人教A版数学必修五 2.3《等差数列的前n项和》教案
高中数学 2.3 等差数列的前n项和 第2课时课件 新人教A版必修5
时,Sn 最大.这是因为:当an>0时,Sn>Sn-1 ,即递增;当an<0时,
Sn<Sn-1,即递减. 类似地,当a1<0,d>0时,则n为使an≤0成立的最大自然数时, Sn最小.
A.2 C.4 B.3 D.5
)
解析:∵S奇=a1+a3+a5+a7+a9=15,S偶=a2+a4+a6+a8 +a10=30,S偶-S奇=5d=15,∴d=3. 答案:B
3.等差数列{an}的前n项和为Sn ,若S2 =2,S4=10,则S6等
于(
)
A.12 C.24 B.18 D.42
解析:∵等差数列{an}的前n项和为Sn ,∴有S2 ,S4 -S2 ,S6 -S4成等差数列,∴2(S4-S2)=S2+(S6-S4).整理得S6=3S4-3S2 =3×10-3×2=24. 答案:C
以及数形结合,从而使问题得解;(2)通项公式法:求使an≥0(或
an≤0)成立的最大n即可.这是因为:当an<0时,Sn<Sn-1,即单调 递减.
一般地,等差数列{an}中,若a1>0,且Sp=Sq(p≠q),则①当 p+q p+q为偶数时,则n= 2 时,Sn最大;②当p+q为奇数时, p+q-1 p+q+1 则n= 2 或n= 2 时,Sn最大.
[例1] 若Sn表示等差数列的前n项和, ________.
S4 1 S8 = ,则 = S8 3 S16
[分析]
S4 可以设出首项a1与公差d,代入条件 ,进一 S8
S8 步求 的值. S16 但是,我们注意到序号为4、8、16,可以考虑用性质 来解.
S4 1 [解] ∵S =3,故设S4=x,则S8=3x. 8 由于S4,S8-S4,S12-S8,S16-S12成等差数列,且S4= x,S8-S4=3x-x=2x, ∴新数列公差为x. ∴S12-S8=3x,S16-S12=4x, ∴S12=3x+S8=3x+3x=6x,而S16=S12+4x=6x+4x= 10x. S8 3x 3 ∴S =10x=10.
人教版必修五《等差数列的前n项和》2.3(第一课时)教学设计建瓯一中徐志文
《等差数列的前n项和》人教A版必修5第二章第三节第一课时教学设计建瓯市第一中学徐志文内容和内容解析本节课教学内容是人教A版必修5中第二章第三节《等差数列的前n项和》(第一课时).本节课是数列的基本概念和等差数列知识的延续,主要研究如何应用倒序相加法求等差数列的前n项和及该求和公式的应用,该数学模型在实际生活中有着广泛的应用。
通过等差数列前n项和公式的探究,让学生体会从特殊到一般,再从一般到特殊的研究问题的方法,体现“授之于鱼,不如授之于渔”的教学价值;通过介绍高斯求和的故事,向学生渗透人文价值与情感教育价值;通过求和公式的选用、变用与拓展来体现数学课堂的方法价值、应用价值、类比价值;这些价值的渗透有利于提升学生的数学素养。
三维目标知识与技能理解等差数列前n项和公式的推导过程;掌握并能运用等差数列前n项和公式;了解倒序相加法的原理;过程与方法学生在教师的引导下,通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题、解决问题的一般思路和方法;通过对等差数列前n项和公式和梯形面积公式推导方式的比较,加深对公式的理解记忆,同时进一步体会数与形、直观想象等重要数学思想;学生在理解和运用公式的过程中,运算求解能力、分析问题及解决问题的能力得到进一步提高,创新意识与应用意识得到发展。
情感态度价值观通过公式的推导过程,展现数学中的对称美,通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感教学重点等差数列的前n项和公式的理解、推导及应用教学难点灵活应用等差数列前n项和公式解决一些简单的有关问题教学过程一、以境激情,科学引入(教师幻灯投影、图文并茂):印度泰姬陵Ta Maha是世界七大建筑奇迹之一,所在地阿格拉市,泰姬陵是印度古代建筑史上的经典之作,这个古陵墓融合了古印度、阿拉伯和古波斯的建筑风格,是印度伊斯兰教文化的象征陵寝以宝石镶饰,图案之细致令人叫绝传说当时陵寝中有一个等边三角形图案,以相同大小的圆宝石镶饰而成,共有100层如右图,奢华之程度,可见一斑你知道这个图案中一共有多少颗宝石吗这个问题实质就是求等差数列1,2,3,…,n,…前100项的和引领学生步入探讨高斯算法的阶段。
人教版人教课标高中数学必修5A版等差数列的前n项和
100 101 5050 于是所求的和为: 2
(2)任意的第k项与倒数第k项的和都等于首项与末项 的和。
二、等差数列前n项和公式的推导:
解得 n1=9, n2=-3(舍去)
因此等差数列-10,-6,-2,2,...前9项的和是54.
设该数列前n 项和为54
四、随堂练习
1、根据下列各题中的条件,求相应的等差数列{an}的sn
(1)a1=5,an=95,n=10 (2)a1=100,d=-2,n=50 (3)a1=14.5,d=0.7,an=32
解:由题意可知,这个V形架上共
放着120层铅笔,且自下而上各层的 铅笔数成等差数列,将其记为{an}, 则有a1=1, a120=120.根据等差数 n(a1 an ) 列前n项和的公式: sn 2
s120
答:V形架上共放着7260支铅笔。
120 (1 120 ) 7260 2
三、应用举例:
s10
10(5 95) 500 2 50 (50 1) s50 50 100 2550 2
先由an a1 (n 1)d得 32 14.5 (n 1) 0.7 n 26 26 (14.5 32) 所以sn 604.5 2
an an1 d (d为常数, n 2)
(2)数列“1,2,3,…,n,…”是等差数列吗?为什么?
