乙醇脱水反应研究实验
实验4 乙醇脱水
化工专业实验报告实验名称:固定床乙醇脱水反应研究实验姓名:邢瑞哲实验时间:2014.04.15同组人:徐晗、苟泽浩专业:化学工程与工艺组号: 3 学号: 3011207058 指导教师:实验成绩:固定床乙醇脱水反应研究实验实验报告固定床乙醇脱水反应研究实验1. 实验目的①掌握乙醇脱水实验的反应过程和反应机理特点,了解针对不同目的产物的反应条件对正、副反应的影响规律和生成的过程;②学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法;③学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布;④学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。
了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择;⑤学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。
2. 实验仪器和药品实验仪器:乙醇脱水气固反应器;气相色谱及计算机数据采集和处理系统;精密微量液体泵;蠕动泵。
药品:ZSM-5型分子筛乙醇脱水催化剂;分析纯乙醇;蒸馏水。
3. 实验原理乙烯是重要的基本有机化工产品。
乙烯主要来源于石油化工,但是由乙醇脱水制乙烯在南非、非洲、亚洲的一些国家中仍占有重要地位。
乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增多的可逆反应。
提高反应温度、降低反应压力,都能提高反应转化率。
乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。
有人认为在生成产物的决定步骤中,生成乙烯要断裂C-H 键,需要的活化能较高,所以要在高温才有和于乙烯的生成。
目前,在工业生产方面,乙醚绝大多数是由乙醇在浓硫酸液相作用下直接脱水制得。
乙醇的分子间脱水成醚实验现象
乙醇的分子间脱水成醚实验现象以乙醇的分子间脱水成醚实验现象为题,我们将深入探讨乙醇分子间脱水形成醚的实验现象。
在这个实验中,我们将通过在适当条件下操作乙醇分子,观察其分子间脱水反应的产物醚的形成过程。
让我们来了解一下乙醇和醚的基本概念。
乙醇是一种有机化合物,化学式为C2H5OH,是我们常见的酒精。
它具有两个碳原子和一个氧原子,其中一个碳原子上连接着一个羟基(-OH)。
而醚是一类含有氧原子的有机化合物,其结构中两个碳原子中间由氧原子连接。
乙醚(C2H5OC2H5)是乙醇脱水反应的产物之一。
在进行乙醇分子间脱水实验时,我们需要准备以下材料和设备:乙醇溶液、酸性催化剂(如浓硫酸)、冷却装置(如冰水浴)和适当的容器。
首先,将乙醇溶液与酸性催化剂混合,并在冷却装置下进行反应。
乙醇分子间脱水反应的机理是通过酸催化进行的。
在酸性催化剂的作用下,乙醇分子中的羟基(-OH)会被质子(H+)攻击,形成一个离子性的质子化乙醇分子(C2H5OH2+)。
这个质子化乙醇分子会发生裂解,使乙醇分子中的一个氢原子转移到另一个乙醇分子上,形成一个更稳定的离子性中间体,称为乙醨离子(C2H5O+)。
最后,两个乙醨离子中的氧原子结合,形成乙醚分子(C2H5OC2H5),即乙醇脱水反应的产物。
在实验过程中,我们可以通过观察溶液的变化来确认乙醇分子间脱水成醚的实验现象。
一开始,乙醇溶液呈现无色透明的液体。
在加入酸性催化剂后,溶液可能会发生颜色变化,变得浑浊或产生沉淀。
这是由于酸性催化剂与乙醇发生反应产生的中间体或其他产物形成的。
最后,我们可以通过进一步的实验操作和化学分析来确认乙醇分子间脱水反应的产物是否为乙醚。
乙醇分子间脱水成醚实验现象的研究对于有机化学领域具有重要意义。
通过深入了解乙醇分子间脱水反应的机理和实验现象,我们可以更好地理解有机化合物的转化过程,为合成新的有机化合物提供理论基础和实验操作指导。
此外,乙醇分子间脱水反应也在工业上得到广泛应用,用于制备各种醚类化合物,如乙醚、乙醚乙醇和乙醚酮等。
乙醇脱水实验报告
化工专业实验报告实验名称:固定床乙醇脱水反应实验研究实验人员:同组人:实验地点:天大化工技术实验中心630 室实验时间:年月日班级/学号:级班学号:实验组号:指导教师:实验成绩:乙醇脱水反应研究实验一、实验目的1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、副反应的影响规律和生成的过程;2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法;3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布;4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。
了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择;5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。
二、实验仪器和药品乙醇脱水气固反应器,气相色谱及计算机数据采集和处理系统,精密微量液体泵,蠕动泵。
ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,蒸馏水。
三、实验原理乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增多的可逆反应。
提高反应温度、降低反应压力,都能提高反应转化率。
乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。
