2019年高考数学 常见题型解法归纳反馈训练 第71讲 圆的方程的求法

合集下载

高考文科数学命题热点名师解密专题:圆的解题方法(含答案)

高考文科数学命题热点名师解密专题:圆的解题方法(含答案)

专题26 圆的解题方法一.【学习目标】1.掌握圆的标准方程和一般方程,会用圆的方程及其几何性质解题.2.能根据所给条件选取适当的方程形式,利用待定系数法求出圆的方程,解决与圆有关的问题.3.能利用直线与圆、圆与圆的位置关系的几何特征判断直线与圆、圆与圆的位置关系,能熟练解决与圆的切线和弦长等有关的综合问题;体会用代数法处理几何问题的思想.二.方法规律总结1.在求圆的方程时,应根据题意,合理选择圆的方程形式.圆的标准方程突出了圆心坐标和半径,便于作图使用;圆的一般方程是二元一次方程的形式,便于代数运算;而圆的参数方程在求范围和最值时应用广泛.同时,在选择方程形式时,应熟悉它们的互化.如果问题中给出了圆心与圆上的点两坐标之间的关系或圆心的特殊位置时,一般用标准方程;如果给出圆上的三个点的坐标,一般用一般方程.2.在二元二次方程中x2和y2的系数相等并且没有xy项,只是表示圆的必要条件而不是充分条件.3.在解决与圆有关的问题时,要充分利用圆的几何性质,这样会使问题简化.涉及与圆有关的最值问题或范围问题时应灵活、恰当运用参数方程.4.处理直线与圆、圆与圆的位置关系常用几何法,即利用圆心到直线的距离,两圆心连线的长与半径和、差的关系判断求解.5.求过圆外一点(x0,y0)的圆的切线方程:(1)几何方法:设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0.由圆心到直线的距离等于半径,可求得k,切线方程即可求出.(2)代数方法:设切线方程为y-y0=k(x-x0),即y=kx-kx0+y0,代入圆方程,得一个关于x的一元二次方程,由Δ=0,求得k,切线方程即可求出.(以上两种方法只能求斜率存在的切线,斜率不存在的切线,可结合图形求得).6.求直线被圆截得的弦长(1)几何方法:运用弦心距、半径及弦的一半构成的直角三角形,计算弦长|AB|=2·r2-d2.(2)代数方法:运用韦达定理.弦长|AB|=[(x A+x B)2-4x A·x B](1+k2).7.注意利用圆的几何性质解题.如:圆心在弦的垂直平分线上,切线垂直于过切点的半径,切割线定理等,在考查圆的相关问题时,常结合这些性质一同考查,因此要注意灵活运用圆的性质解题.三.【典例分析及训练】例1.圆:与轴正半轴交点为,圆上的点,分别位于第一、二象限,并且,若点的坐标为,则点的坐标为()A.B.C.D.【答案】B【解析】由题意知,,设的坐标为,则,,,因为,所以,即,又,联立解得或,因为在第二象限,故只有满足,即.故答案为B.练习1.已知圆上的动点和定点,则的最小值为()A.B.C.D.【答案】D【解析】如图,取点,连接,,,,,,,因为,当且仅当三点共线时等号成立,的最小值为的长,,,故选D.【点睛】本题主要考查圆的方程与几何性质以及转化与划归思想的应用,属于难题. 转化与划归思想解决高中数学问题的一种重要思想方法,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,解答本题的关键是将转化为.练习2.已知点为函数的图象上任意一点,点为圆上任意一点,则线段的长度的最小值为()A.B.C.D.【答案】A【解析】依题意,圆心为,设点的坐标为,由两点间距离公式得,设,,令解得,由于,可知当时,递增,时,,递减,故当时取得极大值也是最大值为,故,故时,且,所以,函数单调递减.当时,,,当时,,即单调递增,且,即,单调递增,而,故当时,函数单调递增,故函数在处取得极小值也是最小值为,故的最小值为,此时.故选A.练习3.直线l是圆C1:(x+1)2+y2=1与圆C2:(x+4)2+y2=4的公切线,并且l分别与x轴正半轴,y轴正半轴相交于A,B两点,则△AOB的面积为A.B.C.D.【答案】A【解析】如图,设OA=a,OB=b,由三角形相似可得:,得a=2.再由三角形相似可得:,解得b=.∴△AOB的面积为.故选A.(二)圆的一般方程例2.若由方程x2-y2=0和x2+(y-b)2=2所组成的方程组至多有两组不同的实数解,则实数b的取值范围是()A.b≥2或b≤-2B.b≥2或b≤-2 C.-2≤b≤2D.-2≤b≤2【答案】B练习1.若圆的圆心在第一象限,则直线一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】因为圆的圆心坐标为,由圆心在第一象限可得,所以直线的斜率,轴上的截距为,所以直线不过第一象限.练习2.若方程a2x2+(a+2)y2+2ax+a=0表示圆,则a的值为A.a=1或a=–2B.a=2或a=–1 C.a=–1D.a=2【答案】C【解析】若方程a2x2+(a+2)y2+2ax+a=0表示圆,则,解得a=–1.故答案为:C(三)点与圆的位置关系例3.例3.过点作直线的垂线,垂足为M,已知点,则当变化时,的取值范围是A.B.C.D.【答案】B练习1.已知点,,是圆内一点,直线,,,围成的四边形的面积为,则下列说法正确的是()A.B.C.D.【答案】A【解析】由已知,四条直线围成的四边形面积,故选A.练习2.设点M(3,4)在圆外,若圆O上存在点N,使得,则实数r的取值范围是()A.B.C.D.【答案】C【解析】如图,要使圆O:x2+y2=r2(r>0)上存在点N,使得∠OMN=,则∠OMN的最大值大于或等于时一定存在点N,使得∠OMN=,而当MN与圆相切时∠OMN取得最大值,此时OM=5,ON=,又点M(3,4)在圆x2+y2=r2(r>0)外,∴实数r的取值范围是.故选:C.(四)圆的几何性质例4.如图,在平面直角坐标系内,已知点,,圆C的方程为,点P为圆上的动点.求过点A的圆C的切线方程.求的最大值及此时对应的点P的坐标.【答案】(1)或;(2)最大值为,.【解析】当k存在时,设过点A切线的方程为,圆心坐标为,半径,,解得,所求的切线方程为,当k不存在时方程也满足;综上所述,所求的直线方程为:或;设点,则由两点之间的距离公式知,要取得最大值只要使最大即可,又P为圆上的点,,,此时直线OC:,由,解得舍去或,点P的坐标为练习1.已知圆心在x轴正半轴上的圆C与直线相切,与y轴交于M,N两点,且Ⅰ求圆C的标准方程;Ⅱ过点的直线l与圆C交于不同的两点D,E,若时,求直线l的方程;Ⅲ已知Q是圆C上任意一点,问:在x轴上是否存在两定点A,B,使得?若存在,求出A,B 两点的坐标;若不存在,请说明理由.【答案】(I);(II)或;(III)存在,或,满足题意.【解析】Ⅰ由题意知圆心,且,由知中,,,则,于是可设圆C的方程为又点C到直线的距离为,所以或舍,故圆C的方程为,Ⅱ设直线l的方程为即,则由题意可知,圆心C到直线l的距离,故,解得,又当时满足题意,因此所求的直线方程为或,Ⅲ方法一:假设在x轴上存在两定点,,设是圆C上任意一点,则即则,令,解得或,因此存在,,或,满足题意,方法二:设是圆C上任意一点,由得,化简可得,对照圆C的标准方程即,可得,解得解得或,因此存在,或,满足题意.练习2.设点P是函数图象上任意一点,点Q坐标为,当取得最小值时圆与圆相外切,则的最大值为A.B.C.D.