中职数学基础模块高二期末试卷
高二职高期末数学试卷
考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列各数中,属于无理数的是()A. √4B. √9C. √16D. √252. 若函数f(x) = 2x + 1,则f(3)的值为()A. 7B. 8C. 9D. 103. 下列图形中,属于等边三角形的是()A. 图形1B. 图形2C. 图形3D. 图形44. 已知等差数列{an}的前三项分别为1,3,5,则该数列的公差为()A. 1B. 2C. 3D. 45. 若直线y = kx + b与圆x² + y² = 1相切,则k和b的关系为()A. k² + b² = 1B. k² - b² = 1C. k² + b² = 0D. k² - b² = 06. 下列各函数中,为奇函数的是()A. y = x²B. y = x³C. y = x⁴D. y = x⁵7. 若复数z满足|z - 2i| = 3,则复数z在复平面上的轨迹是()A. 一条射线B. 一个圆C. 一条直线D. 一条抛物线8. 下列各数中,属于正数的是()A. -3B. 0C. 1D. -19. 若a,b,c是等差数列,且a + b + c = 12,a² + b² + c² = 42,则ab + bc + ca的值为()A. 18B. 24C. 30D. 3610. 若sinα = 1/2,cosα = √3/2,则tanα的值为()A. 1B. √3C. -1D. -√3二、填空题(每题5分,共50分)1. 函数f(x) = x² - 4x + 3的图像与x轴的交点坐标为__________。
2. 若等比数列{an}的首项为a₁,公比为q,则a₃ = _________。
3. 圆的标准方程为(x - 2)² + (y + 3)² = 16,圆心坐标为__________。
中等职业学校二年级期末考试题(基础模块)
2011级对口高考班月考试卷 共3页 第1页中等职业学校数学高二下期末考试(考试时间:120分钟 总分:150分)题号 一 二 三 四 五 六 七 八 九 十 总分 得分一、单项选择题:(请将正确答案的编号填入答卷中,每题4分,共计60分。
)题号 1 2 3 4 5 6 7 8 9 10 答案 题号 11 12 13 14 15 答案1、设集合A={1,3,7,9},B={2, 5-a,7,8},A ∩B={3,7},则a=( ). A .2 B. 8 C. -2 D. -82、已知集合A={-1,0,1},B={0,1,2},则A ∩B =( ) A 、﹛0,1﹜ B 、﹛-1,0,1,2﹜ C 、 0,1 D 、﹛-1,2﹜3、若数列{}n a 中,通项公式1n na n +=,则10a 的值为( )。
A. 1011 B. 910 C. 1112 D. 11104、 设{}n a 是递增的等差数列,前三项和是12,前三项之积是48,则它的首项是( )A 、1B 、2C 、4D 、65、 已知22n a n n =-,那么下列各数为数列{}n a 中的某一项的是( )A 、30B 、44C 、66D 、906、已知向量(3,2)a =-r,(,6)b x =r 若a b r r P ,则x =( ) A 、4- B 、9- C 、9 D 、47、等差数列{}n a 中,162,1,a d a ==-=则( )A.7B. -5C. -3D. 98、.函数()2,(1)2,(1)f x ax f f =--==已知则( ) A .-2 B .2 C .-6 D .09、 下列点在直线2360x y --=上的是( )A .(2,-1)B .(0,2)C .(3,0)D .(6,-2)10、 在等差数列{}n a 中,若11223101110,a a a a a a +=+++=则( )。
A .10 B .20 C .30 D .40 11、直线31y x =+的倾斜角是( )A 、120°B 、30°C 、-60°D 、60°12、已知四点A (1,-1),B(2,3),C(-1,1),D (x ,3),若AB ┷CD ,则x =( )A 、9B 、-9C 、3D 、213、若向量()()23,6,3,3a b ==-,则,a b =( )A 、30︒B 、45︒C 、60︒D 、90︒ 14、空间中的两条直线a b ⊥,则它们的位置关系是( ) A 、相交 B 、异面C 、相交或异面D 、共面15、和两条异面直线都垂直的直线有( ) A 、无数条B 、有两条C 、只有一条D 、不存在二、填空(每小题4分,共20分)16、国家规定个人出版书籍获得稿费按以下方法税费按以下方法纳税:(1)稿费不高于800元的,不纳税。
中职数学高二期末试卷含答案
绝密★启用前中职高二第二学期期末数学试卷一、 选择题(每小题3分,共45分) 1. sin15°cos75°+cos15°sin105°的值是( )。
A .0 B. 12 C.√32D.12.计算2cos2π8−1的结果是( )。
A .√32B.√22C.-√22D.13.tan(π4−α)=3,则tan α=( )。
A.-2 B.-12C. 12D.24.∆ABC 的边a,b,c 满足a 2=b 2+c 2+bc ,则A=( )。
A.30° B.60° C.135° D.120°5.函数y =√2sin2xcos2x 是( )。
A.周期为π2的奇函数 B. 周期为π2的偶函数C.周期为π4的奇函数 D. 周期为π4的偶函数6.在∆ABC 中,若a=2,b=√2,c=√3+1 ,则∆ABC 是( )。
A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定7.已知∆ABC 中,a=2,b=√2,A =π4,则∠B=( )。
A.π3B. π6C. π6或5π6D. π3或2π38.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )。
A. (0,+∞)B. (0,2) C .(1,+∞) D. (0,1) 9.抛物线x =−y 24的焦点坐标是( )。
A. (0,-1)B. (-1,0)C. (0,−116) D. (−116,0) 10.中心在原点,一个焦点的坐标(0,√13),一条渐近线方程式3x-2y=0的双曲线方程是( )。
A.x 22-y 23=1 B.9x 2−4y 2=36C.9y 2−4x 2=36或4y 2−9x 2=36D. 4y 2−9x 2=36 11.在(2x −1)5的展开式中,含x 3项的系数是( )。
A.4C 52B.−4C 52C. 8C 52D. −8C 5212.十个人站成一排,其中甲、乙、丙三人恰好站在一起的概率为( )。
职教高二期末数学试卷
