×8=27,n=7.故皮球第7次落地后的反弹高度是m.故答案为:h=(n为正整数),7.15.解:由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则有:80x﹣40x=80,∴x=2,此时小欢一共走了40×(2+2)=160(米),(600﹣160﹣80)÷40=9(分).即小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.故答案为:9三.解答题(共5小题)16.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.17.解:(1)h是t的函数是两个变量、每一个时间t的确定值,高度h都有唯一的值与其对应,故变量h是否为关于t的函数;(2)①当t=0.7s时,h=0.5m,它的意义是:秋千摆动0.7s时,设地面的高度为0.5m.②从图象看前两个来回用时2.8,后面两个来回用时5.4﹣2.8=2.6,再后面两个来回用时7.8﹣5.4=2.4,为均匀减小,故第一个来回应该是1.5s,第二个来回2.6s.18.解:(1)根据函数的定义:距离地面高度是自变量,所在位置的温度是因变量,故答案为:距离地面高度,所在位置的温度;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,故答案为:y=20﹣6h,﹣10;(3)从图象上看,h=2时,持续的时间为2分钟,即返回途中飞机在2千米高空水平大约盘旋了2分钟;(4)h=2时,y=20﹣12=8,即飞机发生事故时所在高空的温度是8度.19.解:(1)当x=0时,a=AD=7.03≈7.0,b=3.0;(2)描绘后表格如下图:(3)①当E在线段BC上时,即:x=y1+y2,从图象可以看出,当x=6时,y1+y2=6,故答案为6;②当BE=DE时,即:y1=y2,此时x=7.5或0,故x=7.5;当BE=BD时,即:y2=x,在图上画出直线y=x,此时x≈3;当DE=BE时,即:y1=x,从上图可以看出x≈4.1;故答案为:3或4.1或7.5.20.解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=千米/分钟,小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:=10(千米/小时),小光的速度为:=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.。