【答案】C【解析】根据题意,函数y,即(x﹣1)2+y2=4,(y≤0),对应的曲线为圆心在C(1,0),半径为2的圆的下半部分,又由点Q(2a,a﹣3),则Q在直线x﹣2y﹣6=0上,当|PQ|取得最小值时,PQ与直线x﹣2y﹣6=0垂直,此时有2,解可得a=1,圆C1:(x﹣m)2+(y+2)2=4与圆C2:(x+n)2+(y+2)2=9相外切,则有3+2=5,变形可得:(m+n)2=25,则mn,故选:C.练习3.已知,是单位向量,•0.若向量满足||=1,则||的最大值为()A.B.C.D.【答案】C【解析】∵||=||=1,且,∴可设,,.∴.∵,∴,即(x﹣1)2+(y﹣1)2=1.∴的最大值.故选:C.练习4.设P,Q分别是圆和椭圆上的点,则P,Q两点间的最大距离是() A.B.C.D.【答案】C【解析】圆的圆心为M(0,6),半径为,设,则,即,∴当时,,故的最大值为.故选C.(五)轨迹问题例5.已知线段AB的端点B的坐标为(3,0),端点A在圆上运动;(1)求线段AB中点M的轨迹方程;(2)过点C(1,1)的直线m与M的轨迹交于G、H两点,当△GOH(O为坐标原点)的面积最大时,求直线m的方程并求出△GOH面积的最大值.(3)若点C(1,1),且P在M轨迹上运动,求的取值范围.【答案】(1);(2);(3)【解析】(1)解:设点由中点坐标公式有又点在圆上,将点坐标代入圆方程得:点的轨迹方程为:(2)令,则当,即时面积最大为2又直线过点,,∴到直线的距离为,当直线斜率不存在时,到的距离为1不满足,令故直线的方程为:(3)设点,由于点则,令有,由于点在圆上运动,故满足圆的方程.当直线与圆相切时,取得最大或最小故有所以练习1.已知线段AB的端点B的坐标为(3,0),端点A在圆上运动;(1)求线段AB中点M的轨迹方程;(2)过点C(1,1)的直线m与M的轨迹交于G、H两点,求以弦GH为直径的圆的面积最小值及此时直线m的方程.学-科网(3)若点C(1,1),且P在M轨迹上运动,求的取值范围.(O为坐标原点)【答案】(1);(2)圆的面积最小值(3)【解析】(1)解:设点由中点坐标公式有又点在圆上,将点坐标代入圆方程得:点的轨迹方程为:(2)由题意知,原心到直线的距离∴当即当时,弦长最短,此时圆的面积最小,圆的半径,面积又,所以直线斜率,又过点故直线的方程为:(3)设点,由于点法一:所以,令有,由于点在圆上运动,故满足圆的方程.当直线与圆相切时,取得最大或最小故有所以法二:∴从而练习2.四棱锥P-ABCD中,AD⊥面PAB,BC⊥面PAB,底面ABCD为梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是()A.圆的一部分B.椭圆的一部分C.球的一部分D.抛物线的一部分【答案】A练习3.已知椭圆的左右焦点分别为,过的直线与过的直线交于点,设点的坐标,若,则下列结论中不正确的是()A.B.C.D.【答案】A【解析】由椭圆的左右焦点分别为F1(﹣1,0),F2(1,0),过F1的直线l1与过F2的直线l2交于点P,且l1⊥l2,∴P在线段F1F2为直径的圆上,故x02+y02=1,∴1,故A错误,B正确;3x02+2y02>2x02+2y02=2(x02+y02)=2>1,故C正确;由圆x2+y2=1在P(x0,y0)的切线方程为:x0x+y0y=1,如图,∵坐标原点O(0,0)与点()在直线x0x+y0y=1的同侧,且x0×0+y0×0=0<1,∴,故D正确.∴不正确的选项是A.故选:A.练习4.已知圆C:(为锐角) ,直线l:y=kx,则A.对任意实数k与,直线l和圆C相切B.对任意实数k与,直线l和圆C有公共点C.对任意实数k与,直线l和圆C相交D.对任意实数k与,直线l和圆C相离【答案】B【解析】由题意,圆心坐标为:,所以圆心的轨迹方程为:,所以圆心与原点的距离为1,所以圆必过原点.由于直线过原点,所以直线与圆必有交点.故选B.(六)直线与圆的位置关系例6.已知抛物线的顶点在坐标原点,其焦点在轴正半轴上,为直线上一点,圆与轴相切(为圆心),且,关于点对称.(1)求圆和抛物线的标准方程;(2)过的直线交圆于,两点,交抛物线于,两点,求证:.【答案】(1)的标准方程为.的标准方程为(2)见证明【解析】(1)设抛物线的标准方程为,则焦点的坐标为.已知在直线上,故可设因为,关于对称,所以,解得所以的标准方程为.因为与轴相切,故半径,所以的标准方程为.(2)由(1)知,直线的斜率存在,设为,且方程为则到直线的距离为,所以,由消去并整理得:.设,,则,,.所以因为,,,所以所以,即.练习1.已知以点为圆心的圆经过点和,线段的垂直平分线交圆于点和,且.(1)求直线的方程;(2)求圆的方程.【答案】(1);(2)或.【解析】(1)直线的斜率,的中点坐标为直线的方程为(2)设圆心,则由点在上,得.①又直径,,.②由①②解得或,圆心或圆的方程为或练习2.已知直线,曲线,若直线与曲线相交于、两点,则的取值范围是____;的最小值是___.【答案】【解析】直线l:kx﹣y k=0过定点(1,),曲线C为半圆:(x﹣2)2+y2=4(y≥0)如图:由图可知:k OP,k PE,∴;要使弦长AB最小,只需CP⊥AB,此时|AB|=22,故答案为:[,];.练习3.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点A、B的距离之比为λ(λ>0,λ≠1),那么点M的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2=1和点,点B(1,1),M 为圆O上动点,则2|MA|+|MB|的最小值为_____.【答案】【解析】如图所示,取点K(﹣2,0),连接OM、MK.∵OM=1,OA=,OK=2,∴,∵∠MOK=∠AOM,∴△MOK∽△AOM,∴,∴MK=2MA,∴|MB|+2|MA|=|MB|+|MK|,在△MBK中,|MB|+|MK|≥|BK|,∴|MB|+2|MA|=|MB|+|MK|的最小值为|BK|的长,∵B(1,1),K(﹣2,0),∴|BK|=.故答案为:.练习4.已知直线l:mx﹣y=1,若直线l与直线x+m(m﹣1)y=2垂直,则m的值为_____,动直线l:mx﹣y=1被圆C:x2﹣2x+y2﹣8=0截得的最短弦长为_____.【答案】0或2.(七)圆与圆的位置关系例1.在平面直角坐标系中,已知点和直线:,设圆的半径为1,圆心在直线上.(Ⅰ)若圆心也在直线上,过点作圆的切线.(1)求圆的方程;(2)求切线的方程;(Ⅱ)若圆上存在点,使,求圆心的横坐标的取值范围.【答案】(Ⅰ)(1)或(2)或(Ⅱ)【解析】(Ⅰ)(1)由得圆心为,∵圆的半径为1,∴圆的方程为:.(2)由圆方程可知过的切线斜率一定存在,设所求圆的切线方程为,即,∴,解之得:或,∴所求圆的切线方程为:或.即或.(Ⅱ)∵圆的圆心在直线:上,设圆心为,则圆的方程为:,又∵,∴设为,则整理得:,设为圆,∴点应该既在圆上又在圆上∴圆和圆有公共点,∴,即:,解之得:即的取值范围为:.练习1.在平面直角坐标系中,已知的顶点坐标分别是,,,记外接圆为圆.(1)求圆的方程;(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由.【答案】(1)(2)存在,且个数为2【解析】(1)设外接圆的方程为,将代入上述方程得:解得则圆的方程为(2)设点的坐标为,因为,所以化简得:.即考查直线与圆的位置关系点到直线的距离为所以直线与圆相交,故满足条件的点有两个。