考试时间:120分钟满分:100分一、选择题(每题5分,共30分)1. 下列各数中,有理数是:()A. √2B. πC. 3/5D. √-12. 若a > b > 0,则下列不等式中正确的是:()A. a² > b²B. a > b²C. b² > a²D. a > b3. 已知函数f(x) = x² - 4x + 3,则f(2)的值为:()A. 1B. 3C. 5D. 74. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标是:()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)5. 下列函数中,是奇函数的是:()A. y = x²B. y = |x|C. y = x³D. y = x² + 16. 若等差数列{an}的第一项为2,公差为3,则第10项an的值为:()A. 29B. 31C. 33D. 357. 下列各式中,能化为对数式的是:()A. log₂8 = 3B. 2³ = 8C. 2² = 4D. log₃27 = 38. 若复数z满足|z-1| = 2,则复数z的取值范围是:()A. z = 1 ± 2iB. z = 1 ± √2iC. z = 1 ± 2D. z = 1 ±√29. 在平面直角坐标系中,点P(1,2)到直线y = -x的距离是:()A. 1B. √2C. 2D. √510. 下列各式中,正确的是:()A. sin²x + cos²x = 1B. tan²x + 1 = sec²xC. cot²x = 1/tan²xD.以上都是二、填空题(每题5分,共20分)11. 若a² + b² = 1,则ab的最大值为________。
职教中心高二数学试卷期末
考试时间:120分钟满分:100分一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列函数中,在定义域内是增函数的是:A. \( f(x) = -x^2 + 2x \)B. \( f(x) = x^3 - 3x \)C. \( f(x) = \sqrt{x} \)D. \( f(x) = e^{-x} \)2. 若 \( a^2 + b^2 = 1 \),则 \( a + b \) 的取值范围是:A. \( (-\sqrt{2}, \sqrt{2}) \)B. \( (-1, 1) \)C. \( [-\sqrt{2}, \sqrt{2}] \)D. \( [1, \sqrt{2}] \)3. 已知 \( \sin A = \frac{3}{5} \),\( \cos B = \frac{4}{5} \),且 \( A \) 和 \( B \) 均为锐角,则 \( \sin(A + B) \) 的值为:A. \( \frac{7}{25} \)B. \( \frac{24}{25} \)C. \( \frac{17}{25} \)D. \( \frac{13}{25} \)4. 下列命题中,正确的是:A. 若 \( f(x) \) 是奇函数,则 \( f(x) \) 的图像关于原点对称B. 若 \( f(x) \) 是偶函数,则 \( f(x) \) 的图像关于 \( y \) 轴对称C. 若 \( f(x) \) 是周期函数,则 \( f(x) \) 的图像是一条封闭曲线D. 若 \( f(x) \) 是单调函数,则 \( f(x) \) 的图像是一条直线5. 若 \( \frac{1}{a} + \frac{1}{b} = 1 \),则 \( ab \) 的最大值为:A. 2B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{4} \)6. 下列数列中,不是等比数列的是:A. \( 2, 4, 8, 16, \ldots \)B. \( 1, 3, 9, 27, \ldots \)C. \( 1, -1, 1, -1, \ldots \)D. \( 1, 2, 4, 8, \ldots \)7. 若 \( \triangle ABC \) 中,\( a = 3 \),\( b = 4 \),\( c = 5 \),则\( \sin A \) 的值为:A. \( \frac{3}{5} \)B. \( \frac{4}{5} \)C. \( \frac{5}{3} \)D. \( \frac{3}{4} \)8. 下列方程中,解集为空集的是:A. \( x^2 - 2x + 1 = 0 \)B. \( x^2 - 4 = 0 \)C. \( x^2 + 1 = 0 \)D. \( x^2 - 3x + 2 = 0 \)9. 若 \( \log_2 x + \log_4 x = 3 \),则 \( x \) 的值为:A. 8B. 16C. 32D. 6410. 下列函数中,是双曲函数的是:A. \( y = \sinh x \)B. \( y = \cosh x \)C. \( y = \tanh x \)D. \( y = \coth x \)二、填空题(本大题共5小题,每小题5分,共25分。
高二数学期末试题
一.选择题(15题,每题3分,共45分)。
1.已知直线l 的斜率1k =-,则l 的倾斜角为( )。
A. 30°B. 45°C.120°D. 135°2.过点A(0,2),B(2,0)的直线的斜率是( )A. -1B. -2C. 1D. 23.下列直线中通过点M(1,3)的为( )A. x-2y+1=0B. 2x-y-1=0C. 2x –y+1=0D. 3x+y-1=0 4.直线0543=+-y x 与圆1)1(22=++y x 的位置关系是( )A. 相切 B. 相交 C.相离 D.相交且过圆心5.直线3x+y-4=0与直线x-3y+4=0的位置关系是( )A. 重合B. 平行C. 相交不垂直D. 相交且垂直6. 圆12)2()2(22=++-y x 的圆心坐标是( )A. ( 2, 2 )B. ( -2 , -2 )C. ( -2 , 2 )D. (2 , -2 )7.以点A(1,3),B(-5,1)为端点的线段的垂直平分线的方程为:( )A. 3x-y+8=0B. 2x-y-6=0C. 3x+y+4=0D. 12x+y+2=08.过点M(-2,1),且与直线x+2y+6=0平行的直线的方程为( )A.2x-y+5=0 B. 2x-y+3=0 C. x+2y=0 D. x-2y+4=09.下列命题是真命题的为( )A 垂直与同一个平面的两直线平行B 平行与同一个平面的两直线平行C 与同一个平面成等角的两直线平行D 一条直线上有两点到一个平面的距离相等,则这条直线与平面平行10.如果空间四边形的对角线相等,那么顺次连接空间四边形四条边的中点所围成的图形是( )A. 平行四边形B. 菱形C. 矩形D.正方形11,垂直于三角形两边的直线与三角形所在平面的位置关系是( )A. 垂直B. 斜交C. 平行D. 不能确定12.b a ,表示空间两不重合的直线, βα,表示两不重合的平面,下列结论一定正确的是( )A αα//,b a ⊥则b a ⊥B βαα⊥⊂,a 则β⊥aC αα//,//b a 则b a //D βα//,//a a 则βα//13.正方体ABCD-A 1B 1C 1D 1中,B 1C 与AD 1所成的角的度数为( )A 30°B 45°C 60°D 90°14.点P 为二面角βα--l 内一点,过点P 作PA ⊥α,PB ⊥β,垂注分别为A ,B ,若 80=∠APB ,则二面角βα--l 的度数为( )A. 30°B. 60°C. 100°D. 120°15.在矩形ABCD 中,AB=3,BC=4,PA ⊥平面ABCD,且PA=1,则点P 到直线BD 的距离是( )A. 2B. 135C. 175D. 5 二.填空题(每空3分,共30分)1.点A(-3,1),点B(2,4),两点间的距离是 。