九年级数学二次函数专项训练含答案精选5篇

九年级数学二次函数专项训练含答案精选5篇

九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y 关于x 的二次函数的是( ) A .y =4xB .y =3x ﹣5C .y =D .y =2x 2+12.已知:a >b >c ,且a +b +c =0,则二次函数y =ax 2+bx +c 的图象可能是下列图象中的( )A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),答:若降价2元,则每天的销售利润是1040元;(2)设每斤“阳光玫瑰葡萄”应降价x元,根据题意得:(30﹣15﹣x)(60+10x)=1100,整理得:x2﹣9x+20=0,解得x1=4,x2=5,∵为了尽快减少库存,∴x=5,此时30﹣x=25,答:每斤“阳光玫瑰葡萄”的售价应降至每斤25元;(3)设水果商每天获得的利润为y元,根据题意得:w=(30﹣x﹣15)(60+10x)=﹣10x2+90x+900=﹣10(x﹣)2+1102.5,∵﹣10<0,∴当x=时,y有最大值,最大值为1102.5,此时30﹣x=30﹣4.5=25.5,答:将商品的销售单价定为25.5元时,商场每天销售该商品获得的利润w最大,最大利润是1102.5元.21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.解:(1)把A(﹣1,0)、B(4,0)代入得:,解得,∴抛物线的解析式为y=x2﹣x﹣2;(2)∵y=x2﹣x﹣2=(x﹣)2﹣,∴抛物线的对称轴是直线x=,在y=x2﹣x﹣2中,令x=0得y=﹣2,∴C(0,﹣2),①若线段DE与线段BC关于点K成中心对称,C的对应点D在对称轴上,B的对应点在抛物线上,如图:设D(,m),E(n,n2﹣n﹣2),而B(4,0),C(0,﹣2),∵K是DC的中点,也是BE的中点,∴,解得,∴D(,);②若线段DE与线段BC关于点T成中心对称,B的对应点D在对称轴上,C的对应点在抛物线上,如图:设D(,m'),E(n',n'2﹣n'﹣2),而B(4,0),C(0,﹣2),∵T是EC的中点,也是BD的中点,∴,解得,∴D(,);综上所述,落在对称轴上的点的坐标为(,)或(,);(3)由B(4,0),C(0,﹣2)可得直线BC解析式为y=x﹣2,设M(t,t2﹣t﹣2),由M(t,t2﹣t﹣2),C(0,﹣2)可得直线MC解析式为:y=(t﹣)x﹣2,由MN∥BC设直线MN解析式为y=x+p,将M(t,t2﹣t﹣2)代入得:t2﹣t﹣2=t+p,∴p=t2﹣2t﹣2,∴直线MN解析式为y=x+t2﹣2t﹣2,由得或,∴N(﹣t+4,t2﹣t),由B(4,0),N(﹣t+4,t2﹣t)可得直线NB的解析式为y=(﹣t+)x+2t﹣10,解(﹣t+)x+2t﹣10=(t﹣)x﹣2得x=2,∴P的横坐标为2.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为(﹣5,2);(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.解:(1)∵﹣5<0,∴y'=﹣y=2,∴点(﹣5,﹣2)的“可控变点”坐标为(﹣5,2),故答案为:(﹣5,2);(2)依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数的图象上.∵“可控变点”Q的纵坐标y′是7,∴当﹣x2+16=7时,解得x=3;当x2﹣16=7,解得x=﹣;综上所述“可控变点”Q的横坐标为或3;(3)依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数的图象上,∵﹣16≤y'≤16,∴﹣16=﹣x2+16,∴x=,当x=﹣5时,x2﹣16=9,当y'=9时,x=,∴a的取值范围是.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为y=x+4,点M的坐标为(﹣2,﹣2).(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.解:(1)把A(﹣4,0),C(2,6)代入y=x2+bx+c得:,解得,∴抛物线解析式为y=x2+2x;(2)设直线AB解析式为y=mx+n,把A(﹣4,0),C(2,6)代入得:,解得,∴直线AB解析式为y=x+4,∵y=x2+2x=(x+2)2﹣2,∴抛物线的顶点M坐标为(﹣2,﹣2);故答案为:y=x+4,(﹣2,﹣2);(3)∵A(﹣4,0),A,A'关于y轴对称,∴A'(4,0),设直线A'Q解析式为y=m'x+n',把A'(4,0),M(﹣2,﹣2)代入得:,解得,∴直线A'Q解析式为y=x﹣,令x=0得y=﹣,∴Q(0,﹣);(4)存在点N,使以点A,O,C,N为顶点的四边形是平行四边形,理由如下:设N(p,q),又A(﹣4,0),O(0,0),C(2,6),①若AN,OC为对角线,则AN,OC的中点重合,∴,解得,∴N(6,6);②若ON,AC为对角线,则ON,AC的中点重合,∴,解得,∴N(﹣2,6);③若CN,AO为对角线,则CN,AO的中点重合,∴,解得,∴N(﹣6,﹣6).综上所述,N的坐标为(6,6)或(﹣2,6)或(﹣6,﹣6).九年级数学上册《二次函数》专题测试题(附答案)一.选择题(共8小题,满分32分)1.若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣12.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论错误的是()A.当x>0时,y随x的增大而减小B.该函数的图象一定经过点(0,1)C.该函数图象的顶点在函数y=x2+1的图象上D.该函数图象与函数y=﹣x2的图象形状相同3.已知:抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线()A.x=﹣1B.x=1C.x=2D.x=﹣24.将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为()A.y=2(x+5)2﹣3B.y=2(x+5)2+3C.y=2(x﹣5)2﹣3D.y=2(x﹣5)2+35.二次函数y=ax2+bx+c的图象如图所示,下列结论:(1)4ac<b2;(2)abc<0;(3)2a+b<0;(4)(a+c)2<b2其中正确的个数是()A.1B.2C.3D.46.已知抛物线y=ax2+4ax﹣8与直线y=n相交于A,B两点(点A在点B左侧),AB=4,且抛物线与x轴只有一个交点,则n的值为()A.﹣8B.﹣4C.4D.87.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个整数根,其中一个根是3,则另一个根是()A.﹣5B.﹣3C.﹣1D.38.物理课上我们学习了竖直上抛运动,若从地面竖直向上抛一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,下列结论:①小球在空中经过的路程是40m②小球抛出3s后,速度越来越快③小球抛出3s时速度为0④小球的高度h=30m时,t=1.5s其中正确的是()A.①②③B.①②C.②③④D.②③二.填空题(共8小题,满分32分)9.已知抛物线y=x2+bx+c关于直线x=2对称,设x=1,2,4时对应的函数值依次为y1,y2,y4,那么y1,y2,y4的大小关系是.(用“<”连接)10.已知抛物线y=ax2﹣2ax﹣1(a<0)(I)抛物线的对称轴为;(2)若当﹣2≤x≤2时,y的最大值是1,求当﹣2≤x≤2时,y的最小值是.11.已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x 的一元二次方程ax2﹣2ax+c=0的两根之积是.12.已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是.13.将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是.15.