(3)等差数列的通项公式是什么?
an=a1+(n-1)d
一、等差数列前n项和的引入: 1、引例:1+2+3+…+0=? 2、高斯的算法:
《等差数列前n项和公式》教案
《等差数列前n项和公式》微课教案----天津市木斋中学王珏教材选自:普通高中课程标准试验教材数学(人教A版)《必修5》“§2.3等差数列前n项和”第一课时。
一、教学目标设计《课程标准》指出本节课的学习目标是:探索并掌握等差数列前n项和公式;能在具体的问题情景中,发现数列的等差关系并能用相关知识解决相应的问题。
考虑到学生的接受能力和课容量,本节课只要求学生探索并掌握等差数列前n项和公式,并会对公式进行简单的应用。
故结合《课标》的要求,我将本节微课的教学目标确定为:知识与技能:探索并掌握等差数列前n项和公式,会用公式解决一些简单的问题;方法与过程:通过对等差数列前n项和公式的探索,体会“从特殊到一般”的数学研究方法和数形结合的数学思想方法,学会观察、归纳、反思;情感、态度与价值观:让学生亲身经历知识的建构过程,体验探索的乐趣,增强学习数学的兴趣。
二、教学重、难点:教学重点:能从具体实例中探索并掌握等差数列前n项和公式,并用其解决一些简单的问题。
教学难点:等差数列前n项和公式推导思路的获得。
三、课堂结构设计新课程提倡在教学过程中,学生是一个积极的探究者,教师的作用是创设问题情境,帮助学生在积极参与中遇水架桥、逢山开路。
因此,本节课设计了如下的课堂结构。
知三求二、渗透思想分析实例,感悟生活演练反馈、提升能力总结反思,深化认识布置作业,任务延伸四、教学过程设计结合本节课的特点,我主要安排了以下六个环节:(一)问题呈现阶段1、创设情境,提出问题——展示图片(印度的泰姬陵)泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰汗为纪念其爱妃所建,历时22年,它宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。
陵寝以宝石镶饰,图案之细致令人叫绝。
传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见上右图),奢靡之程度,可见一斑。
欣赏完如此美的故事及图案,请问:你知道这个图案一共花了多少宝石吗?设计意图:源于历史,富有人文气息;图中算数,激发学生学习兴趣和探究欲望;承上启下,探讨高斯算法.2、自主探究,合作交流此时,教师先不参与,给学生一定的思考时间和思考空间,让学生自主活动。
高三数学必修五教案《等差数列》优秀4篇
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次白话文为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。
数学等差数列教案篇一【教学目标】一、知识与技能1、掌握等差数列前n项和公式;2、体会等差数列前n项和公式的推导过程;3、会简单运用等差数列前n项和公式。
二、过程与方法1.通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;2、通过公式的'运用体会方程的思想。
三、情感态度与价值观结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
【教学重点】等差数列前n项和公式的推导和应用。
【教学难点】在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。
【重点、难点解决策略】本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。
利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。
【教学用具】多媒体软件,电脑【教学过程】一、明确数列前n项和的定义,确定本节课中心任务:本节课我们来学习《等差数列的前n项和》,那么什么叫数列的前n项和呢,对于数列{an}:a1,a2,a3,…,an,…我们称a1+a2+a3+…+an为数列{an}的前n项和,用sn表示,记sn=a1+a2+a3+…+an,如S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。
二、问题牵引,探究发现问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。
传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。
你知道这个图案一共花了多少圆宝石吗?即: S100=1+2+3+······+100=?著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。
新人教A版必修5高中数学2.3等差数列的前n项和(2)学案(二)
高中数学 2.3等差数列的前n 项和(2)学案新人教A 版必修5学习目标1. 进一步熟练掌握等差数列的通项公式和前n 项和公式;2. 了解等差数列的一些性质,并会用它们解决一些相关问题;3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值.学习重难点1.重点:数列前n 项和公式的研究应用2.难点:前 n 项和的公式n S 的最值.一、课前预习习1:等差数列{n a }中, 4a =-15, 公差d =3,求5S .习2:等差数列{n a }中,已知31a =,511a =,求和8S .二、新课探究 ※ 学习探究问题:如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?※ 试一试例1已知数列{}n a 的前n 项为212n S n n =+,求这个数列的通项公式. 这个数列是等差数列吗?如果是,它的首项与公差分别是什么?变式:已知数列{}n a 的前n 项为212343n S n n =++,求这个数列的通项公式.小结:数列通项n a 和前n 项和n S 关系为: n a =11(1)(2)nn S n S S n -=⎧⎨-≥⎩,由此可由n S 求n a .例2 已知等差数列2454377,,,....的前n 项和为n S ,求使得n S 最大的序号n 的值.变式:等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.小结:等差数列前项和的最大(小)值的求法.(1)利用n a : 当n a >0,d <0,前n 项和有最大值,可由n a ≥0,且1n a +≤0,求得n 的值; 当n a <0,d >0,前n 项和有最小值,可由n a ≤0,且1n a +≥0,求得n 的值(2)利用n S :由21()22n d dS n a n =+-,利用二次函数配方法求得最大(小)值时n 的值.※ 模仿练习练1. 已知232n S n n =+,求数列的通项n a .练2. 有两个等差数列2,6,10,…,190及2,8,14,…200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,求这个新数列的各项之和.三、总结提升 ※ 学习小结1. 数列通项n a 和前n 项和n S 关系;2. 等差数列前项和最大(小)值的两种求法. ※ 知识拓展等差数列奇数项与偶数项的性质如下:1°若项数为偶数2n ,则: S S nd 偶奇-=;1(2)n n S an S a +≥奇偶=;2°若项数为奇数2n +1,则: 1n S S a +奇偶-=;1n S na +=偶;1(1)n S n a ++奇=;1S n S n +偶奇=. 当堂检测1. 下列数列是等差数列的是( ).A. 2n a n =B. 21n S n =+C. 221n S n =+D. 22n S n n =-2. 等差数列{n a }中,已知1590S =,那么8a =( ). A. 3 B. 4 C. 6 D. 123. 等差数列{n a }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ). A. 70 B. 130 C. 170 D. 2104. 在小于100的正整数中共有 个数被7除余2,这些数的和为 .5. 在等差数列中,公差d =12,100145S =,则13599...a a a a ++++= .课后作业1. 在项数为2n +1的等差数列中,所有奇数项和为165,所有偶数项和为150,求n 的值.2. 等差数列{n a },10a <,912S S =,该数列前多少项的和最小?课后反思。
高中数学必修5高中数学必修5《2.3等差数列的前n项和(二)》教案
2.3 等差数列的前项和(二)教学要求:进一步熟练掌握等差数列的通项公式和前n 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前项和的公式研究 的最值. 如果A n ,B n 分别是等差数列{a n },{b n }的前n 项和,则1212--=n n n n B A b a . 教学重点:熟练掌握等差数列的求和公式.教学难点:灵活应用求和公式解决问题.教学过程:一、 复习准备:1、等差数列求和公式:2)(1n n a a n S +=,d n n na S n 2)1(1-+= 2、在等差数列{a n }中(1) 若a 5=a , a 10=b , 求a 15; (2) 若a 3+a 8=m , 求a 5+a 6;(3) 若a 5=6, a 8=15, 求a 14; (4) 若a 1+a 2+…+a 5=30, a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.二、讲授新课:1、探究:等差数列的前n 项和公式是一个常数项为零的二次式.例1、已知数列{}n a 的前n 项和为212n S n n =+,求这个数列的通项公式. 这个数列是等差数列吗?如果是,它的首项与公差分别是什么?【结论】数列{}n a 的前n 项和n S 与n a 的关系:由n S 的定义可知,当n=1时,1S =1a ;当n ≥2时,n a =n S -1-n S ,即n a =⎩⎨⎧≥-=-)2()1(11n S S n S n n . 练习:已知数列{}n a 的前n 项和212343n S n n =++,求该数列的通项公式. 这个数列是等差数列吗? 探究:一般地,如果一个数列{},n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?(是,1a p q r =++,2d p =).由此,等差数列的前n 项和公式2)1(1d n n na S n -+=可化成式子:n )2d a (n 2d S 12n -+=,当d ≠0,是一个常数项为零的二次式.2. 教学等差数列前n 项和的最值问题:① 例题讲解:例2、数列{}n a 是等差数列,150,0.6a d ==-. (1)从第几项开始有0n a <;(2)求此数列的前n项和的最大值.结论:等差数列前项和的最值问题有两种方法:(1) 当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值;当n a <0,d>0,前n 项和有最小值可由n a ≤0,且1+n a ≥0,求得n 的值.(2)由n )2d a (n 2d S 12n -+=利用二次函数配方法求得最值时n 的值. 练习:在等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.例3、已知等差数列....,743,724,5的前n 项的和为n S ,求使得n S 最大的序号n 的值。
推荐-高二数学人教A版必修5课件2.3.2 等差数列前n项和的性质与应用
=nd;若项数为2n-1(n∈N*),则S2n-1=(2n-1)an(an为中间项),且S奇-S偶
=an,S偶∶S奇=(n-1)∶n.