职业高中高二下学期期末数学试题卷3(含答案)
职业高中下学期期末考试高二《数学》试题一、选择题(每小题3分,共30分)1、已知,235sin )(παπα<<=13-,则sin()4πα-等于 ( )A.726 B. 7226 C. 7226- D. 726-2、若,则( )A.B.1C.-1D.23、函数函数的最大值是 ( )A. -2B.C.2D.14、到点与点距离之和为10的点的轨迹方程为( )A. B.C.D.5、顶点为原点,准线为的抛物线的标准方程为 ( )A. B. C. D.6、双曲线的渐近线方程为 ( ) A.B.C.D.7、将5个小球放入4个盒子里,不同的方法种数为 ( )A. B. C. D.8、1名教师与4名学生随机的站成一排,教师恰好站在中间位置的概率为( )A. B. C. D.9、事件A 在一次试验中发生的概率为,求在3次独立重复试验中,事件A 恰好发生2次的概率为 ( )A. B. C. D.10、在,A , ( )A.B.C.D.专业 班级 姓名 学籍号 考场 座号二、填空题(每题3分,共24分)11、sin19512、将函数的图像向平移个单位可以得到函数的图像。
13、在14、椭圆的焦点坐标为,长轴长为,短轴长为15、抛物线的的准线方程为16、双曲线的焦距为17、用0、1、2、3、4、这5个数字,可以组成没有重复数字的三位数的个数为18、在的展开式中,第4项的二项式系数为,第4项的系数为三、解答题(共46分)19、当x分别取何值时,函数取得最大值及最小值,最大值与最小值各是多少?(6分)20、已知在中.(8分)21、已知双曲线经过点P(3,6),且双曲线的一条渐近线方程为,求双曲线的标准方程。
(8分)22、求顶点在原点,对称抽为坐标轴,且经过点(-6,-4)的抛物线的标准方程。
(6分)23、停车场有12个车位,有8辆车停放,(6分)(1)共有多少种不同的停车方法?(2)若要求4个空车位要连在一起,那么有多少种不同的停车方法?24、从含有2件次品的5件产品中,(6分)(1)任取2件,求恰有1件次品的概率P1;(2)每次取1件,取后不放回,连续取2次,求恰好有1件次品的概率P2;(3)每次取1件,取后放回,连续取2次,求恰好有1件次品的概率P3. 25、指出正弦函数的图像经过如何变化可以得到正弦型函数的图像。
职教高二期末数学试卷答案
一、选择题(每题5分,共20分)1. 已知函数f(x) = x^2 - 4x + 4,则f(x)的图像是:A. 顶点在x轴上的抛物线B. 顶点在y轴上的抛物线C. 顶点在x=2处的抛物线D. 顶点在y=4处的抛物线答案:C2. 若等差数列{an}的前n项和为Sn,且a1=3,d=2,则S10等于:A. 120B. 130C. 140D. 150答案:A3. 下列函数中,y = log2(x - 1)的图像与y = 2^x的图像关于直线y = x对称的是:A. y = log2(2x - 1)B. y = 2^(x - 1)C. y = 2x - 1D. y = log2(1/x)答案:D4. 在直角坐标系中,点P(2, -3)关于直线y = x的对称点是:A. (2, 3)B. (-3, 2)C. (-2, -3)D. (3, -2)答案:D5. 下列方程组中,无解的是:A. x + y = 2B. 2x - y = 1C. x + 2y = 5D. x - 2y = 5答案:D二、填空题(每题5分,共20分)6. 函数f(x) = (x - 1)^2的对称轴是______。
答案:x = 17. 等差数列{an}中,a1 = 1,d = 3,则第10项an = ______。
答案:288. 若sinθ = 1/2,则cosθ的值为______。
答案:√3/29. 在△ABC中,若a = 5,b = 7,c = 8,则△ABC的面积S = ______。
答案:14√3/210. 下列函数中,y = √(x + 1)的定义域是______。
答案:x ≥ -1三、解答题(每题20分,共80分)11. 解方程:x^2 - 5x + 6 = 0。
解答:首先,我们将方程因式分解:x^2 - 5x + 6 = (x - 2)(x - 3) = 0由此得到两个解:x - 2 = 0 或 x - 3 = 0解得:x1 = 2,x2 = 312. 已知数列{an}是等比数列,且a1 = 2,a4 = 32,求该数列的通项公式及前5项和。
中专高二期末数学试卷
一、选择题(每题4分,共40分)1. 已知函数f(x) = 2x - 3,则f(-1)的值为:A. -5B. -1C. 1D. 52. 下列各数中,有理数是:A. √2B. πC. √-1D. 3.143. 下列命题中,正确的是:A. 对于任意实数a,a² ≥ 0B. 两个有理数的和一定是有理数C. 两个无理数的和一定是无理数D. 两个无理数的乘积一定是有理数4. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是:A. 75°B. 90°C. 105°D. 120°5. 已知数列{an}的通项公式为an = 3n - 2,则第10项a10的值为:A. 27B. 28C. 29D. 306. 下列各式中,正确的是:A. a² = |a|B. (a + b)² = a² + b²C. (a - b)² = a² - b²D. (a + b)(a - b) = a² - b²7. 已知函数f(x) = x² - 4x + 3,则f(x)的对称轴是:A. x = 1B. x = 2C. x = 3D. x = 48. 下列函数中,是反比例函数的是:A. y = x + 2B. y = 2xC. y = 2/xD. y = x²9. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第5项a5的值为:A. 9B. 11C. 13D. 1510. 在直角坐标系中,点P(2, 3)关于x轴的对称点是:A. (2, -3)B. (-2, 3)C. (2, -3)D. (-2, -3)二、填空题(每题5分,共50分)11. 若a + b = 5,ab = 6,则a² + b² = _______。