高中数学圆与方程知识点归纳与常考题型专题练习(附解析)

高中数学圆与方程知识点归纳与常考题型专题练习(附解析)

高中数学圆与方程知识点归纳与常考题型专题练习(附解析) 知识点:4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外(2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x ,圆心为半径为2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交;直线、圆的位置关系注意:1.直线与圆的位置关系 直线与圆相交,有两个公共点d R ⇔<⇔方程组有两组不同实数解(0)∆> 直线与圆相切,只有一个公共点d R ⇔=⇔方程组有唯一实数解(0)∆=直线与圆相离,没有公共点d R ⇔>⇔方程组无实数解(0)∆<2.求两圆公共弦所在直线方程的方法:将两圆方程相减。

高中数学圆的方程典型例题及详细解答

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(r a r a 解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . 上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222b r =又圆截y 轴所得弦长为2.∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a .由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程.又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

高三第一轮复习圆的方程及求法

高三第一轮复习圆的方程及求法

圆的方程及求法【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程. 2.初步了解用代数方法处理几何问题的思想. 主干知识归纳1.圆的定义:平面内与定点的距离等于定长的点的集合(轨迹) 2.圆的方程:方法规律总结1.待定系数法求圆的方程(1) 若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;(2) 若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 2.几何法求圆的方程:利用圆的有关几何性质,如“圆心在圆的任一条弦的垂直平分线上”、“半径, 弦心距,弦长的一半构成直角三角形”等.3.求与圆有关的轨迹问题的四种方法【指点迷津】【类型一】确定圆的方程【例1】:求经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上的圆的方程 【解析】: 设圆的标准方程为(x -a )2+(y -b )2=r 2,由题意列出方程组()()⎪⎩⎪⎨⎧=++=-+-=+013211222222b a r b a r b a ,解之得⎪⎩⎪⎨⎧=-==534r b a ,∴圆的标准方程是(x -4)2+(y +3)2=25. 答案:(x -4)2+(y +3)2=25.【例2】:已知圆心为C 的圆经过点A (0,-6),B (1,-5),且圆心在直线l :x -y +1=0上,求圆的标准方程.【解析】:法一:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则圆心坐标为⎝⎛⎭⎫-D 2,-E2.由题意可得⎪⎩⎪⎨⎧=--=+-+-+=+--0205)5(106)6(222E D F E D F E ,消去F 得⎩⎨⎧ D +E -10=0D -E -2=0,解得⎩⎨⎧D =6E =4,代入求得F =-12,所以圆的方程为x 2+y 2+6x +4y -12=0,标准方程为(x +3)2+(y +2)2=25. 法二:因为A (0,-6),B (1,-5),所以线段AB 的中点D 的坐标为⎝⎛⎭⎫12,-112,直线AB 的斜率k AB =1)6(5----=1,因此线段AB 的垂直平分线l 的方程是y +112=-⎝⎛⎭⎫x -12,即x +y +5=0.圆心C 的坐标是方程组⎩⎨⎧ x +y +5=0x -y +1=0的解,解得⎩⎨⎧x =-3y =-2,所以圆心C 的坐标是(-3,-2).圆的半径长r =|AC |=22)26()30(+-++=5,所以,圆心为C 的圆的标准方程是(x +3)2+(y +2)2=25. 答案:(x +3)2+(y +2)2=25.【类型二】与圆有关的轨迹问题【例1】:已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.【解析】:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON (图略),则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. 答案:(1) (x -1)2+y 2=1. (2) x 2+y 2-x -y -1=0.【例2】:已知直角三角形ABC 的斜边为AB ,且A (-1,0),B (3,0),求: (1)直角顶点C 的轨迹方程; (2)直角边BC 中点M 的轨迹方程.【解析】:(1)设顶点C (x ,y ),因为AC ⊥BC ,且A ,B ,C 三点不共线,所以x ≠3且x ≠-1. 又k AC =y x +1,k BC =yx -3,且k AC ·k BC =-1, 所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(x ≠3且x ≠-1).(2)设点M (x ,y ),点C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32(x ≠3且x ≠1),y =y 0+02,于是有x 0=2x -3,y 0=2y .由(1)知,点C 在圆(x -1)2+y 2=4(x ≠3且x ≠-1)上运动,将x 0,y 0代入该方程得(2x -4)2+(2y )2=4, 即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(x ≠3且x ≠1).答案:(1) x 2+y 2-2x -3=0(x ≠3且x ≠-1).(2) (x -2)2+y 2=1(x ≠3且x ≠1).例3.(2010·山东烟台调研)若圆x 2+y 2-ax +2y +1=0与圆x 2+y 2=1关于直线y =x -1对称,过点C (-a ,a )的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .y 2-4x +4y +8=0B .y 2+2x -2y +2=0C .y 2+4x -4y +8=0D .y 2-2x -y -1=0【解析】:由圆x 2+y 2-ax +2y +1=0与圆x 2+y 2=1关于直线y =x -1对称可知两圆半径相等且两圆圆心连线的中点在直线y =x -1上,故可得a =2,即点C (-2,2),所以过点C (-2,2)且与y 轴相切的圆P 的圆心的轨迹方程为(x +2)2+(y -2)2=x 2,整理即得y 2+4x -4y +8=0. 答案:C.【同步训练】【一级目标】基础巩固组一、选择题1. 已知两点A (9,4)和B (3,6),则以AB 为直径的圆的方程为( )A .(x -6)2+(y -5)2=10B .(x +6)2+(y +5)2=10C .(x -5)2+(y -6)2=10D .(x +5)2+(y +6)2=10【解析】:线段AB 的中点坐标(6,5)为圆心坐标,半径=21|AB|=10答案:A.2. (2014·四川成都外国语学校)已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1【解析】:(x +1)2+(y -1)2=1的圆心为(-1,1),它关于直线x -y -1=0对称的点为(2,-2),对称后半径不变,所以圆C 2的方程为(x -2)2+(y +2)2=1. 答案:B.3. 若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第二象限内,则a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)【解析】:曲线C 的方程可化为(x +a )2+(y -2a )2=4,则该方程表示圆心为(-a,2a ),半径等于2的圆.因为圆上的点均在第二象限,所以a >2. 答案:D.4. 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是( )A .a <-2或a >32B .-32 <a <0C .-2<a <0D .-2<a <32【解析】:方程x 2+y 2+ax +2ay +2a 2+a -1=0转化为(x +2a )2+(y +a )2=-43a 2-a +1,所以若方程表示圆,则有-43a 2-a +1>0,∴3a 2+4a -4<0,∴-2<a <32 .答案:D.5. 已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长比为1∶2,则圆C 的方程为( )A .⎝⎛⎭⎫x ±332+y 2=43B .⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13【解析】:由已知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为23π,设圆心(0,a ),半径为r ,则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C 的方程为x 2+⎝⎛⎭⎫y ±332=43. 答案:C. 二、填空题6. 经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为________. 【解析】:由⎩⎨⎧ x =1,x +y =2,得⎩⎨⎧x =1,y =1,即所求圆的圆心坐标为(1,1),又由该圆过点(1,0),得其半径为1,故圆的方程为(x -1)2+(y -1)2=1. 答案:(x -1)2+(y -1)2=1.7. 已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称,则a -b 的取值范围是________. 【解析】: ∵圆的方程可化为(x +1)2+(y -2)2=5-a ,∴其圆心为(-1,2),且5-a >0,即a <5. 又圆关于直线y =2x +b 成轴对称,∴2=-2+b ,∴b =4.∴a -b =a -4<1. 答案:(-∞,1).8. 圆心在直线2x -3y -1=0上的圆与x 轴交于A (1,0),B (3,0)两点,则圆的方程为______________. 【解析】:所求圆与x 轴交于A (1,0),B (3,0)两点,故线段AB 的垂直平分线x =2过所求圆的圆心,又所求圆的圆心在直线2x -3y -1=0上,所以两直线的交点坐标即为所求圆的圆心坐标,解之得为(2,1),进一步可求得半径为2,所以圆的标准方程为(x -2)2+(y -1)2=2. 答案:(x -2)2+(y -1)2=2. 三、解答题9. 已知圆的方程是x 2+y 2+2(m -1)x -4my +5m 2-2m -8=0, (1)求此圆的圆心与半径;(2)求证:不论m 为何实数,它们表示圆心在同一条直线上的等圆. 【解析】:(1)配方得:(x +m -1)2+(y -2m )2=9∴圆心为(1-m,2m ),半径r =3.(2)证明:由(1)可知,圆的半径为定值3,且⎩⎨⎧x =1-my =2m ,∴2x +y =2.∴不论m 为何值,方程表示的圆的圆心在直线2x +y -2=0上,且为等圆.答案:(1) 圆心为(1-m,2m ),半径r =3. (2) 圆心在直线2x +y -2=0上,且为等圆.10. (2010·辽宁抚顺调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.【解析】:(1)设AP 中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). ∵P 点在圆x 2+y 2=4上,∴(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.答案:(1) (x -1)2+y 2=1. (2) x 2+y 2-x -y -1=0.【二级目标】能力提升题组一、选择题1. 已知二元二次方程Ax 2+Cy 2+Dx +Ey +F =0,则⎩⎨⎧A =C ≠0,D 2+E 2-4F >0,是方程表示圆的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件【解析】:取A =C =4,D =2,E =2,F =1时,满足⎩⎨⎧A =C ≠0,D 2+E 2-4F >0,但是4x 2+4y 2+2x +2y +1=0不表示圆;方程13x 2+13y 2+x +y +1=0表示圆,其中A =13,C =13,D =1,E =1,F =1,但不满足D 2+E 2-4F >0.综上可知,选D . 答案:D.2. (2010·浙江宁波调研)若直线l :ax +by +4=0(a >0,b >0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为( )A .4B .2C .1D.14【解析】:由题意知,圆C 的圆心坐标为(-4,-1).又直线l 始终平分圆C ,所以直线l 必过圆心,故4=4a +b ≥24ab ,故ab ≤1. 答案:C. 二、填空题3. (2009·扬州调研)若直线ax +by =1过点A (b ,a ),则以坐标原点O 为圆心,OA 长为半径的圆的面积的最小值是________.【解析】:∵直线ax +by =1过点A (b ,a ), ∴ab +ab =1, ∴ab =12,又OA =a 2+b 2,∴以O 为圆心,OA 长为半径的圆的面积:S =π·OA 2=(a 2+b 2)π≥2ab ·π=π, ∴面积的最小值为π.答案:π.【高考链接】1. (2016年浙江省文科第10题)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x+8y +5a =0表示圆,则圆心坐标是 ,半径是 【解析】:由题可得a 2=a +2,解得a =-1或a =2当a =-1时,方程为x 2+y 2+4x+8y -5=0表示圆,故圆心为(-2,-4),半径为5 当a =2时,方程不表示圆 答案:(-2,-4),5.2. (2009年上海第题)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1【解析】:设中点M 的坐标为(x ,y ),与之对应的圆上动点Q 的坐标为(x 0,y 0),显然M 与Q 的对应关系为:⎩⎪⎨⎪⎧x =x 0+42,y =y 0+(-2)2,同时Q 满足在圆x 2+y 2=4上,即x 20+y 20=4;利用M 与Q 的对应关系将x 、y 代入,得中点M 的轨迹方程为:(x -2)2+(y +1)2=1.答案:A.3. (2015年湖北省第16题)如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B在A 的上方),且2AB =.(Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.【解析】:试题分析:设点C 的坐标为00(,)x y ,则由圆C 与x 轴相切于点(1,0)T 知,点C 的横坐标为1, 即01x =,半径0r y =.又因为2AB =,所以222011y +=,即0y r =,所以圆C 的标准方程为22(1)(2x y -+=,令0x =得:1)B .设圆C 在点B处的切线方程为1)kx y -=,则圆心C到其距离为:d ==,解之得1k =.即圆C 在点B 处的切线方程为x 1)y =+,于是令0y =可得x 1=,即圆C 在点B 处的切线在x轴上的截距为1--故应填22(1)(2x y -+=和1--答案:(Ⅰ)22(1)(2x y -+=;(Ⅱ)1--。

高一数学圆方程知识点

高一数学圆方程知识点

高一数学圆方程知识点圆方程是高中数学中的一个重要知识点,它在几何图形的研究中有着广泛的应用。

下面,我将为大家详细介绍高一数学圆方程的相关内容。

一、圆的一般方程在平面直角坐标系中,圆可以用一般方程表示,其一般方程为:(x-a)² + (y-b)² = r²,其中(a, b)表示圆心的坐标,r表示圆的半径。