抛物线y=ax2+bx+tc(a<0)交x轴于点A、B,交y轴于点C(0,3),其中点B坐标为(1,0),同时抛物线还经过点(2,﹣5).(1)抛物线的解析式为;(2)设抛物线的对称轴与抛物线交于点E,与x轴交于点H,连接EC、EO,将抛物线向下平移n(n>0)个单位,当EO平分∠CEH时,则n的值为.16.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).三.解答题(共6小题,满分56分)17.已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.18.对于向上抛的物体,如果空气阻力忽略不计,有下面的关系式:h=v0t﹣gt2(h是物体离起点的高度,v0是初速度,g是重力系数,取10m/s2,t是抛出后经过的时间).杂技演员抛球表演时,以10m/s的初速度把球向上抛出.(1)球抛出后经多少秒回到起点?(2)几秒后球离起点的高度达到1.8m?(3)球离起点的高度能达到6m吗?请说明理由.19.在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.20.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?21.如图,抛物线y=﹣x2+bx+c过点A(4,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点D、N.(1)求直线AB的表达式和抛物线的表达式;(2)若DN=3DM,求此时点N的坐标;(3)若点P为直线AB上方的抛物线上一个动点,当∠ABP=2∠BAC时,求点P的坐标.22.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣2),点C(0,﹣5),顶点为点M,过点A作AB∥x轴,交y轴于点D,交二次函数y=x2+bx+c的图象于点B,连接BC.(1)求该二次函数的表达式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)若E为线段AB上一点,且BE:EA=3:1,P为直线AC上一点,在抛物线上是否存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的横坐标;若不存在,请说明理由.参考答案一.选择题(共8小题,满分32分)1.解:∵函数y=(a+1)x|a+3|﹣x+3是关于x的二次函数,∴|a+3|=2且a+1≠0,解得a=﹣5,故选:B.2.解:A.∵y=﹣(x﹣m)2+m2+1(m为常数),∴抛物线开口向下,对称轴为直线x=m,∴x>m时,y随x增大而减小,故A错误,符合题意;∵当x=0时,y=1,∴该函数的图象一定经过点(0,1),故B正确,不合题意;∵y=﹣(x﹣m)2+m2+1,∴抛物线顶点坐标为(m,m2+1),∴抛物线顶点在抛物线y=x2+1上,故C正确,不合题意;∵y=﹣(x﹣m)2+m2+1与y=﹣x2的二次项系数都为﹣1,∴两函数图象形状相同,故D正确,不合题意.故选:A.3.解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故选:C.4.解:将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为y=2(x+5)2+3,故选:B.5.解:根据图象知道抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac<b2,故(1)正确.∵抛物线开口朝下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故(2)正确;∵对称轴x=﹣>1,∴2a+b>0,故(3)错误;根据图象知道当x=1时,y=a+b+c>0,根据图象知道当x=﹣1时,y=a﹣b+c<0,∴(a+c)2﹣b2=(a+c+b)(a+c﹣b)<0,故(4)正确;故选:C.6.解:∵抛物线与x轴只有一个交点,∴a≠0且Δ=16a2﹣4a×(﹣8)=0,∴a=﹣2,∴抛物线解析式为y=﹣2x2﹣8x﹣8,∵抛物线的对称轴为直线x=﹣=﹣2,而AB平行x轴,AB=4,∴A点的横坐标为﹣4,B点的横坐标为0,当x=0时,y=﹣8,∴n的值为﹣8.故选:A.7.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴二次函数y=ax2+bx+c的图象与直线y=﹣m的一个交点的横坐标为3,∵对称轴是直线x=﹣1,∴二次函数y=ax2+bx+c的图象与直线y=﹣m的另一个交点的横坐标为﹣5,∴关于x的方程ax2+bx+c+m=0(m>0)的另一个根是﹣5,故选:A.8.解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得,∴函数解析式为,把h=30代入解析式得,,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选D.二.填空题(共8小题,满分32分)9.解:∵抛物线y=x2+bx+c的开口向上,对称轴是直线x=2,∴当x=2时取最小值,又|1﹣2|<|4﹣2|,∴y1<y4,故答案为:y2<y1<y4.10.解:(1)抛物线的对称轴为:直线x=﹣=1,故答案为:直线x=1;(2)∵抛物线y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1(a<0),∴该函数图象的开口向下,对称轴是直线x=1,当x=1时,取得最大值﹣a﹣1,∵当﹣2≤x≤2时,y的最大值是1,∴x=1时,y=﹣a﹣1=1,得a=﹣2,∴y=﹣2(x﹣1)2+1,∵﹣2≤x≤2,∴x=﹣2时,取得最小值,此时y=﹣2(﹣2﹣1)2+1=﹣17,故答案为:﹣17.11.解:∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该函数的对称轴是直线x=﹣=1,∴该函数图象与x轴的另一个交点坐标为(3,0),∴关于x的一元二次方程ax2﹣2ax+c=0的两实数根是x1=﹣1,x2=3,∴两根之积为﹣3,故答案为:﹣3.12.解:如图,当y=0时,﹣x2+4x+5=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5(﹣1≤x≤5),当直线y=﹣x+b经过点A(﹣1,0)时,1+b=0,解得b=﹣1;当直线y=﹣x+b与抛物线y=x2﹣4x﹣5(﹣1≤x≤5)有唯一公共点时,方程x2﹣4x﹣5=﹣x+b有相等的实数解,解得b=﹣,所以当直线y=﹣x+b与新图象有4个交点时,b的取值范围为﹣<b<﹣1.故答案为:﹣<b<﹣1.13.解:将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为y=﹣(x﹣3﹣5)2﹣1+2,即y=﹣(x﹣8)2+1,故答案为:y=﹣(x﹣8)2+1.14.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),∴方程ax2=bx+c的解为x1=﹣3,x2=1,∴ax2﹣bx﹣c=0的解是x1=﹣3,x2=1,故答案为:x1=﹣3,x2=1.15.解:(1)将点C(0,3)、B(1,0)、(2,﹣5)代入抛物线y=ax2+bx+tc中,得:a+b+c=0,c=3,4a+2b+c=﹣5;解得:a=﹣1,b=﹣2,c=3,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)抛物线向下平移n个单位后,E为(﹣1,4﹣n),C为(0,3﹣n),∴EC=,∵CO∥EH,∴当CO=CE=时,∠CEO=∠COE=∠OCH,∴3﹣n=或n﹣3=,即n=3﹣或3+.16.解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.三.解答题(共6小题,满分56分)17.解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.18.解:∵初速度为10m/s,g取10m/s2,∴h=10t﹣×10t2=10t﹣5t2,(1)当h=0时,。