有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H 键,需要的活化能较高,所以要在高温才有和于乙烯的生成。
乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。
现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下:C2H5OH → C2H4 + H2O (1)C2H5OH → C2H5OC2H5 +H2O (2)目前,在工业生产方面,乙醚绝大多数是由乙醇在浓硫酸液相作用下直接脱水制得。
乙醇脱水反应实验步骤修订
实验十五流动法测定γ-Al2O3小球催化剂乙醇脱水的催化性能1. 色谱条件设置检测器:FID,色谱柱:Porapak-Q柱,柱温:160℃,气化室:170℃,FID:250℃,色谱载气:N2,流速:30~40 mL/min,对应柱前压在160℃时约为0.14~0.16MPa(载气流量已调好,一般不要再调)。
加热带设定温度:130℃,六通阀:采样时间1 min,其它时间处于分析状态(防止液态物种在定量管中冷凝)。
等催化剂开始活化后打开色谱仪。
先通载气(氮气),再打开色谱仪总开关,进入主界面设置色谱参数:柱温:160℃,气化室:170℃,FID:250℃,检测器:20℃。
按“起始”开始升温。
待温度稳定后,打开氢气发生器和空气发生器的开关,等流速稳定后,按下“点火”按钮(FID有两个,根据色谱连接情况按点火1或者2)。
若要调节仪器的灵敏度,先按左边“检测”,再按“设置”,调节对应的FID的灵敏度(一般为7~9之间,正常情况下不需要调整)。
开启计算机,打开N2000在线色谱工作站,对“实验信息”和“方法”作必要的修改后进入“数据采集”界面,点击“查看基线”图标,等待基线稳定。
插上加热带电源插头,设定加热带温度为130℃。
2. 催化反应测定步骤(1) 装样。
拆开电炉下面反应管上缠绕的加热带至两通接头螺帽位置,用扳手松开反应管上面和下面气路连接螺帽,从反应装置中卸下反应管,将其中的石英砂和催化剂倒入回收塑料桶中,可用洗耳球吹干净反应管。
量取2 mL活化后Al2O3催化剂小球,称重后装入反应管中,用不锈钢管轻敲反应器,使催化剂装填均匀。
在反应管上部装填干净石英砂至距管口约7 cm 处,并轻轻敲实,然后将反应管接入反应装置,并用扳手旋紧上下的接头螺帽。
重新缠绕加热带包裹好反应管的下端。
(2) 活化。
在减压阀关闭状态下打开氮气钢瓶总阀(逆时针为开启),调节减压阀出口压力至0.3MPa(顺时针旋转),调节反应装置控制面板上“调压”旋钮,使压力显示为0.2MPa。
天津大学乙醇脱水反应研究实验(论文资料)
乙醇脱水反应研究实验一、实验目的1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、副反应的影响规律和生成的过程。
2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。
3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布。
4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。
了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。
5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。
二、实验原理1.实验仪器和药品:乙醇脱水固定床反应器,精密微量液体泵,蠕动泵,锥形瓶,烧瓶。
气相色谱仪GC−910及计算机数据采集和处理系统:载气1柱前压:0.06MPa载气流量:36ml/min载气2柱前压:0.07MPa 载气流量:28ml/min桥电流:90mA 讯号衰减:1(而后调节为2)柱箱温度:107℃气化室温度:110℃检测器温度:89℃ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,纯乙醚,蒸馏水。
2.反应机理:乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。
提高反应温度、降低反应压力,都能提高反应转化率。
乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。
有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H键,需要的活化能较高,所以要在高温才有乙烯的生成。
反应式如下:主反应:C2H5OH→C2H4+H2O副反应:2C2H5OH→C2H5OC2H5+H2O3.催化机理:ZSM-5分子筛,因其具有亲油疏水性,在催化脱水性能方面更具有优势。
乙醇脱水反应研究
乙醇脱水反应研究一、乙醇脱水反应是一种重要的有机化学反应,常用于制备乙烯、丙烯等化工原料。
在乙醇脱水反应过程中,脱水剂将水分离出来,形成烯烃类化合物。
本文将探讨乙醇脱水反应的反应机理、影响因素以及一些应用。
二、反应机理乙醇分子在脱水剂的作用下,发生去质子化反应,形成乙烯和水。
其机理可简述为以下几个步骤:1.脱水剂形成OH基,与乙醇形成羟基化合物;2.羟基化合物失去水分,形成碳正离子;3.碳正离子立即发生β-消除反应,生成烯烃。
整个反应途径中,脱水剂起到了“脱水”的作用,能防止反应被水分子卡住。
三、影响因素1. 温度一般而言,乙醇脱水反应温度越高,反应速率越快,产率也越高。
2. 脱水剂的种类乙醇脱水反应常用的脱水剂有硫酸、磷酸等。
不同的脱水剂会对反应产物影响较大。
3. 乙醇的浓度乙醇的浓度越高,反应速率也越快。
