八年级上期末复习题

合集下载

八年级物理上学期期末复习-质量和密度的计算题含解析新人教版

八年级物理上学期期末复习-质量和密度的计算题含解析新人教版

第38讲 质量和密度的计算题一、选择题1.甲、乙两个物体的密度之比是3:5,体积之比是2:3,则甲、乙两物体的质量之比是()A .9:10B .2:5C .10:9D .5:2【解析】已知,35ρρ=甲乙,23V V =甲乙, 根据mVρ=可得m V ρ=, 则甲、乙两物体的质量之比是:322:553m V m V ρρ⨯===⨯甲甲甲乙乙乙。

故选:B 。

2.2019年5月12日零时国内油价迎来年内最大幅度的下调,其中92号汽油每吨降低250元,意味着92号汽油每升将下降0.2元,据此测算92号汽油的密度是( ) A .331.2510/kg m ⨯B .330.810/kg m ⨯C .330.7510/kg m ⨯D .330.7210/kg m ⨯【解析】92号汽油每吨降低250元,每升将下降0.2元, 则250元汽油的体积: 325011250 1.250.2V L L m =⨯==, 汽油的密度:33310000.810/1.25m kg kg m V mρ===⨯。

故选:B 。

3.金属锂的密度为330.5310/kg m ⨯,它表示的意思是( )A .每立方米锂的密度是30.5310kg ⨯B .每立方米锂的质量是330.530/l kg m ⨯C .每立方米锂的质量是30.5310kg ⨯D .每千克锂的体积是330.5310m ⨯【解析】金属锂的密度为330.5310/kg m ⨯,它表示的意思是体积是31m 的锂,质量是30.5310kg ⨯。

故选:C 。

4.盛有某种气体的容器,其体积增加13时密度为1ρ;其体积减少13时密度为2ρ.则( )A .1213ρρ=B .1212ρρ=C .12ρρ=D .122ρρ=【解析】盛有某种气体的容器,设此时的体积为V 、气体的质量为m ,密度为mVρ=。

气体的体积增加13时,体积114(1)33V V V =+=,质量不变,还是m ,密度11334443m m m V V V ρρ===⨯=; 气体的体积减少13时,体积212(1)33V V V =-=,质量不变,还是m ,密度22332223m m m V V V ρρ===⨯=;所以:1212ρρ=。

2022-2023学年人教版八年级数学上册期末综合复习模拟训练题(附答案)

2022-2023学年人教版八年级数学上册期末综合复习模拟训练题(附答案)

2022-2023学年人教版八年级数学上册期末综合复习模拟训练题(附答案)一、单项选择题:本大题共8小题,共24分.1.第24届冬奥会将于2022年2月在北京和张家口举办,下列四个图分别是第24届冬奥会图标中的一部分,其中是轴对称图形的是()A.B.C.D.2.下列计算中正确的是()A.(x2)3=x5B.(﹣3x3y)2=9x9y2C.x6÷x2=x3D.﹣x2•x=﹣x33.要把分式的值扩大为原来的3倍,下面哪种方法是可行的()A.x、y的值都加上3B.x、y的值都扩大为原来的3倍C.x的值不变、y的值扩大为原来的3倍D.x的值扩大为原来的3倍、y的值不变4.分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12③1,2,3;④9,40,41;⑤3,4,5.其中能构成直角三角形的有()组.A.2B.3C.4D.55.在下列各式中,化简正确的是()A.=3B.=±C.=a2D.=x6.某文具店购进A,B两种款式的书包,其中A种书包的单价比B种书包的单价低10%.已知店主购进A种书包用了810元,购进B种书包用了600元,且所购进的A种书包的数量比B种书包多20个.设文具店购进B种款式的书包x个,则所列方程正确的是()A.B.C.D.7.如图,∠MON=45°,P为∠MON内一点,A为OM上一点,B为ON上一点,当△P AB 的周长取最小值时,∠APB的度数为()A.80°B.90°C.110°D.120°8.已知直角三角形两直角边的边长之和为,斜边长为2,则这个三角形的面积是()A.0.25B.0.5C.1D.2二、填空题:本大题共6小题,共18分.9.新型冠状病毒有完整的包膜,颗粒呈圆形或椭圆形,其最大直径约为0.00000014nm,将0.00000014nm用科学记数法表示为nm.10.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为.11.实数a在数轴上的位置如图所示,则|a﹣1|+=.12.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是.13.关于x的方程的解是正数,则a的取值范围是.14.对于正数x,规定,例如,则的结果是=.三、解答题:本大题共8小题,共58分.15.计算题:(1);(2).16.解分式方程:(1);(2).17.先化简,再求值:()÷(﹣1),其中a=2﹣.18.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB由A行驶向B,已知点C为一海港,且点C与直线AB上的两点A,B的距离分别为AC=300km,BC=400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E处时,海港C刚好受到影响,当台风运动到点F时,海港C刚好不受影响,即CE=CF=250km,则台风影响该海港持续的时间有多长?19.南京市某花卉种植基地欲购进甲、乙两种兰花进行培育,每株甲种兰花的成本比每株乙种兰花的成本多100元,且用1200元购进的甲种兰花与用900元购进的乙种兰花数量相同.(1)求甲、乙两种兰花每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下培育甲、乙两种兰花,若培育乙种兰花的株数比甲种兰花的3倍还多10株,求最多购进甲种兰花多少株?20.上数学课时,王老师在讲完乘法公式(a±b)2=a2±2ab+b2的多种运用后,要求同学们运用所学知识解答:求代数式x2+4x+5的最小值?同学们经过交流、讨论,最后总结出如下解答方法:解:x2+4x+5=x2+4x+4+1=(x+2)2+1∵(x+2)2≥0,∴当x=﹣2时,(x+2)2的值最小,最小值是0,∴(x+2)2+1≥1.∴当(x+2)2=0时,(x+2)2+1的值最小,最小值是1,∴x2+4x+5的最小值是1.请你根据上述方法,解答下列各题:(1)当x=时,代数式x2﹣6x+12有最小值;最小值是;(2)若y=﹣x2+2x﹣3,请判断y有最大还是最小值;这个值是多少?此时x等于哪个数?(3)若﹣x2+3x+y+5=0,则y+x=(用含x,y的代数式表示),请求出y+x的最小值.21.计算下列图中阴影部分的面积,其中∠B=∠C=∠D=90°.(1)如图1,AB=2a,BC=CD=DE=a;(2)如图2,AB=m+n,BC=DE=n﹣m(n>m).22.小明在解方程﹣=2时采用了下面的方法:由(﹣)(+)=()2﹣()2=(24﹣x)﹣(8﹣x)=16,又有﹣=2,可得+=8,将这两式相加可得,将=5两边平方可解得x=﹣1,经检验x=﹣1是原方程的解.请你学习小明的方法,解下面的方程:(1)方程的解是;(2)解方程+=4x.参考答案一、单项选择题:本大题共8小题,共24分.1.解:A.不是轴对称图形,故本选项不符合题意;B.是轴对称图形,故本选项符合题意;C.不是轴对称图形,故本选项不符合题意;D.不是轴对称图形,故本选项不符合题意.故选:B.2.解:A.(x2)3=x6,故此选项不合题意;B.(﹣3x3y)2=9x6y2,故此选项不合题意;C.x6÷x2=x4,故此选项不合题意;D.﹣x2•x=﹣x3,故此选项符合题意.故选:D.3.解:∵把分式的值扩大为原来的3倍,∴算式为==,所以把分式的值扩大为原来的3倍,可行的是x、y的值都扩大为原来的3倍,故选:B.4.解:①∵62+82=36+64=100,102=100,∴62+82=102,∴以6,8,10为边能组成直角三角形;②∵52+122=25+144=169,132=169,∴52+122=132,∴以5,12,13为边能组成直角三角形;③1+2=3,不符合三角形三边关系定理不能组成三角形,也不能组成直角三角形;④∵92+402=81+1600=1681,412=1681,∴92+402=412,∴以9,40,41为边能组成直角三角形;⑤∵(3)2+42=+16=,(5)2=,∴(3)2+42≠(5)2,∴以3,4,5为边不能组成直角三角形;即能构成直角三角形的有3组,故选:B.5.解:A.=,故本选项不符合题意;B.=,故本选项不符合题意;C.=a2,故本选项符合题意;D.当x<0时,==﹣x,故本选项不符合题意;故选:C.6.解:∵文具店购进B种款式的书包x个,且购进的A种书包的数量比B种书包多20个,∴文具店购进A种款式的书包(x+20)个.依题意得:=(1﹣10%).故选:B.7.解:如图,作出P点关于OM、ON的对称点P1,P2连接P1,P2交OM,ON于A、B 两点,此时△P AB的周长最小,由题意可知∠P1PP2=180°﹣∠MON=180°﹣45°=135°,∴∠P1P A+∠P2PB=∠P1+∠P2=180°﹣∠P1PP2=45°,∴∠APB=135°﹣45°=90°.故选:B.8.解:设直角三角形两直角边的边长分别为x、y,根据题意得:x+y=,x2+y2=4,则(x+y)2=x2+y2+2xy,∴6=4+2xy,∴xy=1,∴这个三角形的面积是xy==0.5,故选:B.二、填空题:本大题共6小题,共18分.9.解:0.00000014=1.4×10﹣7,故答案为:1.4×10﹣7.10.解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19cm.11.解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.12.解:当筷子与杯底垂直时h最大,h最大=24﹣12=12cm.当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB===13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.13.解:去分母得2x+a=x﹣1,解得x=﹣a﹣1,∵关于x的方程的解是正数,∴x>0且x≠1,∴﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2,∴a的取值范围是a<﹣1且a≠﹣2.故答案为:a<﹣1且a≠﹣2.14.解:∵f(2)=,f()=,f(3)=,f()=,…,∴f(2)+f()==1,f(3)+f()==1,∴f(x)+f()=1,∴=[f(2021)+f()]+[f(2020)+f()]+…+[f(2)+f()]+f(1)=1×(2021﹣1)+f(1)=2020+=.故答案为:.三、解答题:本大题共8小题,共58分.15.解:(1)原式=[(﹣2)(+2)]2022+÷×2=(3﹣4)2022+××2=(﹣1)2022+4=1+4;(2)原式=+9+﹣4×+1=+1+4﹣1+1=.16.解:(1)去分母得:2x+2=12x﹣6﹣8x﹣4,解得:x=6,检验:把x=6代入得:2(2x+1)(2x﹣1)≠0,∴分式方程的解为x=6;(2)去分母得:﹣(x+2)2+16=4﹣x2,解得:x=2,检验:把x=2代入得:(x+2)(x﹣2)=0,∴x=2是增根,分式方程无解.17.解:原式=[﹣]÷=•=•=,把a=2﹣代入得:原式=.18.解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受台风影响,理由:过点C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受台风影响;(3)当EC=250km,FC=250km时,正好影响C港口,∵ED==70(km),∴EF=140km,∵台风的速度为20千米/小时,∴140÷20=7(小时).答:台风影响该海港持续的时间为7小时.19.解:(1)设每株乙种兰花的成本为x元,则每株甲种兰花的成本为(x+100)元由题意得=,解得,x=300,经检验x=300是分式方程的解,∴x+100=300+100=400,答:每株甲种兰花的成本为400元,每株乙种兰花的成本为300元;(2)设购进甲种兰花a株由题意得400a+300(3a+10)≤30000,解得,a≤,∵a是整数,∴a的最大值为20,答:最多购进甲种兰花20株.20.解:(1)∵x2﹣6x+12=(x﹣3)2+3,∴当x=3时,代数式x2﹣6x+12有最小值3;故答案为:3,3;(2)∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴当x=1时,y有最大值﹣2.即y有最大值﹣2,此时x=1;(3)∵﹣x2+3x+y+5=0,∴y+x=x2﹣2x﹣5=(x﹣1)2﹣6,∵(x﹣1)2≥0,∴(x﹣1)2﹣6≥﹣6,∴当x=1时,y+x的最小值为﹣6.故答案为:x2﹣2x﹣5,﹣6.21.解:(1)如图,延长AB,ED交于点F,则AF=3a,EF=2a∴S阴影=S△AEF﹣S正方形BCDF==3a2﹣a2=2a2(2)如图,延长AB,ED,交于点F设CD=x,则BF=x,∴=(m+n+x)(n﹣m)S长方形BCDF=(n﹣m)x,∴S阴影=S△AEF﹣S长方形BCDF==(n﹣m)(m+n)=n2﹣m222.解:(1)()(﹣)=﹣=(x2+42)﹣(x2+10)=32∵,∴﹣=32÷16=2,∴∵=92=81,∴x=±,经检验x=±都是原方程的解,∴方程的解是:x=±;故答案为:x=±.(2)(+)(﹣)==(4x2+6x﹣5)﹣(4x2﹣2x﹣5)=8x∵+=4x,∴﹣=8x÷4x=2,∴,∵,∴4x2+6x﹣5=4x2+4x+1,∴2x=6,解得x=3,经检验x=3是原方程的解,∴方程+=4x的解是:x=3.。

人教版八年级数学第一学期期末综合复习测试题(含答案)

人教版八年级数学第一学期期末综合复习测试题(含答案)