二、圆的标准方程圆的标准方程是圆的一般方程的简化形式,标准方程为:x² +y² + Dx + Ey + F = 0。

其中,圆心的坐标为(-D/2, -E/2),半径的平方为R² = (D²+E²)/4-F。

三、与坐标轴平行的圆1. 与x轴平行的圆当圆的圆心位于原点时,圆的方程可以表示为x² + y² = r²。

当圆的圆心不位于原点时,可以用(x-a)² + y² = r²来表示。

2. 与y轴平行的圆当圆的圆心位于原点时,圆的方程可以表示为x² + y² = r²。

当圆的圆心不位于原点时,可以用x² + (y-b)² = r²来表示。

四、圆的切线方程圆的切线是与圆的边缘只有一个交点的直线。

求圆的切线方程的步骤如下:1. 求切点坐标设圆的方程为(x-a)² + (y-b)² = r²,已知切线的斜率为k。

通过方程联立,求解出切点坐标(x₁, y₁)。

2. 求切线方程根据切线的定义,切线方程可表示为y-y₁ = k(x-x₁)。

五、与直线的位置关系1. 直线与圆相交当直线与圆相交时,有三种可能的情况:相交于两点、相切于一点和不相交。

2. 直线与圆外切当直线与圆外切时,直线到圆心的距离等于圆的半径。

可以通过计算直线到圆心的距离来判断。

3. 直线与圆内切当直线与圆内切时,直线到圆心的距离小于圆的半径。

2018年高考数学常见题型解法归纳反馈训练第71讲圆的方程的求法

2018年高考数学常见题型解法归纳反馈训练第71讲圆的方程的求法

第71讲 圆的方程的求法【知识要点】一、 圆的定义:平面内到定点距离等于定长的点的集合(轨迹)叫做圆.二、圆的标准方程:圆心在),(b a c 、半径为r 的圆的标准方程是222)()(r b y a x =-+-.圆心在原点,半径为r 的方程为222x y r +=三、圆的一般方程:当0422>-+F E D 时,方程220x y Dx Ey F ++++=叫做圆的一般方程.由220x y Dx Ey F ++++=得22224()()224D E D E F x y +-+++= (1)当0422>-+F E D 时,220x y Dx Ey F ++++=表示圆心为(,)22D E --,半径为(2)当2240D E F +-=时,220x y Dx Ey F ++++=表示点(,)22D E --; (3)当2240D E F +-<时,220x y Dx Ey F ++++=不表示任何图形.四、求圆的方程的方法:待定系数法,先定式,后定量.如果与圆心和半径有关,一般选标准式,否则用一般式.五、圆的弦长有关的问题,主要是解半半弦三角形.六、解答有关圆的问题时,注意灵活结合平面几何里圆的知识分析,减少运算量,提高解题效率.【方法讲评】【例1】 求圆心在直线30x y -=上,与x 轴相切,且被直线0x y -=截得的弦长为【点评】(1)由于本题已知条件中涉及到了圆心和半径,所以选择标准式方程求解.(2)解答圆的有关问题时,要注意利用初中老师讲的圆的平面几何的知识综合分析,这样可 以提高解题效率.【反馈检测1】已知圆满足:①截轴所得弦长为;②被轴分成两段圆弧,其弧长的比为 ;③圆心到直线:的距离为的圆的方程.【例2】 已知ABC ∆中,顶点()2,2A ,边AB 上的中线CD 所在直线的方程是0x y +=,边AC 上高BE 所在直线的方程是340x y ++=.(1)求点B 、C 的坐标; (2)求ABC ∆的外接圆的方程.【解析】(1)由题意可设()()2211,,y x C y x B ,则B A ,的中点⎪⎭⎫ ⎝⎛++22,2211y x D .因为B A ,的中点⎪⎭⎫ ⎝⎛++22,2211y x D 必在直线CD 上,代入有0222211=+++y x ① 又因为B 在直线AB 上,所以代入有042232211=++⋅++y x ② 由①②联立解得(4,0)B -.则()1,1-D , 因为C 在直线CD 上,代入有022=+y x ③又因为直线BE AC ⊥,所以有1-=⋅BE AC k k ,则有1312222-=⎪⎭⎫ ⎝⎛-⋅--x y ④,根据③④有()1.1-C.法二:(2)设ABC ∆外接圆的方程为220x y Dx Ey F ++++=,其中0422 F E D -+.因为三角形的个顶点都在圆上,所以根据(1),将三点坐标代入有:22222220(4)40110D E F D F D E F ⎧++++=⎪--+=⎨⎪++-+=⎩∴ABC ∆【点评】第2问,可以利用平面几何圆的知识,设成标准式方程,也可以直接设成一般式方程求解.【反馈检测2】求过直线与已知圆的交点,且在两坐标轴上的四个截距之和为8的圆的方程.【例3】经过两圆22640x y x ++-=和226280y x y ++-=的交点,且圆心在直线40x y --=上的圆的方程为 .【点评】本题利用了过两圆的交点的圆系方程2222111222()0x y d x e y f x y d x e y f λ+++++++++=.(2)这种解法实际上也是待定系数法.【反馈检测3】求圆心在直线0x y +=上,且过两圆22210240x y x y +-+-=,22x y +2280x y ++-=交点的圆的方程.高中数学常见题型解法归纳及反馈检测第71讲:圆的方程的求法参考答案【反馈检测1答案】()()41122=-+-y x 或()()41122=+++y x由①、②得:又∵到的 ∴∴∴或 ∴或∴或∴或【反馈检测2答案】【反馈检测3答案】226680x y x y ++-+=【反馈检测3详细解析】解法一:将两圆的方程联立得方程组22222102402280x y x y x y x y ⎧+-+-=⎨+++-=⎩,方程组求得两圆的交点坐标A (-4,0),B (0,2). 因所求圆心在直线0x y +=上,故设所求圆心坐标为(,)x x -,则它到上面的两上交点(-4,0)和(0,2=即412x =-,∴3x =-,3y x =-=,从而圆心坐标是(-3,3).又r == 故所求圆的方程为22(3)(3)10x y ++-=.解法二:同解法一求得两交点坐标A (-4,0),B (0,2),弦AB 的中垂线为230x y ++=,它与直线0x y +=交点(-3,3)就是圆心,又半径r =故所求圆的方程为22(3)(3)10x y ++-=.解法三:设所求圆的方程为222221024(228)0x y x y x y x y λ+-+-++++-=(1)λ≠-, 即 222(1)2(5)8(3)0111x y x y λλλλλλ-+++-+-=+++.可知圆心坐标为15(,)11λλλλ-+-++.因圆心在直线0x y +=上,所以15011λλλλ-+-=++,解得2λ=-.将2λ=-代入所设方程并化简,求圆的方程226680x y x y ++-+=.。

圆方程经典例题

圆方程经典例题

高中数学圆的方程典型例题类型一:圆的方程〔1〕标准方程,圆心a,b,半径为r;点M(x0,y0)与圆(x a)2(y b)2r2的位置关系:当,点在圆外当,点在圆上当,点在圆内〔2〕一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。

3〕求圆方程的方法:一般都采用待定系数法:先设后求。

确定一个圆需要三个独立条件,假设利用圆的标准方程,需求出a,b,r;假设利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

1.假设过点P(a,a)可作圆x2+y2-2ax+a2+2a-3=0的两条切线,那么实数a的取值范围是.2.圆x2+y2-2x+6y+5a=0关于直线y=x+2b成轴对称图形,那么a-b的取值范围是()A.(-∞,4)B.(-∞,0)C.(-4,+∞)D.(4,+∞)3.求过两点A(1,4)、B(3,2)且圆心在直线y 0上的圆的标准方程并判断点P(2,4)与圆的关4.求半径为4,与圆x2y24x 2y 4 0相切,且和直线y0相切的圆的方程.5.求经过点A(0,5),且与直线x 2y 0和2x y0都相切的圆的方程.6.直线l:x+y-2=0和圆C:x2+y2-12x-12y+54=0,那么与直线l和圆C都相切且半径最小的圆的标准方程是.7、设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段弧,其弧长的比为3:1,在满足条件(1)(2)的所有圆中,求圆心到直线l:x 2y0的距离最小的圆的方程.12+(y-1)2222=上的动点,那么|PN|-|PM|的8.点P(2,2),点M是圆O:x=上的动点,点N是圆O:(x-2)+y 最大值是()A.-1B.-2类型二:直线与圆的位置关系直线与圆的位置关系有三种情况:〔1〕设直线l:AxByC0222,圆心Ca,b到l的距离为,圆C:xa ybrAa BbC,那么有dB2A22〕过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),那么过此点的切线方程1、直线3x y 23 0和圆x2y24,判断此直线与圆的位置关系.2:直线x y 1与圆x2y22ay 0(a 0)没有公共点,那么a的取值范围是3:假设直线ykx2与圆(x2)2(y3)21有两个不同的交点,那么k的取值范围是.4.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为.圆(x3)2(y3)29上到直线3x4y110的距离为1的点有几个6.、假设直线y x m与曲线y 4 x2有且只有一个公共点,求实数m的取值范围.7.圆M:x2(y2)21,Q是x轴上的动点,QA、QB分别切圆M于A,B两点(1)假设点Q的坐标为〔1,0〕,求切线QA、QB的方程;42(2)求四边形QAMB的面积的最小值;(3)假设AB,求直线MQ的方程.3类型三:圆与圆的位置关系通过两圆半径的和〔差〕,与圆心距〔d〕之间的大小比拟来确定。

圆的方程(讲)-2019年高考数学(理---精校解析 Word版

圆的方程(讲)-2019年高考数学(理---精校解析 Word版

,则该圆的标准方程为:
为圆心



圆的标准方程为:

的距离:
轴的正半轴上,点在圆
的距离为
【答案】
【解析】设,则的方程为
,上【答案】
②-①得:
.
上,所以线段的垂直平分线与直线
.
【答案】
已知圆,与圆关于直线的方程为(
B.
D.
,方程
【答案】
,,时方程为,即
,圆心为时方程为
分别与轴,,两点,点面积的取值范围是
B C
分别与轴,轴交于两点
在圆
,则圆心到直线距离
到直线的距离的范围为
在圆
【答案】
,则,即
min
的距离为,求该圆的方程.
【答案】
届吉林省长春市普通高中一模】已知圆的圆心坐标为
,即
内,过点
,若公差,那么

【答案】
轴对称的圆上的点的最短路径
到圆心
一条直线过点
B.
D.
即.
,平方得:,所以直线的方程为即.
若动点上,动点上,记线段的中点为,且的取值范围为
【答案】
,可得点在线段上运动,
的距离的平方为最小,
的最小值为,
,解得
与重合时,的最大值为的最大值为
的取值范围是.
已知圆方程
相交于两点,且(为坐标原点),求
)的条件下,求以
(1).
,的取值范围;
,可求的值;写出以
)由,得:

)圆心为

圆的方程。

高中数学圆的方程(含圆系)典型题型归纳总结

高中数学圆的方程(含圆系)典型题型归纳总结

高中数学圆的方程典型题型归纳总结类型一:巧用圆系求圆的过程在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。

常用的圆系方程有如下几种:⑴以为圆心的同心圆系方程⑵过直线与圆的交点的圆系方程⑶过两圆和圆的交点的圆系方程此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。

当时,得到两圆公共弦所在直线方程例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。

分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。

倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。

而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。

解:过直线与圆的交点的圆系方程为:,即………………….①依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得又满足方程①,则故例2:求过两圆和的交点且面积最小的圆的方程。

解:圆和的公共弦方程为,即过直线与圆的交点的圆系方程为,即依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。

即,则代回圆系方程得所求圆方程例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。

分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。

解:由原方程得m(x +2y -1)-(x +y -5)=0,①即⎩⎨⎧-==⎩⎨⎧=-+=-+4y 9x 05y x 01y 2x 解得, ∴直线过定点P (9,-4)注:方程①可看作经过两直线交点的直线系。