初三数学函数专项练习题及答案

初三数学函数专项练习题及答案

学习资料收集于网络,仅供参考初三数学函数专项练习题及答案、选择题(每小题4分,共32分)A . y i >y 2B . y i <y 2C . y i = y 2(单位:N )与铁块被提起的高度 x (单位:cm )之间的函数关系的大致图 象是(C )5. 若一次函数y = (a + 1)x + a 的图象过第一、三、四象限,则二次函数A .有最大值4B .有最大值一aC 有最小值aD .有最小值一a2 2 426. 如图,已知二次函数 y i = 3x — 3x 的图象与正比例函数 y 2= 3x 的图象交于点 A(3,2),与x 轴交于点B(2, 0).若 O v y 1 v y 2,则x 的取值范围是(C )1. 函数y = x + 2中,自变量x 的取值范围是(A ) 2. 3. B . x< —2C . x > 0D . x ^— 2已知函数y =2x + 1( x"当 x = 2 时, 4x (x v 0),函数值y 为(A )C . 7D . 8已知点A(2, y i ), B(4, y 2)都在反比例函数ky = k (k<0)的图象上,贝U y i , y 2的大小关系为(B ) x4. 如图,在物理课上, 小明用弹簧秤将铁块 A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面XC . A . B .D .无法比较定高度,则下图能反映弹簧秤的读数 y 2y = ax — ax(B )A . O v x v 2 B. O v x v 3 C. 2v x v 3 D. x v 0 或x> 3a b | c7. 已知二次函数y= ax2+ bx+ c(a^0的图象如图所示,--- 则正比例函数y= (b+ c)x与反比例函数y = 在同一坐x标系中的大致图象是(C)8. 如图是抛物线y i = ax2+ bx+ c(a丰0图象的一部分,抛物线的顶点坐标是A(1, 3),与x轴的一个交点是B(4, 0),直线y2= mx+ n(m z0与抛物线交于A, B两点,下列结论:① 2a + b= 0:②abc>0;③方程ax2+ bx+ c= 3有两个相等的实数根;④抛物线与x轴的另一个交点是(一1, 0);⑤当1 v x v 4时,有y2< y i.其中正确的是(C)A .①②③B .①③④、填空题(每小题4分,共16分)9. 点A(3,_ 2)关于x轴对称的点的坐标是(3~2).k10. 若反比例函数y= -(k z 0的图象经过点(1, _ 3),则一次函数y= kx_k(k^ 0的图象经过一、二、四象限.x311. 以正方形ABCD 两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y= 一经过点D,x则正方形ABCD的面积是12 .12 .如图是一座拱桥,当水面宽AB为12 m时,桥洞顶部离水面4 m,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y= —1(x—6)2+ 4,则选取点B为坐标原点时的抛物线解析式是y=—9(x+ 6)2+ 4.三、解答题(共52分)k13. (12分)如图,正比例函数y i=—3x的图象与反比例函数y2 =-的图象交于A, B两点•点C在x轴负半轴上,XAC = AO,A ACO 的面积为12.(1)求k的值;⑵根据图象,当y i>y2时,写出x的取值范围.解:(1)过点A作AD丄OC于点D.又T AC = AO,••• CD = DO.1…S^ADO = ^S A ACO = 6.k=—12.(2)x< —2 或0<x<2.14. (12分)小敏上午& 00从家里出发,骑车去一家超市购物,然后从超市返回家中.小敏离家的路程学习资料y(米)和所经过的时间x(分)之间的函数图象如图所示•请根据图象回答下列问题:(1) 小敏去超市途中的速度是多少?在超市逗留了多长时间? (2) 小敏几点几分返回到家? 解:(1)小敏去超市途中的速度是3 000勻0 = 300(米/分),在超市逗留的时间为 40 - 10= 30(分)•(2)设返回家时,y 与x 的函数表达式为 y = kx + b ,把(40, 3 000), (45, 2 000)代入,得 40k + b = 3 000, “ 口 k =- 200,解得45k + b = 2 000. b = 11 000.••• y 与x 的函数表达式为 y = — 200X + 11 000. 令 y = 0,得—200X + 11 000= 0,解得 x = 55. •小敏8点55分返回到家.15. (14分)一名在校大学生利用 互联网+ ”自主创业,销售一种产品,这种产品的成本价为售价x(元/件)之间的函数关系如图所示.(1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)求每天的销售利润 W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售 利润最大?最大利润是多少?解:(1 )设y 与x 的函数解析式为 y = kx + b ,10k + b = 30, 将(10, 30), (16, 24)代入,得 16k + b = 24,解得< =—1,b = 40.不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量 y(件)与销 10元/件,已知销售价所以y与x的函数解析式为y=—x+ 40( 10<x< 10.(2)根据题意知,W = (x —10) y=(x—10)( —x + 40)=—x2+ 50x —400=—(x —25)2+ 225.•/ a=—1v 0,•••当x v 25时,W随x的增大而增大.•/ 10Q W16•••当x = 16时,W取得最大值,最大值为144.答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.16. (14分)在平面直角坐标系中,O为原点,直线y=—2x—1与y轴交于点A,与直线y= —x交于点B,点B关于原点的对称点为点 C.(1)求过点A, B, C三点的抛物线的解析式;•- B(—1, 1).•••点B关于原点的对称点为点C,「. C( 1, —1). •••直线y= —2x— 1 与y 轴交于点A,「. A(0, —1). 求点P的坐标.(2)P为抛物线上一点,它关于原点的对称点为Q.当四边形PBQC为菱形时,设抛物线解析式为 y = ax 2 + bx + c ,•••抛物线过A , B , C 三点,c =- 1,•••叫a — b + c = 1,解得彳 b =— 1,a +b +c = — 1.c = — 1.•••抛物线解析式为y = x 2 — x — 1. (2)T 对角线互相垂直平分的四边形为菱形 ,已知点B 关于原点的对称点为点 C,点P 关于原点的对称点为点Q ,且与BC 垂直的直线为y = x ,• P (x , y )需满足/ = x ;• P 点坐标为(1+ 2, 1 + .2)或(1 — 2, 1— 2).a = 1,y = x — x — 1.y 1 =1+ 2,y ;=1—2.。