人教版八年级数学第一学期期末综合复习测试题(含答案)一.选择题(共12小题,满分36分)1.以下是清华大学、北京大学、上海交通大学、浙江大学的校徽,其中是轴对称图形的是()A.B.C.D.2.目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是()A.1.2×104B.1.2×10﹣4C.0.12×105D.0.12×10﹣5 3.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A.﹣1B.﹣7C.1D.74.若3和9是一个三角形的两边长,且第三边长为偶数,则该三角形的周长为()A.20B.21C.21或22D.20或225.如果一个正多边形的每一个内角是144°,则这个多边形是()A.正十边形B.正九边形C.正八边形D.正七边形6.已知等腰三角形一腰上的高线与另一腰的夹角为40°,那么这个等腰三角形的顶角等于()A.50°或130°B.130°C.80°D.50°或80°7.下列各式正确的是()A.B.C.D.8.下列计算正确的是()A.a m a n=a mn B.(﹣a2)3=a6C.(a﹣1)2=D.a3÷2a=2a29.现有甲、乙、丙三种不同的长方形纸片若干张(边长如图).小明要用这三种纸片紧密拼接成一个没有缝隙的大正方形,他选取甲纸片1张,再取乙纸片4张,还需要取丙纸片的张数为()A.1B.2C.3D.410.甲乙两个码头相距s千米,某船在静水中的速度为a千米/时,水流速度为b千米/时,则船一次往返两个码头所需的时间为()小时.A.B.C.D.+11.如图所示,在直角三角形ABC中,已知∠ACB=90°,点E是AB的中点,且DE⊥AB,DE交AC的延长线于点D、交BC于点F,若∠D=30°,EF=2,则DF的长是()A.5B.4C.3D.212.已知△ABC是边长为10的等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交BC的延长线于F.若AE=4BE,则CF的长为()A.1B.2C.3D.4二.填空题(共6小题,满分18分)13.当x=时,分式无意义.14.如图,自行车是人们日常代步的工具.你发现了没有,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的.15.分解因式:2x2﹣8x+8=.16.已知:a﹣b=1,a2+b2=25,则(a+b)2的值为.17.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了赶在雨季前竣工,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划工作时每天绿化的面积为x万平方米,根据题意列方程得.18.已知一张三角形纸片ABC(如图甲),其中AB=AC=10,BC=6.将纸片沿DE折叠,使点A与点B重合(如图乙)时,CE=a;再将纸片沿EF折叠,使得点C恰好与BE边上的G点重合,折痕为EF(如图丙),则△BFG的周长为(用含a的式子表示).三.解答题(共8小题,满分66分)19.计算:(1)(﹣a3)2•(ab)2.(2)(﹣0.25)2020×42021.20.先化简再求值,选择一个你喜欢的x的值代入其中并求值.21.如图,在△ABC中,AB=AC.(1)用尺规完成以下基本作图:作△ABC的边AB的垂直平分线DE,交AB于点D,交AC于点E,连接BE;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若∠A=40°,求∠CBE的度数.22.如图,CE⊥AB,BD⊥AC,垂足分别为E、D,CE,BD相交于O.(1)若∠1=∠2,求证:OB=OC;(2)若OB=OC,求证:∠1=∠2.23.受疫情影响,洗手液需求量猛增,某商场用4000元购进一批洗手液后,供不应求,商场用8800元购进第二批这种洗手液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批洗手液的单价;(2)商场销售这种洗手液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?24.等面积法是一种常用的、重要的数学解题方法.(1)如图1,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB=5,CD⊥AB,则CD长为;(2)如图2,在△ABC中,AB=4,BC=2,则△ABC的高CD与AE的比是;(3)如图3,在△ABC中,∠C=90°(∠A<∠ABC),点D,P分别在边AB,AC上,且BP=AP,DE⊥BP,DF⊥AP,垂足分别为点E,F.若BC=5,求DE+DF的值.25.阅读材料:若满足(8﹣x)(x﹣6)=﹣3,求(8﹣x)2+(x﹣6)2的值.解:设8﹣x=a,x﹣6=b,则(8﹣x)(x﹣6)=ab=﹣3,a+b=8﹣x+x﹣6=2.所以(8﹣x)2+(x﹣6)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10.请仿照上例解决下面的问题:(1)问题发现:若x满足(3﹣x)(x﹣2)=﹣10,求(3﹣x)2+(x﹣2)2的值;(2)类比探究:若x满足(2022﹣x)2+(2021﹣x)2=2020.求(2022﹣x)(2021﹣x)的值;(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).26.已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB 上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,①求证:AF=AE+AD;②求证:AD∥BC.(2)如图2,若AD=AB,那么线段AF,AE,BC之间存在怎样的数量关系.参考答案一.选择题(共12小题,满分36分)1.B.2.B.3.A.4.D.5.A.6.A.7.D.8.C.9.D.10.D.11.B.12.C.二.填空题(共6小题,满分18分)13.﹣3.14.稳定性.15.2(x﹣2)2.16.49.17.﹣=30.18.16﹣2a.三.解答题(共8小题,满分66分)19.解:(1)(﹣a3)2•(ab)2=a6•a2b2=a8b2.(2)(﹣0.25)2020×42021=(﹣)2020×42020×4=(﹣×4)2020×4=1×4=4.20.解:原式=[﹣]÷=()•=•=,由题意得:x≠±1,当x=2时,原式==1.21.解:(1)如图所示.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠A=40°,∴∠ABC=∠ACB=70°,∵DE为线段AB的垂直平分线,∴∠A=∠ABE=40°,∴∠CBE=∠ABC﹣∠ABE=70°﹣40°=30°.22.证明:如图所示:(1)∵CE⊥AB,BD⊥AC,∴∠BEO=∠CDO=90°,又∵∠EOB=∠DOC,∠BEO+∠EOB+∠B=180°,∠CDO+∠DOC+∠C=180°,∴∠B=∠C.在△ABO和△ACO中,,∴△ABO≌△ACO(AAS),∴OB=OC.(2)∵CE⊥AB,BD⊥AC,∴∠OEB=∠ODC=90°,在△BOE和△COD中,,∴△BOE≌△COD(AAS),∴OE=OD,∴AO是∠BAC的角平分线,∴∠1=∠2.23.解:(1)设该商场购进的第一批洗手液的单价为x元/瓶,依题意得:2×=,解得:x=10,经检验,x=10是原方程的解,且符合题意,答:该商场购进的第一批洗手液的单价为10元;(2)共获利:(+﹣200)×13+200×13×0.9﹣(4000+8800)=2540(元).答:在这两笔生意中商场共获得2540元.24.解:(1)如图1中,∵CD⊥AB,∴S△ABC=•AC•BC=•AB•CD,∴CD==;故答案为:;(2)如图2中,∵S△ABC=AB•CD=BC•AE∴,∴2CD=AE,∴CD:AE=1:2;故答案为:1:2;(3)∵S△ABP=,,,∵S△ABP=S△ADP+S△BDP,∴,又∵BP=AP,∴,即DE+DF=BC=5.25.解:(1)设3﹣x=a,x﹣2=b,则a+b=(3﹣x)+(x﹣2)=1,由完全平方公式可得a2+b2=(a+b)2﹣2ab=12﹣2×(﹣10)=21,即:(3﹣x)2+(x﹣2)2的值为21;(2)设2022﹣x=a,2021﹣x=b,则a﹣b=1,a2+b2=2020,由完全平方公式可得ab==,即:(2022﹣x)(2021﹣x)的值为;(3)设DE=a,DG=b,则a=x﹣10,b=x﹣20,a﹣b=10,又由ab=200,∴正方形MFNP的面积为:(a+b)2=(a﹣b)2+4ab=102+4×200=900.26.证明:(1)①∵∠BAC=∠EDF=60°,AB=AC,DE=DF,∴△ABC,△DEF为等边三角形,∴BC=AC,CE=CD,∠BCE+∠ACE=∠DCA+∠ECA=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BCE≌△ACD(SAS),∴AD=BE,∴AE+AD=AE+BE=AB=AF,即AF=AE+AD;②∵△BCE≌△ACD,∴∠DAC=∠EBC,∵△ABC为等边三角形,∴∠EBC=∠EAC=∠DAC=60°,∴∠EBC+∠EAC+∠DAC=180°,∴AD∥BC;(2)如图2,在F A上截取FM=AE,连接DM,∵∠BAC=∠EDF,∠ANE=∠DNF,∴∠AED=∠MFD,在△AED和△MFD中,∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF,∴∠ADM=∠BAC,在△ABC和△DAM中,∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC。

期末复习训练 八年级地理上学期人教版

期末复习训练 八年级地理上学期人教版
(2)家住北京的小华同学想乘火车去香港旅游,选择路程最 短的铁路干线应是 京九 线,该线与沪昆线的交会城市是
南昌 。位于D工业基地的省会城市是 广州 。(6分)
(3)请简要分析C工业基地建立大型钢铁工业中心的有利条件。 (4分) ①位于长江入海口附近,江海联运,交通便利;②市场广阔, 对钢铁需求量大;③工业历史悠久,工业基础雄厚。(每点2 分,答对两点得4分)
A
B
C
D
16.“百川东到海,何时复西归”,反映了我国的地势特征
是( A )
A.西高东低,大致呈阶梯状 B.东高西低,大致呈阶梯状
C.中部高,四周低
D.以山地、平原为主
17.下列诗句所描写的景观,能够反映我国南北气温差异的 是( C ) A.羌笛何须怨杨柳,春风不度玉门关 B.人间四月芳菲尽,山寺桃花始盛开 C.才从塞北踏春来,又向江南看杏花 D.早穿皮袄午穿纱,围着火炉吃西瓜
2.从香港到北京的高铁路线没有经过的省区是( C )
A.湖南、湖北
B.河南、河北
C.山西、山东
D.广东、河南
3.广深港高铁的开通,对香港影响最显著的是( A )
A.旅游业
B.金融业
C.工业
D.农业
纪录片《航拍中国》以航拍俯瞰视角,呈现祖国大地无 与伦比的美:960多万平方千米的辽阔,300万平方千米的浩 瀚,四季轮转,冰火交融……读“中国政区图”(图2),完 成4~5题。
图9
图10
25.根据茶树生长的适宜条件推断,江苏省最适宜茶树生长 的地区是( A ) A.太湖周边地区 B.洪泽湖周边地区 C.淮河以北地区 D.东部沿海地区 26.“高山出好茶”,江苏名茶也多产于丘陵山地,主要原 因是( B ) ①山地易排水 ②山地日照足 ③山地风力大 ④山地云雾 多 A.①② B.①④ C.②③ D.②④

初二上册英语期末总复习习题

初二上册英语期末总复习习题

初二上册英语期末总复习习题一.单项选择。

湘郡培粹实验中学2019-2020-1初二英语第一次月考1. __________ beautiful umbrella it is!A. What anB. What aC. How2. --- Did Qingdao show __________ the world during the SCO Summit?--- Sure! Her beauty, high technology and rapid development.A. anything specialB. something specialC. special anything3. A number of the foreigners __________ in our city. And sixty percent of them __________ women.A. live; areB. Live; isC. lives; are4. --- How hard you are working Helen!--- President Xi said that __________ we are, __________ we will be.A. the hard-working; the luckyB. the more hard-working; the luckierC. more hard-working; luckier5. We were late for the meeting __________ the heavy rain.A. BecauseB. because ofC. so that6. He didn’t fe el like __________ anything when he was ill.A. eatB. to eatC. eating7. Tara is __________ than Sara.A. heavierB. more heavyC. much more heavy8. I was so tired that I could __________ walk.A. nearlyB. hardlyC. really9. --- I usually go to work by bus and it usually gets into a traffic jam.--- You can try __________ the subway. It is faster.A. takingB. takeC. to take10. we couldn’t buy anything because __________ of the shops were open.A. noneB. no oneC. all一中双语2019-2020-1初二英语第一次月考11. --- Would you like to go to the movies with me?—I am sorry. I am busy with drawing umbrella on Internet.A.an; aB. a; anC. an; the12. --- Jack, do you try to keep a every day?--- Oh, yes. It’s good for my wr iting.A. habitB. diaryC. program13. --- Sally, how often do you use the Internet ?--- __________.A. TwiceB. Twice timesC. Twice a week14. --- Why do you want another job, Mark?--- Because I think the job is __________ and it always makes me feel __________.A. boring; boredB. boring; boringC. bored; boring15. --- Will we see __________ on the 70th anniversary (周年纪念日) of the founding of China?--- Sure! I think we’ll have a wonderful day.A. something specialB. anything specialC. special anything16. --- __________ does Helen practice playing the piano every day?--- Two hours.A. How oftenB. How longC. How many17. __________ it was very cold, my friend still went swimming in river this morning.A. Although; butB. Although; /C. /; although18. --- Look! Trees are green and flowers are everywhere.--- __________ beautiful place(it is!)A. How aB. WhatC. What a19. --- Here is your ID card, passport, wallet and...--- Oh, Mom. I can take care of __________.A. myB. myselfC.me20 The first China-Africa Economic and Trade Expo (中非经贸博览会) opened __________ Changsha __________ June 27, 2010.A.in; onB. at; inC. in; at湘郡中学2019-2020-1八年级英语第一次月考21. About 80 percent of the information from them ________ unreal, so don’t trust them.A. isB. areC. be22. In the dancing competition, Nancy dance as ______ as Alice, but Jane danced even _______ than any other girl.A. good; betterB. well; betterC.better; well23. __________ useful umbrella it is. It’s just for these rainy days.A. What aB. HowC. What an24. --- __________ does Jim play basketball?--- Once a week.A. How oftenB. How many .C. How far25. Of the three students, one is from London, and __________ two are from Paris.A. the otherB. otherC. another26. Little Torn wants to use the comput er, but his parents don’t think he is __________.A. old enoughB. enough oldC. enough age27. My sister Sally __________ at home and studied for the English test last night.A. is stayingB. stayC. stayed28. When we heard about the __________ news. We were really __________.A. excited; excitingB. excite; excitedC. exciting; excited29. __________ the car is very old, it still works well.A. HoweverB. AlthoughC. Because30. Jack wondered __________.A. where did you go on vacationB. where you went on vacationC. where did you went on vacation广益中学2019-2020-1初二第一次月考31. --- When is the school Art Festival party?--- It’s usually __________ the evening __________ December 20th.A. in; onB. on; inC. on; of32. --- __________ times do you go back to your hometown in a year?--- Twice.A. How oftenB. How manyC. How long33. How about taking a trip to Shanghai? It has __________ for everyone.A. somethingB. everythingC. anything34. --- Wow, another birthday gift? What’s inside the box?--- Eh, I’m not sure. It __________ a pair of Air Jordan sports shoes.A. should beB. maybeC. may be35. In order to pass the exam, you need to work __________ Julie.A. as hard-working asB. as harder asC. as hard as36. He didn’t feel like __________ English; but now he derides __________ English well.C A. to speak; to learn B. speaking; to learn C. to speak; learning37. __________ good time we had on Sports Day!A. What aB. WhatC. How38. Bill always __________ junk food two years ago, but now he __________ healthy food.A. eats; likesB. ate; likedC. ate; likes39. --- Have you listened to Jay Chou’s new song “Won’t Cry”?--- Yes, I have. __________ I am a big fan of Jay, I don’t like this song at all.A. Because .B. AlthoughC. However40. --- I wonder __________ to my daughter on WeChat.--- It’s easy. Just click (点击) here and she will receive it.A. where I can send a red envelopeB. when can I send a red envelopeC. how I can send a red envelope青竹湖湘一2019-2020-1初二英语第一次月考41. --- __________ enjoyable trip we had in Changsha!--- __________ Yeah! I can’t agree more.A. What anB. What aC. How42. --- Everyone in our class __________ Mike a lot.--- Indeed. He is always telling us __________ in the class.A. likes, something interestingB. like, anything interestingC.likes,interesting anything43. There is __________ paper in the box. Will you go and get __________ for me?A. a little; someB. a few; anyC. little; some44. He doesn’t have __________ to prepare for the exam, bu t he is still __________.A. enough time; carefully enoughB. time enough; enough carefulC. enough time; careful enough45. --- He was such a hard-working student.--- So he was. He always __________ some books when he was free.A. readsB. readC. has read46. The best way __________ our spoken English is through __________.A. improve; hard workB. to improve; hard workC. to improve; work hard47. Students jump up and down in excitement __________ the coming sports meeting.A. althoughB. becauseC. because of48. The geographic jigsaw competition (地理拼图大赛) was so funny that many of the students in our class want to have __________ try.A. the otherB. anotherC. other49. I feel like __________ English well, so I will not spend too much time __________ video games.A. learning; to playB. learning; playingC. to leant; playing50. --- I wondered __________. --- Only Twice.A. how often he used the InternetB. how many times he used the InternetC. when he used the Internet51. -Look.There is umbrella here. Is it yours?-Oh, no. umbrella is Lucy's.A. an, The B a, The C.an,不填52.Where you go vacation?A.Did,atB. did, onC. do ,on53.I don't care if my friends are similar me or different me.A. to,asB. as,fromC.to,from54.--How are you today?--Much ,I think I can go to school tomorrow.A. goodB. wellC.better55.-- do you do exercise?--Twice a year.A. How longB. How manyC. How often56.He wants to do .A .something interesting B.interesting something C. anything interestng57. he is very tired, he still works hard.A. But ,/B.Although, but amC.Although58.Look.This house is as as that one.A. the most beautifulB. more beautiful C beautiful59.Tina's hair is much longer .A. than mineB. as mineC.than me60.Who is , you your brother ?A. funny,orB. funnier, orC. funnier, and二.中译英。