(3)设{an},{bn}均为等差数列,An 为数列{an}的前 n 项和,Bn 为数列{bn}
的前 n 项和,则������������������������ = ������������22������������--11.
S6=
.
解析:(1)设公差为d,由题意得S偶-S奇=30-15=5d,故d=3.
(2)∵S2,S4-S2,S6-S4成等差数列,
∴4+(S6-9)=2×5,∴S6=15.
答案:(1)C (2)15
首页
X新知导 I学NZHI DAOXUE
D答疑解惑 A YI JIE HUO
D当堂检测 ANGTANG JIANCE
3
即当 n≤34 时,an>0;
当 n≥35 时,an<0.
首页
X新知导 I学NZHI DAOXUE
D答疑解惑 A YI JIE HUO
D当堂检测 ANGTANG JIANCE
探究一
探究二
探究三
思维辨析
(1)当 n≤34 时,
Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=Sn=-32n2+2025n. (2)当 n≥35 时,
分析解答本题可用多种方法,根据S17=S9找出a1与d的关系,转化 为Sn的二次函数求最值,也可以用通项公式找到通项的变号点,再 求解.
首页
X新知导 I学NZHI DAOXUE
D答疑解惑 A YI JIE HUO
D当堂检测 ANGTANG JIANCE
《2.3 等差数列的前n项和》教学设计
附件 1-4
第二届湘西州中小学青年教师教学竞赛
教学设计表
学段:高中科目:数学编号:(组委会填写)
设计意图:培养学生观察、比较、分析、归纳等能力.
问题4、从方程的角度来看,可以解决什么问题?
学情预设:知三求一的问题
设计意图:培养学生用方程(组)思想分析问题、解决问题的能力。
问题5、如何更好的记忆公式?跟以前学过的什么公式类似呢?
引导学生回忆梯形的面积公式,并作出以下的分析
设计意图:培养学生类比、反思等思维能力.
设计意图:这些问题串的设计,是为了达到:数学公式课的教学,不仅要知道公式的来龙去脉,还要知道公式是什么,记住公式且挖掘公式的内涵与外延.更重要的是公式有何用,怎样用?让学生对公式课的学习有个系统、全面的认识,形成一套科学而有效的探究公式的方法.力求体现“授之于鱼,不如授之于鱼渔”的教学价值.
(五)剖析例题,理解巩固
例1、众所周知,中国的著名运动员姚明在篮球领域中取得了巨大的成就,他是整个中国的骄傲,甚至是整个亚洲的骄傲.但是同学们了解姚明刚去NBA时的辛酸吗?初到NBA,姚明为了更快的适应NBA 的高强度对抗,给自己指定了为期10天的投篮训练计划,从第一天到第十天的投篮个数依次如下表:
600 650 700 750 800 850 900 950 1000 1050 请问:姚明这十天一共投了几个篮?
例2、求等差数列2、4、6、8、…、142的和.
设计意图:1、从数学知识角度出发:学生要达到会选用公式从。
等差数列前N项和说课稿
《等差数列的前n 项和》(第一课时)说课稿人教版普通高中课程标准教科书 数学 必修五学校:第三师第三中学 教师:张慧敏一、说教材本节课是在学习了等差数列的概念和性质的基础上,使学生掌握等差数列求和公式,并能利用它解决数列求和问题。
等差数列求和公式的推导,采用了“倒序相加法”,思路的获益于等差数列{a n }任意的第k 项与倒数第n-k+1项的和都等于首项a 1与末项a n 的和这一性质的认识和发现,并且通过对等差数列求{a n }和公式的推导,使学生能掌握“倒序相加”数学方法。
二、说教学目标及重点、难点1、教学目标的确定依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求,制定了如下教学目标:(1) 知识与技能:掌握等差数列前n 项和公式及其应用。
(2) 过程与方法:通过对等差数列求和公式的推导,培养学生自主学习、综合归纳、探究发现的能力。
(3)情感态度与价值观:通过实际生活中的应用使得学生感受到数学来源于生活又服务于生活,激发学生学习数学的兴趣2、教学重点、难点重点:掌握等差数列前n 项和公式,会应用等差数列的前n 项和公式解决简单的问题,并且能够探求解决问题的方法。
难点:对等差数列求和公式的深刻理解及其灵活应用。
三、说教法教学过程是教师和学生共同参与的过程,为激发学生的学习兴趣,有效地渗透数学思想方法。
我采用如下的教学方法:(1)引导学生进行思考、分析、实验、探索、归纳。
(2)体现“对比联系”的思想方法。
(3)借助多媒体演示法。
四、说学法本节课注重调动学生积极性,进行了以下学法指导:(1)联系学习法:利用简单的数学问题联系到等差数列前n 项和的求解方法。
(2)探究式学习法:学生通过分析、探索、得出等差数列前n 项和的公式(3)自主性学习法:通过2)(1n n a a n S +=推导出d n n na S n 2)1(1-+= (4)联系记忆法:通过等腰梯形的面积计算公式联系记忆等差数列前n 项和公式。
高中数学 第二章 数列 2.3 等差数列的前n项和学案 新人教A版必修5-新人教A版高一必修5数学学
2.3 等差数列的前n项和(1)数列前n项和的定义是什么?通常用什么符号表示?(2)能否根据首项、末项与项数求出等差数列的前n项和?(3)能否根据首项、公差与项数求出等差数列的前n项和?[新知初探]1.数列的前n项和对于数列{a n},一般地称a1+a2+…+a n为数列{a n}的前n项和,用S n表示,即S n=a1+a2+…+a n.2.等差数列的前n项和公式已知量首项,末项与项数首项,公差与项数选用公式S n=n a1+a n2S n=na1+n n-12d[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)数列的前n项和就是指从数列的第1项a1起,一直到第n项a n所有项的和( )(2)a n=S n-S n-1(n≥2)化简后关于n与a n的函数式即为数列{a n}的通项公式( )(3)在等差数列{a n}中,当项数m为偶数2n时,则S偶-S奇=a n+1( )解析:(1)正确.由前n项和的定义可知正确.(2)错误.例如数列{a n}中,S n=n2+2.当n≥2时,a n=S n-S n-1=n2-(n-1)2=2n-1.又∵a1=S1=3,∴a1不满足a n=S n-S n-1=2n-1,故命题错误.(3)错误.当项数m为偶数2n时,则S偶-S奇=nd.预习课本P42~45,思考并完成以下问题答案:(1)√ (2)× (3)×2.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .n B .n (n +1) C .n (n -1)D.n n +12解析:选 D 因为a 1=1,d =1,所以S n =n +n n -12×1=2n +n 2-n 2=n 2+n 2=n n +12,故选D.3.设等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( )A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d , 由已知得4a 1+4×32d =20,即4×12+4×32d =20,解得d =3,∴S 6=6×12+6×52×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,则S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.答案:12等差数列的前n 项和的有关计算[典例] 已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求d 和n ;(2)a 1=4,S 8=172,求a 8和d .[解] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n n -12d =-5,解得n =15或n =-4(舍). (2)由已知,得S 8=8a 1+a 82=84+a 82=172, 解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.等差数列中的基本计算(1)利用基本量求值:等差数列的通项公式和前n 项和公式中有五个量a 1,d ,n ,a n 和S n ,这五个量可以“知三求二”.一般是利用公式列出基本量a 1和d 的方程组,解出a 1和d ,便可解决问题.解题时注意整体代换的思想.(2)结合等差数列的性质解题:等差数列的常用性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q ,常与求和公式S n =n a 1+a n2结合使用.[活学活用]设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 8=11,则S 9等于( ) A .13 B .35 C .49D .63解析:选D ∵{a n }为等差数列,∴a 1+a 9=a 2+a 8, ∴S 9=9a 2+a 82=9×142=63.已知S n 求a n 问题[典例] 已知数列{a n }的前n 项和S n =-2n 2+n +2.