4. 反应时间反应时间也是影响反应产率的关键因素。
一般来说,反应时间更长,产物的生成量也更多。
四、应用乙醇脱水反应广泛应用于各种领域:1.汽车工业:乙醇脱水反应可以将乙醇制成乙烯和丙烯等化工原料,用于生产汽车轮胎、波纹管等;2.化妆品工业:乙醇脱水反应可以制备乙醚,乙醚是化妆品生产中的一种重要原料;3.食品工业:乙醇脱水反应也可以制备乙醚,用于制造食品香料。
五、乙醇脱水反应是一种重要的有机合成反应,在工业领域中有着广泛的应用。
反应机理及影响因素的研究为进一步优化反应条件、提高反应产率提供了科学依据。
在未来的研究中,可以进一步探讨如何改进反应方式以提高产率,并在更广泛的领域中应用该反应。
实验三 乙醇脱水
实验三乙醇脱水实验三乙醇气相脱水制乙烯反应动力学(本实验学时:7×1)实验室小型管式炉加热固定床、流化床催化反应装置是有机化工、精细化工、石油化工等部门的主要设备,尤其在反应工程、催化工程及化工工艺专业中使用相当广泛。
本实验是在固定床和流化床反应器中,进行乙醇气相脱水制乙烯,测定反应动力学参数。
固定床反应器内填充有固定不动的固体催化剂,床外面用管式炉加热提供反应所需温度,反应物料以气相形式自上而下通过床层,在催化剂表面进行化学反应。
流化床反应器内装填有可以运动的催化剂层,是一种沸腾床反应器。
反应物料以气相形式自下而上通过催化剂层,当气速达到一定值后进入流化状态。
反应器内设有档板、过滤器、丝网和瓷环(气体分布器)等内部构件,反应器上段有扩大段。
反应器外有管式加热炉,以保证得到良好的流化状态和所需的温度条件。
反应动力学描述了化学反应速度与各种因素如浓度、温度、压力、催化剂等之间的定量关系。
动力学在反应过程开发和反应器设计过程中起着重要的作用。
它也是反应工程学科的重要组成部分。
在实验室中,乙醇脱水是制备纯净乙烯的最简单方法。
常用的催化剂有:浓硫酸液相反应,反应温度约170℃。
三氧化二铝气-固相反应,反应温度约360℃。
分子筛催化剂气-固相反应,反应温度约300℃。
其中,分子筛催化剂的突出优点是乙烯收率高,反应温度较低。
故选用分子筛作为本实验的催化剂。
一、实验目的1、巩固所学有关反应动力学方面的知识。
2、掌握获得反应动力学数据的手段和方法。
3、学会实验数据的处理方法,并能根据动力学方程求出相关的动力学参数值。
4、熟悉固定床和流化床反应器的特点及多功能催化反应装置的结构和使用方法,提高自身实验技能。
二、实验原理乙醇脱水属于平行反应。
既可以进行分子内脱水生成乙烯,又可以进行分子间脱水生成乙醚。
一般而言,较高的温度有利于生成乙烯,而较低的温度有利于生成乙醚。
因此,对于乙醇脱水这样一个复合反应,随着反应条件的变化,脱水过程的机理也会有所不同。
乙醇的脱水实验报告
一、实验目的1. 理解乙醇脱水反应的原理。
2. 掌握乙醇脱水实验的操作步骤。
3. 学习通过实验分析反应结果,验证实验原理。
4. 掌握实验过程中安全注意事项。
二、实验原理乙醇脱水是指乙醇分子中的氢原子和羟基(-OH)被去除,生成乙烯(C2H4)和水(H2O)的过程。
该反应在酸性催化剂的作用下进行,常用的催化剂有浓硫酸、五氧化二磷等。
反应方程式如下:\[ \text{C}_2\text{H}_5\text{OH} \xrightarrow{\text{催化剂}}\text{C}_2\text{H}_4 + \text{H}_2\text{O} \]三、实验材料与仪器1. 实验材料:- 乙醇(95%)- 浓硫酸(98%)- 乙醇钠(C2H5ONa)- 氢氧化钠(NaOH)- 碳酸钠(Na2CO3)- 碳酸钙(CaCO3)- 水浴锅- 冷凝管- 蒸馏烧瓶- 接引管- 收集瓶- 酒精灯- 温度计- 秒表2. 实验步骤:1. 将5mL乙醇加入蒸馏烧瓶中。
2. 向烧瓶中加入适量浓硫酸,搅拌均匀。
3. 将烧瓶放入水浴锅中,加热至70-80℃。
4. 观察反应现象,记录乙烯产生的速率。
5. 将反应生成的气体通过冷凝管冷却,收集在收集瓶中。
6. 将收集瓶中的气体用燃烧法检验,观察火焰颜色。
四、实验结果与分析1. 实验现象:在加热过程中,烧瓶中产生气泡,气泡逐渐增多,最终形成一股稳定的气流。
收集瓶中的气体燃烧时,火焰呈蓝色。
2. 实验结果:通过实验,我们观察到乙醇在浓硫酸催化下脱水反应生成了乙烯。
燃烧实验进一步验证了产物的存在。
五、实验讨论1. 实验过程中,温度对反应速率有显著影响。
温度越高,反应速率越快。
但在过高温度下,可能会发生副反应,影响产物的纯度。
2. 催化剂的选择对反应速率和产物纯度也有一定影响。
实验中,浓硫酸作为催化剂,具有较好的催化效果。
3. 实验过程中,注意安全操作,防止浓硫酸溅到皮肤或衣物上。
六、实验结论通过本实验,我们成功实现了乙醇的脱水反应,生成了乙烯。
乙醇脱水制实验步骤 -回复
乙醇脱水制备无水乙醇的实验步骤如下:
1. 将纯乙醇倒入干净的锥形瓶中,加入适量的干燥剂(如快速干燥脱水剂),放在室温下搅拌一段时间。
2. 将上述混合溶液过滤或离心去除干燥剂,获得初步去除水份的乙醇。
3. 将初步去除水份的乙醇倒入一只干燥的圆底烧瓶中,在冷水或冰浴中将其加热至100℃左右。
4. 向正在升温的烧瓶中加入20%(体积分数)的硫酸(或磷酸),不断搅拌并持续加热至115℃左右。
5. 检查反应液是否变成了无色透明的液体,并使用干燥管对产物进行脱水处理。
6. 最后,将无水乙醇倒入干燥瓶中保存即可。
需要说明的是,乙醇脱水的实验操作要求非常严格。
在实验前,所有使用的仪器设备和试剂都要进行干燥处理,以保证反应过程的可重复性和结果的准确性。
同时,在实验过程中还需要注意安全事项,如佩戴防护眼镜、手套、长袖衣等防护措施。
乙醇脱水反应研究实验
乙醇脱水反应研究实验一、实验目的1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、副反应的影响规律和生成的过程。