高二中职期末考试数学试题
松滋市言程中学2016--2017学年度第二学期期末考试高二中职数学试卷本试卷共3大题, 23小题, 考试时长120分钟, 满分150分。
1、一、选择题(本大题共12小题, 每小题5分共60分)2、 在每小题给出的4个备选项中, 只有一项是符合题目要求的, 将其选出来, 不选错选多选均不得分。
3、数列22221111,31415161----,,,的一个通项公式为( ) A ()2111n a n =+- B 1(2)n a n n =+ C 21(2)1n a n =+- D 211n a n =- 4、等差数列753222----,,,,的第1n +项为( ) A ()172n - B ()142n - C 42n - D 72n - 在等差数列中, 若( )A 12B 28C 24D 30等比数列中, 若( )A 2B 4C 8D 165、化简AB AC BD CD -+-=( )A 2ADB 2CBC 0D 06、下列说法中不正确的是( )A 零向量和任何向量平行B 平面上任意三点,,,A BC 一定有AB BC AC +=C 若, 则7、D 若, 当时若, 则( )A 00B 090C 0120D 0180设且, 则( )A 12B 12-C 12±D 8直线过两点, 则该直线的倾斜角是( )A 060B 090C 00D 0180 直线与直线互相垂直, 则等于( )A 1B 2-C 23-D 13-8、以点()()1,3,5,1A B -为端点的线段的垂直平分线的方程为( ) A 380x y -+= B 260x y --=C 340x y ++=D 1220x y ++=半径为3, 且与轴相切于原点的圆的方程为( )A ()2239x y -+=B ()2239x y ++=C ()2239x y ++=D ()()22223939x y x y -+=++=或二、填空题(本大题共6小题, 每小题5分共30分) 将答案填在相应题号的答题卡上。
中职数学 2023-2024学年江苏省徐州市职业学校职教高考班高二(下)期末数学试卷
2023-2024学年江苏省徐州市职业学校职教高考班高二(下)期末数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分)A .(1)B .(2)C .(2)(3)D .(1)(3)1.(4分)下列随机变量是离散型随机变量的是( )(1)某人的手机在一天内被拨打的次数ξ;(2)某水文站观察到一天中的水位高度ξ(单位:cm );(3)某首歌曲被点播的次数ξ.A .B .1C .0D .2.(4分)已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为( )4512A .-2B .4C .0D .13.(4分)已知集合M ={1,3},N ={a +4,3},若M ∪N ={1,2,3},则a 的值是( )A .A +B B .A •BC .A •BD .A •B4.(4分)逻辑表达式A +B 等于( )A .最大值为10B .最小值为10C .最大值为11D .最小值为115.(4分)某项工程的流程图如图所示(单位:天),若仅有一条关键路径为:A →E→F .则整数x 取值的情况为( )A .B .2C .-1D .6.(4分)已知数组a =(2,-3,2),b =(3,1,log 2x ),若a •b =1,则x 的值为( )→→→→M 212二、填空题(本大题共5小题,每小题4分,共20分)A .(-3,1)B .[-3,1]C .(-∞,-3]∪[l ,+∞)D .(-∞,-3)∪(1,+∞)7.(4分)函数y =的定义域为( )M 3-2x -x 2A .3B .5C .7D .98.(4分)已知函数f (x )=,则f [f (-1)]=( ){-1,x >0-2x ,x ≤02xx 2A .-1B .-C .D .19.(4分)已知f (x )是定义在R 上的偶函数,对任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤时,f (x )=,则f (-等于( )32√x M 2M 2A .1B .2C .4D .810.(4分)已知函数f (x )=a x +2-2(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +4=0上,其中m ,n 均大于+的最小值为( )1m 2n11.(4分)设集合A ={0,-a },B ={1,a -2,2a -2},若A ⊆B ,则a = .12.(4分)如图是一个程序框图,若输入m 的值是21,则输出的m 值是 .三、解答题(本大题共8小题,共90分)13.(4分)平移坐标轴,将坐标原点移到(m ,n ),若曲线y =x 2+1的顶点在新坐标系中的坐标为(2,-2),则m -n =14.(4分)已知随机变量X 服从正态分布N (2,σ2),且P (2<X ≤2.5)=0.36,则P (X >2.5)= .15.(4分)若直线y =x +b 与曲线,θ∈(-π,0)恰好有一个公共点,则实数b 的取值范围是 .{x =cosθy =sinθ16.(8分)已知函数f (x )=lo (-ax +)的定义域是R .(1)求实数a 的取值范围;(2)解关于x 的不等式>.g a x 2a 4a -4x -14x 21a 217.(10分)已知实数a 满足不等式|2a -3|<1.(1)求实数a 的取值范围;(2)解关于x 的不等式lo (x +4)≤lo (-2x ).g a g a x 218.(12分)已知函数f (x )=(a +2)x 2+(b -1)x +c 是定义在[a -1,b +3]上的偶函数,且f (1)=3.(1)求函数f (x )的解析式;(2)若不等式f (x )≥2x +m 恒成立,求实数m 的取值范围.19.(12分)已知函数f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,点(2,6)在函数f (x )的图象上,当x <0时(x )=x 2+bx .(1)求实数b 的值;(2)求函数f (x )的解析式;(3)若f (a )=6,求实数a 的值.20.(12分)习总书记指出:“绿水青山就是金山银山”.某市一乡镇响应号召,因地制宜地将该镇打造成“生态水果特色小调研过程中发现:某珍稀水果树的单株产量W (单位:kg )与肥料费用10x (单位:元)满足如下关系:W (x )=,其他成本投入(如培育管理等人工费)为20x (单位:元).