人教版九年级数学中考函数专项练习及参考答案

人教版九年级数学中考函数专项练习及参考答案

人教版九年级数学中考函数专项练习例1. 如图,已知1(4,)2A -,(1,2)B -是一次函数y kx b =+与反比例函数(0,0)m y m x x=≠<图象的两个交点,AC x ⊥轴于C ,BD y ⊥轴于D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若PCA ∆和PDB ∆面积相等,求点P 坐标.【解答】解:(1)由图象得一次函数图象在上的部分,41x -<<-,当41x -<<-时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y kx b =+,y kx b =+的图象过点1(4,)2-,(1,2)-,则 1422k b k b ⎧-+=⎪⎨⎪-+=⎩, 解得1252k b ⎧=⎪⎪⎨⎪=⎪⎩ 一次函数的解析式为1522y x =+, 反比例函数m y x=图象过点(1,2)-, 122m =-⨯=-;(3)连接PC 、PD ,如图, 设15(,)22P x x +由PCA ∆和PDB ∆面积相等得11115(4)|1|(2)22222x x ⨯⨯+=⨯-⨯--,52x =-,155224y x =+=,P ∴点坐标是5(2-,5)4.例2. 如图,反比例函数(0,0)k y k x x=≠>的图象与直线3y x =相交于点C ,过直线上点(1,3)A 作AB x ⊥轴于点B ,交反比例函数图象于点D ,且3AB BD =.(1)求k 的值;(2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d MC MD =+最小,求点M 的坐标.【解答】解:(1)(1,3)A ,3AB ∴=,1OB =,3AB BD =,1BD ∴=,(1,1)D ∴将D 坐标代入反比例解析式得:1k =;(2)由(1)知,1k =,∴反比例函数的解析式为;1y x =, 解:31y xy x=⎧⎪⎨=⎪⎩,解得:x y ⎧=⎪⎨⎪=⎩x y ⎧=⎪⎨⎪=⎩,0x >,C ∴; (3)如图,作C 关于y 轴的对称点C ',连接C D '交y 轴于M ,则d MC MD =+最小,(3C ∴'-,设直线C D '的解析式为:y kx b =+,∴31k b k b =-+⎪=+⎩,∴32k b ⎧=-⎪⎨=-+⎪⎩,(32y x ∴=-+,当0x =时,2y =,(0M ∴,2).例3. 如图, 在直角坐标系中, 直线1(0)y kx k =+≠与双曲线2(0)y x x=>相交于点(1P ,m ). (1) 求k 的值;(2) 若点Q 与点P 关于直线y x =成轴对称, 则点Q 的坐标是(Q 2 , 1 );(3) 若过P 、Q 二点的抛物线与y 轴的交点为5(0,)3N ,求该抛物线的函数解析式, 并求出抛物线的对称轴方程 .【解答】解: (1)直线1y kx =+与双曲线2(0)y x x =>交于点(1,)A m ,2m ∴=,把(1,2)A 代入1y kx =+得:12k +=,解得:1k =;(2) 连接PO ,QO ,PQ ,作PA y ⊥轴于A ,QB x ⊥轴于B ,则1PA =,2OA =,点Q 与点P 关于直线y x =成轴对称,∴直线y x =垂直平分PQ ,OP OQ ∴=,POA QOB ∴∠=∠,在OPA ∆与OQB ∆中,PAO OBQPOA QOB OP OQ∠=∠⎧⎪∠=∠⎨⎪=⎩,POA QOB ∴∆≅∆,1QB PA ∴==,2OB OA ==,(2,1)Q ∴;故答案为: 2 , 1 ;(3) 设抛物线的函数解析式为2y ax bx c =++,过P 、Q 二点的抛物线与y 轴的交点为5(0,)3N , ∴214253a b c a b c c ⎧⎪=++⎪=++⎨⎪⎪=⎩, 解得:23153a b c ⎧=-⎪⎪=⎨⎪⎪=⎩,∴抛物线的函数解析式为22533y x x =-++, ∴对称轴方程132423x =-=-⨯.例4. 如图, 在平面直角坐标系中, 抛物线2y x ax b =-++交x 轴于(1,0)A ,(3,0)B 两点, 点P 是抛物线上在第一象限内的一点, 直线BP 与y 轴相交于点C .(1) 求抛物线2y x ax b =-++的解析式;(2) 当点P 是线段BC 的中点时, 求点P 的坐标;(3) 在 (2) 的条件下, 求sin OCB ∠的值 .【解答】解: (1) 将点A 、B 代入抛物线2y x ax b =-++可得, 2201033a b a b ⎧=-++⎨=-++⎩, 解得,4a =,3b =-,∴抛物线的解析式为:243y x x =-+-;(2)点C 在y 轴上,所以C 点横坐标0x =,点P 是线段BC 的中点,∴点P 横坐标03322P x +==, 点P 在抛物线243y x x =-+-上,2333()43224P y ∴=-+⨯-=, ∴点P 的坐标为3(2,3)4;(3)点P的坐标为3(2,3)4,点P是线段BC的中点,∴点C的纵坐标为33 2042⨯-=,∴点C的坐标为3 (0,)2,BC∴==,sin52OBOCBBC∴∠===.例5. 如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【解答】解:(1)将(0,3)-代入y x m =+, 可得:3m =-;(2)将0y =代入3y x =-得:3x =, 所以点B 的坐标为(3,0),将(0,3)-、(3,0)代入2y ax b =+中, 可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩, 所以二次函数的解析式为:2133y x =-;(3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则451560ODC ∠=︒+︒=︒,tan 30OD OC ∴=︒= 设DC 为3y kx =-,代入0),可得:k =联立两个方程可得:23133y y x ⎧=-⎪⎨=-⎪⎩,解得:12120,36x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩所以1M ,6);②若M 在B 下方,设MC 交x 轴于点E ,则451560OEC ∠=︒+︒=︒,tan 60OE OC ∴=︒=, 设EC 为3y kx =-,代入0)可得:3k =,联立两个方程可得:23133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得:12120,32x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩所以2M ,2)-,综上所述M的坐标为6)或2)-.。

初三数学函数试题及答案

初三数学函数试题及答案

初三数学函数试题及答案一、选择题(每题3分,共30分)1. 下列函数中,是一次函数的是()A. y = 3x + 2B. y = x^2 + 1C. y = 1/xD. y = √x2. 若函数y = 2x - 3的图象经过点(2,1),则该函数的解析式为()A. y = 2x - 5B. y = 2x - 3C. y = 2x + 1D. y = 2x - 13. 函数y = 3x + 1与y = -2x + 5的交点坐标是()A. (-1, 4)B. (1, 2)C. (-1, 2)D. (1, 4)4. 函数y = 4x - 1的图象在y轴上的截距为()A. 1B. -1C. 4D. -45. 函数y = 5x + 2的图象在x轴上的截距为()A. 0.4B. -0.4C. 2/5D. -2/56. 若一次函数y = kx + b的图象经过原点,则()A. k ≠ 0,b = 0B. k = 0,b ≠ 0C. k = 0,b = 0D. k ≠ 0,b ≠ 07. 函数y = 3x + 2的图象在x轴上的截距为()A. 2/3B. -2/3C. 2D. -28. 函数y = 2x - 3与x轴的交点坐标为()A. (1.5, 0)B. (-1.5, 0)C. (3, 0)D. (-3, 0)9. 函数y = -x + 4的图象在y轴上的截距为()A. 4B. -4C. 0D. -010. 函数y = x^2 - 4x + 3的顶点坐标为()A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)二、填空题(每题4分,共20分)1. 函数y = 2x + 3的图象在x轴上的截距为______。