2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。
3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布。
4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。
了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。
5. 学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。
二、实验仪器和药品乙醇脱水气固反应器,气相色谱及计算机数据采集和处理系统,精密微量液体泵,蠕动泵。
ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,蒸馏水。
三、实验原理乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增多的可逆反应。
提高反应温度、降低反应压力,都能提高反应转化率。
乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。
有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H 键,需要的活化能较高,所以要在高温才有利于乙烯的生成。
乙醇在催化剂存在下受热发生脱水反应,既可分子脱水生成乙烯,也可分子间脱水生成乙醚。
现有的研究报道认为,乙醇分子脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下:C2H5OH(g)→ C2H4(g)+ H2O(g)C2H5OH(g)→ C2H5OC2H5(g)+H2O(g)目前,在工业生产方面,乙醚绝大多数是由乙醇在浓硫酸液相作用下直接脱水制得。
乙醇气相脱水制乙烯动力学实验
乙醇气相脱水制乙烯动力学实验乙醇气相脱水制乙烯动力学实验是一个研究乙醇脱水反应动力学的实验,该实验旨在探究反应条件对反应速率的影响,从而了解反应机理和动力学规律。
以下是实验的详细步骤和数据分析。
一、实验步骤1.准备实验装置:本实验采用气相反应装置,包括反应器、加热器、温度控制器、压力控制器、冷凝器、收集瓶等。
2.准备试剂:本实验采用95%乙醇作为原料,催化剂为酸性催化剂(如硫酸或磷酸)。
3.装填催化剂:将酸性催化剂装填到反应器中,确保催化剂表面平整。
4.添加原料:将95%乙醇加入到反应器中,确保液面在催化剂表面以上。
5.启动实验:开启加热器,将反应器加热到预设的反应温度,同时开启压力控制器,保持反应压力在预设值。
6.收集数据:在实验过程中,通过冷凝器收集反应产物,并记录不同时间下的产物产量。
7.实验结束:实验结束后,关闭加热器和压力控制器,取出产物进行分析。
二、数据分析1.产物分析:通过气质联用仪(GC-MS)对产物进行分析,确定产物种类及其含量。
2.动力学参数测定:根据实验数据,采用适当的动力学模型进行拟合,求得反应速率常数、活化能等动力学参数。
3.反应机理研究:结合产物分析和动力学参数测定结果,推断反应机理。
三、实验结果与讨论1.产物分析结果:实验结果表明,乙醇气相脱水制乙烯的主要产物为乙烯和水,其中乙烯的产量随反应时间的延长而增加。
2.动力学参数测定结果:通过拟合实验数据,得到反应速率常数为k=0.05min-1,活化能为Ea=300kJ/mol。
这些参数可以用于描述乙醇气相脱水制乙烯的动力学行为。
3.反应机理研究结果:结合产物分析和动力学参数测定结果,可以推断乙醇气相脱水制乙烯的反应机理为:乙醇在酸性催化剂的作用下脱去一分子水生成乙烯和水蒸气,整个反应过程包括扩散、吸附、反应和脱附等步骤。
其中,扩散和吸附是限制反应速率的步骤,而反应和脱附则相对较快。
四、结论本实验研究了乙醇气相脱水制乙烯的动力学行为,得到了反应速率常数和活化能等动力学参数,并确定了反应机理。
最新版 天津大学乙醇脱水反应研究实验报告
乙醇脱水反应研究实验一、实验目的1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、副反应的影响规律和生成的过程。
2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。
3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布。
4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。
了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。
5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。
二、实验原理1.实验仪器和药品:乙醇脱水固定床反应器,精密微量液体泵,蠕动泵,锥形瓶,烧瓶。
1号气相色谱仪GC−910及1号计算机数据采集和处理系统:载气1柱前压:0.03MPa载气流量:36ml/min载气2柱前压:0.025MPa 载气流量:28ml/min桥电流:100mA 讯号衰减比:6柱箱温度:125℃气化室温度:100℃检测器温度:150℃ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,纯乙醚,蒸馏水。
2.反应机理:乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。
提高反应温度、降低反应压力,都能提高反应转化率。
乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。
有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H键,需要的活化能较高,所以要在高温才有乙烯的生成。
反应式如下:主反应:C2H5OH→C2H4+H2O副反应:2C2H5OH→C2H5OC2H5+H2O3.催化机理:ZSM-5分子筛,因其具有亲油疏水性,在催化脱水性能方面更具有优势。
乙醇的脱水反应
乙醇的脱水反应乙醇是一种常见的有机化学品,广泛用于生活和工业中。
在工业应用中,乙醇的脱水反应是一个非常重要的反应,可以制备出高纯度的乙烯和其他化学品。
本文将从结构、反应原理、反应条件、应用和发展前景等方面来介绍乙醇的脱水反应。
一、乙醇的结构乙醇是一种简单的单元醇,化学式为C2H5OH,是由一个碳原子、一个氧原子和一个氢原子组成的。
在化学式中,C表示碳原子,H表示氢原子,而O表示氧原子。
乙醇的分子结构中,氧原子和碳原子通过一个单键相连,氧原子和氢原子之间则通过一个极性的氢键相连。
二、乙醇的脱水反应原理乙醇经过脱水反应可以制备出高纯度的乙烯。
脱水反应的化学方程式为:C2H5OH → C2H4 + H2O在这个反应中,乙醇分子中的一个羟基(-OH)离开,并与一个氢离子形成了水分子(H2O)。
这个反应是一个消耗水的过程,因此它被称为脱水反应。
在脱水的同时,乙醇分子中的另一个碳原子和氢原子之前则形成了一个双键,形成了乙烯分子(C2H4)。
三、脱水反应的条件为了进行完整的脱水反应,需要提供一定的条件。
一般来说,脱水反应需要一定的温度和催化剂的存在。
这些条件可以帮助乙醇分子中的羟基离开,并且促进乙烯的生成。
1、温度条件脱水反应需要一定的温度才能进行。
一般来说,温度越高,反应速率越快。
在工业生产中,乙醇脱水反应的最佳温度为250°C到300°C。
在这个温度范围内,反应速率比较快,可以获得高产率和高选择性。
2、催化剂催化剂是帮助反应进行的物质,可以改变反应的速率和选择性。
在乙醇的脱水反应中,一些物质可以作为催化剂,例如硫酸、磷酸等。
这些催化剂可以帮助乙醇中的羟基离开,同时也可以吸收水分子。
四、脱水反应的应用乙醇的脱水反应在工业生产中具有广泛的应用,被广泛用于乙烯的生产。
乙烯是一种重要的化学原料,可以被用于制备聚乙烯、聚乙烯醇等高分子材料,也可以被用于生产丙烯酸、异丙醇等化学品。
除了乙烯之外,乙醇脱水反应还可以用于制备其他有用的化学品。
乙醇脱水反应
乙醇脱水反应乙醇脱水反应是一种常见的有机化学反应,广泛应用于工业生产和实验室合成中。
本文将围绕乙醇脱水反应展开讨论,介绍其原理、反应机理、应用以及一些注意事项。
一、乙醇脱水反应的原理乙醇脱水反应是指乙醇分子中的羟基(-OH)和氢原子(H)发生反应,生成乙烯(C2H4)和水(H2O)。
这是一种脱水反应,因为乙醇中的水分子被去除,产生了乙烯这个无水化合物。
乙醇脱水反应的反应机理主要分为两步:1. 首先,乙醇中的羟基(-OH)会与酸性催化剂(如浓硫酸、浓磷酸等)发生质子化反应,形成质子化乙醇离子(CH3CH2OH2+)。
这个质子化乙醇离子是反应的活化态物质。
2. 然后,质子化乙醇离子会发生质子转移反应,丧失一个氢原子,生成乙烯和水。
这个质子转移反应是整个反应的关键步骤。
三、乙醇脱水反应的应用乙醇脱水反应在工业上有着广泛的应用。
最常见的应用是乙烯的生产。
乙烯是一种重要的化工原料,广泛用于合成聚乙烯、乙烯基化合物等。
此外,乙醇脱水反应还可以用于制备其他有机化合物,如醚类、酯类等。
四、乙醇脱水反应的注意事项在进行乙醇脱水反应时,需要注意以下几点:1. 反应温度:乙醇脱水反应一般在高温条件下进行,常用的反应温度为150-200摄氏度。
温度过低会降低反应速率,温度过高则容易引起副反应。
2. 催化剂选择:常用的酸性催化剂有浓硫酸、浓磷酸等。
不同的催化剂对反应速率和产物选择性有不同的影响,需要根据具体情况选择合适的催化剂。
3. 反应物浓度:反应物浓度对反应速率有一定影响,但过高的浓度会增加副反应的发生。
在实际操作中,需要根据具体要求进行调节。
4. 安全防护:乙醇脱水反应涉及高温、有害气体和易燃物质,操作时需要做好安全防护工作,确保实验室和工作环境的安全。
乙醇脱水反应是一种重要的有机化学反应,具有广泛的应用价值。
通过了解其原理、反应机理和注意事项,可以更好地进行相关实验和工业生产。
对于有机化学研究和工程技术人员来说,掌握乙醇脱水反应的基本知识是非常重要的。
乙醇脱水反应实验现象
乙醇脱水反应实验现象
乙醇脱水反应实验现象:
乙醇脱水反应是指在高温下将乙醇分子中的羟基(OH)与氢原子(H)失去,形成乙烯分子。
这种反应可以使用浓硫酸或浓磷酸作为催化剂。
在进行乙醇脱水反应的实验中,首先需要将一定量的乙醇和一定量的浓硫酸或浓磷酸混合,并加热至高温。
反应开始时,可以观察到溶液中出现沉淀或气泡。
这是因为在高温的条件下,溶液中的乙醇开始脱水,产生乙烯分子和水分子。
由于乙烯分子是无色无味的气体,因此可以看到溶液中产生气泡。
随着反应的进行,可以观察到溶液的颜色逐渐变深,甚至变成黑色。
这是因为在反应中生成的烷基硫酸盐和醇酸酐等物质会导致溶液的颜色变化。
此外,在进行反应时需要注意安全,因为乙醇脱水反应会产生大量的热量和有毒气体,需要进行充分的通风和防护措施。
总之,乙醇脱水反应实验中可以观察到溶液中产生气泡和颜色变化的现象,这是由于乙醇分子中的羟基与氢原子失去而产生的乙烯分子和水分子,以及其他产物的结果。
对乙醇脱水制乙烯实验的新研究
对乙醇脱水制乙烯实验的新研究中学化学实验室中常用浓硫酸作为乙醇脱水制取乙烯的催化剂、脱水剂,但是实验中存在很多的弊端,如:炭化现象严重影响观察,反应所需要的时间长,制取的乙烯纯度不高等。