(1)求{a n }的通项公式; (2)判断{a n }是否为等差数列? [解] (1)∵S n =-2n 2+n +2, ∴当n ≥2时,S n -1=-2(n -1)2+(n -1)+2=-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3,∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.(2)由(1)知,当n ≥2时,a n +1-a n =[-4(n +1)+3]-(-4n +3)=-4,但a 2-a 1=-5-1=-6≠-4,∴{a n }不满足等差数列的定义,{a n }不是等差数列.(1)已知S n 求a n ,其方法是a n =S n -S n -1(n ≥2),这里常常因为忽略条件“n ≥2”而出错. (2)在书写{a n }的通项公式时,务必验证n =1是否满足a n (n ≥2)的情形.如果不满足,则通项公式只能用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2表示.[活学活用]1.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1 C .a n =-2n -1D .a n =2n -1解析:选B 当n =1时,a 1=S 1=-1;n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1.2.已知S n 是数列{a n }的前n 项和,根据条件求a n . (1)S n =2n 2+3n +2;(2)S n =3n-1.解:(1)当n =1时,a 1=S 1=7,当n ≥2时,a n =S n -S n -1=(2n 2+3n +2)-[2(n -1)2+3(n -1)+2]=4n +1,又a 1=7不适合上式,所以a n =⎩⎪⎨⎪⎧7,n =1,4n +1,n ≥2.(2)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n-1)-(3n -1-1)=2×3n -1,显然a 1适合上式,所以a n =2×3n -1(n ∈N *).等差数列的前n 项和性质[典例] (1)等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( ) A .130 B .170 C .210D .260(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.[解析] (1)利用等差数列的性质:S n ,S 2n -S n ,S 3n -S 2n 成等差数列.所以S n +(S 3n -S 2n )=2(S 2n -S n ), 即30+(S 3n -100)=2(100-30), 解得S 3n =210.(2)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1,即132-120=132+1202n +1,解得n =10.(3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. [答案] (1)C (2)10 (3)53等差数列的前n 项和常用的性质(1)等差数列的依次k 项之和,S k ,S 2k -S k ,S 3k -S 2k …组成公差为k 2d 的等差数列.(2)数列{a n }是等差数列⇔S n =an 2+bn (a ,b 为常数)⇔数列⎩⎨⎧⎭⎬⎫S n n 为等差数列.(3)若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d , ①当项数为偶数2n 时,S 偶-S 奇=nd ,S 奇S 偶=a na n +1; ②当项数为奇数2n -1时,S 奇-S 偶=a n ,S 奇S 偶=n n -1. [活学活用]1.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18 B .17 C .16D .15解析:选A 设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.2.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析:因为a n =2n +1,所以a 1=3, 所以S n =n 3+2n +12=n 2+2n ,所以S n n=n +2,所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75.答案:75等差数列的前n 项和最值问题[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解] 由S 17=S 9,得25×17+17×17-12d =25×9+9×9-12d ,解得d =-2, [法一 公式法]S n =25n +n n -12×(-2)=-(n -13)2+169.由二次函数性质得,当n =13时,S n 有最大值169. [法二 邻项变号法]∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2n -1≥0,a n +1=25-2n ≤0,得⎩⎪⎨⎪⎧n ≤1312,n ≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.求等差数列的前n 项和S n 的最值的解题策略(1)将S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 配方,转化为求二次函数的最值问题,借助函数单调性来解决.(2)邻项变号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0的项数n 使S n 取最大值.当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0的项数n 使S n 取最小值.[活学活用]已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .21解析:选C ∵S n 有最大值,∴d <0,则a 10>a 11,又a 11a 10<-1,∴a 11<0<a 10,a 10+a 11<0,S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.故选C.层级一 学业水平达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n2B .-32n 2-n2C.32n 2+n 2D.32n 2-n 2解析:选A ∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n -1+2-3n2=-32n 2+n2.2.等差数列{a n }的前n 项和为S n ,若a 7>0,a 8<0,则下列结论正确的是( ) A .S 7<S 8 B .S 15<S 16 C .S 13>0D .S 15>0解析:选 C 由等差数列的性质及求和公式得,S 13=13a 1+a 132=13a 7>0,S 15=15a 1+a 152=15a 8<0,故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27解析:选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( )A .5B .6C .7D .8解析:选B 由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d 2x 2+⎝⎛⎭⎪⎫a 1-d 2x 的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:选A S 9S 5=92a 1+a 952a 1+a 5=9×2a 55×2a 3=9a 55a 3=95×59=1. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________. 解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2=2S m +1m +1,即-2m +3m +2=0,解得m =4. 答案:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析:设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=n +1a 1+a 2n +12=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n a 2+a 2n2=na n +1,所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7, S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项.答案:11 79.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,求数列{a n }的通项公式. 