2. 函数y = -3x + 4的图象在y轴上的截距为______。

3. 函数y = 4x - 2的图象与x轴的交点坐标为______。

4. 函数y = 5x - 6的图象与y轴的交点坐标为______。

初中数学九年级总复习《函数》专题复习卷含答案

初中数学九年级总复习《函数》专题复习卷含答案

中考《函数》总复习检测试题含答案时间: 120分钟 满分: 150分一. 选择题(每小题3分, 共30分)1.点P 关于 轴的对称点P1的坐标是(3, -2), 则点P 关于 轴的对称点P2的坐标是( ) A.(-3,-2) B.(-2,3) C.(-3,2 ) D.(3,-2)2.若一次函数 的图象经过第一、二、四象限, 则下列不等式中总是成立的是( ) A. ab >0 B. b -a >0 C. a +b >0 D. a -b >03.对于二次函数 , 下列说法正确的是( )A.当x>0时, y 随x 的增大而增大B.图象的顶点坐标为(-2, -7)C.图象与x 轴有两个交点D.当x=2时,y 有最大值-3.4.如图, 一次函数 与反比例函数 的图象在第一象限 交于点A, 与y 轴交于点M, 与x 轴交于点N, 若AM:MN=1:2, 则k =( ) A.2 B.3 C.4 D.55.若将抛物线 沿着x 轴向左平移1个单位, 再沿y 轴向下平移2个单位, 则得到的新抛物线的顶点坐标是( )A. (0, -2 )B. (0, 2)C. (1, 2)D. (-1, 2) 6.如图, 直线 相交于点P, 已知点P 的坐标为(1, -3), 则关于x 的不等式 的解集是( ) A. x>1 B.x<1 C.x>-3 D.x<-37.向最大容量为60升的热水器内注水, 每分钟注水10升, 注水2分钟后停止注水1分钟, 然后继续注水, 直至注满.则能反映注水量与注水时间函数关系的图象是( )A. B. C. D.8.如图, 将函数 的图象沿y 轴向上平移得到一条新函数的图象, 其中点A (1, m ), B (4, n )平移后的对应点分别为点A'、B'. 若曲线段AB 扫过的面积为9(图中的阴影部分), 则新图象的函数表达式是( ) A. B.C. D.9.如图, 菱形ABCD 边AD 与x 轴平行, A.B 两点的横坐标分别为1和3, 反比例函数 的图象经过A.B 两点, 则菱形ABCD 的面积是( ) A.4 B. C. D.210.如图,抛物线 与x 轴交于点(-3,0),其对称轴为直线 ,结合图象分析下列结论: (abc>0 ; (3a+c>0; (当x<0时,y 随x 的增大而增大;④一元二次方程 的两根分别为 ;⑤ ,其中正确的结论有( )个. A.2 B.3 C.4 D.5填空题(每小题4分, 共24分) 11.函数13-+=x x y 中自变量x 的取值范围是_________________.第8题图12.二次函数 图象先沿x 轴水平向左平移3个单位, 再向上平移4个单位后得到的表达式为_________________.13.如图, 在平面直角坐标系中, 的顶点A.C 的坐标分别为(0, 3)和(3, 0), , AC=2BC,函数 的图象经过点B, 则k 的值为_______.14.二次函数 的部分图象如图所示, 若关于x 的一元二次方程 的一根为 , 则另一个根为________.15.如图, 直线 与坐标轴交于A 、B 两点, 在射线AO 上有一点P, 当 是以AP 为腰的等腰三角形时, 点P 的坐标是_________.16.如图, 平面直角坐标系中, 点A ( , 1)在射线OM 上, 点B ( , 3)在射线ON 上, 以AB 为直角边做 , 以BA1为直角边作第二个 , 以A1B1为直角边作第三个 ……依此规律, 得到 , 则点B2018的纵坐标为___________.(1)三、解答题(17题8分, 18-22题每题10分, 23.24题每题12分, 25题14分, 共96分) (2)17.(8分)在平面直角坐标系中, 点O 为坐标原点, 如图摆放, 按要求回答下列问题. (3)将 沿y 轴向下平移3个单位, 得到 , 并写出B1的坐标. (4)将111B O A ∆作关于原点O 成中心对称图形222B O A ∆.在第三象限做 , 与 关于原点O 位似, 相似比为1: 2.18.(10分)在平面直角坐标系中, 若点 在坐标系象限角平分线上, 求a 的值及点的坐标.第13题图A 第14题图 第15题图19.(10分)如图, 在平面直角坐标系中, 点A.B的坐标分别为, , 连接AB, 以AB为边向上作等边三角形ABC.(1)求点C的坐标.(2)求线段BC所在直线的解析式.20.(10分)已知A.B 两地之间有一条270 千米的公路, 甲、乙两车同时出发, 甲车以60千米/时的速度沿此公路从 A 地匀速开往 B 地, 乙车从 B 地沿此公路匀速开往 A 地, 两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为_____ 千米/时, a=____b=_____.(2)求甲、乙两车相遇后y 与x 之间的函数关系式.(3)当甲车到达距B 地70 千米处时, 求甲、乙两车之间的路程.21.(10分)某演唱会购买门票的方式有两种: 方式一, 若单位赞助广告费10万元, 则该单位所购门票的价格为每张0.02万元;方式二, 如图所示.设购买门票x张, 总费用为y 万元.问题: (1)求方式一中y与x 的函数关系式;(总费用=广告费+门票费)(2)若甲乙两个公司分别采用方式一和方式二购买本场演唱会门票共400张, 且乙单位购买门票超过100张, 两单位共花费27.2万元, 求甲乙两公司各购买多少张门票?(1)22.(10分)如图, 抛物线与x轴交于A(-1, 0)、B(3, 0)两点, 与y轴交于点C, OB=OC, 连接BC, 抛物线的顶点为D, 连接BD.(2)求抛物线的解析式.的正弦值.(3)求CBD(1)23.(12分)如图, 在平面直角坐标系中, 反比例函数 的图象过等边三角形BOC 的顶点B, OC=2, 点A 在反比例函数图象上, 连接AC.AO. (2)求反比例函数)0(≠=k xky 的表达式. 若四边形ACBO 的面积是 , 求点A 的坐标.24.(12分)某游泳馆每年夏季推出两种游泳付费方式.方式一: 先购买会员证, 每张会员证100元, 只限本人当年使用, 凭证游泳每次再付费5元;方式二: 不购买会员证, 每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(2)若小明计划今年夏季游泳的总费用为270元, 选择哪种付费方式, 他游泳的次数比较多?(3)当x>20时, 小明选择哪种付费方式更合算?并说明理由.25.(14分)如图, 一次函数的图象分别交y轴、x轴于A.B两点, 抛物线过A.B两点.(1)求这个抛物线的解析式.(2)作垂直于x轴的直线x=t, 在第一象限交直线AB于M, 交这个抛物线于N.当t取何值时, MN有最大值?最大值为多少?(3)在(2)的情况下, 以点AMND为顶点作平行四边形, 直接写出第四个顶点D的坐标.参考答案一.选择题(每小题3分, 共30分)1.C2.B3.D4.C5.A6.A7.D8.D9.B 10.C 备用图二.填空题(每小题4分, 共24分)11.13≠-≥x x 且 12.1)2(22++-=x y 或7822---=x x y 13.427 14. 15. 16. 三.解答题 17.(8分)(1) 如图 即为所求, B1(4, -1).…… (3分) (2)如图222B O A ∆即为所求.……(5分)(3)如图33OB A ∆即为所求.……(8分)18.解: (10分)当点在第一、三象限角平分线上时, …… (1分) 即 1-2a=a-2∴ a=1 ……(3分) 此时, 点的坐标为(-1, -1). …… (5分)当点在第二、四象限角平分线上时, …… (6分) 即 1-2a= -(a-2)∴ a=-1 …… (8分) 此时, 点的坐标为(3, -3). ……(9分) 因此, 当a 的值为1时, 点的坐标为(-1, -1);当a 的值为-1时, 点的坐标为(3, -3) ……(10分) 19.(10分)解: 过点B 作BE ⊥x 轴, 交x 轴于点E, ……(1分) ∵点A.B 的坐标分别为 , ∴AE= , BE=1……(2分) 在 中, 根据勾股定理可得, AB=2…… ∵sin ∠BAE=AB BE =21∴∠BAE=30°……(4分) ∵⊿ABC 是等边三角形 ∴∠CAE=90°……(5分) ∴点C )2,23(-.……(6分) (2)设BC 所在直线表达式为)0(≠+=k b kx y ……(7分)∵直线过点C )2,23(-和点B )1,23(代入得∴{b k b k +-=+=232231……(8分)解得 ⎪⎪⎩⎪⎪⎨⎧=-=2333b k ……(9分) ∴BC 所在直线表达式为2333+-=x y ……(10分) 20.(10分)(1)乙车的速度为75 千米/时, a=3.6 ,b= 4.5.……(3分) (2)60×3.6=216(千米)当2<x ≤3.6时, 设 , 根据题意得:⎩⎨⎧=+=+2166.3021111b x b k 解得⎩⎨⎧-==27013511b k);6.32(270135≤<-=x x y ……(5分)当3.6<x ≤4.5时, 设 , 根据题意得:⎩⎨⎧=+=+2705.42166.32222b k b k 解得⎩⎨⎧==06022b k∴)5.46.3(60≤<=x x y ……(7分)因此⎩⎨⎧≤<≤<-=)5.46.3(60)6.32(270135x x x x y ……(8分)甲车到达距B 地70千米处时行驶的时间为: , 将x =620代入得千米)(180270620135=-⨯=y ……(9分)21.因此, 甲车到达距B 地70千米处时, 甲乙两车之间的路程为180千米。