苏教版全国高中化学新教材———《有机化学基础》(选修)P69页,关于乙醇脱水制取乙烯的实验中,没有采用传统的方法即以浓硫酸作为催化剂,而是选用石棉绒作为催化剂制取乙烯[1]。
教材中采用试管作为反应仪器,将乙醇和石棉绒加入其中用酒精灯进行加热,并用水进行洗气来制取乙烯(见下图)。
石棉绒能否作为制取乙烯的催化剂,还需要从其反应机理来看。
乙醇脱水反应是按照E1机理进行的,具体过程如下:在酸的作用下,乙醇分子上不容易离去的基团——C—O转变成易离去的基团,C—O 键断裂脱水形成C+,C+的邻位碳原子上失去一个质子,一对电子转移过来中和正电荷形成双键。
从反应机理上看,生成C+的一步是整个反应的速控步骤,还表明醇的脱水反应是一个可逆反应。
因此可以通过控制H+的浓度即用较浓的酸来使反应向右进行,可以选用浓硫酸或五氧化二磷作为催化剂和脱水剂。
另外,醇在350-400℃在氧化铝或者硅酸盐表面上脱水,也可形成双键[2]。
如:石棉属于硅酸盐类矿物,化学成份是Mg6[Si4O10][OH]8,含有氧化镁、铝、钾、铁、硅等成分[3]。
因此从理论上看石棉绒可以作为乙醇脱水制取乙烯的催化剂,那么它在实际操作中能否有良好的催化效果?与浓硫酸、五氧化二磷在实验室中的催化效果有什么不同?笔者对此进行了一系列的对比实验。
1实验内容1.1催化剂的选择采用浓硫酸作催化剂;采用石棉绒作为催化剂,分别采用角闪石石棉和蛇纹石石棉;采用五氧化二磷作催化剂;采用浓硫酸和石棉绒作为混合催化剂;采用五氧化二磷和石棉绒作为混合催化剂。
1.2实验装置1.3实验中乙醇的具体用量及催化剂用量乙醇的用量和催化剂用量表1.4说明实验采用具支试管作为反应容器。
为了使实验结果具有明显的对比性,实验中检验乙烯的酸性高锰酸钾采用相同的配制:在试管中加入3滴0.01mol/L的高锰酸钾稀释至5mL,再加入3滴1﹕1的盐酸,混合均匀。
乙醇脱水实验报告
乙醇脱水实验报告引言:乙醇是一种常见的有机溶剂,在工业和实验室中广泛应用。
然而,乙醇中含有一定量的水分,这会对一些需要干燥条件的实验或工艺产生影响。
因此,乙醇脱水是一项重要的实验技术。
本实验旨在通过探索不同脱水方法的效果,评估其对乙醇脱水的适用性和有效性。
材料与方法:1. 实验材料:- 乙醇(纯度99%)- 硅胶干燥剂- 氢氧化钠(NaOH)- 蒸馏水2. 脱水方法:- 方法一:使用硅胶干燥剂吸附水分- 方法二:使用NaOH约化反应脱水实验步骤:1. 准备三个封闭容器,并在每个容器中分别加入100ml乙醇,作为初始试验样品。
2. 方法一:将一定量的硅胶干燥剂加入一个封闭容器中,将容器密封并静置24小时。
3. 方法二:将一定量的NaOH加入另一个封闭容器中,将容器密封并静置24小时。
4. 控制组:不进行任何脱水处理的乙醇样品,作为对照组。
5. 在静置过程结束后,取出各容器中的试验样品。
结果与讨论:1. 方法一:通过比较初始样品和经过硅胶干燥剂处理后的样品,可以明显观察到样品的颜色变浅。
这表明硅胶干燥剂有效吸附了乙醇中的水分。
然而,此方法处理后的乙醇样品仍然含有一定量的水分。
2. 方法二:比较初始样品和经过NaOH脱水处理后的样品,可以发现样品的颜色明显变亮。
这是由于NaOH与乙醇发生约化反应,将乙醇中的水分转化为水和乙醇化合物。
经过该方法处理后的乙醇样品含水量更低,适用于一些对水分要求较高的实验。
3. 控制组:控制组样品与初始样品相比,没有经过任何脱水处理,水分含量最高。
这突显了乙醇中含有水分对实验结果的影响。
结论:通过本实验,我们可以得出以下结论:- 硅胶干燥剂可以有效吸附乙醇中的水分,但不能完全脱除水分。
- NaOH约化反应是一种有效的乙醇脱水方法,可以将乙醇中的水分转化为乙醇化合物。
- 对于一些对水分要求较高的实验,建议使用NaOH脱水方法。
实验中可能存在的误差和改进措施:1. 实验过程中的温度和湿度可能对结果产生影响,因此需要对这些因素进行严格控制。
乙醇分子内及分子间脱水反应机理的计算化学实验研究
乙醇分子内及分子间脱水反应机理的计算化学实验研究乙醇是一种常见的有机化合物,其分子内及分子间的脱水反应机理一直以来都是化学领域的一个重要研究课题。
通过计算化学实验的方法,我们可以深入探讨乙醇分子内及分子间脱水反应的机理,并对其发生的条件、速率以及可能的副反应进行研究。
首先,我们需要了解乙醇分子内及分子间脱水反应的基本概念。
乙醇的分子式为C2H5OH,由碳、氧、氢三种元素组成,其中羟基(-OH)是具有活性的官能团。
脱水反应是指在特定条件下,乙醇分子内或者分子间发生羟基(-OH)脱离的化学反应。
这一反应是有重要应用的,例如在工业生产中,乙醇脱水反应可以得到乙烯,是乙烯生产的主要方法之一。
为了研究乙醇分子内及分子间脱水反应机理,我们可以采用计算化学实验的方法。
计算化学实验是一种使用计算机模拟大规模分子运动和反应行为的技术。
通过在计算机中构建乙醇分子的结构,我们可以使用量子力学方法计算其潜在能量面,并通过分子动力学模拟,研究乙醇分子内及分子间脱水反应的可能路径。
首先,我们利用量子力学方法计算乙醇分子的潜在能量面。
通过考虑乙醇分子中羟基的位置和倾角等参数,我们可以获得乙醇分子在不同形式下的能量变化趋势。
同时,我们还可以通过计算反应物和产物之间的转化能垒,来探讨乙醇分子内及分子间脱水反应的发生条件。
其次,通过分子动力学模拟可以研究乙醇分子内及分子间脱水反应的可能路径和反应速率。
分子动力学模拟是一种在计算机上模拟分子运动的方法,通过计算乙醇分子中原子之间的相互作用力,可以模拟乙醇分子在不同温度、压力等条件下的运动轨迹。
通过分析乙醇分子间的相对运动,我们可以推测乙醇分子内及分子间脱水反应的可能途径,并得到反应的速率和可能的副反应情况。
通过计算化学实验的研究,我们可以更加深入地了解乙醇分子内及分子间脱水反应的机理。
同时,我们还可以通过调节乙醇分子的结构和环境条件,来改变反应的速率和选择性。