人教版八年级数学上册期末考试综合复习练习题(含答案)

人教版八年级数学上册期末考试综合复习练习题(含答案)

人教版八年级数学上册期末考试综合复习练习题(含答案)一、选择题(本题共10个小题,每小题3分,共 30分。

下列各题,每小题只有一个选项符合题意。

)1. 下面四个图形中,是轴对称图形的是( ) A. B. C. D.2. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )A. 30.15610-⨯B. 31.5610-⨯C. 41.5610-⨯D. 415.610-⨯3. 下列计算正确的是( )A. x •x 3=x 4B. x 4+x 4=x 8C. (x 2)3=x 5D. x ﹣1=﹣x 4. 若分式224x x +-有意义,则x 的取值范围是( ) A. x ≠2 B. x ≠±2 C. x ≠﹣2 D. x ≥﹣25. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )A. 3B. 4C. 6D. 86. 若点A (﹣3,a )与B (b ,2)关于x 轴对称,则点M (a ,b )所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,已知∠ABD =∠BAC ,添加下列条件还不能判定△ABC ≌△BAD 的依据是( )A. AC =BDB. ∠DAB =∠CBAC. ∠C =∠DD. BC =AD8. 计算a ﹣2b 2•(a 2b ﹣2)﹣2正确的结果是( ) A. 66a b B. 66b a C. a 6b 6 D. 661a b9. 如图,等边ABC ∆的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为( )A. 15︒B. 22.5︒C. 30D. 45︒10. 瓜达尔港是我国实施“一带一路”战略构想的重要一步,为了增进中巴友谊,促进全球经济一体化发展,我国施工队预计把距离港口420km 的普通公路升级成同等长度的高速公路,升级后汽车行驶的平均速度比原来提高50%,行驶时间缩短2h ,那么汽车原来的平均速度为( )A. 80km/hB. 75km/hC. 70km/hD. 65km/h二.填空题(共5题,总计 15分)11. 分解因式:5x 4﹣5x 2=________________.12. 若4,8x y a b ==,则232x y -可表示为________(用含a 、b 的代数式表示).13. 若△ABC ≌△DEF ,△ABC 的周长为100,AB =30,DF =25,则BC 为 ________.14. 如图,DE AB ⊥于E ,AD 平分BAC ∠,BD DC =,10AC =cm ,6AB =cm ,则AE =______.15. 如图,△ABC 中,∠BAC =60°,∠BAC 的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE ⊥AB 交AB 的延长线于E ,DF ⊥AC 于F ,现有下列结论:①DE =DF ;②DE +DF =AD ;③DM 平分∠EDF ;④AB +AC =2AE ;其中正确的有________.(填写序号)三.解答题(共8题,总计75分)16. (1)计算:()32(2)32x x x x ---; (2)分解因式:229()()6()x x y y y x xy y x ---+-;17. 先化简,再求值:221x 4x 41x 1x 1-+⎛⎫-÷ ⎪--⎝⎭,其中x=3.18. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于y 轴对称的111A B C △.(2)写出点111,,A B C 的坐标(直接写答案).(3)111A B C △的面积为___________19. 如图,已知BF ⊥AC 于F ,CE ⊥AB 于E ,BF 交CE 于D ,且BD =CD ,求证:点D 在∠BAC 的平分线上.20. 如图,直线m 是中BC 边的垂直平分线,点P 是直线m 上的一动点,若6AB =,4AC =,7BC =.(1)求PA PB +的最小值,并说明理由.(2)求APC △周长的最小值.21. [阅读理解]我们常将一些公式变形,以简化运算过程.如:可以把公式“()2222a b a ab b +=++”变形成()2222a b a b ab +=+-或()()2222ab a b a b =+-+等形式,问题:若x 满足()()203010x x --=,求()()222030x x -+-的值. 我们可以作如下解答;设20a x =-,30b x =-,则()()203010x x ab --==, 即:()()2030203010a b x x +=-+-=-=-.所以()()()()222222203021021080x x a b a b ab -+-=+=+-=--⨯=. 请根据你对上述内容的理解,解答下列问题:(1)若x 满足()()807010x x --=-,求()()228070x x -+-的值. (2)若x 满足()()22202020174051x x -+-=,求()()20202017x x --的值.22. 一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果的单价是多少元?(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a %销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a 的最大值.23. 如图,已知和均为等腰三角形,AB AC =,AD AE =,将这两个三角形放置在一起,使点B ,D ,E 在同一直线上,连接CE .(1)如图1,若50ABC ACB ADE AED ∠=∠=∠=∠=︒,求证:BAD CAE ≌;(2)在(1)的条件下,求BEC ∠的度数;拓广探索:(3)如图2,若120CAB EAD ∠=∠=︒,4BD =,CF 为BAD 中BE 边上的高,请直接写出BEC ∠的度数和EF 的长度。

八年级语文上册 期末复习专题 现代文阅读类 试卷(含答案解析)

八年级语文上册 期末复习专题 现代文阅读类 试卷(含答案解析)

八年级语文上册期末复习专题现代文阅读类试卷(含答案解析)八年级语文上册期末复习专题现代文阅读类试卷一、阅读下面文章,完成文后各题。

厄尔尼诺的前兆①2001年入冬后,由于北半球“经向"环流发展,偏北气流加强,使我国12月份的气温明显偏低。

今年1月份,大气环流发生了明显转折,影响我国的冷空气活动路径偏北偏东,而南方暖空气随之加强,使我国很多地方暖气融融。

②大气环流之所以发生阶段性调整.乃至出现异常,是与天体活动、火山、地震、大陆积雪触化、海洋温度升高、二氧化碳增多等诸多因素有关,而厄尔尼诺则为其中的一个因素。

③厄尔尼诺是指处于赤道区域的太平洋中、东部海水异常变暖的现象。

正常情况下,位于南美厄瓜多尔、秘鲁以西的太平洋东部的海水温度比位于印尼附近的太平洋西部要高8-9℃。

但在特定条件下,如赤道附近由东向西吹的信风减弱,甚至出现西风,则太平洋西部的暖海水将被吹向东岸,使厄瓜多尔、秘鲁附近的海水持续上升一段时间,这就叫厄尔尼诺.由于海温变化对大气温度影响甚大,如100米厚的海水升温0.1℃所释放的热量足以使其上空5000米厚的大气升温6℃,所以厄尔尼诺所引起的气象异常可波及全球。

④从去年秋冬开始,西太平洋赤道附近的西风渐渐加强,而东太平洋的东风不断减弱,使中、东太平洋赤道附近海面50米以内的水温上升。

至今年1月中旬,厄瓜多尔以西部分海面的温度已出现正距平(比多年均略高)。

国际上一般将赤道太平洋中、东部大面积海温比同期平均高出0.5℃,且持续6个月以上,才称为一次厄尔尼诺。

但目前已出现厄尔尼诺的某些前兆。

⑤据美国国家海洋和大气管理局设置在环太平洋沿岸的监测器近日显示,今年1月份这一海城的海水出现了反常升温,说明这一地区海城上空的气流出现了异常变化.而这种变化也是造成厄尔尼诺现象的原因。

⑥厄尔尼诺现象的发生通常是2至7月,每次强度和时间都不同,有时不会带来严重的后果,但有时则会造成巨大的自然灾害。

资料记载,发生厄尔尼诺的当年容易干旱,而次年则有洪涝,我国历史上著名的1954、1969、1998年等大涝年,都是厄尔尼诺发生后的次年。

八年级英语上册期末复习试卷有答案

八年级英语上册期末复习试卷有答案

八年级英语上册期末复习试卷有答案英语是一门要多做多练的学科,学生只有多做一些试题才有可能提高成绩。

小编为大家推荐了相关试卷,希望可以帮助到大家!八年级英语上册期末复习试卷一、听力部分(每小题1分,满分20分)(一)听句子,选出正确的应答语。

(句子读一遍)1. A. Oh, it’s hard. B. By listening to the radio. C.I’ve learned a lot that way.2. A. Yes, I do. B. No, I didn’t. C. I think so.3. A. It’s hers. B. They must be T om’s. C. Yes, they are.4. A. He was very short. B. He liked football very much.C. He was very sad.5. A. Yes, I did. B. I took a bus. C. I remember.(二)听对话,选择最佳答案。

(对话读两遍)6. What’s the price of the T-shirt?A. 5 yuan.B. 10 yuan.C. 20 yuan.7. What color does Tom like better?A. Red.B. Blue.C. Yellow.8. Why did Mr Smith go to Nanjing?A. To visit a factory.B. To give a talk.C. To have a holiday.9. What kind of music does Linda like?A. Rock music.B. Country music.C. Light music.10. What does the man’s answer mean?A. The woman can’t sit beside him.B. The woman can sit beside him.C. Someone else will sit beside him.(三)听对话,选择最佳答案。

八年级上册数学期末复习作业

八年级上册数学期末复习作业

小练习(1)定时:40min 姓名___________ 分数____________一.选择题(共5小题)1.(5分)若n边形的内角和与外角和相加为1800°,则n的值为()A.7B.8.C.9D.102.(5分)如图,在四边形ABCD与A'B'C′D'中,AB=A'B',∠B=∠B',BC=B'C'.下列条件中:①∠A=∠A′,AD=A′D′;②∠A=∠A',CD=C'D';③∠A=∠A′,∠D=∠D′;④AD=A′D′,CD=C′D′.添加上述条件中的其中一个,可使四边形ABCD≌四边形A′B′C′D′,上述条件中符合要求的有()A.①②③B.①③④C.①④D.①②③④3.(5分)如图,点D是△ABC内一点,AD=CD,∠ADB=∠CDB,则以下结论错误的是()A.∠DAC=∠DCAB.AB=ACC.BD平分∠ABCD.BD与AC的位置关系是互相垂直4.(5分)在Rt△ABC中,∠C=90°,有一点D同时满足以下三个条件:①在直角边BC上;②在∠BAC的平分线上;③在斜边AB的垂直平分线上,那么∠B为()A.15°B.30°C.45°D.60°5.(5分)如图,△ABC中,AC=DC=3,∠BAC的角平分线AD⊥BD于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为()A.1.5B.3C.4.5D.9二.填空题(共4小题)6.(5分)若三角形的三边长a,b,c满足(a﹣c)2+(a﹣c)b=0,则这个三角形形状一定是三角形.7.(5分)如图,在锐角三角形ABC中,AB=4,∠BAC=60°°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM+MN取得最小值时,AN=.8.(5分)若2a=8b=32c,则的值是.9.(5分)若关于x的分式方程的解是正数,则m的取值范围为.三.解答题(共6小题)10.(15分);(﹣6x2)2+(﹣3x)3•x.;11.(10分)(1)因式分解:﹣x2+4x﹣4;(2)解分式方程:=.12.(4分)已知△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC关于y轴对称的△A1B1C1,并直接写出点C的对应点C1的坐标;(2)若△ABC平移后得△A2B2C2,点A的对应点A2的坐标为(﹣2,﹣2).①点B的对应点B2的坐标为;②在图中画出△A2B2C2.13.(4分)如图:如图,△ABC是边长为4的等边三角形,点P在AB上,过点P作PE⊥AC,垂足为E,延长BC 到点Q,使CQ=P A,连接PQ交AC于点D,求DE的长.14.(6分)如图,A、B两点分别在射线OM,ON上,点C在∠MON的内部,且AC=BC,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)若AD=3,BO=4,求AO的长.15.(6分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点.(1)求证:△ABE≌△DBC.(2)试探索BM与BN的关系.。