初中数学九年级总复习《函数》专项试卷含详解答案

初中数学九年级总复习《函数》专项试卷含详解答案

AP,当点 P 满足 DP+AP的值最小时, P 点坐标为

第 11 题图
第 12 题图
第 13 题图
第 14 题图
12. 如图,在平面直角坐标系中,正方形 ABOC和正方形 DOFE的顶点 B,F 在 x
轴上,顶点
C,D 在 y 轴上,且
S△ADF= 4,反比例函数
??=
??

x>
0)的图象经
??
《函数》总复习试卷含答案
一、选择题 (本大题共 10 小题,每小题 3 分,共 30 分)
1.在函数 ??= √??+1中,自变量 x 的取值范围是(

??-2
A. x>﹣ 1 B .x≥﹣ 1 C .x>﹣ 1 且 x≠2 D .x≥﹣ 1 且 x≠ 2
2.如图,若一次函数 y=kx+b 的图象与两坐标轴分别交于 A,B 两点,点 A 的坐
22. (本小题满分 10 分) 某实验学校为开展研究性学习, 准备购买一定数量的两人学习桌和三人学习 桌,如果购买 3 张两人学习桌和 1 张三人学习桌需 220 元;如果购买 2 张两 人学习桌和 3 张三人学习桌需 310 元.
(1)求两人学习桌和三人学习桌的单价; (2)学校欲投入资金不超过 6000 元,购买两种学习桌共 98 张,以至少满足
第 23-24 题每小题 12 分, 25 题 14 分,共 96 分)
17. (本小题满分 8 分)
对于给定的两个函数,任取自变量 x 的一个值,当 x<1 时,它们对应的函
数值互为相反数:当 x≥1 时,它们对应的函数值相等,我们称这样的两个
函 数 互 为 相 关 函 数 , 例 如 : 一 次 函 数 y=x-4 , 它 的 相 关 函 数 为 ??=

九年级数学中考复习:函数专题训练(含答案)

九年级数学中考复习:函数专题训练(含答案)