已知这种水果的市场售价为10元/kg ,且供不应求.记该单株水果树获得的利润为f (x )(单位:元).(1)求f (x )的函数关系式;(2)当投入的肥料费用为多少元时,该单株水果树获得的利润最大?最大利润是多少元?{5(+2),0≤x ≤248-,2<x ≤5x 248x +121.(12分)某职业学校毕业生小王参加某公司招聘考试,共需回答4个问题.若小王答对每个问题的概率均为,且每个答正确与否互不影响.(1)求小王答对问题个数ξ的数学期望E (ξ)和方差D (ξ);(2)若每答对一题得10分,答错或不答得0分,求小王得分η的概率分布;(3)在(2)的条件下,若达到24分被录用,求小王被录用的概率.2322.(10分)医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10g 含5单位蛋白质和10单位铁质,售价3元;乙料每10g 含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙料,才能既满足营养,又使费用最省?23.(14分)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2(1)求证:函数f (x )恒有f (x +4)=f (x )成立;(2)求当x ∈[2,4]时,f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2024)的值.。
中职基础模块高二上学期数学期末考试试卷
黄陂职校2021-2021学年度第一学期期末考试1515-1518班数学试题〔共三大题22小题,总分值150分,考试时间120分钟〕出卷人:吴金龙 审卷人:陈瑛 卷号: 班级: 姓名: 分数:一、选择题:〔本大题共10小题,每题5分,共50分〕 1、以下物理量中是向量的为〔 〕A 、温度B 、 速度C 、 体积D 、 面积. 2、在数列2、5、9、14、20、x 、中,x 的值应该是〔 〕 A 、24 B 、 25 C 、26 D 、27. 3、等差数列{a n }中,s 3 = 36 , 则 a 2 = ( )A 、18B 、 12C 、9D 、6. 4、在等比数列{a n }中,公比q = 3 , s 4 = -80 ,则a 1 = 〔 〕 A 、-5 B 、 -4 C 、-3 D 、-2.6、两点A (2,-1),B (3,1),与AB →平行且方向相反的向量a 可能是( )A .a =(1,-2) B. a =(9,3) C .a =(-1,2) D. a =(-4,-8) A 3 B.-3 C .07、假设→a =〔1x ,1y 〕,→b =〔2x ,2y 〕,且→a ∥→b ,则有 〔 〕 A ,1x 2y +2x1y =0, B , 1x 2y ―2x 1y =0,C ,1x 2x +1y 2y =0,D , 1x 2x ―1y 2y =0,8、假设→a =〔1x ,1y 〕,→b =〔2x ,2y 〕,且→a ⊥→b ,则有 〔 〕 A ,1x 2y +2x1y =0, B , 1x 2y ―2x 1y =0, C ,1x 2x +1y 2y =0, D , 1x 2x ―1y 2y =0,9、 a ·b =-122,|a |=4,a 与b 的夹角为135°,则|b |=( )A .12 B.3 C .6 3 10、设a = 〔m ,5〕,且|a| = 13 ,则m = 〔 〕A 12 B.-12 C .±12 D.8二、填空题:〔本大题共6小题。
2024年浙江省中职数学高二期末测试卷(模拟卷)测试
浙江省中职数学高二期末测试卷(模拟测试)本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.一、单项选择题(本大题共20小题,1—10小题,每小题2分,11—20小题,每小题3分,共50分)在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均无分.1. 已知集合{1,0,1}A =-,{|3,N}B x x x =<∈,则A B = ( )A. {1,0,1,2}-B.{1,1,2}- C. {0,1,2} D. {0,1} 2. 设命题甲:240x -=,命题乙:20x +=,则命题甲是命题乙的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. a b >,则下列不等式成立的是( ) A. 11a b< B. ||||a b > C. c a c b -<- D. 22ac bc >4. 不等式20m m +>的解集是( )A. (,0)-∞B. ()(),10,-∞-⋃+∞C. (,1)-∞D.(0,1)- 5. 函数1y x =-+,[2,0)x ∈-的值域是( )A. (1,3]B.[3,1] C. (3,1) D. (1,3) 6. 函数22y x x =+(22x -≤≤)的值域是( )A. (,8]-∞B.[]1,8- C. [0,8] D. (,1]-∞- 7. 如果[]22log log (2)1x =,那么12x =( )A. 2B. 4C.D. 1 8. 在等差数列{}n a 中,24a =,48a =,则该数列前10项之和等于( )A. 120B. 121C. 101D. 1109. 已知角α终边上一点(0,)M a ,0a <,则sin α=( )A. 0B. 1C. 1-D. 不确定 10. 求值:()cos 120︒-=( ) A. 12- B. 12 C. 2 D. 2 11. 若cos 1x a =-,则a 取值范围为( )A. []0,2B.[1,3] C. [1,2] D. [0,3] 12. 在x 轴上的截距为5-,倾斜角为3π4的直线方程为( ) A. 50x y --= B.50x y -+= C. 50x y +-= D.50x y ++= 13. 已知圆的方程式2225x y +=,则过点(3,4)P 的圆的切线方程为( )A. 34250x y ++=B.34250x y +-= C. 43250x y ++= D.43250x y +-= 14. 已知椭圆2218x y +=的左、右焦点分别是1F ,2F ,点P 在椭圆上,则12PF PF ⋅的最大值是( )A. 8B. C. 1015. 根据曲线方程22cos 1x y β+=,3π,π2β⎛⎫∈ ⎪⎝⎭,可确定该曲线是( ) A. 焦点在x 轴上的椭圆 B. 焦点在y 轴上的椭圆C. 焦点在x 轴上的双曲线D. 焦点在y 轴上的双曲线16. 由1,2,3,4四个数字构成没有重复数字的自然数个数为( )A 12个 B. 24个 C. 48个 D. 64个17. 