例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).(1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程.剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0.2x +y -7=0, x =3, x +y -4=0, y =1,即l 恒过定点A (3,1).∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =-21, ∴l 的方程为2x -y -5=0.评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢?思考讨论类型二:直线与圆的位置关系例5、若直线m x y +=与曲线24x y -=有且只有一个公共点,求实数m 的取值范围.解:∵曲线24x y -=表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x=21y -恰有一个公共点,则k 的取值范围是___________.解析:利用数形结合. 答案:-1<k ≤1或k=-2例6 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意.∵m ∈R ,∴得∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则 34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解:设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.类型三:圆中的最值问题例7:圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是解:∵圆18)2()2(22=-+-y x 的圆心为(2,2),半径23=r ,∴圆心到直线的距离r d >==25210,∴直线与圆相离,∴圆上的点到直线的最大距离与最小距离的差是262)()(==--+r r d r d .例8 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.(2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值.分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决.解:(1)(法1)由圆的标准方程1)4()3(22=-+-y x .可设圆的参数方程为⎩⎨⎧+=+=,sin 4,cos 3θθy x (θ是参数).则θθθθ2222sin sin 816cos cos 69+++++=+=y x d)cos(1026sin 8cos 626φθθθ-+=++=(其中34tan =φ). 所以361026max =+=d ,161026min =-=d .(法2)圆上点到原点距离的最大值1d 等于圆心到原点的距离'1d 加上半径1,圆上点到原点距离的最小值2d 等于圆心到原点的距离'1d 减去半径1.所以6143221=++=d .4143222=-+=d .所以36max =d .16min =d .(2) (法1)由1)2(22=++y x 得圆的参数方程:⎩⎨⎧=+-=,sin ,cos 2θθy x θ是参数.则3cos 2sin 12--=--θθx y .令t =--3cos 2sin θθ, 得t t 32cos sin -=-θθ,t t 32)sin(12-=-+φθ1)sin(1322≤-=+-⇒φθt t 433433+≤≤-⇒t . 所以433max +=t ,433min -=t .即12--x y 的最大值为433+,最小值为433-.此时)cos(52sin 2cos 22φθθθ++-=-+-=-y x . 所以y x 2-的最大值为52+-,最小值为52--. (法2)设k x y =--12,则02=+--k y kx .由于),(y x P 是圆上点,当直线与圆有交点时,如图所示,两条切线的斜率分别是最大、最小值. 由11222=++--=k k k d ,得433±=k . 所以12--x y 的最大值为433+,最小值为433-.令t y x =-2,同理两条切线在x 轴上的截距分别是最大、最小值.由152=--=m d ,得52±-=m .所以y x 2-的最大值为52+-,最小值为52--.例9、已知对于圆1)1(22=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围.设圆1)1(22=-+y x 上任一点)sin 1,(cos θθ+P )2,0[πθ∈ ∴θcos =x ,θsin 1+=y∵0≥++m y x 恒成立 ∴0sin 1cos ≥+++m θθ 即)sin cos 1(θθ++-≥m 恒成立.∴只须m 不小于)sin cos 1(θθ++-的最大值. 设1)4sin(21)cos (sin -+-=-+-=πθθθu∴12max -=u 即12-≥m .说明:在这种解法中,运用了圆上的点的参数设法.一般地,把圆222)()(r b y a x =-+-上的点设为)sin ,cos (θθr b r a ++()2,0[πθ∈).采用这种设法一方面可减少参数的个数,另一方面可以灵活地运用三角公式.从代数观点来看,这种做法的实质就是三角代换.。

高中数学圆的方程专题讲解

高中数学圆的方程专题讲解

圆的方程考纲解读 1.利用圆的几何要素,求圆的标准方程和一般方程;2.利用代数法、几何法处理圆的问题.[基础梳理]1.圆的定义、方程2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)点M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)点M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)点M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.[三基自测]1.圆x2+y2-4x+6y=0的圆心坐标是()A.(2,3)B.(-2,3)C.(-2,-3) D.(2,-3)答案:D2.过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是()A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=4答案:C3.(必修2·习题4.1A组改编)△AOB中,A(4,0),B(0,3),O(0,0),则△AOB外接圆的方程为________.答案:x2+y2-4x-3y=04.不等式组⎩⎪⎨⎪⎧x 2+y 2≤1y ≤x 表示的区域面积为________.答案:π2考点一 求圆的方程|方法突破[例1] (1)(2018·南昌检测)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( )A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =0(2)圆心在直线x -2y -3=0上,且过点A (2,-3),B (-2,-5)的圆的方程为________.(此题可用多种方法求解)[解析] (1)根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0,故选B.(2)法一:设所求圆的标准方程为(x -a )2+(y -b )2=r 2,由题意得⎩⎪⎨⎪⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得⎩⎪⎨⎪⎧a =-1,b =-2,r 2=10,故所求圆的方程为(x +1)2+(y +2)2=10.法二:设圆的一般方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为(-D 2,-E 2).由题意得⎩⎪⎨⎪⎧⎝⎛⎭⎫-D 2-2×⎝⎛⎭⎫-E 2-3=0,4+9+2D -3E +F =0,4+25-2D -5E +F =0,解得⎩⎪⎨⎪⎧D =2,E =4,F =-5.故所求圆的方程为x 2+y 2+2x +4y -5=0.[答案] (1)B (2)(x +1)2+(y +2)2=10 [方法提升] 求圆的方程的方法[母题变式]1.本例(2)变为已知圆的半径为2,圆心在x 轴的正半轴上,且与直线3x +4y +4=0相切,则圆的方程是( )A .x 2+y 2-4x =0B .x 2+y 2+4x =0C .x 2+y 2-2x -3=0D .x 2+y 2+2x -3=0解析:设圆心为C (m,0)(m >0),因为所求圆与直线3x +4y +4=0相切,所以|3m +4×0+4|32+42=2,整理,得|3m +4|=10,解得m =2或m =-143(舍去),故所求圆的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,故选A.答案:A2.本例(1)变为经过点A (5,2),B (3,-2),且圆心在直线2x -y -3=0上,求圆的方程. 解析:法一:由题意知k AB =2,AB 的中点为(4,0),设圆心为C (a ,b ), ∵圆过A (5,2),B (3,-2)两点, ∴圆心一定在线段AB 的垂直平分线上,则⎩⎪⎨⎪⎧b a -4=-12,2a -b -3=0,解得⎩⎪⎨⎪⎧a =2,b =1,∴C (2,1),∴r =|CA |=(5-2)2+(2-1)2=10. ∴所求圆的方程为(x -2)2+(y -1)2=10. 法二:设圆的方程为(x -a )2+(y -b )2=r 2, 则⎩⎪⎨⎪⎧2a -b -3=0,(5-a )2+(2-b )2=r 2,(3-a )2+(-2-b )2=r 2,解得⎩⎪⎨⎪⎧a =2,b =1,r =10,故所求圆的方程为(x -2)2+(y -1)2=10.考点二 与圆有关的最值问题|方法突破[例2] (1)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞) (2)已知实数x 、y 满足x 2+y 2-4x +1=0. ①求yx 的最大值与最小值;②求y -x 的最大值、最小值; ③求x 2+y 2的最大值、最小值.[解析] (1)∵直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切, ∴圆心(1,1)到直线的距离为 d =|(m +1)+(n +1)-2|(m +1)2+(n +1)2=1,∴mn =m +n +1≤⎝⎛⎭⎫m +n 22.设t =m +n ,则14t 2≥t +1,解得t ∈(-∞,2-22]∪[2+22,+∞).选D. (2)①原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆.yx的几何意义是圆上一点与原点连线的斜率, 所以设yx=k ,即y =kx .如图所示,当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =± 3. 所以yx的最大值为3,最小值为- 3.②y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2± 6.所以y -x 的最大值为-2+6,最小值为-2- 6.③如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为 (2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3. [答案] (1)D [方法提升]1.与圆有关的最值问题的几何转化法(1)形如μ=y -bx -a 形式的最值问题,可转化为动直线斜率的最值问题.(2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.2.与圆有关的参数范围问题常见思路(1)直接利用条件,画出几何图形,结合图形用几何法求参数的范围. (2)根据位置关系列不等式组,用代数法求参数范围. (3)构造关于参数的函数关系,借助函数思想求参数的范围.[跟踪训练]1.(2018·洛阳模拟)在平面直角坐标系内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)解析:圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,由题意知⎩⎪⎨⎪⎧a <0|-a |>2|2a |>2⇒a <-2,故选A.答案:A2.(2018·聊城模拟)已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点, (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解析:①因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22, 设m +2n =t ,将m +2n =t 看成直线方程, 因为该直线与圆有公共点, 所以圆心到直线的距离d =|1×2+2×7-t |12+22≤22,解上式得:16-210≤t ≤16+210, 所以,所求的最大值为16+210.②记点Q (-2,3).因为n -3m +2表示直线MQ 的斜率,设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0,则n -3m +2=k .由直线MQ 与圆C 有公共点, 所以|2k -7+2k +3|1+k 2≤2 2.可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.考点三 与圆有关的轨迹问题|模型突破[例3] (1)过原点O 作圆x 2+y 2-8x =0的弦OA ,则弦OA 中点M 的轨迹方程为________. (2)设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP (O 为坐标原点),求点P 的轨迹.[解析] (1)法一:(几何法)如图,∵M 为OA 的中点,∴∠OMC =∠OAD =90°.∴动点M 在以OC 为直径的圆上,圆心坐标为(2,0),半径为2. ∴所求点的轨迹方程为x 2+y 2-4x =0.法二:(代入法)设中点M (x ,y ),A (x 0,y 0),则由中点坐标公式得x 0=2x ,y 0=2y ,将点A (x 0,y 0)代入圆的方程,并化简,得x 2+y 2-4x =0.(2)如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝⎛⎭⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎫x 0-32,y 0+4 2.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42. 从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求点P 的轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝⎛⎭⎫-95,12 5和⎝⎛⎭⎫-215,28 5(此两点坐标由⎩⎪⎨⎪⎧y =-43x ,(x +3)2+(y -4)2=4解得,是点P 在直线OM 上时的情况).[答案] (1)x 2+y 2-4x =0 [模型解法]有关圆的求轨迹问题的关键点 (1)设出动点的坐标(x ,y ).(2)根据动点满足的条件,结合圆的定义,几何性质,点、直线与圆的位置关系,利用几何法、定义法、代入法、建立动点满足的等式关系(方程).(3)化简方程、得出轨迹.[高考类题](2013·高考新课标全国卷Ⅱ)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解析:(1)设P (x ,y ),圆P 的半径为r .由题设得y 2+2=r 2,x 2+3=r 2. 从而y 2+2=x 2+3.故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0),由已知得 |x 0-y 0|2=22. 又P 在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3. 由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=1.此时,圆P 的半径r = 3. 故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3.1.[考点二](2014·高考北京卷)已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .4解析:若∠APB =90°,则点P 的轨迹是以AB 为直径的圆,其方程为x 2+y 2=m 2.由题意知圆C :(x -3)2+(y -4)2=1与圆O :x 2+y 2=m 2有公共点,所以|m -1|≤|OC |≤m +1,易知|OC |=5,所以4≤m ≤6,故m 的最大值为6.选B.答案:B2.[考点一](2016·高考全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.解析:圆C 的方程可化为x 2+(y -a )2=a 2+2,可得圆心的坐标为C (0,a ),半径r =a 2+2,所以圆心到直线x -y +2a =0的距离为|-a +2a |2=|a |2,所以(|a |2)2+(3)2=(a 2+2)2,解得a 2=2,所以圆C 的半径为2,所以圆C 的面积为4π.答案:4π3.[考点一、三](2017·高考全国卷Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 解析:(1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2,由⎩⎪⎨⎪⎧x =my +2,y 2=2x 可得y 2-2my -4=0,则y 1y 2=-4. 又x 1=y 212,x 2=y 222,故x 1x 2=(y 1y 2)24=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB ,故坐标原点O 在圆M 上.(2)由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4, 故圆心M 的坐标为(m 2+2,m ),圆M 的半径 r =(m 2+2)2+m 2.由于圆M 过点P (4,-2),因此AP →·BP →=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可知y 1y 2=-4,x 1x 2=4,所以2m 2-m -1=0,解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝⎛⎭⎫94,-12, 圆M 的半径为854,圆M 的方程为⎝⎛⎭⎫x -942+⎝⎛⎭⎫y +122=8516. 4.[考点三](2015·高考广东卷节选)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程.解析:(1)由已知得,圆C 1的标准方程为(x -3)2+y 2=4,所以圆C 1的圆心坐标为(3,0). (2)由题意可知,直线l 的斜率必存在,设直线l 的方程为y =tx ,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),线段AB 的中点M (x 0,y 0)⎝⎛⎭⎫其中x 0=x 1+x 22,y 0=y 1+y 22, 将y =tx 代入圆C 1的方程,整理得(1+t 2)x 2-6x +5=0. 则有x 1+x 2=61+t 2,所以x 0=31+t 2,代入直线l 的方程,得y 0=3t1+t 2. 因为x 20+y 20=9(1+t 2)2+9t 2(1+t 2)2=9(1+t 2)(1+t 2)2=91+t 2=3x 0,所以⎝⎛⎭⎫x 0-322+y 20=94.又因为方程(1+t 2)x 2-6x +5=0有两个不相等的实根, 所以Δ=36-20(1+t 2)>0,解得t 2<45,所以53<x 0≤3.所以线段AB 的中点M 的轨迹C 的方程为⎝⎛⎭⎫x -3 2 2+y 2=94⎝⎛⎭⎫53<x ≤3 .。