这对于进一步优化乙醇脱水反应的工艺条件,提高乙烯产率具有重要的指导意义。
乙醇气相脱水制乙烯动力学实验
化工专业实验报告实验名称:乙醇气相脱水制乙烯动力学实验学院:化学工程学院专业:化学工程与工艺班级:化工班姓名:学号同组者姓名:指导教师:日期:一、实验目的1、稳固所学的有关动力学方面的知识;2、掌握获得的反应动力学数据的方法和手段;3、学会动力学数据的处理方法,根据动力学方程求出相应的参数值;4、熟悉内循环式无梯度反应器的特点以及其它有关设备的使用方法,提高自己的实验技能。
二、实验原理乙醇脱水属于平等反应。
既可以进行分子内脱水成乙烯,又可以分子间脱水生成乙醚。
一般而言,较高的温度有利于生成乙烯,而较低的温度则有利于生成乙醚。
较低温度:O H H OC H C OH H C 25252522+→ 较高温度:O H H C OH H C 24252+→三、实验装置、流程及试剂 1.装置本实验装置由三部分构成。
第一部分是有微量进料泵、氢气钢瓶、汽化器和取样六通阀组成的系统。
第二部分是反应系统。
它是由一台内循环式无梯度反应器,温度控制器和显示仪表组成。
第三部分是取样和分析系统。
包括取样六通阀,产品收集器和在线气相色谱信。
2.实验流程内循环无梯度反应色谱实验装置流程示意图K3-进气旁路调节阀;K2-阀箱产物流量调节;K3-气液分离后尾气调节;J-进液排放三通阀;1-气体钢瓶;2-稳压阀;3-转子流量计;4-过滤器;5-质量流量计;6-缓冲器;7-压力传感器;8-预热器;9-预热炉;10-反应器;11-反应炉;12-马达;13-恒温箱;14-气液分离器;15-调压阀;16-皂膜流量计;17-加料泵12内循环无梯度反应色谱实验装置流程示意图3.试剂和催化剂:无水乙醇,优级纯;分子筛催化剂,60~80目,重0.4g 。
四、实验步骤1、打开H 2钢瓶使柱前压到达0.5kg/cm 2确认色谱检测中截气通过后启动色谱,柱温110℃,汽化室130℃,检测室温到达120℃,待温度稳定后,打开热导池——微电流放大器开关,桥电流至100mA ;2、在色谱仪升温的同时,开启阀恒温箱加热器升温至110℃,开启保温加热器升温至180℃;3、打开反应器温度控制开关,升温,同时向反应器冷却水夹套通冷却水;4、打开微量泵,以小流量向气化器内通原料乙醇;5、在200~380℃之间选择三个温度,测定每5分钟内反应后乙醇和水的质量并记录,每个温度测定2~3次。
提取无水乙醇实验报告
提取无水乙醇实验报告实验目的本实验旨在通过反应提取纯度较高的无水乙醇,并学习提取有机物的方法。
实验原理无水乙醇的提取可通过酸催化的脱水反应来实现。
在本实验中,我们将使用浓硫酸作为催化剂,将乙醇脱水生成无水乙醇。
浓硫酸可以吸水反应物中的水分,促进乙醇分子之间的水脱水,从而得到无水乙醇。
该反应的化学方程式如下所示:C2H5OH + H2SO4 →C2H5HSO4 + H2O实验器材和试剂- 乙醇- 浓硫酸- 水浴- 反应瓶- 温度计实验步骤1. 在一个干燥的反应瓶中,加入适量的乙醇。
2. 向乙醇中加入少量的浓硫酸,搅拌均匀。
3. 将装有乙醇和硫酸的反应瓶置于水浴中。
4. 使用温度计监测水浴的温度,保持在60-65摄氏度之间。
5. 等待反应进行,观察反应液颜色的变化。
6. 当反应液变为深红色时,说明反应已经完成。
7. 关闭水浴,让反应液冷却至室温。
实验结果与数据处理在进行实验的过程中,我们观察到乙醇和浓硫酸反应后,反应液颜色逐渐变深,最终变为深红色,符合预期结果。
实验结果表明,乙醇中的水分被脱除,生成了纯度较高的无水乙醇。
实验注意事项1. 在实验过程中要注意安全,避免接触到浓硫酸和无水乙醇,穿戴实验服和防护眼镜。
2. 反应瓶和试管要干燥,否则会影响反应结果。
3. 操作过程中要轻拿轻放,避免剧烈摇晃或碰撞容器。
实验结论本实验通过浓硫酸的催化作用,成功提取了纯度较高的无水乙醇。
实验结果证明了酸催化的脱水反应是提取无水有机物的有效方法。
同时,在进行该实验的过程中,我们也学习到了实验操作的注意事项和安全知识。
无水乙醇的提取有着广泛的应用场景,例如在某些化学合成反应中作为溶剂,或者用作纯净实验试剂。
通过本次实验,我们对无水有机物的提取方法有了更深入的了解,并获得了一定的实验技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.025
88666
57.122
乙醚
2.308
31898
20.550
总计
155220
100.000
2
水
0.342
31650
21.098
乙醇
1.033
84727
56.479
乙醚
2.325
33637
22.422
总计
150014
100.000
表3液体质量原始数据表
流量mL/min
空瓶质量/g
总质量/g
274.1
3835.90
1:41
150.1
270.5
274.0
3836.54
1:51
149.9
270.3
274.1
3837.12
2:01
150.0
270.1
274.1
3838.95
0.8
2:18
158.2
272.3
274.1
3839.32
2:28
155.4
272.8
274.1
3840.18
2:38
146.7
乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下:
目前,在工业生产方面,乙醚绝大多数是由乙醇在浓硫酸液相作用下直接脱水制得。但生产设备会受到严重腐蚀,而且排出的废酸会造成严重的环境污染。因此,研究开发可以取代硫酸的新型催化体系已成为当代化工生产中普遍关注的问题。目前,在这方面的探索性研究已逐渐引起人们的注意,大多致力于固体酸催化剂的开发,主要集中在分子筛上,特别是ZSM-5分子筛。
63.49
1.2
28.32