在空间中,α,β表示平面,m ,n 表示直线,则下列说法正确的是( )A. 若//m n ,n α⊥,则m α⊥B. 若αβ⊥,m α⊂,则m β⊥的.C. 若m 上有无数个点不α内,则//m αD. 若//m α,则m 与α平面内的任何直线平行18. 4()a x +展开式中不含x 的项为1,则=a ( )A. 1B. 1-C.1-或1 D. 0 19. 已知函数()()22(0)10x x f x x x -<⎧=⎨+≥⎩,若()3f a =,则=a ( ) A. 32-,2- B. 32-,2C. 32-, D. 2,2- 20. 矩形ABCD 中,1AB =,2AD =,M 是CD 中点,点P 在矩形边上沿A →B →C →M 作匀速运动,APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是( )A. B.C. D.二、填空题(本大题共7小题,每小题4分,共28分)21. 不等式2213x ≤-<的解集为____________.22. 已知lg(2)lg(1)x x +<-,则x 的取值范围是____________.23. 已知10cos(π)5α+=-,π,02α⎛⎫∈- ⎪⎝⎭,则tan(π)α-=____________. 24. 已知函数()3sin 3f x x x =,则π12f ⎛⎫= ⎪⎝⎭____________. 在25. 若圆柱轴截面是边长为4cm 的正方形,则圆柱的表面积是_________.26. 抛物线216y x =上一点M 到焦点的距离为10,则点M 的坐标为____________.27. 把一枚骰子连续抛两次,那么两次的点数之和大于8的概率为____________.三、解答题(本大题共8小题,共72分)解答应写出必要的文字说明及演算步骤.28. 已知集合{|13,}A x x x =-≤<∈N .(1)用列举法表示集合A ;(2)写出集合A 的所有真子集.29. 已知角α的终边在直线2y x =(0x ≥)上.求:(1)sin α,tan α的值;(2)sin 2α,cos 2α的值.30. 如图所示,在棱长为a 的正方体1111ABCD A B C D -中,点M 是棱11A B 的中点.(1)求直线MC 与侧面11BCC B 所成角的正切值.(2)连接1MC ,1CB 得到一个三棱锥11C MC B -,求此三棱锥的体积.31.已知二项式n x ⎛ ⎝的展开式中只有第七项的二项式系数最大,求展开式的常数项.32.已知2()2sin cos 2cos 1f x x x x =-++.(1)求π4f ⎛⎫ ⎪⎝⎭的值; (2)当x 为何值时,()f x 有最大值,这个最大值多少?并求其最小正周期.33. 已知双曲线22145x y -=,右焦点为F . (1)求以F 为焦点,以双曲线中心为顶点的抛物线方程;(2)若直线2y x m =+被抛物线所截得的弦长||AB =m 的值.34. 在ABC中,已知a =,2b =,60A =︒.求:(1)边c 的长.(2)ABC 的面积.是35. 某林场有荒山3250亩,从1996年开始,每年春季在荒山上植树造林,第一年植100亩,计划以后每一年比上一年多植树50亩.(1)需几年可将此荒山全部绿化;(2)已知新植树苗每亩木材量为2立方米,树木每年的自然增长率为10%,设荒山全部绿化后的年底木材总量为T ,求T 约为多少万立方米?(精确到0.1)(可能用到的数据:21.1 1.21=,31.1 1.331=,41.1 1.461=,51.1 1.611=,61.1 1.772=,71.1 1.949=,81.1 2.144=,91.1 2.358=,101.1 2.594=,111.1 2.853=)浙江省中职数学高二期末测试卷本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.一、单项选择题(本大题共20小题,1—10小题,每小题2分,11—20小题,每小题3分,共50分)在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均无分.DBCBABCDCAADBADDACBB二、填空题(本大题共7小题,每小题4分,共28分) 【答案】131,,222⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭ 【答案】122x x ⎧⎫-<<-⎨⎬⎩⎭【答案】2【答案】224πcm【答案】(6,或(6,- 【答案】518三、解答题(本大题共8小题,共72分)解答应写出必要的文字说明及演算步骤.【28题答案】【答案】(1){0,1,2}(2)∅,{0},{1},{2},{0,1},{0,2},{1,2}【29题答案】【答案】(1)sin 5α=,tan 2α= (2)4sin 25α=,3cos25α=- 【30题答案】【答案】(1)4.(2)312a . 【31题答案】【答案】126720.【32题答案】【答案】(1)π14f ⎛⎫=+⎪⎝⎭; (2)3ππ8x k =+(Z k ∈)时,()f x,πT =. 【33题答案】【答案】(1)212y x =;(2)43m =-. 【34题答案】【答案】(1)3c =(2)2. 【35题答案】【答案】(1)10年 (2)1.0万立方米.。
中职数学 2023-2024学年江苏省徐州市中等职业学校就业班高二(下)期末数学试卷
2023-2024学年江苏省徐州市中等职业学校就业班高二(下)期末数学试卷一、选择题(本大题共15小题,每小题4分,共60分)A .cos 27°B .sin 27°C .-sin 1°D .cos 1°1.(4分)sin 13°cos 14°+cos 13°sin 14°=( )A .B .C .sin 89°D .cos 89°2.(4分)sin 67°cos 22°-cos 67°sin 22°=( )M 22M 2A .cosαB .cosβC .cos 2αD .cos 2β3.(4分)cos (α-β)cosβ-sin (α-β)sinβ=( )A .B .C .D .4.(4分)sin 22.5°•cos 22.5°=( )M 24M 22M 23M 28A .0B .sin 2αC .cos 2αD .15.(4分)(cosα-sinα)(cosα+sinα)=( )A .28B .2C .4D .6.(4分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,a =4,b =6,C =60°,则c =( )M 7M 5M 7A .B .πC .D .7.(4分)函数y =2sin (3x +)的最小正周期为( )π5π2π32π3A .B .C .D .8.