解:由已知条件,可得S n +1=2n +1,则S n =2n +1-1.当n =1时,a 1=S 1=3, 当n ≥2时,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n,又当n =1时,3≠21,故a n =⎩⎪⎨⎪⎧3,n =1,2n,n ≥2.10.在等差数列{a n }中,S n 为其前n 项的和,已知a 1+a 3=22,S 5=45. (1)求a n ,S n ;(2)设数列{S n }中最大项为S k ,求k .解:(1)由已知得⎩⎪⎨⎪⎧2a 2=22,5a 3=45, 即⎩⎪⎨⎪⎧a 2=11,a 3=9,所以⎩⎪⎨⎪⎧a 1=13,d =-2,所以a n =-2n +15,S n =-n 2+14n .(2)由a n ≥0可得n ≤7,所以S 7最大,k =7.层级二 应试能力达标1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18解析:选B 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n a 1+a n2=210,得n =14.2.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 014,S k =S 2 009,则正整数k 为( ) A .2 014 B .2 015 C .2 016D .2 017解析:选C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 014,S k =S 2 009,可得2 011+2 0142=2 009+k 2,解得k =2 016.故选C. 3.已知S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,则S n 取最小值时,n 的值为( )A .11B .12C .13D .14解析:选A 设等差数列{a n }的公差为d ,由2S 21+S 25=0得,67a 1+720d =0,又d >0,∴67a 11=67(a 1+10d )=67a 1+670d <0,67a 12=67(a 1+11d )=67a 1+737d >0,即a 11<0,a 12>0.故选A.4.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:选D ∵a n b n =a 1+a 2n -12b 1+b 2n -12=a 1+a 2n -122n -1b 1+b 2n -122n -1=A 2n -1B 2n -1=72n -1+452n -1+3=14n +382n +2=7+12n +1,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5. 5.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.答案:4056.已知等差数列{a n }的前n 项和为S n ,若S 4≤4,S 5≥15,则a 4的最小值为________. 解析:S 4=2(a 1+a 4)≤4⇒2a 3-d ≤2,S 5=5a 3≥15⇒a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.答案:77.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28.(1)求数列{a n }的通项公式;(2)若b n =S n n +c (c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)∵S 4=28,∴a 1+a 4×42=28,a 1+a 4=14,a 2+a 3=14,又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧ a 1=1,d =4,∴a n =4n -3. (2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c, ∴b 1=11+c ,b 2=62+c ,b 3=153+c . 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去).8.在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解:(1)由⎩⎪⎨⎪⎧ a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧ a 1=50,d =-3,∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0; 当n ≥18,n ∈N *时,a n <0,∴{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n n -12d =-32n 2+1032n .当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2⎝ ⎛⎭⎪⎫-32×172+1032×17-⎝ ⎛⎭⎪⎫-32n 2+1032n =32n 2-1032n +884. ∴S n =⎩⎪⎨⎪⎧ -32n 2+1032n ,n ≤17,n ∈N *,32n 2-1032n +884,n ≥18,n ∈N *.。
【数学】2.3.2《等差数列前N项和公式》课件(新人教A必修5)
2.已知an 1024 lg 21 n , 2 0.3010),n N ,问: (lg
中,S n为前n项和,公差d 2 3.在等差数列 an
且S 4 1 ,求:a17 a18 a19 a20的值
?
1 1、已知数列a n 且a n 0,n N ,前n项的和s n 满足s n (a n 4) 2 8 ( )求该数列的通项,并 1 判断该数列是否为等差 数列
一.等差数列an 的首项a1 0, 公差d 0时,前n项和S n 有最大值
1、利用S n:S n d n 2 (a1 d )n.借助二次函数最值问题 2 2
2、利用 an:借助通项公式 an的正负情况与前 n项和S n的 变化情况, an 0且an 1 0
二.等差数列anቤተ መጻሕፍቲ ባይዱ 的首项a1 0, 公差d 0时,前n项和S n 有最小值
例1:已知数列an 的前n项和为S n n 2 1 n, 求这个数列的通项公式 , 2 并判断这个数列是等差 数列吗?如果是,它的 首项与公差各是多少?
解:根据 Sn a1 a2 an 1 an与Sn 1 a1 a2 an 1 (n1)
1 (2)若有bn a n 30,求数列bn 的前n项和Tn的最值与此时的n值。 2
练习2:已知数列an 的前n项的和为: S n 1 n 2 2 n 3, 4 3 求数列通项公式。
解:根据 S n 1 n 2 2 n 3与S n 1 1 (n 1) 2 2 (n 1) 3(n1) 4 3 4 3
所以数列an 的通项公式为: an 2n 1 2
由此题,如何通过 数列前n项和来求 数列通项公式?
2015年新课标A版高中数学必修五课件:2-3-等差数列的前n项和1
(2)若项数为2n,则 S偶-S奇=a2+a4+a6+…+a2n-a1-a3-a5-…-a2n-1=d+ d+…+d=nd, SS奇 偶=n2n2aa1+2+aa2n2-n1=22aan+n 1=aan+n 1.
第十一页,编辑于星期五:十点 三十八分。
(3)若项数为2n-1,则
第二十五页,编辑于星期五:十点 三十八分。
解得AB= =- 15473. , ∴S28=-73S12+154S20=1092.
第二十六页,编辑于星期五:十点 三十八分。
解法4:∵{an}为等差数列, ∴Sn=na1+nn-2 1d. ∴Snn=a1-d2+d2n. ∴{Snn}是等差数列. ∵12,20,28成等差数列, ∴S1122,S2200,S2288成等差数列. ∴2×S2200=S1122+S2288,解得S28=1092.
规律技巧 应用基本量法求出a1和d是解决此类问题的基本 方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开 阔思路,有时可以简化计算.
第二十九页,编辑于星期五:十点 三十八分。
三 求数列{|an|}的前n项 【例3】 在等差数列{an}中,已知a1=-60,a11=-30,
求数列{|an|}的前n项和. 【分析】 本题实际上是求数列{an}各项绝对值的和.由
第二十四页,编辑于星期五:十点 三十八分。
解法3:设S28=AS12+BS20,其中A,B∈R. ∵28a1+28×2 27d=A(12a1+12×2 11d)+ B·20a1+20×2 19d, ∴28a1+14×27d=(12A+20B)a1+(66A+190B)d. 比较两边对应项的系数,得1626AA++2109B0B==283,78,
高中数学人教A版必修5课件 2-3 等差数列的前n项和 第10课时《等差数列前n项和的性质与应用》
【练习 2】 在等差数列{an}中,a1=25,S17=S9,求 Sn 的最大值.