人教八年级数学上册期末复习:基础题训练(含解析)

人教八年级数学上册期末复习:基础题训练(含解析)

2022-2023学年人教版八年级数学期末复习基础题训练一、单选题1.一个多边形的内角和与外角和相等,这个多边形是( )A .三角形B .四边形C .五边形D .六边形2.已知三角形的两边长分别为5cm 和8cm ,则第三边的长可以是( )A .2cmB .3cmC .6cmD .13cm3.如图,直线m n ∥,1100∠=︒,230∠=︒,则3∠=( )A .70︒B .110︒C .130︒D .150︒4.八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km .那么杨冲,李锐两家的直线距离不可能...是( ) A .1km B .2km C .3km D .8km5.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,这两个三角形完全一样的依据是( )A .SASB .ASAC .AASD .SSS6.三个全等三角形按如图的形式摆放,则123∠+∠+∠的度数是( )A .90B .120C .135D .1807.如图,在△ABD 中,AD =AB ,△DAB =90°,在△ACE 中,AC =AE ,△EAC =90°,CD ,BE 相交于A .4个B .3个C .2个D .1个8.如图,等腰直角三角形ABC 的直角顶点C 与坐标原点重合,分别过点A 、B 作x 轴的垂线,垂足为D 、E ,点A 的坐标为(-2,5),则线段DE 的长为( )A .4B .6C .6.5D .79.如图,将一个长方形纸条折成如图的形状,若已知△1=110°,则△2为( )A .105°B .110°C .55°D .130°10.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若CD BE ∥,150∠=︒,则2∠的度数是( )A .40︒B .80︒C .90︒D .100︒11.下列运算正确的是( )A .23a a a +=B .()3322a a =C .32a a a ÷=D .23·a a a12.如图所示,在边长为a 的正方形上剪去一个边长为b 的小正方形(a b >),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式为( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+ D .()2a ab a a b -=- 13.若多项式21x ax --可分解为()()2x x b -+,则a b +的值为( )A .—2B .—1C .1D .214.化简22222a b a ab b --+的结果是:( ) A .2a b ab- B .a b a b +- C .a b a b -+ D .2a b ab+ 15.把分式+x x y 中的x ,y 都扩大2倍,则分式的值( ) A .扩大2倍 B .扩大4倍 C .缩小一半 D .不变16.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶12千米,若设甲车的速度为x 千米/时,依题意列方程正确的是( )A .304012x x =+B .304012x x =+C .304012x x =-D .304012x x =- 二、填空题17.等腰三角形一边长为5,另一边长为7,则周长为__________.18.如图,△ABC 中,△A =40°,△B =72°,CE 平分△ACB ,CD △AB 于D ,DF △CE ,则△CDF =_________度.19.如图是两个全等的三角形,图中字母表示三角形的边长,则1∠的度数为 __.20.如图,四边形ABCD ,连接BD ,AB △AD ,CE △BD ,AB =CE ,BD =CD .若AD =5,CD =7,则BE =________.21.等腰三角形有一个内角为50︒,那么它的顶角的度数为 _____.22.如图,在ABC ∆中,,AB AC 的垂直平分线分别交BC 于点E 、F . 若130BAC ∠=︒则EAF ∠=___________.23.如图是一个长和宽分别为a 、b 的长方形,它的周长为14、面积为10,则a 2b +ab 2的值为_____.24.分解因式:x 2﹣5x ﹣6=_____.25.若分式242a a -+的值为0,则a 的值为______. 26.若关于x 的分式方程233x m x =++有负数解,则m 的取值范围为______. 三、解答题27.一个多边形的内角和比它的外角和的3倍少180︒,求这个多边形的边数.28.解下列方程: (1)122x x =-; (2)127133x x x--=--29.先化简,再求值:2()(2)(2)x y y x y x --+-,其中=1x -,8y =.30.已知,如图,在△ABC 中,AD ,AE 分别是△ABC 的高和角平分线.(1)若△ABC =30°,△ACB =60°,求△DAE 的度数;(2)写出△DAE 与△C ﹣△B 的数量关系 ,并证明你的结论.31.如图,在ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得EF ED =,连接CF .(1)求证:CF AB ∥;(2)若50ABC ∠=︒,连接,BE BE 平分,ABC AC ∠平分BCF ∠,求A ∠的度数.32.如图,在ABC 中,AB AC =,36A ∠=︒,CD 平分ACB ∠,交AB 于点D ,E 为AC 中点.(1)求证:ACD是等腰三角形;(2)求EDC的度数.参考答案1.B解:设多边形的边数为n .根据题意得:(n −2)×180°=360°,解得:n =4.故选:B .2.C设第三边的长为x ,△ 角形的两边长分别为5cm 和8cm ,△3cm <x <13cm,故选C .3.C设△1的同位角为为△4,△2的对顶角为△5,如图,△m n ∥,△1=100°,△△1=△4=100°,△△2=30°,△2与△5互为对顶角,△△5=△2=30°,△△3=△4+△5=100°+30°=130°,故选:C .4.A以杨冲家、李锐家以及学校这三点来构造三角形,设杨冲家与李锐家的直线距离为a , 则根据题意有:5-353a +<<,即28a <<,当杨冲家、李锐家以及学校这三点共线时,538a =+=或者532a =-=,综上a 的取值范围为:28a ≤≤,据此可知杨冲家、李锐家的距离不可能是1km , 故选:A .5.B解:由题意得,有两角以及两角的夹边是已知, 因此可以利用ASA 画出一个全等的三角形, 故选:B .6.D解:如图所示:△图中是三个全等三角形,△48,67∠=∠∠=∠,又△三角形ABC 的外角和123456360︒=∠+∠+∠+∠+∠+∠=, 又578180︒∠+∠+∠=,即564180∠+∠+∠=︒, △123360180018︒︒∠+∠+=∠=-︒,故选:D .7.B△90DAB EAC ∠=∠=︒△DAB BAC EAC BAC ∠+∠=∠+∠△在DAC △和BAE 中===AD AB DAC BAE AE AC ∠∠⎧⎪⎨⎪⎩△DAC BAE ≅△DC BE =,①正确ADF ABE ∠=∠△AB ,AE 不确定相等△ABE ∠和AEB ∠不确定相等 △ABD △和ACE △是等腰直角三角形 △45ADB AEC ∠=∠=︒△45BDC ADC ∠=︒-∠,45BEC AEB ∠=︒-∠ △BDC ∠和BEC ∠不确定相等,②错误 △ADF ABE ∠=∠,AOD BOF ∠=∠,90DAB ∠=︒ △90ADF AOD ∠+∠=︒△90ABE BOF ∠+∠=︒△DC BE ⊥,③正确过点AM DC ⊥于点M ,AN BE ⊥于点N △DAC BAE ≅△=AM AN△AF 平分DFE ∠,④正确△①③④正确故选:B .8.D解:△A (-2,5),AD △x 轴, △AD =5,OD =2,△△ABO 为等腰直角三角形, △OA =BO ,△AOB =90°,△△AOD +△DAO =△AOD +△BOE =90°, △△DAO =△BOE ,在△ADO 和△OEB 中,DAO BOE ADO OEB OA BO ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ADO △△OEB (AAS ),△AD =OE =5,OD =BE =2,△DE =OD +OE =5+2=7.故选:D .9.C解:如图,△纸条的两边互相平行,△△1+△3=180°,△△1=110°,△△3=180°−△1=180°−110°=70°, 根据翻折的性质得,2△2+△3=180°,△△2=()118070552⨯︒-︒=︒, 故选:C .10.B解:延长BC 至G ,如下图所示,由题意得,AF △BE ,AD △BC , △AF∥BE ,△△1=△3.△AD∥BC ,△△3=△4,△△4=△1=50°.△CD∥BE ,△△6=△4=50°.△这条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,△△5=△6=50°,△△2=180°-△5-△6=180°-50°-50°=80°.故选:B .11.C解:A 、a 和2a 不是同类项,无法合并,故本选项错误,不符合题意; B 、()3328a a =,故本选项错误,不符合题意;C 、32a a a ÷=,故本选项正确,符合题意;D 、23a a a -=-,故本选项错误,不符合题意;故选:C12.A解:左边图形的阴影部分的面积=a 2-b 2 右边的图形的面积1222b a a b=(a +b )(a -b ).△()()22a b a b a b -=+-, 故选:A .13.D解:△(x -2)(x +b )=x 2+bx -2x -2b =x 2+(b -2)x -2b =x 2-ax -1,△b -2=-a ,-2b =-1,△b =0.5,a =1.5,△a +b =2.故选:D .14.B解:22222a b a ab b--+()()()2a b a b a b -+=- a b a b +=- 故选:B15.D 解:()22222x x x x x y x y x y x y===++++, 故选:D .16.A解:设甲车的速度为x 千米/小时,则乙车的速度为()12x +千米/小时,由题意得: 304012x x =+ 故选:A .17.17或19△7-5<第三边<7+5,△2<第三边<12,△该三角形是等腰三角形,△第三边为5或7,△周长为5+5+7=17或5+7+7=19,故答案为:17或19.18.74解:△△A =40°,△B =72°,△△ACB =180°-40°-72°=68°,△CE 平分△ACB ,△△BCE =12△ACB =12×68°=34°,△CD △AB 于D ,△△BCD +△B =90°,△△BCD =90°-△B =90°-72°=18°,△△DCE =△BCE -△BCD =34°-18°=16°,△DF △CE ,△△CFD =90°,△△DCF +△CDF =90°,△△CDF =90°-△DCF =90°-16°=74°,故答案为:74.19.70︒或60︒解:如图所示,由三角形内角和定理得,2=1805060=70∠--︒︒︒︒,两个三角形全等,1=2=70∴∠∠︒,或160∠=︒,故答案为:70︒或60︒.20.2 解: AB △AD ,CE △BD ,90BAD CED ∴∠=∠=︒,在Rt △ABD 与Rt ECD △中,AB CE BD CD =⎧⎨=⎩, ∴Rt Rt ABD ECD ≌,AD =5,CD =7,∴5ED AD ==,BD =CD =7,2BE BD ED ∴=-=故答案为:221.50︒或80︒解:当50︒角为顶角,顶角度数即为50︒;当50︒为底角时,顶角18025080=︒-⨯︒=︒.故答案为:50︒或80︒.22.80︒解:△在ABC ∆中,,AB AC 的垂直平分线分别交BC 于E 、F , △,AE BE AF CF ==,△B BAE ∠=∠,C CAF ∠=∠,△130BAC ∠=︒,△18050B C BAC ︒︒∠+∠=-∠=,△50BAE CAF ︒∠+∠=,△()EAF BAC BAE CAF ∠=∠-∠+∠1305080︒︒︒=-=.故答案为:80︒.23.70解:△长宽分别为a ,b 的长方形的周长为14,面积为10, △a +b =7,ab =10,△()2210770a b ab ab a b +=+=⨯=.故答案为70.24.()()61x x -+解:x 2﹣5x ﹣6()()61x x =-+故答案为:()()61x x -+25.2解;△分式242a a -+的值为0, △24020a a ⎧-=⎨+≠⎩, △2a =,故答案为;2.26.2m >且3m ≠-解:去分母得:2633x x m +=+,解得:63x m =-,根据题意得:630m -<,且633m -≠-,解得:2m >且3m ≠-.故答案为:2m >且3m ≠-.27.解:设这个多边形的边数是n ,依题意得(2)1803360180n ︒︒︒-⨯=⨯-,261n -=-,7n =.△这个多边形的边数是7.28.(1)解;122x x=- 两边同时乘以()2x x -得:()22x x =-,去括号得:24x x =-,移项得:24x x -=-,合并同类项得:4x -=-,系数化为1得;4x =,经检验,4x =是原方程的解,△原方程的解为4x =;(2)解;127133x x x--=-- 两边同时乘以3x -得:()()1327x x --=--,去括号得:1327x x -+=-+,移项得:2713x x -+=--,合并同类项得:3x =,经检验,3x =不是原方程的解,△原方程无解.29.解:2()(2)(2)x y y x y x --+-,2222(2)(4)x xy y y x =-+--252x xy =-,1x =-,8y =.∴原式5121821=⨯+⨯⨯=.30.解:(1)△△B +△C +△BAC =180°,△ABC =30°,△ACB =60°, △△BAC =180°﹣30°﹣60°=90°.△AE 是△ABC 的角平分线,△△BAE =12 △BAC =45°.△△AEC 为△ABE 的外角,△△AEC =△B +△BAE =30°+45°=75°.△AD 是△ABC 的高,△△ADE =90°.△△DAE =90°﹣△AEC =90°﹣75°=15°.(2)由(1)知,△DAE =90°﹣△AEC =90°﹣(12B BAC∠+∠ )又△△BAC =180°﹣△B ﹣△C .△△DAE =90°﹣△B ﹣12(180°﹣△B ﹣△C ),=12(△C ﹣△B ).31.(1)证明:△E 为AC 中点,△AE CE =,在ADE 和CFE 中,AE CEAED CEF DE EF=⎧⎪∠=∠⎨⎪=⎩,△ADE CFE ≌,△A ECF ∠=∠,△CF AB ∥;(2)解:由(1)得:A ECF ∠=∠,△AC 平分BCF ∠,△ACB ECF ∠=∠,△ACB A ∠=∠,△50ABC ∠=︒,△()1180652A ABC ∠=︒-∠=︒ 32.(1)△36AB AC A ∠==︒,, △72ACB B ∠∠==︒. △CD 平分ACB ∠, △36ACD DCB ∠∠==︒,36A ∠=︒, △CD AD =,即ACD 是等腰三角形; (2)△点E 是AC 的中点, △AE EC =,△90DEC ∠=︒,△90903654BDE ACD ∠∠=︒-=︒-︒=︒.。