(4分)数列,,,⋯的一个通项公式为( )-1122-2224-3328-nn 22n-n n 22nn -12nn 2nA .1,3,5,4,6B .1,,1,,1C .1,2,4,8,16D .3,3,3,3,39.(4分)以下数列中,是等差数列的是( )1212A .B .C .15D .3110.(4分)在公比为2的等比数列{a n }中,若=,则该数列的前5项和是( )a 112312632A .数据的个数为9,极值为18B .数据的个数为10,极值为18C .数据的个数为9,算术平均值为18D .数据的个数为10,算术平均值为1811.(4分)关于样本标准差的计算公式s =,下列说法正确的是( M [++⋯+]19(-18)x 12(-18)x 22(-18)x n 2A .15B .20C .30D .6012.(4分)从4名男同学和3名女同学中选出3名同学组成宣传“垃圾分类”志愿服务队,其中既有男同学又有女同学的选法种( )A .6B .7C .8D .913.(4分)已知的展开式中只有第五项的二项式系数最大,则n 的值是( )(x -)2√xn14.(4分)已知随机变量ξ∼B (6,0.3),则ξ的期望值E (ξ)=( )二、填空题(本大题共3小题,每小题4分,共12分)三、解答题(本大题共3小题,共28分.解答应写出文字说明、证明过程或演算步骤)A .1.26B .1.8C .2D .4.2A .0.3B .0.2C .0.1D .0.415.(4分)若随机变量ξ服从正态分布N (0,1),P (ξ>1)=0.2,则P (-1<ξ<0)等于( )16.(4分)数列,,,⋯的前6项和是 .11×212×313×417.(4分)已知等差数列{a n }的前13项和S 13=39,则a 7=.18.(4分)在一次射击测试中,甲乙两名运动员各射击5次,命中的环数分别为:甲:6,9,7,9,9;乙:7,8,8,9,8,则 成绩较稳定.(填“甲”或“乙”)19.(10分)已知cosα=-,α是第二象限角.(1)求sin 2α,cos 2α的值;(2)求cos (2α+)的值.35π620.(10分)在等差数列{a n }中,a 3+a 5=30,a 2=7.(1)求{a n }的通项公式;(2)求{a n }的前10项和S 10.21.(8分)一个袋子中有大小相同的8个小球,其中5个红球、3个白球,现从中一次随机抽取3个球,记ξ是取到白球的个数(ξ=1),P (ξ≥2).。
中职基础模块高二上学期数学期末考试试卷
黄陂职校2016-2017学年度第一学期期末考试 1515-1518班数学试题(共三大题22小题,满分150分,考试时间120分钟)出卷人:吴金龙 审卷人:陈瑛 卷号: 班级: 姓名: 分数:一、选择题:(本大题共10小题,每小题5分,共50分) 1、下列物理量中是向量的为( )A 、温度B 、速度C 、体积D 、面积. 2、在数列2、5、9、14、20、X 、中,x 的值应该是( )A 、24B 、25C 、26D 、27.3、 等差数列{a n }中,已知S 3 = 36 , 则a 2 =() A 、18 B 、12 C 、9 D 、6.4、在等比数列{a n }中,已知公比q = 3 , s 4 = - 80,则a 1 =( )A 、一 5B 、 一 4C 、一 3D 、一 2.—5、 已经 A( — 3, 6), B = (3, - 6),则 | AB = ( )_A 、6B 、9C 、6 話D 、9. 5 二、填空题:(本大题共6小题。
每小题5分,共30分)11、 ____________________________________________________ 数列一1、2、5、…的一个通项公式为 ___________________________________ 12、数列的一个通项公式为 a n =(- 1) n+1 • 2 + n ,则a® =13、设 a =(2,5 ),b = _________________ (-6,3 ),贝U a • b =— —14、 向量 BA ^ (4,- 3),向量 BC= (2,- 4),则△ ABC 的形状为 ______ 。
15、 已知 |a| = 2,|b| = 3,<a,b> = 30 ° ,贝U( 2a + b ) • b = ______________________16、 等比数列{a n }中,a 3、a ?是方程x 2 — 4x+2 = 0的两个根,贝U a 5 =—&已知两点A(2,- 1),B(3,1),与AB W 亍且方向相反的向量a 可能是()A. a = (1,- 2)B. a = (9,3) C . a = ( -1,2) D.a = (- 4,- 8)A 3B.- 3 C . 0三.解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤 17、已知数列{a n }中,a 1 = — 60,a n+1 = a n +3求这个数列的通项公式和它的前 n 项和公式。
《中职数学基础模块》考试试卷及参考答案
《中职数学基础模块》期末考试试卷及答案一、选择题(每小题3分,共30分):1.与300角终边相同的角的集合是()A.{x|x=300+k·1800,k∈Z} B. {x|x=300+k·3600,k∈Z}C.{x|x=600+k·1800,k∈Z}D. {x|x=600+k·3600,k∈Z}2.若sinx=3/5,且cosx=-4/5,则角x是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角3. 与-900终边相同的角是()A.900 B.1800 C.2700 D.36004.已知角x的终边过点(-3,4),则cosx等于()A.-3/5 B.-4/5 C.3/5 D.4/55.若-1为方程mx2+2nx+p=0(m,p不为0)的一个根,则()A.m=2n B.m=pC.m,n,p成等比数列D.m,n,p成等差数列6.等差数列{a}中,已知a2+a3+a10+a11=48,则a6+a7=()nA.12 B.16 C.20 D.24}是等比数列,则下列等式中成立的是()7.已知数列{anA.a82=a2a4 B.a42=a2a4 C.a42=a1a7 D.a22=a1a48.过点(1,2),且倾斜角为450的直线方程为()A.y-2=2(x-1) B.y-1=x-2C.y-2=x-1D.y-1=2(x-2)9.与直线y=2x+3平行,且过点P(-1,-3)的直线方程是()A.y=2x+1B.y=-2x+1C.y=0.5x-1D.y=2x-110.直线2x+y+a=0和x+2y-1=0的位置关系是()A.垂直 B.相交,但不垂直 C.平行 D.重合二、填空题(每小题4分,共32分):11.若sinx=-3/5,且x为第四象限角,则cosx= .12.