解:解法一:利用前 n 项和公式和二次函数的性质. 由 S17=S9,得 25×17+127×(17-1)d=25×9+92×(9-1)d, 解得 d=-2. ∴Sn=25n+n2(n-1)(-2)=-(n-13)2+169. ∴由二次函数的性质,得当 n=13 时,Sn 有最大值 169.
法三:因为等差数列前 n 项和 Sn=an2+bn=a·nn+ba,根据已知, 可令 An=(7n+2)kn,Bn=(n+3)kn.
∴a5=A5-A4 =(7×5+2)k×5-(7×4+2)k×4=65k,
b5=B5-B4=(5+3)k×5-(4+3)k×4=12k.
∴ab55=6152kk=6152. 法四:由AB22nn--11=abnn,有ba55=AB99=7×9+9+3 2=6152.
解法二:由解法一,得 d=-2. ∵a1=25>0,
由aann=+1=252-5-2n2-n≤10≥,0, 得nn≤≥11321212
.
∴当 n=13 时,Sn 有最大值,最大值为 S13=13×25+13×2 12×(-
2)=169.
解法三:由 S17=S9,得 a10+a11+…+a17=0, 而 a10+a17=a11+a16=a12+a15=a13+a14, 故 a13+a14=0. 由解法一,得 d=-2<0,a1>0, ∴a13>0,a14<0. 故 n=13 时,Sn 有最大值,最大值为 S13=13×25+13×2 12×(-
高中数学 2.3《等差数列的前n项和》三维目标教案(第1课时) 新人教A版必修5
高中数学 2.3《等差数列的前n 项和》三维目标教案(第1课时) 新人教A 版必修5授课类型:新授课(第1课时)●三维目标知识与技能:掌握等差数列前n 项和公式及其获取思路;会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.情感态度与价值观:通过公式的推导过程,展现数学中的对称美。
●教学重点等差数列n 项和公式的理解、推导及应●教学难点灵活应用等差数列前n 项公式解决一些简单的有关问题●教学过程Ⅰ.课题导入“小故事”:高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目:1+2+…100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说: “1+2+3+…+100=5050。
教师问:“你是如何算出答案的?高斯回答说:因为1+100=101;2+99=101;…50+51=101,所以101×50=5050”这个故事告诉我们:(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西。
(2)该故事还告诉我们求等差数列前n 项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法。
Ⅱ.讲授新课1.等差数列的前n 项和公式1:2)(1n n a a n S += 证明: n n n a a a a a S +++++=-1321 ①1221a a a a a S n n n n +++++=-- ②①+②:)()()()(223121n n n n n n a a a a a a a a S ++++++++=--∵ =+=+=+--23121n n n a a a a a a ∴)(21n n a a n S += 由此得:2)(1n n a a n S +=从而我们可以验证高斯十岁时计算上述问题的正确性2. 等差数列的前n 项和公式2:2)1(1dn n na S n -+=用上述公式要求n S 必须具备三个条件:n a a n ,,1 但d n a a n )1(1-+= 代入公式1即得: 2)1(1dn n na S n -+= 此公式要求n S 必须已知三个条件:d a n ,,1 (有时比较有用)[范例讲解]课本P49-50的例1、例2、例3由例3得与n a 之间的关系:由n S 的定义可知,当n=1时,1S =1a ;当n ≥2时,n a =n S -1-n S , 即n a =⎩⎨⎧≥-=-)2()1(11n S S n S n n .Ⅲ.课堂练习课本P52练习1、2、3、4Ⅳ.课时小结本节课学习了以下内容:1.等差数列的前n 项和公式1:2)(1n n a a n S +=2.等差数列的前n 项和公式2:2)1(1dn n na S n -+=Ⅴ.课后作业●板书设计●授后记。
高中数学《等差数列的前n项和》优秀教学设计
《等差数列的前n项和》教学设计教学目标知识与技能目标(1)掌握等差数列前n项和公式;(2)掌握等差数列前n项和公式的推导过程;(3)会简单运用等差数列的前n项和公式。
过程与方法目标(1)通过对等差数列前n项和公式的推导过程,渗透倒序相加求和的数学方法;(2)通过公式的运用体会方程的思想;情感态度与价值观目标结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
教学重难点教学重点:等差数列前n项和公式的推导和应用。
教学难点:等差数列前n项和公式推导思路的获得。
重难点突破措施本课在设计上采用了由特殊到一般、从具体到抽象的教学策略.利用数形结合、类比归纳的思想,层层深入,通过学生自主探究,分析、整理出推导公式的不同思路,同时,借助多媒体的直观演示,帮助学生理解,并通过范例后的变式训练和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破教学难点。
教学教法充分发挥教师的主导作用和学生的主体作用,采用“启发——探究——讨论”的高效课堂的模式。
教学过程设计一、问题引入:创设情境:首先让学生欣赏一幅美丽的图片——泰姬陵。
泰姬陵是印度著名的旅游景点,传说中陵寝中有一个三角形的图案嵌有大小相同的宝石,共有100层,同时提出第一个问题:你能计算出这个图案一共花了多少颗宝石吗?也即计算1+2+3+…..+100=?模型直观用实际生活引入新课。
问题1提出:计算1+2+3+4+….100=?教师活动:引出前n 项和的定义,(板书)并引出高斯的故事。
二、探究公式:提出问题:高斯如何计1+2+3+4+ (100)教师活动:总结高斯算法所蕴含的思想方法高明之处:将不同数的求和问题转化为相同数的求和问题.活动:回答高斯故事总结算法思想:1+100=101,2+99=101,…..50+51=101, ∴50⨯(1+101)=5050学生1:将首末两项配对,第二项与倒数第二项配对,以此类推,每一对的和都相等,并且都等于 。
2019-2020年人教A版高中数学必修五第二章第3节《等差数列前n项数和》(第2课时)教案
2019-2020年人教A版高中数学必修五第二章第3节《等差数列前n项数和》(第2课时)教案一、教学目标:1、进一步熟练掌握等差数列的通项公式和前n项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前项和的公式研究。