0.575
12.673
55.25
表5计算收率和选择性有关数据表
流量mL/min
生成乙烯体积/L
n乙烯
生成乙烯所.4
3.05
0.126
5.796
61.40
61.92
0.8
2.71
0.112
5.152
27.29
42.98
1.2
2.96
0.122
5.612
乙醇脱水生成乙烯和乙醚的反应转化率,不但受到催化剂和工艺条件的限制,更受到热力学平衡的限制。为了提高反应的转化率和选择性,国内外开发了很多乙醇脱水制乙烯和乙醚的新催化剂。
本实验采用ZSM-5分子筛为催化剂,在固定床反应器中进行乙醇脱水反应研究,反应产物随着反应温度的不同,可以生成乙烯和乙醚。温度越高,越容易生成乙烯,温度越低越容易生成乙醚。实验中,通过改变反应温度和反应的进料速度,可以得到不同反应条件下的实验数据,通过对气体和液体产物的分析,可以得到反应的最佳工艺条件和动力学方程。
4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。
5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。
二、实验仪器和药品
乙醇脱水固反应器,气相色谱及计算机数据采集和处理系统,精密微量液体泵,蠕动泵。
实验六乙醇脱水反应研究实验
一、实验目的
1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、副反应的影响规律和生成的过程。
2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。
3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布。
六、实验数据记录及处理
表1原始数据表
温度:22℃大气压:101.325KPa乙醇密度:0.789g/mL乙醇纯度:99.7%
水的校正因子:1.00乙醇的校正因子:1.25乙醚的校正因子:1.43
流量mL/min
时间
汽化温度/℃
反应温度/℃
加热炉温度/℃
湿式气体流量计/L
0.4
1:31
149.8
270.3
272.9
274.0
3841.09
2:48
149.8
273.2
274.1
3842.03
1.2
3:00
157.4
275.3
274.0
3843.03
3:10
158.9
275.7
274.1
3844.00
3:20
151.5
275.8
274.1
3844.96
3:30
150.7
276.0
274.1
3845.99
产品质量/g
0.4
55.00
56.20
1.20
0.8
61.25
74.74
13.49
1.2
61.50
83.54
22.04
表4计算转化率有关数据表
流量mL/min
加入反应器原料量/g
平均乙醇含量/g
产物中剩余乙醇含量/g
转化率X%
0.4
9.44
0.066
0.079
99.16
0.8
18.88
0.511
6.893
表2色谱分析原始数据表
流量mL/min
次数
物质
保留时间/s
峰面积
峰面积%
0.4
1
水
0.458
237594
94.696
乙醇
1.133
13307
5.304
总计
250901
100.000
2
水
0.442
253715
94.638
乙醇
1.108
14374
5.362
总计
268089
100.000
0.8
0.8
1
水
0.292
乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H键,需要的活化能较高,所以要在高温才有和于乙烯的生成。
ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,蒸馏水。
三、实验原理
乙烯是重要的基本有机化工产品。乙烯主要来源于石油化工,但是由乙醇脱水制乙烯在南非、非洲、亚洲的一些国家中仍占有重要地位.我国的辽源、苏州、兰州、南京、新疆等地的中小型化工企业由乙醇脱水制乙烯的工艺主要采用r—Al2,虽然其活性及选择性较好,但是反应温度较高,空速较低,能耗大。
64024
33.836
乙醇
0.992
91382
48.295
乙醚
2.292
33809
17.868
总计
189215
100.000
2
水
0.300
60218
31.689
乙醇
0.992
94696
49.833
乙醚
2.292
35113
18.478
总计
190028
100.000
1.2
1
水
0.333
34657
22.327
19.82
35.87
计算举例:以0.8mL/min的乙醇为例
1、乙醇转化率X的计算
已知温度为22℃,大气压为101.325Kpa,乙醇密度为0.789g/mL,乙醇纯度为99.7%,水的校正因子为1.00,乙醇的校正因子为1.25,乙醚的校正因子为1.43
第一次色谱分析:
第二次色谱分析:
反应机理如下:
在实验中,由于两个反应生成的产物乙醚和水留在了液体冷凝液中,而气体产物乙烯是挥发气体,进入尾气湿式流量计计量总体积后排出。
对于不同的反应温度,通过计算不同的转化率和反应速率,可以得到不同反应温度下的反应速率常数,并得到温度的关联式。
四、实验流程
五、实验步骤
1.实验开始时,先换掉反应器下的吸收瓶,并换上清洗干净的新瓶。记录湿式流量计读数,每隔10min记录反应温度、加热炉温度等实验条件。
2.每个进料速度反应30分钟,然后打开旋钮将吸收瓶中的液体倒入干净的吸收瓶中,记录此时的湿式流量计的读数,则此时的湿式流量计的读数与开始时的湿式流量计的读数之差即为气体体积,再对液体产物准确称重。称重后用色谱仪进行分析。
3.待色谱分析稳定后记录保留时间、峰面积和峰面积百分数,每个进料速度分析两次。
4.改变进料速度,重复上述实验步骤,记录数据。