中考复习函数专题训练(含答案解析)1. 如图,已知A、B是反比例面数kyx=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形0MPN 的面积为S,P点运动时间为t,则S关于t的函数图象大致为【答案】A2.坐标平面上,二次函数362+-=xxy的图形与下列哪一个方程式的图形没有交点?A. x=50 B. x=-50 C. y=50 D. y=-50【答案】D3. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米 C.2米 D.1米【答案】D4. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A .50mB .100mC .160mD .200m【答案】C5. 一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2+--=)(,则小球距离地面的最大高度是( )A .1米B .5米C .6米D .7米【答案】C二、填空题 1. 出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大.【答案】42. 如图,已知函数x y 3-=与bx ax y +=2(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bx ax +2x 3+=0的解为【答案】-3三、解答题1. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学函数专项练习题及答案
一、选择题(每小题4分,共32分)
1.函数y =x +2中,自变量x 的取值范围是 (A )
A .x ≥-2
B .x <-2
C .x ≥0
D .x ≠-2
2.已知函数y =⎩⎪⎨⎪⎧2x +1(x≥0),
4x (x <0),
当x =2时,函数值y 为(A )
A .5
B .6
C .7
D .8
3.已知点A (2,y 1),B (4,y 2)都在反比例函数y =k
x
(k <0)的图象上,则y 1,y 2的大小关系为(B )
A .y 1>y 2
B .y 1<y 2
C .y 1=y 2
D .无法比较
4.如图,在物理课上,小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y (单位:N )与铁块被提起的高度x (单位:cm )之间的函数关系的大致图象是( C )
A .
B .
C .
D .
5.若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2-ax (B )
A .有最大值a 4
B .有最大值-a 4
C .有最小值a 4
D .有最小值-a
4
6.如图,已知二次函数y 1=23x 2-43x 的图象与正比例函数y 2=2
3x 的图象交于点A (3,2),与x 轴交于点B (2,0).若
0<y 1<y 2,则x 的取值范围是 (C )
A .0<x <2
B .0<x <3
C .2<x <3
D .x <0或x >3
7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则正比例函数y =(b +c )x 与反比例函数y =a -b +c
x 在同一坐
标系中的大致图象是(C )
8.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点是B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(-1,0);⑤当1<x <4时,有y 2<y 1.其中正确的是(C )
A .①②③
B .①③④
C .①③⑤
D .②④⑤
二、填空题(每小题4分,共16分)
9.点A (3,-2)关于x 轴对称的点的坐标是(3, 2).
10.若反比例函数y =k
x (k ≠0)的图象经过点(1,-3),则一次函数y =kx -k (k ≠0)的图象经过一、二、四象限.
11.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线y =3
x 经过点D ,
则正方形ABCD 的面积是12.
12.如图是一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线解析式是y =-1
9(x -6)2+4,则选取点B 为坐标原点
时的抛物线解析式是y =-1
9
(x +6)2+4.
三、解答题(共52分)
13.(12分)如图,正比例函数y 1=-3x 的图象与反比例函数y 2=k
x 的图象交于A ,B 两点.点C 在x 轴负半轴上,
AC =AO ,△ACO 的面积为12.
(1)求k 的值;
(2)根据图象,当y 1>y 2时,写出x 的取值范围.
解:(1)过点A 作AD ⊥OC 于点D. 又∵AC =AO , ∴CD =DO .
∴S △ADO =1
2S △ACO =6.
∴k =-12. (2)x <-2或0<x <2.
14.(12分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从超市返回家中.小敏离家的路程y (米)和所经过的时间x (分)之间的函数图象如图所示.请根据图象回答下列问题:
(1)小敏去超市途中的速度是多少?在超市逗留了多长时间? (2)小敏几点几分返回到家?
解:(1)小敏去超市途中的速度是3 000÷10=300(米/分),
在超市逗留的时间为40-10=30(分).
(2)设返回家时,y 与x 的函数表达式为y =kx +b ,把(40,3 000),(45,2 000)代入,得
⎩⎪⎨⎪⎧40k +b =3 000,45k +b =2 000.解得⎩
⎪⎨⎪⎧k =-200,b =11 000. ∴y 与x 的函数表达式为y =-200x +11 000. 令y =0,得-200x +11 000=0,解得x =55. ∴小敏8点55分返回到家.
15.(14分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示.
(1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围;
(2)求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
解:(1)设y 与x 的函数解析式为y =kx +b ,
将(10,30),(16,24)代入,得⎩⎪⎨⎪⎧10k +b =30,16k +b =24,
解得⎩⎪⎨⎪
⎧k =-1,b =40.
所以y 与x 的函数解析式为y =-x +40(10≤x ≤16). (2)根据题意知,W =(x -10)y =(x -10)(-x +40) =-x 2+50x -400 =-(x -25)2+225. ∵a =-1<0,
∴当x <25时,W 随x 的增大而增大. ∵10≤x ≤16,
∴当x =16时,W 取得最大值,最大值为144.
答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.
16.(14分)在平面直角坐标系中,O 为原点,直线y =-2x -1与y 轴交于点A ,与直线y =-x 交于点B ,点B 关于原点的对称点为点C.
(1)求过点A ,B ,C 三点的抛物线的解析式;
(2)P 为抛物线上一点,它关于原点的对称点为Q .当四边形PBQC 为菱形时,求点P 的坐标.
解:(1)由题意,得⎩⎪⎨⎪⎧y =-2x -1,y =-x.解得⎩
⎪⎨⎪⎧x =-1,y =1. ∴B (-1,1).
∵点B 关于原点的对称点为点C ,∴C (1,-1). ∵直线y =-2x -1与y 轴交于点A ,∴A (0,-1). 设抛物线解析式为y =ax 2+bx +c , ∵抛物线过A ,B ,C 三点, ∴⎩⎪⎨⎪⎧c =-1,a -b +c =1,a +b +c =-1.解得⎩⎪⎨⎪
⎧a =1,b =-1,c =-1. ∴抛物线解析式为y =x 2-x -1.
(2)∵对角线互相垂直平分的四边形为菱形,已知点B 关于原点的对称点为点C ,点P 关于原点的对称点为点Q ,且与BC 垂直的直线为y =x ,
∴P (x ,y )需满足⎩
⎪⎨⎪⎧y =x ,y =x 2-x -1.
解得⎩⎨⎧x 1=1+2,y 1=1+2,⎩⎨⎧x 2=1-2,
y 2=1- 2.
∴P 点坐标为(1+2,1+2)或(1-2,1-2).。

相关文档
最新文档