2、通过等差数列前n项和的公式应用,体会数学的逻辑性3、通过有关内容在实际生活中的应用,引导学生要善于观察生活二、教学重点难点:教学重点:等差数列前n项和公式的性质.教学难点:等差数列前n项和公式的性质及函数与方程的思路.三. 教法、学法本课采用“探究——发现”教学模式.教师的教法突出活动的组织设计与方法的引导.学生的学法突出探究、发现与交流.五.教学过程教学过程设计为六个教学环节:(如下图)前,那么这个数列一探究点1. 已知数列{a n }的前n 项 和S n 求a n例1 已知数列{a n }的前n 项和为 S n =n 2+12n ,求这个数列的通项公式.这个数列是等差数列吗?如果是,它 的首项与公差分别是什么?解 根据S n =a 1+a 2+…+a n -1+a n 与S n -1=a 1+a 2+…+a n -1(n >1), 可知,当n >1时,a n =S n -S n -1=n 2+12n-[(n -1)2+12(n -1)]=2n -12①当n =1时,a 1=S 1=12+12×1=32,也满足①式.∴数列{a n }的通项公式为a n =2n -12.由此可见:数列{a n }是以32为首项,公差为2的等差数列. 探究点二 等差数列前n 项和的最值 思考1 将等差数列前n 项和 S n =na 1+n n -2d 变形为S n 关于n的函数后,该函数是怎样的函数?为什么?答 由于S n =na 1+nn -2d =d 2n 2+(a 1-d2)n ,所以当d ≠0时,S n 为关于n 的二次函数,且常数项为0. 思考2 类比二次函数的最值情况,等差数列的S n 何时有最大值?何时有最小值?答 由二次函数的性质可以得出:当d >0时,S n 有最小值;当d <0时,S n 有最大值;且n 取最接近对称轴的正整数时,S n 取到最值.另外,数列作为特殊的函数,则有(1)若a 1>0,d <0,则数列的前面若干项为正项(或0),所以将这些项相加即得{S n }的最大值.(2)若a 1<0,d >0,则数列的前面若干项为负项(或0),所以将这些项相加即得{S n }的最小值;特别地,若a 1>0,d >0,则S 1是{S n }的最小值;若a 1<0,d <0,则S 1是{S n }的最大值.例2 已知等差数列5,427,347,…的前n 项和为S n ,求使得S n 最大的序号n 的值.解 由题意知,等差数列5,427,347,…的公差为-57,所以S n =5n +n n -2(-57)=-514(n -152)2+1 12556. 于是,当n 取与152最接近的整数即7或8时,S n 取最大值.另解:a n =a 1+(n -1)d =5+(n -1)×⎝⎛⎭⎫-57=-57n +407.a n =-57n +407≤0,解得n ≥8,即a 8=0,a 9<0.所以和是从第9项开始减小,而第8项为0,所以前7项或前8项和最大.反思与感悟:在-1)2+12(n -1)+1]=2n -12.当n =1时代入a n =2n -12得a 1=23≠25. ∴a n ={)2(212)1(25≥-=n n n .2 在等差数列{a n }中,a n =2n -14,试用两种方法求该数列前n 项和S n 的最小值.解 方法一 ∵a n =2n -14,∴a 1=-12,d =2.∴a 1<a 2<…<a 6<a 7=0<a 8<a 9<….∴当n =6或n =7时, S n 取到最小值.易求S 6=S 7=-42,∴(S n )min =-42.方法二 ∵a n =2n -14,∴a 1=-12. ∴S n =na 1+a n 2=n 2-13n =⎝⎛⎭⎫n -1322-1694.∴当n =6或n =7时,S n 最小,且(S n )min =-42.列,该数列的。
高中数学人教A版必修5课件:2.3.1 等差数列的前n项和
-4-
第1课时 等差数列的 前n项和
1 2
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
2.等差数列{an}的前 n 项和 设等差数列{an}的公差是 d,则 Sn=
������(������1+������������ ) 2
������(������1 +������������ ) 2
=
������ 6-2 2
53
= −5, 解得n=15.∴a15 =
=
8(4+������8 ) 2
= 172, 解得a8=39.
又 a8=4+(8-1)d=39,∴d=5. (3)由 ������������ = ������1 + (������-1)������, ������������ = ������������1 + ������ = 7, ������ = 5, 解方程组得 或 ������1 = 3 ������1 = -1.
-12-
第1课时 等差数列的 前n项和
题型一 题型二 题型三
M 目标导航
题型四
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
(2)设数列{an}的前 n 项和为 Sn,点
������
������������ ������, ������
D典例透析
IANLI TOUXI
【变式训练1】 (1)已知数列{an}的前n项和为Sn,且Sn=3· 2n+1,则 an= . 解析:当n=1时,a1=S1=7; 当n≥2时,an=Sn-Sn-1=3· 2n+1-3· 2n-1-1=3· 2n-3· 2n-1=3· 2n-1(21)=3· 2n-1. 当n=1时,不满足上式. 7,������ = 1, ∴an= 3· 2������ -1 ,������ ≥ 2. 7,������ = 1, 答案: 3· 2������ -1 ,������ ≥ 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省迁安一中数学必修五:2.3_等差数列的前n 项和教学难点:灵活应用等差数列前n 项公式解决一些简单的有关问题. 教学过程: Ⅰ.复习回顾经过前面的学习,我们知道,在等差数列中: (1)a n -a n -1=d (n ≥1),d 为常数.(2)若a ,A ,b 为等差数列,则A =a +b2.(3)若m +n =p +q ,则a m +a n =a p +a q .(其中m ,n ,p ,q 均为正整数) Ⅱ.讲授新课随着学习数列的深入,我们经常会遇到这样的问题.例:如图,一个堆放铅笔的V 形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放120支,这个V 形架上共放着多少支铅笔?这是一堆放铅笔的V 形架,这形同前面所接触过的堆放钢管的示意图,看到此图,大家都会很快捷地找到每一层的铅笔数与层数的关系,而且可以用一个式子来表示这种关系,利用它便可以求出每一层的铅笔数.那么,这个V 形架上共放着多少支铅笔呢?这个问题又该如何解决呢?经过分析,我们不难看出,这是一个等差数求和问题?首先,我们来看这样一个问题:1+2+3+…+100=?对于这个问题,著名数学家高斯10岁时曾很快求出它的结果,你知道他是怎么算的吗?高斯的算法是:首项与末项的和:1+100=101, 第2项与倒数第2项的和:2+99=101, 第3项与倒数第3项的和:3+98=101, ……第50项与倒数第50项的和:50+51=101,于是所求的和是101×1002=5050.这个问题,它也类似于刚才我们所遇到的问题,它可以看成是求等差数列1,2,3,…,n ,…的前100项的和.在上面的求解中,我们发现所求的和可用首项、末项及项数n 来表示,且任意的第k 项与倒数第k 项的和都等于首项与末项的和,这就启发我们如何去求一般等差数列的前n 项的和.如果我们可归纳出一计算式,那么上述问题便可迎刃而解.