圆的方程五种求法分类

圆的方程五种求法分类

圆的方程求法分类圆的方程是解析几何中一类重要曲线方程,是高考的必考内容之一,本文将圆的方程的求法作以分类解析,供学习时参考.一、直接法根据条件利用圆的有关性质,求的圆心坐标和半径,从而写出圆的方程的方法.例1已知圆C 的圆心与点(2,1)P 关于直线1y x =+对称.直线3430x y ++=与圆C 相交于B A ,两点,且6=AB ,求圆C 的方程.点评:若根据条件利用圆的有关性质,易求的圆心坐标和半径,常用直接法.二、间接法——化未知为已知若已知动点P 1(α ,β)在曲线C 1:f 1(x,y )=0上移动,动点P (x,y )依动点P 1而动,它满足关系:⎩⎨⎧βα=βα=),(),(y y x x ① 则关于α 、β反解方程组①,得⎩⎨⎧=β=α),(),(y x h y x g ② 代入曲线方程f 1(x,y )=0,即可求得动点P 的轨迹方程C :f (x,y )=0.【例2】已知点A (3,0),点P 在圆x 2+y 2=1的上半圆周上,∠AOP 的平分线交P A 于Q ,求点Q 的轨迹方程.【点评】上述两种方程为求轨迹的基本方法:相关点及参数法.三、待定系数法例3 已知圆C 经过A (-2,4),B (3.-1)两点,且在x 轴上截得的弦长等于6,求圆C 的方程.点评:求圆的方程的常用方法是待定系数法,若已知圆心或半径或在解题过程中需要用到圆心或半径,如已知弦长、相切等,则将圆的方程设成标准方程形式;若已知条件与圆心和半径无关,则设圆的一般方程.四、几何法——与向量或三角沟通直线被圆截得的弦长计算,运用弦心距(即圆心到直线的距离)、弦半径及半径构成直角三角形计算,此公式是半径2=弦心距2+半弦长2.【例4】 在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB |=2|OA |,且点B 的纵坐标大于零.(1)求向量AB 的坐标; (2)求圆02622=++-y y x x 关于直线OB 对称的圆的方程;【例5】已知一圆经过点(3,1)A ,(1,3)B -,且它的圆心在直线320x y --=上.(1)求此圆的方程;(2)若点D 为所求圆上任意一点,且点(3,0)C ,求线段CD 的中点M 的轨迹方程.五、圆系法经过两圆1C :2x +2y +x D 1+y E 1+1F =0和圆2C :2x +2y +x D 2+y E 2+2F =0交点的圆系方程为:222211122()0x y D x E y F x y D x E y F λ+++++++++=(1λ≠-).注意包括圆1C 不包括圆2C .经过直线:0Ax By C ++=与圆:220x y Dx Ey F ++++=交点的圆系方程为:22()0x y Dx Ey F Ax By C λ+++++++=.例6求过直线240x y ++=和圆:222410x y x y ++-+=的交点,且面积最小的圆的方程.分析:本题是过直线与圆的交点的圆的方程问题,可用圆系法.点评:若所求圆过两圆的交点或以直线与一个圆的交点,常用圆系法,本题也可用直接法,因以直线被圆截得的弦为直径的圆半径最小,此时圆面积最小,故可求出直线与圆的交点,从而求出圆心与半径,写出圆的方程.在求圆的方程时,根据已知条件,选用合适的方法求解,用待定系数法时,注意方程类型的选定.【例7】求经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.。

圆的方程的求法例析

圆的方程的求法例析

例#! 已知 2(') 的三个顶点所对应的坐标为
()"&!"*!')"!!*!))!!"!*!则 2(') 的外接圆的
方程为
!
! "&
Copyright©博看网. All Rights Reserved.
复习
!"!!年!月 上半月!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!解法探究
!
根据题目条件 中 圆 心 在 已 知 直 线 上可 设
出所求的圆的标准方程将已知圆上两点的坐标代入
圆的标准 方 程圆 心 代 入 已 知 的 直 线 方 程联 立 方 程
组进而确定对应的参数值得以求解圆的方程!
解析设所求圆的方程为)&"7*!*)%"H*!$N!! /)+"7*! * )""H*! $N!!
说条件更为广泛运算更为简单处理起来更加方便
快捷!圆 的 系 数 方 程 法 可 选 择 的 两 种 方 程都 可 以 达 到破解问题的目的!
$ 平面几何法
应用平面几何法求解圆的方程时!常用到圆的几
个性质%)#*直径所对的圆周角为直角&)!*圆心在任
意一弦的垂直平分线上&),*圆心在过切点且垂直于
")=! *>! "&4 &"*!通过待定系数法求出常数 =! >!4 的值!从而得以求解圆的方程!
例"!)!"#-年高考数学天津卷文科第#!题*在
平面直角坐 标 系 中!经 过 三 点 )"!"*!)#!#*!)!!"*的

高考数学复习点拨:综述圆方程的寻求方法

高考数学复习点拨:综述圆方程的寻求方法

综述圆方程的寻求方法一、 “标准方程”法利用圆的圆心和半径这些几何特征,采用标准方程为:222()()x a y b r -+-=,进行求解圆方程的方法。

例1过点A (1,-1),B (-1,1),且圆心在直线x+y -2=0上的圆的方程是( )A 、22(3)(1)4x y -++=B 、22(3)(1)4x y ++-=C 、22(1)(1)4x y -+-=D 、22(1)(1)4x y +++=【解】由于圆心在直线x+y -2=0上,故可设圆心坐标为:(a ,2-a ),半径为:r ,圆方程为:222()(2)x a y a r -+-+=,根据圆过点A (1,-1),B (-1,1)得:222222(1)(21)(1)(21)r a a r a a ⎧=-+-+⎪⎨=++--⎪⎩,解得a=1,24r =。

故所求圆的方程为:22(1)(1)4x y -+-=,选C 。

例2 求经过点A (-2,4),且与直线l :x+3y -26=0相切于点B (8,6)的圆的方程。

【解】设圆的方程为:222()()x a y b r -+-=,由|CA|=|CB|,CB ⊥l ,得112a =,32b =-,r =。

圆方程为:22113125()()222x y -++=。

例3 已知圆满足:①截y 轴所得得弦长为2,②被x 轴分成两段圆弧,其弧长之比为3:1,在满足①②的所有圆中,求圆心到直线l :x -2y=0的距离最小的圆的方程。