八年级上学期语文期末题型复习:05语言运用题(选择题)

八年级上学期语文期末题型复习:05语言运用题(选择题)

八年级上学期语文期末题型复习:05语言运用题(选择题)一、单选题(共30题;共60分)1.根据各种文体对语言的要求,选出语言得体的一项()A. 我市各界对灾区人民甚是关心,积极开展赈灾活动,捐款(包括实物折款),累计已逾百万之巨。

(广播稿)B. 4月18日,该犯与两个哥们儿一同到博物馆踩点回来,合计好行动步骤,当晚乘月黑风高之际,潜入博物馆盗窃有价值文物多件。

(法院公告)C. 梅,落叶乔木,性耐寒,叶子卵形,早春开花,花瓣五片,有粉红、白红等颜色,叶香。

果实球形,青色,成熟的黄色。

味酸。

(工具书)D. 我校教室一共六间,有四间处在风雨飘摇之中,东倒西歪,气息奄奄,人命危浅,朝不虑夕,迫切希望教委伸出援助之手,拨款修整。

(申请报告)2.下面语境中,用语不得体的一项是()张朋邀请小敏参加他爷爷的生日宴会,小敏在宴会上,站起来对爷爷说:“爷爷您好!今天我承蒙张朋的盛情邀请,有幸光临贵府,参加您的生日宴会,这是小小礼物,不成敬意,还请您老人家笑纳,祝您福如东海、寿比南山!”A. 承蒙B. 光临C. 贵府D. 笑纳3.下面情境下语言表达最准确、得体的一项是()(情境)医生为年青时英国作家萨维奇治病。

作家长期潦倒,健康状况极坏,好不容易才保住一条命。

医生最后把一张医疗账单送给他告诉他:“我救了你一条命,你应当有所报答”。

萨维奇递给医生一本书《萨维奇的一生》,并幽默地说:A. 你应该多看看书。

B. 我把命还给你。

C. 医生这么爱财不好,还是多读读书。

D. 读读我的一生,你会知道你提出了一个多么愚蠢的问题。

4.下列各项语言得体的一项是()A. 小明对小刚说:“我忘带饭卡了,你马上把饭卡拿来给我用一下!”B. 雯雯看到姥姥心疼地说:“姥姥,你怎么瘦这么多,不是得了什么癌症吧?”C. 学长的报告很精彩,班会主持人满怀敬佩地说:“听君一席话,胜读十年书!”D. 我们四十多岁的语文老师特别会打扮,每天都花枝招展的出现在课堂上。

八年级上语文期末试题及答案

八年级上语文期末试题及答案

八年级上语文期末试题一、基础知识积累与运用(每题3分,共18分)1.下列词语字形和加点字注音完全正确的一项是A.婆娑.(suō)踌躇.(chú)重峦叠障(zhànɡ)B.虬.枝(qiú)题跋.(bá)潜.滋暗长(qián)C.洨.河(jiáo)丘壑.(hè)摩肩接踵.(zhǒnɡ)D.遏.制(è)推祟.(chónɡ)无动于衷.(zhōnɡ)2.下列句子中,加点的成语使用不恰当的一项是A.黄、红色绸缎的鞋面上,根根分明的虎须,黑白相间的虎眼,小巧的虎嘴虎鼻,额上清晰的“王”字……一双双婴儿鞋上的老虎威风凛凛,惟妙惟肖....引人赞。

B.推进乡村振兴,需要因地制宜....,积极探索符合本地实际的发展路径和方法策略。

C.面对初春的西湖风光,我不由地赞叹:太美了,真是春寒料峭....啊!D.金黄色的银杏叶除了自身美以外,还能自出心裁....地用于作画、制作手工作品,给人们的生活带来更多的诗情画意。

3.下列句子中,标点符号使用有误的一项是A.这是什么精神——这是国际主义的精神;这是共产主义的精神B.杨绛先生走了,但是她的睿智、坚忍、倔强……还有她的温度,永远萦绕在我们心中。

C.没有实力,信心不过是无源之水;没有信心,拼搏只能是无本之木。

D.做隧道的时候,泥土搬到哪里去了呢?为什么墙壁不会塌下来呢?谁都以为蝉的幼虫用有抓的腿爬上爬下,会将泥土弄塌了,把自己的房子塞住。

4.下列句子中,没有语病的一项是A.福州市荣获“全国卫生城市”的原因是全市人民共同努力的结果。

B.期末复习中,不少学生存在着复习重点不突出,时间安排不合理。

C.菲律宾单方面提交南海国际仲裁案,不是为了解决争端,而是妄图否定中国在南海的领土主权。

D.三月的昆明是一年中最美好的时间,每到这个时节就会有大批的中外游客慕名前来。

5.下列说法有误的一项是A.《白杨礼赞》先描写高原的“雄壮”“伟大”,然后写出景色的“单调”,就赞美白杨树来说,这是采用了欲扬先抑的写法。

八年级语文上册期末综合复习测试题(含答案)

八年级语文上册期末综合复习测试题(含答案)

八年级语文上册期末综合复习测试题(含答案)(本试卷共四个大题,25个小题;考试用时150分钟,满分100分)一、语文知识积累(1~6题,每题2分,第7题8分,共18分)1.下列词语中加点字的注音完全正确....的一项是()A.俯瞰.(kàn)濒.临(bīn)踌躇.(zhú)摩肩接踵.(zhǒng)B.斟.酌(zhēn)狼藉.(jié)嶙.峋(lín)惟妙惟肖.(xiào)C.洗涤.(tiáo)雕镂.(lòu)禁锢.(gù)潜.滋暗长(qián)D.簇.拥(cù)蹒.跚(pán)遏.制(è)无动于衷.(zhōng)2. 下列词语中没有错别字.....的一项是()A.推崇冬奥会坦荡如低长途跋涉B.颓塘抗病毒重峦叠嶂慷慨激昂C.倦怠加湿器不折不挠春寒料峭D.赋闲价值观连绵不断何颜悦色3.下列句子中加点成语使用恰当....的一项是()A.语文课上,悠扬的朗读声络绎不绝....地从教室里传出来。

B.泉城济南因地制宜....,光随舟行,景随光至,泉城夜色呈现出独特的美。

C.这个教室的装修方案有创造性、墨守成规....,深受同学们喜爱。

D.演讲比赛中,他引经据典,夸夸其谈....,最终夺得第一名。

4.下列句子中没有语病的一项是()A.一个人能否成为真正的读者,关键在于青少年时期养成良好的阅读习惯。

B.春风吹来,树枝摇曳着,月光、树影一齐晃动起来,发出沙沙的声响。

C.张择端画《清明上河图》,绢本,设色,纵24.8厘米,横528.7厘米。

D.身患重疾的张桂梅老师,在南疆大山里创办了全免费的女子中学,12年来默默奉献,把不少家境困难的女生送进了大学,改变了她们的命运。

5.把下列句子组合成语序合理、语意连贯的一段语,最恰当的一项是( ) ①而且这种现象越来越低龄化②但是互联网时代,汉字却陷入有声无形的窘境③汉字承载了中华民族的文明和智慧④专家学者认为:汉字对智力的开发有巨大作用;认识的汉字越多,联想就越丰富⑤其兼备象形和表意的特点及蕴含的思想和文化内涵是任何科技也无法模拟和取代的⑥现在越来越多的人出现提笔忘字的现象A.③⑥①⑤④②B.③⑤④②⑥①C.⑥①②③④⑤D.⑥②①④③⑤6.下列关于文化常识的表述,不正确的一项是()A.孟子是继孔子之后的儒家学派代表人物,被尊称为“亚圣”,《孟子》中有许多历代传颂的名言警句。

2022-2023学年人教版八年级数学上册期末阶段复习综合训练题(附答案)

2022-2023学年人教版八年级数学上册期末阶段复习综合训练题(附答案)