(1)sin1200= ;(2)cos(-11400)= .13.已知等差数列a1=3,d=-2,n=15,则a n= .14.数列2,1,1/2,1/4,…的通项公式是.15.7+35与7-35的等比中项是.16.已知A(2,-1),B(-1,5),则|AB|= ,直线AB的斜率k= .17.直线x-5y-2=0的斜率等于,在y轴上的截距等于 .18.与直线2x-3y-5=0垂直,且通过坐标原点的直线方程是.三、解答题(六小题,共38分):19.已知sinx=3/5,且x是第二象限角求cosx,tanx的值.(6分)20.已知tanx=-2,求cos2x-sin2x的值.(7分)21.求数列1/2,1/4,1/8,1/16,…的前10项的和.(6分)22.已知等差数列的第3项是-4,第6项是2,求它的第10项.(6分)23.已知等差数列中,d=2,a n=1,S n=-8,求a1和n.(7分)24.若直线(a+1)x-3y-12=0与直线4x-6y+1=0平行,求a的值.(6分)参考答案:一、选择题1、B2、B3、C4、A5、D6、D7、C8、C9、D10、B二、填空题:11、4/512、13、-2514、a n=22-n15、±216、35;-217、1/5;-2/518、2y+3x=0三、解答题:(过程略)19、cosx=-4/5;tanx=-3/420、cos2x-sin2x=-3/521、S10=1023/102422、a10=1023、a1=-5,n=424、a=1。
职高高二数学基础模块期末考试试卷
2012—2013学年度高二数学期末考试试卷班级: 姓名: 得分:一、是非选择题,对每小题的命题作出判断,对的选A ,错的选B 。
(每小题3分,共30分) 1、02sin=π; (A B )2、计算函数值()420cos -,其符号为负号。
(A B )3、αα2cos 212cos -= (A B )4、方差总是大于或等于0,且总是大于标准差。
(A B )5、简单随机抽样要求总体的个数有限; (A B )6、频率分布直方图中,小矩形的面积等于相应各组的频率。
(A B )7、等距抽样又叫系统抽样; (A B )8、若随机事件A 发生的概率为()A P ,则()10≤≤A P (A B )9、如果180=+βα,则βαcos cos -= (A B )10、要得到函数⎪⎭⎫ ⎝⎛+=62sin πx y 的图像,只需要把函数x y 2sin =的图像向左平移3π个单位。
(A B )二、单项选择题(每小题5分,共40分) 11、与95sin 相等的是( )A 、 5sinB 、 5cosC 、 5cos 2D 、5sin 2 12、若,0cos =θ则θ2sin 的值是( )A 、 0B 、-1C 、1D 、1± 13、 函数R x x y ∈+=),2sin(π是( )A 、奇函数B 、偶函数C 、既不是奇函数也不是偶函数D 、既是奇函数也是偶函数14、若数据n x x x ⋯⋯,,21的平均数为11,方差为0.5,则24,24,2421-⋯⋯--n x x x 的平均数和方差分别是( )A 、42 0.5B 、44 0.5C 、42 8D 、42 615、将函数x y sin =的图象上所有点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变,所得图象的函数解析式是( ) A 、)102sin(π-=x y B 、)52sin(π-=x y C 、)1021sin(π-=x y D 、)2021sin(π-=x y16、把()()()()q p n m b b a a a a +++++++214321展开后得到的多项式的项数是( )A 、6B 、18C 、9D 、12 17、甲从正方形四个顶点中任意选择两个顶点连成一条直线,乙也从该正方形四个顶点中任意选择两个顶点连成一条直线,则所得的两直线互相垂直的概率是 ( )A 、183B 、184C 、185D 、186 18、在1、2、3、4、5、6中任取三个数字,则“这三个数字之和大于8”是( ) A 、必然事件 B 、随机事件 C 、不可能事件 D 、以上说法都不对三、填空题(每小题5分,共30分)19、函数)341sin(2π-=x y 的最大值是 ,周期是20、)15cos(-= 21、在ABC ∆中,若54cos -=A ,则=A sin 22、某校高三年级男生400人,女生500人,要采取分层抽样的方法从中抽取一个容量为180的样本来了解该年级学生的健康状况,那么女生应抽取的人数为 人23、 一个工厂在某月产品的总成本y (元)与该月产量(件)之间的回归直线的方程是974.0215.2ˆ+=x y,则当x=2.52(件)时,y 的估计值是 24、 从一副完整的扑克牌(一副完整的扑克牌中含有牌的张数为54)中任抽一张,抽到“方 块”的概率是四、求解题(25-28小题每小题8分,第29-30小题每小题9分,共50分)25、从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通, 从丁地到丙地有2条路可通。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级
科目
满分
命题人
高二
数学
50分
张利宝
一、
1.给出以下四个结论:
①{1,2,3,1}是由4个元素组成的集合
② 集合{1}表示仅由一个“1”组成的集合
③{2,4,6}与{6,4,2}是两个不同的集合
④ 集合{大于3的无理数}是Βιβλιοθήκη 个有限集其中正确的是 ( );
A.2B.4C.6D.
9.掷一枚骰子,点数不小于4点的概率是()
A. B. C. D.
二、
10.设集合 ,则 , =.
11.函数 的定义域为.
12.已知函数 ,则 .
13.一条直线 与平面 内的两条相交直线 垂直,则 的关系是。
三
14.解下列不等式
(1) (2)
15.把4封不同的信任意投入三个邮箱中,共有多少种不同的投法?
A.只有③④B.只有②③④C.只有①②D.只有②
2.设集合 ,求
A. B. C. D.
3.集合 用区间表示为()
A. B. C. D.
4.“ ”是“ ”的( )
A.充分条件B.必要条件
C.充分必要条件D.既不充分也不必要条件
5.如果 ,那么()
A. B. C. D.
6.下列函数中,哪个函数与y=x是同一个函数()
16.一个球的体积是3 ,计算它的表面积.
A. B. C. D.s=t
7.在空间中,下列命题正确的()
平行于同一条直线的两条直线互相平行。
垂直于同一条直线的两条直线互相平行。
平行于同一个平面的两条直线互相平行。
垂直于同一个平面的两条直线互相平行。
A.仅①正确B.仅②正确C.仅①④正确D.四个命题都正确
8.若正四棱锥的高为2,其底面边长为 ,则该四棱锥的体积是()