【解】法1 :设圆的方程为:222()()x a y b r -+-=,圆心P (a ,b )到x 、y轴的距离分别是|b||、|a|。

由题设知圆P截x轴所得的劣弧所对圆心角为90°,故圆P截x轴所得的弦,所以222r b=,圆P截y轴所得的弦长为2,所以221r a=+,从而,2221b a-=;又因为P(a,b)到直线l:x-2y=0的距离为d=,所以22222222225|2|4442()21d a b a b ab a b a b b a=-=+-≥+-+=-=,当且仅当a=b 时等号成立,此时min5d=,这时有221121a b abb a==⎧⎧⇒⎨⎨=-=⎩⎩或11ab=-⎧⎨=-⎩,由222r b=得:22r=,故所求圆的方程为:22(1)(1)2x y-+-=或22(1)(1)2x y+++=。

数学高三知识点圆的方程

数学高三知识点圆的方程

2019数学高三知识点圆的方程查字典数学网高中频道为各位学生同学整理了数学高三知识点圆的方程,供大家参考学习。

更多内容请关注查字典数学网高中频道。

1、圆的定义平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程(x-a)^2+(y-b)^2=r^2(1)标准方程,圆心(a,b),半径为r;(2)求圆方程的方法:一般都采用待定系数法:先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系直线与圆的位置关系有相离,相切,相交三种情况:与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。

”于是看,宋元时期小学教师被称为“老师”有案可稽。

清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。

可见,“教师”一说是比较晚的事了。

如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。

辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

(1)设直线,圆,圆心到l的距离为,则有;;与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。

”于是看,宋元时期小学教师被称为“老师”有案可稽。

清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。

可见,“教师”一说是比较晚的事了。

如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。

辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 “教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。

圆的标准方程与一般方程题型归纳总结

圆的标准方程与一般方程题型归纳总结

圆的标准方程与一般方程题型归纳总结(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--圆的标准方程与一般方程【重难点精讲】重点一、圆基本 要素 当圆心的位置与半径的大小确定后,圆就唯一确定了,因此,确定一个圆的基本要素是圆心和半径标准 方程圆心为C (a ,b ),半径为r 的圆的标准方程是(x -a )2+(y -b )2=r 2图示说明若点M (x ,y )在圆C 上,则点M 的坐标适合方程(x -a )2+(y -b )2=r 2;反之,若点M (x ,y )的坐标适合方程(x -a )2+(y -b )2=r 2,则点M 在圆C 上重点二、点与圆的位置关系圆C :(x -a )2+(y -b )2=r 2(r >0),其圆心为(a ,b ),半径为r ,点P (x 0,y 0),设d =|PC |=2200()()x a y b -+-.位置关系d 与r的大小图示 点P 的坐标的特点点在圆外 d >r(x 0-a )2+(y 0-b )2>r 2点在圆上 d =r(x 0-a )2+(y 0-b )2=r 2点在圆内 d <r(x 0-a )2+(y 0-b )2<r 2重点三、圆的一般方程(1)方程:当D 2+E 2-4F >0时,方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程,其中圆心为C (-D 2,-E2),半径为r =12D 2+E 2-4F .(2)说明:方程x 2+y 2+Dx +Ey +F =0不一定表示圆.当且仅当D 2+E 2-4F >0时,表示圆:当D 2+E 2-4F =0时,表示一个点(-D 2,-E2);当D 2+E 2-4F <0时,不表示任何图形.(3)用“待定系数法”求圆的方程的大致步骤: ①根据题意,选择圆的标准方程或圆的一般方程; ②根据条件列出关于a 、b 、r 或D 、E 、F 的方程组; ③解出a 、b 、r 或D 、E 、F ,代入标准方程或一般方程. 重点四、二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是:A =C ≠0,B =0,D 2+E 2-4F >0. 重点五、求轨迹方程的五个步骤:①建系:建立适当的坐标系,用(x ,y )表示曲线上任意一点M 的坐标; ②设点:写出适合条件P 的点M 的集合P ={M |p (M )}; ③列式:用坐标(x ,y )表示条件p (M ),列出方程F (x ,y )=0; ④化简:化方程F (x ,y )=0为最简形式;⑤查漏、剔假:证明以化简后的方程的解为坐标的点都是曲线上的点.【典题精练】考点1、求圆的标准方程例1.已知三角形ABC 的顶点坐标分别为A (4,1),B (1,5),C (3,2)-; (1)求直线AB 方程的一般式; (2)证明△ABC 为直角三角形; (3)求△ABC 外接圆方程. 【解析】(1)直线AB 方程为:y 1x-45-11-4-=,化简得:43y-19=0x +; (2)AB514-1-43k -==;BC 5231--34k -==(), ∴AB BC =-1k k ,则AB BC ⊥ ∴△ABC 为直角三角形(3)∵△ABC 为直角三角形,∴△ABC 外接圆圆心为AC 中点M 1322⎛⎫⎪⎝⎭,,半径为r=|AC |22, ∴△ABC 外接圆方程为221325x-+y-=222⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭考点点睛:(1)要确定圆的标准方程需要两个条件(包含三个代数量):圆的圆心坐标和圆的半径长;反之如果已知圆的标准方程也能直接得到圆的圆心坐标和半径;(2)求解圆的标准方程时,一般先求出圆心和半径,再写方程.考点2、判断点与圆的位置关系例2.已知圆过两点()1,4A 、()3,2B ,且圆心在直线0y =上. (1)求圆的标准方程; (2)判断点()2,4P 与圆的关系.【解析】(1)圆心在直线0y =上,∴设圆心坐标为(),0C a ,则AC BC ==,即()()2211634a a -+=-+,解得1a =-,即圆心为()1,0-,半径r AC ====则圆的标准方程为()22120x y ++=(2)PC ===5=r >∴点()2,4P 在圆的外面.考点点睛:点与圆的位置关系的判断方法:(1)几何法:利用圆心到该点的距离d 与圆的半径r 比较; (2)代数法:直接利用下面的不等式判定: ①(x 0-a )2+(y 0-b )2>r 2,点在圆外; ②(x 0-a )2+(y 0-b )2=r 2,点在圆上; ③(x 0-a )2+(y 0-b )2<r 2,点在圆内.考点3、圆的标准方程的综合应用例3.已知一圆的圆心C 在直线210x y +-=上,且该圆经过()3,0和()1,2-两点. (1)求圆C 的标准方程;(2)若斜率为1-的直线l 与圆C 相交于A ,B 两点,试求ABC 面积的最大值和此时直线l 的方程.【解析】(1)方法一:()3,0和()1,2-两点的中垂线方程为:10x y +-=,圆心必在弦的中垂线上,联立21010x y x y +-=⎧⎨+-=⎩得()1,0C ,半径2r,所以圆C 的标准方程为:()2214x y -+=.方法二:设圆C 的标准方程为:()()222x a y b r -+-=,由题得:()()()()2222222103012a b a b r a b r ⎧+-=⎪⎪-+-=⎨⎪-+--=⎪⎩,解得:102a b r =⎧⎪=⎨⎪=⎩所以圆C 的标准方程为:()2214x y -+=.(2)设直线l 的方程为0x y m ++=,圆心C 到直线l 的距离为d ,∴d =()0,2d ∈,AB ==ABC面积12S d AB ==== ∴当22d=,()0,2d =时,S 取得最大值2=1m =或3-所以,直线l 的方程为:10x y ++=或30x y +-=. 考点点睛:确定圆的标准方程,从思路上可分为两种:几何法和待定系数法.(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程,常用的几何性质有:①圆的弦的垂直平分线过圆心;②两条弦的垂直平分线的交点为圆心;③圆心与切点的连线垂直于切线;④圆心到切点的距离等于圆的半径;⑤圆的半径、半弦长、弦心距构成直角三角形;⑥直径所对圆周角为直角等.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设:设所求圆的方程为(x-a)2+(y-b)2=r2;②列:由已知条件,建立关于a、b、r的方程组;③解:解方程组,求出a、b、r;④代:将a、b、r代入所设方程,得所求圆的方程.考点4、二元二次方程与圆的关系例4.已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)表示的图形是圆.(1)求t的取值范围;(2)求其中面积最大的圆的方程;(3)若点P(3,4t2)恒在所给圆内,求t的取值范围.【解析】(1)已知方程可化为(x﹣t﹣3)2+(y+1﹣4t2)2=(t+3)2+(1﹣4t2)2﹣16t4﹣9∴r2=﹣7t2+6t+1>0,即7t2﹣6t﹣1<0,解得﹣<t<1,t的取值范围是(﹣,1).(2)r==,当t=∈(﹣,1)时,r=,max此时圆的面积最大,对应的圆的方程是:(x﹣)2+(y+)2=.(3)圆心的坐标为(t+3,4t2﹣1).半径 r2=(t+3)2+(1﹣4t2)2﹣(16t4+9)=﹣7t2+6t+1∵点P恒在所给圆内,∴(t+3﹣3)2+(4t2﹣1﹣4t2)2<﹣7t2+6t+1,即4t2﹣3t<0,解得0<t<.考点点睛:形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时可有两种方法:①由圆的一般方程的定义,若D2+E2-4F>0,则表示圆,否则不表示圆;②将方程配方,根据圆的标准方程的特征求解.应用这两种方法时,要注意所给方程是不是x 2+y 2+Dx +Ey +F =0这种标准形式.若不是,则要化为这种形式再求解. 考点5、用待定系数法求圆的方程 例5.分别根据下列条件,求圆的方程. (1)过点(4,0)A -,(0,2)B 和原点;(2)与两坐标轴均相切,且圆心在直线2350x y -+=上. 【解析】(1)设圆的方程为220x y Dx Ey F ++++=,由题意,04201640F E F D F =⎧⎪++=⎨⎪-+=⎩,解得024F E D =⎧⎪=-⎨⎪=⎩,故所求圆的方程为22420x y x y ++-=.(2)由圆心在直线2350x y -+=上,设圆心的坐标为25(,)3a a +, 因为圆与两坐标轴均相切,所以25||||3a a +=,解得5a =或1a =-. 当5a =时,圆心为(5,5),半径为5,则圆的方程为22(5)(5)25x y -+-=; 当1a =-时,圆心为(1,1)-,半径为1,则圆的方程为22(1)(1)1x y ++-=; 故所求圆的方程为22(5)(5)25x y -+-=或22(1)(1)1x y ++-=. 考点6、求轨迹方程的常用方法:例6.已知()1,0A -,()2,0B ,动点(),M x y 满足12MA MB =.设动点M 的轨迹为C . (1)求动点M 的轨迹方程,并说明轨迹C 是什么图形; (2)求动点M 与定点B 连线的斜率的最小值;(3)设直线:l y x m =+交轨迹C 于,P Q 两点,是否存在以线段PQ 为直径的圆经过A 若存在,求出实数m 的值;若不存在,说明理由.【解析】(112=,化简可得:()2224x y ++=, 所以动点M 的轨迹方程为()2224x y ++=.轨迹C 是以()2,0-为圆心,2为半径的圆.(2)设过点B 的直线为()2y k x =-,圆心到直线的距离为2421k d k -=≤+.∴33k -≤≤,即min 3k =-. (3)假设存在,联立方程得()2224y x m x y =+⎧⎪⎨++=⎪⎩,得()222220x m x m +++=, 0,∆>即222222m -<<+.设()()1122,,,P x y Q x y ,则122x x m +=--,2122m x x =,由题意知PA QA ⊥,∴()()()()()()1212121211110x x y y x x x m x m +++=+++++=.∴()()212122110x x m x x m +++++=,得2310m m --=,313m ±=且满足0∆>,∴存在以线段PQ 为直径的圆经过A ,此时3132m ±=. 考点点睛:求轨迹方程的常用方法包括:(1)直接法:能直接根据题目提供的条件列出方程.步骤如下:(2)代入法(也称相关点法)若动点P (x ,y )跟随某条曲线(直线)C 上的一个动点Q (x 0,y 0)的运动而运动,则找到所求动点与已知动点的关系,代入已知动点所在的方程.具体步骤如下: ①设所求轨迹上任意一点P (x ,y ),与点P 相关的动点Q (x 0,y 0);②根据条件列出x ,y 与x 0、y 0的关系式,求得x 0、y 0(即用x ,y 表示出来);③将x 0、y 0代入已知曲线的方程,从而得到点D (x ,y )满足的关系式即为所求的轨迹方程. (3)定义法:动点的运动轨迹符合圆的定义时,可利用定义写出动点的轨迹方程.。