2022-2023学年人教版八年级数学上册期末阶段复习综合训练题(附答案)一、选择题:(本大题12个小题,共36分)1.要使代数式有意义,x的取值范围是()A.x=2B.x≠2C.x≥2D.x>2 2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.下列计算正确的是()A.a3•(﹣a)2=a5B.(3a3b)2=3a6b2C.a﹣5÷a2=a﹣3D.a÷b×=a4.下列各式的化简中,正确的是()A.B.C.D.5.下列多项式能用完全平方公式进行分解因式的是()A.x2+1B.x2+2x+4C.x2﹣2x+1D.x2+x+1 6.下列变形正确的是()A.=x3B.=C.=x+y D.=﹣17.若分式的值为0,则x的值为()A.x=±1B.x=1C.x=﹣1D.x=08.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.2B.3C.4D.59.下列命题,正确的是()A.三角形三条中线的交点到三角形三个顶点的距离相等B.三角形三条高线的交点到三角形三个顶点的距离相等C.三角形三条角平分线的交点到三角形三个顶点的距离相等D.三角形三边中垂线的交点到三角形三个顶点的距离相等10.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x个鸡蛋,根据题意下列方程正确的是()A.B.C.D.11.若点A(m﹣n,m﹣2n)与点B(m﹣3n,1﹣m)关于y轴对称,则点P(m,n)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限12.若关于x的不等式组无解,且关于y的分式方程=﹣1有非负整数解,那么所有满足条件的整数m的个数是()A.1B.2C.3D.4二、填空题(本大题共6个小题,共24分)13.初二某班物理课堂上,老师测得一根头发的直径约为0.000075米,请将0.000075米用科学记数法表示为米.14.因式分解:x3﹣x=.15.如图,实数a、b在数轴上对应的点分别为A、B,则=.16.若+=﹣3,则的值为.17.如图,在△ABC中,∠ACB=4∠A,点D在边AC上,将△BDA沿BD折叠,点A落在点A'处,恰好BA'⊥AC于点E且BC∥DA',则∠BDC的度数为度.18.某景区内有一条风光极好的河道和一个人工湖,当地政府因地制宜,计划在景区内打造游船项目,设计者为了让游客达到最好的游船体验,在设计路线时做了两次试验,第一次试验:游船从河道上游A处顺流而下到B处,再经过平静的人工湖到达C处,用时2.5小时;第二次试验:这艘游船由C处出发经过平静的人工湖到B,再到A共用5小时.某天,该人工湖进行开闸放水,人工湖的湖水放水速度恰好与河道中的水流速度一样,从B 流向C,这艘游船从A到B再穿过人工湖到C只需要2小时,在这样的条件下,这艘游船由C按原路返回A,共需要小时.三、解答题(本大题共8个小题,共60分)19.计算:(1)(a+b)2﹣a(2b﹣a);(2)(π﹣3.14)0+(﹣)﹣3+(1﹣2).20.(1)计算:(+)÷;(2)解方程:﹣=1.21.先化简,再求值:÷(a+2b﹣),其中a,b满足+(b+2)2=0.22.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,且B,D,E在同一直线上,连接EC.(1)求证:BD=EC.(2)若∠ACB=55°,求∠BEC的度数.23.小白同学为了能在全国大学英语六级考试中获得好的成绩,于是打算利用若干个星期的时间做完144篇阅读练习.当计划开始的时候,她发现实际每个星期完成阅读练习的量是原计划的1.5倍,这样可以提前4个星期完成她的计划.(1)问实际每个星期完成阅读练习量是多少篇?(2)如果小白同学按实际完成阅读练习的速度持续了3个星期之后,打算再次提高速度,那么她在之后的每个星期至少要完成多少阅读练习,才能使她在6个星期内至少完成144篇阅读练习.24.代数式求值是在已知字母的值或限制条件下,求出给定代数式的值.为了方便求值,我们常常将所求代数式化简或把限制条件进行变形,再将变形后的条件代入化简后的代数式求值.例如:当a=﹣1时,求2a3+7a2﹣2a﹣12的值.为解决本道题,若直接把a=﹣1代入所求式子进行计算,计算量较大,我们可以通过对条件和所求式子变形,对本题进行解答:解:∵a=﹣1,∴a+1=.∴(a+1)2=()2.∴a2+2a﹣4=0.方法一:∵a2+2a﹣4=0,∴a2=4﹣2a.∴原式=2a•a2+7a2﹣2a﹣12=2a(4﹣2a)+7a2﹣2a﹣12=8a﹣4a2+7a2﹣2a﹣12=3a2+6a﹣12=3(a2+2a)﹣12=0.方法二:∵a2+2a﹣4=0,∴a2+2a=4.∴原式=2a(a2+2a)+3a2﹣2a﹣12=8a+3a2﹣2a﹣12=3a2+6a﹣12=3(a2+2a)﹣12=3×4﹣12=0.…本题还有其它类似方法.请参照以上解决问题的思路和方法,解决以下问题:(1)当x2+x﹣1=0时,x3+2x2+5=.(2)当x2﹣2020x+1=0时,求x2﹣2019x+的值.(3)当a=时,求a3﹣2a+3的值.25.如图,在等腰△ABC中,CA=CB,点D是AB边上一点,连接DC,且DA=DC.(1)如图1,CH⊥AB,若∠ACB=78°,求∠HCD的度数.(2)如图2,若点E在BC边上且DE=DB,连接AE.点M为线段CE的中点,过M 点作MN∥DE交AB于点N,求证:CD=BN+DN.26.如图,在平面直角坐标系中,点A和点C在x轴上,点B和点D在y轴上,且点B的坐标为(0,8),∠ABO=30°,已知点D为线段OB的中点,OD=OC,点M为线段AB上一动点,连接MD.(1)当线段MD最小时,求点M的纵坐标;(2)在(1)的条件下,将线段MD所在的直线沿直线CD平移得到直线M′D′,直线M'D'与直线AB交于点P,与直线CD交于点Q,连接PQ、PC,若△PCQ为等腰三角形,请直接写出∠PCQ的度数.参考答案一、选择题:(本大题12个小题,共36分)1.解:由题意得,x﹣2>0,解得x>2.故选:D.2.解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.解:A.a3•(﹣a)2=a3•a2=a5,符合题意;B.(3a3b)2=9a6b2,不符合题意;C.a﹣5÷a2=a﹣7=,不符合题意;D.a÷b×=a••=,不符合题意;故选:A.4.解:A.+=2+,不符合题意;B.×==2,符合题意;C.==,不符合题意;D.==13,不符合题意.故选:B.5.解:x2﹣2x+1=(x﹣1)2,故选:C.6.解:A、结果为x4,故本选项错误;B、不能约分,故本选项错误;C、不能约分,故本选项错误;D、结果是﹣1,故本选项正确;故选:D.7.解:由题意可知:|x|﹣1=0且x2+1≠0,解得x=±1.观察选项,只有选项A符合题意.故选:A.8.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得:DE=3,∴CD=3.故选:B.9.解:A、三角形三条中线的交点到三角形三个顶点的距离相等,错误,本选项不符合题意.B、三角形三条高线的交点到三角形三个顶点的距离相等,错误,本选项不符合题意.C、三角形三条角平分线的交点到三角形三个顶点的距离相等,错误,本选项不符合题意.D、三角形三边中垂线的交点到三角形三个顶点的距离相等,正确,本选项符合题意.故选:D.10.解:设每个甲型包装箱可装x个鸡蛋,﹣=10.故选:B.11.解:∵点A(m﹣n,m﹣2n)与点B(m﹣3n,1﹣m)关于y轴对称,∴,解得:则点P(m,n)所在象限为第一象限.故选:A.12.解:解不等式组得:,因为关于x的不等式组无解,所以m+2≥﹣2m﹣1,解得m≥﹣1;解分式方程得:y=,因为关于y的分式方程=﹣1有非负整数解,所以,即m≤4且m≠0,所以使分式方程有非负整数解的m的值为:2,4.所以所有满足条件的整数m的值为:2,4,共2个.故选:B.二、填空题(本大题共6个小题,共24分)13.解:0.000075=7.5×10﹣5,故答案为:7.5×10﹣5.14.解:原式=x(x2﹣1)=x(x+1)(x﹣1),故答案为:x(x+1)(x﹣1)15.解:由数轴可得:a﹣b<0,b﹣1<0,∴=﹣(a﹣b)﹣(b﹣1)=﹣a+b﹣b+1=1﹣a.故答案为:1﹣a.16.解:∵+=﹣3,∴n+3m=﹣3mn,∴====﹣.故答案为:﹣.17.解:由折叠可知:∠A=∠A',∠ABD=∠A'BD,∵∠ACB=4∠A,∴∠ACB=4∠A',∵BC∥A'D,∴∠CBE=∠A'=∠A,∴∠ACB=4∠CBE,∵BA'⊥CD,∴∠ACB+∠CBE=90°,∴∠CBE=18°,∠C+∠A=90°,∵∠A+∠C+∠ABC=180°,∴∠ABC=90°,∴∠ABE=90°﹣18°=72°,∴∠ABD=36°,∴∠BDC=∠A+∠ABD=18°+36°=54°.故答案为54.18.解:设水速为x,船速为y,返回时间为z,则放水速度为x,第一次试验:顺流没放水时船行驶的路程为:2.5(x+y),顺流放水时船行驶的速度为:2(2x+y),∵船行驶的路程相等,则2.5(x+y)=2(2x+y),解得:y=3x①,第二次试验:逆流没放水时船行驶的路程为:5(y﹣x),逆流放水时船行驶的路程为:z(y﹣2x),∵船行驶的路程相等,则5(y﹣x)=z(y﹣2x)②,由①和②式得:z=10,这艘游船由C按原路返回A,共需10小时.故答案为:10.三、解答题(本大题共8个小题,共60分)19.解:(1)原式=a2+2ab+b2﹣2ab+a2=2a2+b2;(2)原式=1﹣8﹣4=﹣11.20.解:(1)原式=÷=×=;(2)方程两边同时乘以(x﹣1)(x+2)得:x(x+2)﹣3=(x﹣1)(x+2),x2+2x﹣3=x2+x﹣2,x=1.检验:把x=1代入(x﹣1)(x+2)=0,所以原分式方程无解.21.解:原式==×=,∵+(b+2)2=0,∴a+3=0,b+2=0,解得:a=﹣3,b=﹣2,则原式==﹣.22.证明:(1)∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴BD=EC.解:(2)由(1)知:△ABD≌△ACE,∴∠ADB=∠AEC.∵AB=AC,∴∠ABC=∠ACB=55°.∴∠BAC=180°﹣2∠ABC=70°.∴∠DAE=∠BAC=70°.∵AD=AE,∴∠ADE=∠AED=55°.∴∠ADB=180°﹣∠ADE=125°.∴∠AEC=125°.∴∠BEC=∠AEC﹣AED=125°﹣55°=70°.23.解:(1)设白同学原计划每个星期完成阅读练习量是x篇,则实际每个星期完成阅读练习量是1.5x篇,由题意得:﹣=4,解得:x=12,经检验,x=12是原方程的解,则1.5x=18,答:白同学实际每个星期完成阅读练习量是18篇;(2)设小白同学在之后的每个星期要完成x篇阅读练习,才能使她在6个星期内至少完成144篇阅读练习,由题意得:3×18+(6﹣3)m≥144,解得:m≥30,答:小白同学在之后的每个星期至少要完成30篇阅读练习,才能使她在6个星期内至少完成144篇阅读练习.24.解:(1)∵x2+x+1=0,∴x2+x=1,∴x3+2x2+5=x(x2+x)+x2+5=x+x2+5=1+5=6,故答案为6;(2)∵x2﹣2020x+1=0,∴x2+1=2020x,x+=2020,∴x2﹣2019x+=x2﹣2019x+=2020x﹣1﹣2019x+=x+﹣1=2020﹣1=2019;(3)∵a=,∴2a﹣1=∴(2a﹣1)2=5,∴a2﹣a=1,a2﹣1=a,∴a3﹣2a+3=a(a2﹣1)﹣a+3=a2﹣a+3=4.25.解:(1)∵CA=CB,∠ACB=78°,∴∠A=∠B=51°.∵DA=DC,∴∠ACD=∠A=51°,∴∠ADC=180°﹣2∠A=78°.∵CH⊥AB,∴∠CHD=90°.∴∠HCD=180°﹣∠CHD﹣∠ADC=12°;(2)连接AM,如图,∵DE=DB,∴∠DEB=∠B,∴∠BDE=180°﹣2∠B.∵DA=DC,∴∠ACD=∠CAD.∴∠ADC=180°﹣2∠CAD.∵CA=CB,∴∠CAD=∠B,∴∠CDA=∠BDE.∴∠CDA+∠CDE=∠BDE+∠CDE.即∠ADE=∠CDB.在△ADE和△CDB中,,∴△ADE≌△CDB(SAS).∴AE=CB.∵CB=CA,∴AC=AE.∵点M为线段CE的中点,∴AM⊥CE.∵DE∥MN,∴∠NMB=∠DEB.∴∠NMB=∠B.∴BN=MN.∵∠NMB+∠NMA=90°,∠B+∠∠MAN=90°,∴∠NMA=∠NAM.∴AN=MN.∴AN=BN.∴CD=AD=AN+ND=BN+DN.26.解:(1)如图1中,过点D作DH⊥AB于H,过点H作HJ⊥BD于J.∵B(0,8),∴OB=8,∵D是OB的中点,∴BD=OD=4,在Rt△DBH中,BD=4,∠DHB=90°,∠DBH=30°,∴DH=BD=2,BH===2,∵HJ⊥BD,∴HJ=BH=,∴BJ===3,∴OJ=OB﹣BJ=8﹣3=5,∴H(﹣,5),根据垂线段最短可知,当点M与H重合时,DM的值最小,此时M(﹣,5).(2)如图2中,当QP=QC时,设直线CD交AB于T,∵∠PTQ=∠TBD+∠TDB=30°+45°,∴∠PQT=90°﹣75°=15°,∵QP=PC,∴∠QPC=∠QCP,∵∠PQT=∠QPC+∠QCP,∴∠PCQ=7.5°.如图3中,当CP=CQ时,∠PCQ=180°﹣15°﹣15°=150°.综上所述,满足条件的∠PCQ的值为7.5°或150°.。