园方程知识点

园方程知识点

园方程知识点园方程是数学中的一个重要概念,它描述了一个圆的几何特征和运动规律。

园方程可以用来求解圆的半径、圆心坐标以及圆与其他图形的交点等问题。

在几何学、物理学和工程学等领域都有广泛的应用。

本文将从基础概念、方程表达式、求解方法以及实际应用等方面介绍园方程的知识点。

1. 基础概念园方程是描述圆的数学方程,它可以用来表示平面上任意一个圆的几何特征。

一个标准的园方程包含圆心坐标和半径两个重要参数。

圆心坐标表示圆心在坐标平面上的位置,通常用(x,y)来表示;半径表示圆的大小,用r表示。

2. 方程表达式园方程可以用不同的表达式来表示,其中最常见的形式是标准方程和一般方程。

2.1 标准方程标准方程是指以圆心为原点的坐标系下的方程。

对于一个圆心坐标为(x0,y0)、半径为r的圆,其标准方程为:(x - x0)² + (y - y0)² = r²2.2 一般方程一般方程是指不以圆心为原点的坐标系下的方程。

对于一个圆心坐标为(h,k)、半径为r的圆,其一般方程为:(x - h)² + (y - k)² = r²3. 求解方法园方程可以用来求解圆的几何特征,比如圆心坐标和半径。

常用的求解方法有几何法和代数法。

3.1 几何法几何法是通过使用直尺和圆规等几何工具,观察和测量圆的特征,从而得到圆心坐标和半径的方法。

这种方法适用于一些简单的圆形问题,比如通过圆上的三个点求解圆心和半径。

3.2 代数法代数法是通过代数运算和方程求解的方法,利用园方程和其他几何方程联立求解圆心坐标和半径。

这种方法适用于复杂的圆形问题,可以通过方程的变形和求解来获得圆的几何特征。

4. 实际应用园方程在实际应用中有广泛的应用,特别是在几何学、物理学和工程学等领域。

在几何学中,园方程可以用来描述圆的形状和大小,从而进行几何证明和计算。

在物理学中,园方程可以用来描述物体的运动轨迹,比如行星绕太阳的轨道。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学 常见题型解法归纳反馈训练 第71讲 圆的方程的求法
【知识要点】
一、 圆的定义:平面内到定点距离等于定长的点的集合(轨迹)叫做圆.
二、圆的标准方程:圆心在),(b a c 、半径为r 的圆的标准方程是2
22)()(r b y a x =-+-.圆心在原点,半径为r 的方程为222x y r +=
三、圆的一般方程:当0422>-+F E D 时,方程220x y Dx Ey F ++++=叫做圆的一般方程.
由220x y Dx Ey F ++++=得22224()()224D E D E F x y +-+++= (1)当0422>-+F E D 时,220x y Dx Ey F ++++=表示圆心为(,)22
D E --,半径为
2
的圆; (2)当2240D E F +-=时,220x y Dx Ey F ++++=表示点(,)22
D E --; (3)当2240D E F +-<时,220x y Dx Ey F ++++=不表示任何图形.
四、求圆的方程的方法:待定系数法,先定式,后定量.如果与圆心和半径有关,一般选标准式,否则用一般式.五、圆的弦长有关的问题,主要是解半半弦三角形.
六、解答有关圆的问题时,注意灵活结合平面几何里圆的知识分析,减少运算量,提高解题效率.
【方法讲评】
【例1】 求圆心在直线30x y -=上,与x 轴相切,且被直线0x y -=截得的弦长为的圆的方程.
【点评】(1)由于本题已知条件中涉及到了圆心和半径,所以选择标准式方程求解.
(2)解答圆的有关问题时,要注意利用初中老师讲的圆的平面几何的知识综合分析,这样可 以提高解题效率.
【反馈检测1】已知圆满足:①截轴所得弦长为;②被轴分成两段圆弧,其弧长的比为 ;③圆心到直线:的距离为的圆的方程.
【例2】 已知ABC ∆中,顶点()2,2A ,边AB 上的中线CD 所在直线的方程是0x y +=,边AC 上高BE 所在直线的方程是340x y ++=.
(1)求点B 、C 的坐标; (2)求ABC ∆的外接圆的方程.
【解析】(1)由题意可设()()2211,,y x C y x B ,则B A ,的中点⎪⎭⎫ ⎝⎛++22,2
211y x D . 因为B A ,的中点⎪⎭⎫ ⎝⎛++22,2
211y x D 必在直线CD 上,代入有0222211=+++y x ①
又因为B 在直线AB 上,所以代入有042
232211=++⋅++y x ② 由①②联立解得(4,0)B -.则()1,1-D , 因为C 在直线CD 上,代入有022=+y x ③
又因为直线BE AC ⊥,所以有1-=⋅BE AC k k ,则有1312222-=⎪⎭
⎫ ⎝⎛-⋅--x y ④,根据③④有()1.1-C
.
法二:(2)设ABC ∆外接圆的方程为22
0x y Dx Ey F ++++=,其中0422 F E D -+. 因为三角形的个顶点都在圆上,所以根据(1),将三点坐标代入有: 22222220(4)40110D E F D F D E F ⎧++++=⎪--+=⎨⎪++-+=⎩
∴ABC ∆
【点评】第2问,可以利用平面几何圆的知识,设成标准式方程,也可以直接设成一般式方程求解.
【反馈检测2】求过直线与已知圆的交点,且在两坐标轴上
的四个截距之和为8的圆的方程.
【例3】经过两圆22
640x y x ++-=和226280y x y ++-=的交点,且圆心在直线40x y --=上的圆的方程为 .
【点评】本题利用了过两圆的交点的圆系方程
2222111222()0x y d x e y f x y d x e y f λ+++++++++=.(2)这种解法实际上也是待定系数法.
【反馈检测3】求圆心在直线0x y +=上,且过两圆22
210240x y x y +-+-=, 22x y +2280x y ++-=交点的圆的方程.
高中数学常见题型解法归纳及反馈检测第71讲:
圆的方程的求法参考答案
【反馈检测1答案】()()41122=-+-y x 或()()4112
2=+++y x
由①、②得:又∵到的
∴∴∴或∴或∴或
∴或
【反馈检测2答案】
【反馈检测3答案】22
6680x y x y ++-+=
【反馈检测3详细解析】解法一:将两圆的方程联立得方程组 22222102402280x y x y x y x y ⎧+-+-=⎨+++-=⎩,方程组求得两圆的交点坐标A (-4,0),B (0,2). 因所求圆心在直线0x y +=上,故设所求圆心坐标为(,)x x -,则它到上面的两上交点
(-4,0)和(0,2
即412x =-,∴3x =-,3y x =-=,从而圆心坐标是(-3,3).
又r ==, 故所求圆的方程为22
(3)(3)10x y ++-=.
解法二:同解法一求得两交点坐标A (-4,0),B (0,2),弦AB 的中垂线为230x y ++=,
它与直线0x y +=交点(-3,3)就是圆心,又半径r =
故所求圆的方程为22(3)(3)10x y ++-=.
解法三:设所求圆的方程为222221024(228)0x y x y x y x y λ+-+-++++-=(1)λ≠-, 即 222(1)2(5)8(3)0111x y x y λλλλλλ
-+++-
+-=+++.可知圆心坐标为15(,)11λλλλ-+-++. 因圆心在直线0x y +=上,所以15011λλλλ-+-=++,解得2λ=-. 将2λ=-代入所设方程并化简,求圆的方程226680x y x y ++-+=.。

相关文档
最新文档