人教版八年级上册数学期末常考题型复习卷--含答案

人教版八年级上册数学期末常考题型复习卷--含答案

2020年人教版八年级上册数学期末常考题型复习卷一.选择题1.下列长度的三条线段能组成三角形的是()A.1,1,2 B.4,4,9 C.3,4,5 D.6,16,8 2.下列图形中对称轴的条数小于3的是()A. B. C. D.3.目前世界上刻度最小的标尺是钻石标尺,它的最小刻度为0.2nm(其中1nm =10﹣9m),用科学记数法表示这个最小刻度(单位:m),结果是()A.2×10﹣8m B.2×10﹣9m C.2×10﹣10m D.2×10﹣11m 4.下列计算错误的是()A.a2•a=a3B.(ab)2=a2b2C.(a2)3=a6D.﹣a+2a=﹣2a2 5.已知△ABC≌△A1B1C1,若∠C=60°,则∠C1的度数为()A.50°B.60°C.70°D.120°6.一副三角板如图方式摆放,BM平分∠ABD,DM平分∠BDC,则∠BMD的度数为()A.102°B.107.5°C.112.5°D.115°7.如图,在△ABC中,AB的垂直平分线DE交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm,则BC的长度等于()A.5cm B.10cm C.15cm D.20cm8.如图,△ABC的三边AB、BC、CA长分别是10、15、20.其三条角平分线交于点O,将△ABC分为三个三角形,S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:59.要使(6x﹣m)(3x+1)的结果不含x的一次项,则m的值等于()A.2 B.3 C.0 D.110.若x+y=1且xy=﹣2,则代数式(1﹣x)(1﹣y)的值等于()A.﹣2 B.0 C.1 D.211.为了疫情防控需要,某防护用品厂计划生产130000个口罩,但是在实际生产时,……,求实际每天生产口罩的个数,在这个题目中,若设实际每天生产口罩x个,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多生产500个,结果延期10天完成B.每天比原计划少生产500个,结果提前10天完成C.每天比原计划少生产500个,结果延期10天完成D.每天比原计划多生产500个,结果提前10天完成12.如图,在△ABC中,∠ACB=90°,Rt△ABC≌Rt△AB'C',且∠ABC=∠CAB',连接BC',并取BC'的中点D,则下列四种说法:①AC'∥BC;②△ACC'是等腰直角三角形;③AD平分∠CAB';④AD⊥CB'.其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题13.如图,为了安全,建筑工地上的塔吊上部设计成三角形结构,这是利用了三角形的性.14.因式分解:7a2﹣7b2=.15.当x时,分式有意义.16.如图,点D,E分别在线段AB,AC上,CD与BE相交于点P,已知AD=AE.若△ABE≌△ACD,则可添加的条件为.17.在平面直角坐标系中,点A(﹣3,﹣2)关于y轴的对称点为.18.已知25x2+kxy+4y2是一个完全平方式,那么k的值是.19.如图,在△ABC中,BD,CE是角平分线,它们交于点O,∠BOC=140°,则∠A=.20.如图,△ABC中,AB=AC,BC=4,△ABC的面积为20,腰AC的垂直平分线EF分别交边AC,AB于点E,F,若D为BC边的中点,M为线段EF上一动点,则△CDM的周长的最小值为.三.解答题21.计算:(1)3x3y•(2xy2﹣3xy)(2)(a﹣2b)(a2+2ab+4b2).22.因式分解:(1)a2﹣1+b2﹣2ab (2)(p4+q4)2﹣(2p2q2)2.23.解分式方程:(1)(2).24.先化简,再求值:,其中x=2020.25.如图,∠B=30°,∠C=50°,AD平分∠BAC,求∠DAC与∠ADB的度数.26.如图:已知AD=BE,BC=EF,且BC∥EF,请说明线段AC和DF的关系.27.如图,点A,B,C都在网格的格点上,每小方格是边长为1个单位长度的正方形.利用格点和直尺画图并填空:(1)画出格点△ABC关于直线MN轴对称的△A'B'C′;(2)画出△ABC中BC边上的高线AD.28.在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A型口罩数量的2倍,若总费用不超过3800元,则增加购买A型口罩的数量最多是多少个?29.在活动课上我们曾经探究过三角形内角和等于180°,四边形内角和等于360°,五边形内角和等于540°,…,请同学们仔细读题,看图,解决下面的问题:(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=(直接写出结果).(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为(直接写出结果).②如图③,若∠AOD=∠BOC,AB与CD平行吗?请写出理由.30.若x满足(5﹣x)(x﹣2)=2,求(x﹣5)2+(2﹣x)2的值.解:设5﹣x=a,x﹣2=b,则(5﹣x)(x﹣2)=ab=2,a+b=(5﹣x)+(x ﹣2)=3,所以(x﹣5)2+(2﹣x)2=(5﹣x)2+(x﹣2)2=a2+b2=(a+b)2﹣2ab=32﹣2×2=5.请运用上面的方法求解下面的问题:(1)若x满足(8﹣x)(x﹣2)=5,求(8﹣x)2+(x﹣2)2的值;(2)已知正方形ABCD的边长为x,E、F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是35,求长方形EMFD的周长.31.如图,已知△ABC中,AB=AC=9cm,∠B=∠C,BC=6cm,点D为AB的中点.(1)如果点P在边BC上以1.5cm/s的速度由点B向点C运动,同时,点Q 在边CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,经过t秒后,△BPD与△CQP全等,求此时点Q的运动速度与运动时间t.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)参考答案一.选择题1.解:A、1+1=2,不能组成三角形,不符合题意;B、4+4<9,不能组成三角形,不符合题意;C、3+4>5,能组成三角形,符合题意;D、6+8<16,不能组成三角形,不符合题意;故选:C.2.解:A、有4条对称轴,故本选项不符合题意;B、有6条对称轴,故本选项不符合题意;C、有4条对称轴,故本选项不符合题意;D、有2条对称轴,故本选项符合题意.故选:D.3.解:0.2nm=0.2×10﹣9m=2×10﹣10m.故选:C.4.解:A、a2•a=a3,故本选项不合题意;B、(ab)2=a2b2,故本选项不合题意;C、(a2)3=a6,故本选项不合题意;D、﹣a+2a=a,故本选项符合题意;故选:D.5.解:∵△ABC≌△A1B1C1,∴∠C1=∠C=60°,6.解:∵BM平分∠ABD,DM平分∠BDC,∴∠MBD=,∠BDM=,∴∠BMD=180°﹣∠MBD﹣∠BDM=180°﹣30°﹣37.5°=112.5°,故选:C.7.解:∵DE是AB的垂直平分线,∴EA=EB,∵△BCE的周长=BC+BE+EC=BC+AE+EC=BC+AC,∴BC+AC=25cm,∴BC=25﹣AC=25﹣15=10(cm),故选:B.8.解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵点O是内心,∴OE=OF=OD,∴S△ABO:S△BCO:S△CAO=•AB•OE:•BC•OF:•AC•OD=AB:BC:AC=2:3:4,故选:C.9.解:(6x﹣m)(3x+1)=18x2+6x﹣3mx﹣m=18x2+(6﹣3m)x﹣m∵不含x的一次项,∴6﹣3m=0,∴m=2.10.解:∵x+y=1,xy=﹣2,∴(1﹣x)(1﹣y)=1﹣y﹣x+xy=1﹣(x+y)+xy=1﹣1+(﹣2)=﹣2,故选:A.11.解:根据方程可得:为了疫情防控需要,某防护用品厂计划生产130000个口罩,但是在实际生产时,每天比原计划多生产500个,结果提前10天完成,求实际每天生产口罩的个数.故选:D.12.解:∵Rt△ABC≌Rt△AB'C',∴AB=AB',AC=AC',∠ABC=∠AB'C',∠ACB=∠AC'B'=90°,∵∠ABC=∠CAB',∴∠CAB'=∠AB'C',∴AC∥B'C',∴∠CAC'+∠AC'B'=90°,∴∠CAC'=90°=∠ACB,∴AC'∥BC,故①正确;∵AC=AC',∠CAC'=90°,∴△CAC'是等腰直角三角形,故②正确;若AB=AC'时,∵点D是BC'中点,∴AD⊥C'B,∠BAD=∠C'AD,∴∠CAD=∠B'AD,即AD平分∠CAB',∵AB≠AC',∴③,④错误;故选:B.二.填空题13.解:为了安全,建筑工地上的塔吊上部设计成三角形结构,这是利用了三角形的稳定性,故答案为:稳定.14.解:7a2﹣7b2=7(a2﹣b2)=7(a+b)(a﹣b).故答案为:7(a+b)(a﹣b).15.解:根据题意,得2x+1≠0.解得x.故答案是:.16.解:添加条件:AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);添加条件:∠B=∠C,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS);添加条件:∠AEB=∠ADC,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA);故答案为:AB=AC或∠B=∠C或∠AEB=∠ADC(答案不唯一).17.解:点A(﹣3,﹣2)关于y轴的对称点为(3,﹣2),故答案为:(3,﹣2).18.解:∵25x2+kxy+4y2是一个完全平方式,∴kxy=±2•5x•2y,解得:k=±20,故答案为:±20.19.解:在△BOC中,∠BOC=140°,∴∠OBC+∠OCB=180°﹣140°=40°.∵BD平分∠ABC,CE平分∠ACB,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=80°,∴∠A=180°﹣(∠ABC+∠ACB)=100°.故答案为:100°.20.解:连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=20,解得AD=10,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=10+×4=12.故答案为:12.三.解答题21.解:(1)3x3y•(2xy2﹣3xy)=6x4y3﹣9x4y2;(2)(a﹣2b)(a2+2ab+4b2)=a3+2a2b+4ab2﹣2a2b﹣4ab2﹣8b3=a3﹣8b3.22.解:(1)原式=(a2﹣2ab+b2)﹣1=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1);(2)原式=(p4+q4+2p2q2)(p4+q4﹣2p2q2)=(p2+q2)2(p2﹣q2)2=(p2+q2)2(p+q)2(p﹣q)2.23.解:(1)两边同时乘以最简公分母(x﹣2),可得2x=x﹣2+1,解得x=﹣1,检验:当x=﹣1时,x﹣2≠0,所以x=﹣1是原分式方程的解;(2)两边同时乘以最简公分母(x+1)(x﹣1),可得x2+x﹣3x+1=x2﹣1,解得x=1;检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是原方程的增根,原方程无解.24.解:=•=•=,当x=2020时,原式===.25.解:∵∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°,∵AD平分∠BAC,∴∠DAC=∠BAC=50°,∴∠ADB=∠DAC+∠C=80°.26.解:AC与DF的关系是相等且平行,理由:∵AD=BE,∴AD+DB=BE+DB,∴AB=DE,∵BC∥EF,∴∠ABC=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DE,∠A=∠EDF,∴AC∥DF,即AC与DF的关系是相等且平行.27.解:(1)如图所示,△A'B'C′即为所求.(2)如图所示,AD即为所求.28.解:(1)设A型口罩的单价为x元,则B型口罩的单价为(x﹣1.5)元,根据题意,得:=.解方程,得:x=4.经检验:x=4是原方程的根,且符合题意.所以x﹣1.5=2.5.答:A型口罩的单价为4元,则B型口罩的单价为2.5元;(2)设增加购买A型口罩的数量是m个,根据题意,得:2.5×2m+4m≤3800.解不等式,得:m≤422.因为m为正整数,所以正整数m的最大值为422.答:增加购买A型口罩的数量最多是422个.29.解:(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°,∴∠AOB+∠COD=360°﹣180°=180°.故答案为180°;(2)①∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴∠OAB=DAB,CBA,∠OCD=BCD,∠ODC=ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=×360°=180°,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∵∠AOB=110°,∴∠COD=180°﹣110°=70°.故答案为:70°;②AB∥CD,理由如下:∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴,CBA,,,∴∠OAB+∠OBA+∠OCD+∠ODC=×360°=180°,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∴∠ADO+∠BOD=360°﹣(∠AOB+∠COD)=360°﹣180°=180°,∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在∠AOD中,∠DAO=∠ADO=180°﹣∠AOD=180°﹣90°=90°,∵,∴=90°,∴∠DAB+∠ADC=180°,∴AB∥CD.30.解:(1)设8﹣x=a,x﹣2=b,则ab=5,a+b=6,∴(8﹣x)2+(x﹣2)2=a2+b2=(a+b)2﹣2ab=36﹣10=26.(2)∵AE=1,CF=3∴DE=x﹣1,DF=x﹣3,∵长方形EMFD的面积是35,∴DE•DF=(x﹣1)(x﹣3)=35,设x﹣1=a,x﹣3=b,则ab=35,a﹣b=2,∴(a+b)2=(a﹣b)2+4ab=4+140=144,又∵a+b>0,∴a+b=12,∴长方形EMFD的周长=2DE+2DF=2(a+b)=24.31.解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1.5=1.5(厘米),∵AB=9cm,点D为AB的中点,∴BD=4.5cm.又∵PC=BC﹣BP,BC=6cm,∴PC=6﹣1.5=4.5(cm),∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BDP和△CPQ中,,∴△BPD≌△CQP(SAS);②假设△BPD≌△CQP,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=3,BD=CQ=4.5,∴点P,点Q运动的时间t=BP÷1.5=3÷1.5=2(秒),∴v Q=CQ÷t=4.5÷2=2.25(cm/s);(2)设经过x秒后点P与点Q第一次相遇,由题意,得 2.2.5x=1.5x+2×9+6,解得x=32,∴点P共运动了32×1.5=48(cm).∵32×2.25=72,∴点P、点Q在AC边上相遇,∴经过32秒点P与点Q第一次在边AC上相遇.故答案为:32;AC.考试前——放松自己,别给自己太大压力我们都知道,在任何大考中,一个人的心态都十分重要。

八年级上学期期末专题复习 专题2:三角形的角、多边形及其内角和套真题

八年级上学期期末专题复习 专题2:三角形的角、多边形及其内角和套真题

八年级上学期期末专题复习专题2:三角形的角、多边形及其内角和一、单选题1. 下列多边形中,对角线是5条的多边形是()A . 四边形B . 五边形C . 六边形D . 七边形2. 如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A . 95°B . 75°C . 35°D . 85°3. 如图,在六边形ABCDEF中,∠A+∠F+∠E+∠D = ,∠ABC的平分线与∠BCD的平分线交于点P,则∠P度数为()A .B .C .D .4. 已知一个多边形的内角和为540°,则这个多边形为()A . 三角形B . 四边形C . 五边形D . 六边形5. 如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A . 180°B . 270°C . 360°D . 720°6. 如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是()A . 40°B . 80°C . 90°D . 140°7. 如图,在△ABC 中,∠BAC=72°,∠C=36°,∠BAC 的平分线AD 交BC 于D,则图中有等腰三角形()A . 0 个B . 1 个C . 2 个D . 3 个8. 如图,在△ABE中,∠BAE=105°,AE的垂直平分线MN交BE于点C,且AB =CE,则∠B的度数是A . 45°B . 60°C . 50°D . 55°二、填空题9. 如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠BDF=________度.10. —个多边形的内角和比它的外角和多180°,则这个多边形的边数是________11. 如图,点E , F分别是四边形AB , AD上的点,已知△ EBC≌△ DFC,且∠A= 80°,则∠BCF的度数是________.三、解答题12. 如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=40°,∠E=30°,求∠BAC的度数.13. 如图,BD是△ABC的角平分线,AE丄BD交BD的’延长线于点E, ∠ABC = 72°,∠C:∠ADB=2:3,求∠BAC和∠DAE的度数.四、综合题14. 如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点,连接CD,过点C作CE⊥CD,且CE=CD,连接DE交BC于点F,连接BE,(1)求证:AB⊥BE;(2)当AD=BF时,求∠BEF的度数。

人教版八年级数学上册期末综合复习测试题(含答案)

人教版八年级数学上册期末综合复习测试题(含答案)

八年级数学上册期末综合复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分) 1.下列图形中具有稳定性的是( ) A .正方形 B .长方形 C .直角三角形 D .平行四边形 2.计算:a 6÷a 3=( ) A .a 2 B .a 3 C .1 D .0 3.点(-3,-2)关于x 轴对称的点是( )A .(3,-2)B .(-3,2)C .(3,2)D .(-2,-3) 4.若分式x +3x -2的值为0,则x 的值为( ) A .x =-3 B .x =2 C .x ≠-3 D .x ≠25.如图1,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是( )图1A .AC =BDB .AD =BC C .∠ABD =∠BAC D .∠CAD =∠DBC 6.若x 2+2mx +9是一个完全平方式,则m 的值是( ) A .6 B .±6 C .3 D .±3 7.如图2,在△ABC 中,D ,E 分别是边BC ,AB 的中点.若△ABC 的面积是8,则△BDE 的面积是( )图2A.2 B .3 C .4 D .5 8.已知2m +3n =3,则9m ·27n 的值是( ) A .9 B .18 C .27 D .819.某生产小组计划生产3 000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务.设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3 000x -3 000x +2=5 B .3 0002x -3 000x =5C .3 000x +2-3 000x =5D .3 000x -3 0002x=510.如图3,在平面直角坐标系中,点A ,B 分别在y 轴、x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△P AB 是等腰三角形,则符合条件的点P 的个数是( )图3A .5个B .6个C .7个D .8个 二、填空题(本大题7小题,每小题4分,共28分)11.人体淋巴细胞的直径大约是0.000 009米,将0.000 009用科学记数法表示为__________.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是__________.13.当a =4b 时,a 2+b 2ab的值是__________.14.如图4,在△ABC 中,分别以点A 和点C 为圆心,大于12 AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若△ABC 的周长为23 cm ,△ABD 的周长为13 cm ,则AE 的长为__________cm.图415.若x +y =6,xy =-3,则2x 2y +2xy 2=__________.16.如图5,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD ,则∠DAC =__________°.图517.如图6,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点, P 是AD 上一动点,当PC 与PE 的和最小时,∠ACP 的度数是__________.图6三、解答题(一)(本大题3小题,每小题6分,共18分)18.解方程:4x 2-9 -x3-x =1.19.先化简,再求值:(-x -y )2-(-y +x )(x +y )+2xy ,其中x =-2,y =12.20.如图7,在△ABC 中,∠BAC =60°,∠C =80°,AD 是△ABC 的角平分线,E 是AC 上一点,且∠ADE =12∠B ,求∠CDE 的度数.图7四、解答题(二)(本大题3小题,每小题8分,共24分)21.在平面直角坐标系中,△ABC 的三个顶点的位置如图8所示.(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′;(其中A ′,B ′,C ′分别是A ,B ,C 的对应点,不写画法)(2)请直接写出点A ′,B ′,C ′的坐标; (3)求出△A ′B ′C ′的面积.图822.如图9,点B ,C ,E ,F 在同一条直线上,点A ,D 在BC 的异侧,AB =CD ,BF =CE ,∠B =∠C .(1)求证:AE ∥DF ; (2)若∠A +∠D =144°,∠C =30°,求∠AEC 的度数.图923.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8 000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.(1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图10①,把一个长为2m 、宽为2n 的矩形,沿图中虚线用剪刀均分成四块小矩形,然后拼成一个如图10②所示的正方形.(1)请用两种不同的方法求图10②中阴影部分的面积.(直接用含m ,n 的式子表示) 方法1:____________________________; 方法2:____________________________.(2)根据(1)中结论,下列三个式子(m +n )2,(m -n )2,mn 之间的等量关系为____________________.(3)根据(2)中的等量关系,解决如下问题:已知x +1x =3,请求出x -1x的值.图1025.(1)【问题发现】如图11①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一条直线上,连接BE ,求∠AEB 的度数.(2)【拓展探究】如图11②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE .请求出∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.图11答案1.C 2.B 3.B 4.A 5.D 6.D 7.A 8.C 9.D 10.B11.9×10-6 12.80°或20° 13.174 14.5 15.-36 16.22.5 17.30°18.解:方程两边乘(x -3)(x +3),得4+x (x +3)=x 2-9.解得x =-133.检验:当x =-133 时,(x -3)(x +3)≠0.所以,原分式方程的解是x =-133.19.解:原式=x 2+y 2+2xy -(x 2-y 2)+2xy =x 2+y 2+2xy -x 2+y 2+2xy =2y 2+4xy . 当x =-2,y =12 时,原式=2×⎝⎛⎭⎫12 2 +4×(-2)×12 =-72 .20.解:在△ABC 中,∠BAC =60°,∠C =80°,∴∠B =180°-60°-80°=40°. ∵AD 平分∠BAC ,∴∠BAD =12 ∠BAC =30°.∴∠ADC =∠B +∠BAD =70°.∵∠ADE =12 ∠B =20°,∴∠CDE =∠ADC -∠ADE =70°-20°=50°.21.解:(1)如答图1,△A ′B ′C ′即为所求.答图1(2)A ′(3,3),B ′(-1,-3),C ′(0,4).(3)由图可得S △A ′B ′C ′=4×7-12 ×1×7-12 ×3×1-12 ×4×6=11.22.(1)证明:∵BF =CE ,∴BF +EF =CE +EF ,即BE =CF . 在△ABE 和△DCF 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF (SAS).∴∠AEB =∠DFC .∴AE ∥DF .(2)解:∵△ABE ≌△DCF ,∴∠A =∠D ,∠B =∠C =30°. ∵∠A +∠D =144°,∴∠A =72°. ∴∠AEC =∠A +∠B =72°+30°=102°.23.解:(1)设使用传统分拣方式,每人每小时可分拣快件x 件,则使用智能分拣设备后,每人每小时可分拣快件25x 件.依题意,得 8 00020x -8 0005×25x=4.解得x =84.经检验,x =84是原方程的解,且符合题意.∴25x =2 100.答:使用智能分拣设备后,每人每小时可分拣快件2 100件. (2)100 000÷8÷2 100=52021 (名),5+1=6(名).答:每天只需要安排6名工人就可以完成分拣工作. 24.解:(1)(m +n )2-4mn (m -n )2. (2)(m -n )2=(m +n )2-4mn .(3)∵x +1x =3,∴⎝⎛⎭⎫x -1x 2 =⎝⎛⎭⎫x +1x 2 -4x ·1x =9-4=5.∴x -1x=±5 .25.解:(1)∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =∠CDE =∠CED =60°. ∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴∠ADC =∠BEC .∵点A ,D ,E 在同一条直线上,∴∠ADC =180°-∠CDE =120°. ∴∠BEC =120°.∴∠AEB =∠BEC -∠CED =60°. (2)∠AEB =90°,AE =BE +2CM .理由:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE ,∠ADC =∠BEC . ∵△DCE 为等腰直角三角形, ∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一条直线上, ∴∠ADC =180°-∠CDE =135°. ∴∠BEC =135°.∴∠AEB =∠BEC -∠CED =90°. ∵CD =CE ,CM ⊥DE , ∴DM =ME ,∠DCM =90°-∠CDE =45°. ∴∠DCM =∠CDE . ∴DM =ME =CM .∴AE =AD +DE =BE +2CM。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年度重庆滨江实验学校期末复习物理试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(每题2分,共30分) 1.下列估测不符合实际的是( ) A .初中物理课本的长度约为26cmB .奥运会男子百米赛跑中运动员的平均速度约为10m/sC .两个鸡蛋的重力约为1ND .人体密度约为0.5×103kg/m 32.下列关于声现象的说法中正确的是( ) A 、一切发声的物体都在振动 B 、声音在不同介质中的传播速度相同 C 、声音在真空中的传播速度为340m/s D 、公路旁安装“声障墙”是在声源处减弱噪声3.如图所示的四种现象中,由光的直线传播形成的是( )A .海市蜃楼B 水面“折”枝C .水中倒影D .手影 4.右图展示的是翟志刚在太空中走出“神舟”七号载人飞船,站在舱口处手举五星红旗的情景.若说他是静止的,则选择的参照物是( )A .地球B .太阳C .月亮D .“神舟”飞船 5.如图所示的四个实例中,属于增大摩擦的是( ) A.给自行车轴加润滑油 B.自行车轮胎上有凹凸的花纹C .轴承间安装钢柱D .气垫船底跟水面之间有一层空气垫 6.嫦娥二号探月卫星由地面送向太空的过程中,它的质量 ( ) A .变小 B .变大 C .不变 D .不存在了 7.下列光学器材不是凸透镜成像规律应用的是 ( )A .照相机B .望远镜C .自行车尾灯D .放大镜8.如果一个物体做匀速直线运动,4s 内通过20m 的路程,那么它前2s 内的速度是( ) A .20m/s B.10m/s C.5m/s D.无法确定9.人站在竖直放置的穿衣镜前 4m 处,若人向镜移动 1m ,则此过程中像的大小变化及移动后人离像的距离为: ( )A.变大,6mB.变大,5mC.不变, 8mD.不变,6m 10.关于力的作用效果,下列说法中不正确的是 ( ) A .力的三要素不同,力的作用效果可能不同 B .力的作用效果可表现在使物体发生形变 C .力的作用效果表现在使物体保持一定的速度运动 D .力的作用效果可表现在使物体运动状态发生改变. 11.关于光的反射,下列说法正确的是( ) A. 当入射光线与反射面的夹角为20°时,反射角也为20° B. 入射光线靠近法线时,反射光线也靠近法线C. 入射角增大5°时,反射光线与入射光线的夹角也增大5°D. 镜面反射遵守光的反射定律,漫反射不遵守光的反射定律12.小明利用天平和量杯测量某种液体的密度,得到的数据如下表,根据数据绘出的图象如图所示。

则量杯的质量与液体的密度是( )A .20g ,1.25×103kg /m 3B .20g ,1.0×103kg /m 3C .60g ,1.0×103kg /m 3D .20g ,0.8×103kg /m 3 13.某物理兴趣小组的同学在“探究凸透镜成像规律”实验中,记录并绘制了物体离凸透镜的距离u 跟实像到透镜的距离v 之间的关系如图,则当物体离凸透镜的距离为20cm 时所成的像是( )A .倒立缩小的实像B .倒立放大的实像C .倒立等大的实像D .正立放大的虚像14.橡皮筋的上端固定,下端挂2N 的物体时,橡皮筋伸长了3cm ,要使橡皮筋伸长4.5cm ,应在它的下端挂几N 的物体( )A .3NB .6NC .9ND .13.5N15.俗话说“只要功夫深,铁棒磨成针。

”如果将铁棒放在石头上磨,这个过程中它的质量、体积、密度如何变化?( )A .密度减小,质量和体积都减小B .密度增大,质量和体积都减小C .密度不变,质量和体积都不变D .密度不变,质量和体积的比值不变 二、填空题(每空1分,共23分)16.晚上小吴在家中正欣赏着音像里传出来的交响乐,忽然停电了。

他将蜡烛点亮后放在音箱前面。

过了一会儿通电了,交响乐又响起来了。

小吴从挂在墙上的镜子里发现音箱前面的烛焰在摇曳,仔细观察还发现当音箱音量突然变大时,烛焰摇曳得更明显,烛焰没有受到风的影响。

(1)由此可确定声能传递 。

(2)他在镜子中看见的蜡烛是通过光的 后形成的像。

(3)当蜡烛越靠近音箱时,蜡烛在镜中像的大小将 。

(填“变大”“变小”或“不变”) 17.在物理考试作图时,小亮画错了一个地方,用橡皮轻轻擦,没有擦干净,然后他稍使点劲就擦干净了,这是通过增大 的方法来增大纸与橡皮之间的 。

18.如图所示,跳水运动员在向下压跳板的过程中,压跳板的力的作用效果是 ,跳板弹起过程中,跳板推运动员的力的作用效果是使运动员的 发生改变。

19.读数(1)如图所示中是用天平测量某物体的质量,其读数为_________g ; (2)如图所示的小木块长度是_________cm ;(3)停表是上体育课时常用的测量工具,如图所示的停表示数为_________s 。

20. 小红在池塘边观察水中月亮的视线与水面的夹角是30°,如图,此光的反射现象中入射角的度数是______.镜面反射和漫反射是光的两种反射,日常生活中,我们能从各个角度看到物理课本上的文字是光的______反射,而大城市高层建筑安装整体玻璃造成光污染是属于光的______反射.21.为了测量某种金属块的密度,首先用天平测量金属块的质量.当天平平衡时,放在右盘中的砝码和游码的位置如图所示,则金属块的质量为_______ g ,然后用量筒测得金属块的体积为5cm 3,则该金属块的密度为_________kg/m 3.若将该金属块截去一半后,则剩余金属块的密度将_________(选填“变大”,“变小”,“不变”).22.身高1.6m 的人,站在平面镜前2m 处,则人在镜中的像高 m ,若此人以1m /s 的速度远离平面镜运动1s 后,像与平面镜的距离为 m ,镜中的像的大小 。

(选填“变大”、“不变”、“变小”)23.、加油机给战斗机加油,以加油机为参照物,战斗机是_________(选填“静止”或“运动”)。

如果战斗机在2s 内飞行了0.4km ,则它的速度是_____m/s 24.图所示的是两种物质的质量与体积的关系图象,观察图象可知:甲的体积为4 cm 3时,其质量是 g ;甲、乙两种物质密度之比ρ甲︰ρ乙= 。

25.(1)在图(1)中画出入射光线对应的反射光线,并标出反射角的大小(2)根据平面镜成像特点,在图(2)中作出物体AB 在平面镜MN 中所成的像(3)画出(3)中的折射光线(4)如图是经过凸透镜折射后的一条出射光线,画出对应的入射光线(5)如图(5)小车受到与水平方向成30°角斜向右上方的大小为10N 的拉力画出这个力 (6)如图(6)重20N 的小球,从斜面上加速滚下,画出小球受到的重力。

三.实验题(26题6分,27题6分,28题8分,共20分) 26.如图为小明“探究滑动摩擦力大小与哪些因素有关”的实验,其中图甲和图乙所用的是粗糙程度相同且较光滑的木板,图丙所用的是较粗糙的木板,小明做出了如下猜想:猜想A :滑动摩擦力大小与压力有关;猜想B :滑动摩擦力大小与接触面的粗糙程度有关; 猜想C :滑动摩擦力大小与接触面积有关. 为了验证以上猜想,小明设计了如下的实验过程:(1)实验中需要用弹簧测力计水平拉动木块在水平木板上做 运动,目的是使拉力等于摩擦力;(2)为了验证猜想A ,比较图甲和图乙可得出: 一定,压力越大,滑动摩擦力越大; (3)比较图 和图 ,可得出:压力一定,接触面越粗糙,滑动摩擦力越大; (4)将图甲中的木块侧放进行实验,测出的摩擦力与图甲实验所测出的摩擦力相同,可验证猜想 是 (选填“正确”或“错误”)的.27.如图a 所示为“探究凸透镜成像规律”的实验装置图,实验时首先利用太阳光测出了凸透镜的焦距f.请你认真思考下面的四种实验设计方案,并回答问题.甲:分别把点燃的蜡烛放在一倍焦距f 和二倍焦距2f 处,调整光屏到凸透镜的距离,观察并记录在屏上能否成像及成像特点,得出凸透镜成像的规律.乙:除甲中的做法外,把蜡烛放在大于2f 的某一位置和大于f 、小于2f 的某一位置,观察并记录对应的成像情况,得出凸透镜成像的规律.丙:除甲中的做法外,把点燃的蜡烛从较远处逐渐移近凸透镜,通过不断调整光屏与凸透镜的距离,观察并记录在屏上能否成像及成像的特点,包括观察所成的像随蜡烛位置变化而变化的趋势,得出凸透镜成像的规律.丁:与丙不同的是,将蜡烛从靠近凸透镜的位置逐渐远离,其它步骤相同.(1)以上四种方案中,合理的方案有_____________(选填“甲”、“乙”、“丙”、“丁”); (2)某小组记录并绘制了物体到凸透镜的距离u 跟像到凸透镜的距离v 之间关系的图象,如图b 所示.由图象可知,当u=15cm 时,在光屏上能得到一个____________像;把物体从距凸透镜10cm 处移动到30cm 处的过程中,像的大小变化情况是________,像距的变化情况是__________(选填“变大”、“变小”或“不变”);(3)某小组用两支点燃的蜡烛进行实验,蜡烛、凸透镜和光屏分别置于如图c 所示位置,两支蜡烛的连线AB 与过凸透镜的中线垂直,则光屏上C 、D 两处所成像的大小__________(选填“相等”或“不相等”);用一块厚纸板挡住A 处的烛焰,在光屏上_________(选填“C ”或“D ”)处仍能得到一个清晰的像。

28.在分组“使用托盘天平和量筒测量小石块密度”的实验中:第一组情况如下:(1)小军同学用托盘天平测量物体的质量,操作情况如图A所示,请其中的错误是:① ______________________________________________________ ;②_________________________________________________________________ ;(2) 小明这组同学先用托盘天平测小石块的质量,步骤如下:①把托盘天平放在水平桌面上,将游码移到标尺左端零刻度线处,发现指针偏向分度盘的左侧,此时应该把平衡螺母向 (选填“左”或“右”)调节,才能使天平平衡;②天平平衡后,把小石块放在左盘,用镊子向右盘加减砝码,当把砝码盒中最小的砝码放入右盘后,发现指针偏向分度盘的右侧,接下来正确的操作步骤是______________________________________,直到天平再次平衡,右盘中的砝码和游砝所处的位置如图B所示,则小石块质量有 g;(3) 接下来他们用量筒测量小石块的体积,步骤如下:①在量筒中注入适量的水(如图C所示),读出此时水面所对应的示数V1;把固体浸没在盛有适量水的量筒中(如图D所示),读出此时水面所对应的示数V2,则待测固体的体积V=_________cm3。

相关文档
最新文档