设等差数列{a n }的前n 项和为S n ,即S n =a 1+a 2+…+a n ①把项的次序反过来,S n 又可写成S n =a n +a n -1+…+a 1②①+② 2S n =(a 1+a n )+(a 2+a n -1)+…+(a n +a 1) 又∵a 2+a n -1=a 3+a n -2=a 4+a n -3=…=a n +a 1 ∴2S n =n (a 1+a n )即:S n =n (a 1+a n )2若根据等差数列{a n }的通项公式,S n 可写为:S n =a 1+(a 1+d )+…+[a 1+(n -1)d ]①,把项的次序反过来,S n 又可写为:S n =a n +(a n -d )+…+[a n -(n -1)d ②],把①、②两边分别相加,得2S n =个n n n n a a a a a a )()()(111++⋅⋅⋅++++=n (a 1+a n )即:S n =n (a 1+a n )2.由此可得等差数列{a n }的前n 项和的公式S n =n (a 1+a n )2. 也就是说,等差数列的前n 项和等于首末两项的和与项数乘积的一半.用这个公式来计算1+2+3+…+100=?我们有S 100=100(1+100)2=5050.又∵a n =a 1+(n -1)d ,∴S n =n (a 1+a n )2 =n [a 1+a 1+(n -1)d )]2 =na 1+n (n -1)2 d∴S n =n (a 1+a n )2 或S n =na 1+n (n -1)2d有了此公式,我们就不难解决最开始我们遇到的问题,下面我们看具体该如何解决?分析题意可知,这个V 形架上共放着120层铅笔,且自上而下各层的铅笔成等差数列,可记为{a n },其中a 1=1,a 120=120,n =120.解:设自上而下各层的铅笔成等差数列{a n },其中n =120,a 1=1,a 120=120.则:S 120=120(1+120)2=7260答案:这个V 形架上共放着7260支铅笔. 下面我们再来看一例题:等差数列-10,-6,-2,2,…前多少项的和是54?分析:先根据等差数列所给出项求出此数列的首项,公差,然后根据等差数列的求和公式求解. 解:设题中的等差数列为{a n },前n 项为的S n ,由题意可知:a 1=-10,d =(-6)-(-10)=4,S n =54由等差数列前n 项求和公式可得:-10n +n (n -1)2×4=54解之得:n 1=9,n 2=-3(舍去)答案:等差数列-10,-6,-2,2,…前9项的和是54. [例1]在等差数列{a n }中,(1)已知a 2+a 5+a 12+a 15=36,求S 16 (2)已知a 6=20,求S 11.分析:(1)由于本题只给了一个等式,不能直接利用条件求出a 1,a 16,d ,但由等差数列的性质,可以直接利用条件求出a 1+a 16的和,于是问题得以解决.(2)要求S 11只需知道a 1+a 11即可,而a 1与a 11的等差中项恰好是a 6,从而问题获解. 解:(1)∵a 2+a 15=a 5+a 12=a 1+a 16=18∴S 16=16(a 1+a 16)2=8×18=144.(2)∵a 1+a 11=2a 6∴S 11=11(a 1+a 11)2=11a 6=11×20=220.[例2]有一项数为2n +1的等差数列,求它的奇数项之和与偶数项之和的比.分析一:利用S n =na 1+n (n -1)2d 解题.解法一:设该数列的首项为a 1,公差为d ,奇数项为a 1,a 1+2d ,…其和为S 1,共n +1项;偶数项为a 1+d ,a 1+3d ,a 1+5d ,…,其和为S 2,共n 项.∴S 1S 2 =(n +1)a 1+12 (n +1)[(n +1)-1]2dn (a 1+d )+12n (n -1)2d=n +1n. 分析二:利用S n =n (a 1+a n )2解题.解法二:由解法一知:S 1=(n +1)(a 1+a 2n +1)2 ,S 2=n (a 2+a 2n )2∵a 1+a 2n +1=a 2+a 2n ∴S 1S 2 =n +1n[例3]若两个等差数列的前n 项和之比是(7n +1)∶(4n +27),试求它们的第11项之比. 分析一:利用性质m +n =p +q ⇒a m +a n =a p +a q 解题.解法一:设数列{a n }的前n 项和为S n ,数列{b n }的前n 项和为T n .则:a 11=a 1+a 212 ,b 11=b 1+b 212,∴a 11b 11 =a 1+a 212 b 1+b 212 =a 1+a 212 ·21b 1+b 212·21 =S 21T 21 =7×21+14×21+27 =43分析二:利用等差数列前n 项和S n =An 2+Bn 解题.解法二:由题设,令S n =(7n +1)·nk ,T n =(4n +27)·nk 由a n =S n -S n -1=k (14n -6),得a 11=148k ,n ≥2 b n =T n -T n -1=k (8n -23),得b 11=111k ,n ≥2, ∴a 11b 11 =148k 111k =43. 评述:对本例,一般性的结论有:已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,则:(1)a n b n =S 2n -1T 2n -1 ;(2) a m b n =2n -12m -1 ·S 2m -1T 2n -1.[例4]等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为 A.30 B.170 C.210D.260 答案:C分析一:把问题特殊化,即命m =1来解.解法一:取m =1,则a 1=S 1=30,a 2=S 2-S 1=70∴d =a 2-a 1=40,a 3=a 2+d =70+40=110,S 3=a 1+a 2+a 3=210分析二:利用等差数列的前n 项和公式S n =na 1+n (n -1)2d 进行求解.解法二:由已知,得⎩⎨⎧S m =ma 1+m (m -1)2d =30S 2m =2ma 1+2m (2m -1)2d =100解得a 1=10m +20m 2 ,d =40m2∴S 2m =3ma 1+3m (3m -1)2 d =210.分析三:借助等差数列的前n 项和公式S n =n (a 1+a n )2及性质m +n =p +q ⇒a m +a n =a p +a q求解.解法三:由已知得⎩⎨⎧m (a 1+a m )=60 ①m (a 1+a 2m )=100 ②3m (a 1+a 3m )=2S 3m ③ a 3m -a 2m =a 2m -a m ④由③-②及②-①结合④,得S 3m =210.分析四:根据性质:“已知{a n }成等差数列,则S n ,S 2n -S n ,S 3n -S 2n ,…,S kn -S (k -1)n ,…(k ≥2)成等差数列”解题.解法四:根据上述性质,知S m ,S 2m -S m ,S 3m -S 2m 成等差数列. 故S m +(S 3m -S 2m )=2(S 2m -S m ), ∴S 3m =3(S 2m -S m )=210.分析五:根据S n =an 2+bn 求解. 解法五:∵{a n }为等差数列,∴设S n =a ·n 2+b ·n ,∴S m =am 2+bm =30,S 2m =4m 2a +2mb =100得a =20m2 ,b =10m∴S 3m =9m 2a +3mb =210.分析六:运用等差数列求和公式,S n =na 1+n (n -1)2d 的变形式解题. 解法六:由S n =na 1+n (n -1)2 d ,即S n n =a 1+n -12 d由此可知数列{S n n }也成等差数列,也即S m m ,S 2m 2m ,S 3m3m成等差数列. 由S 2m 2m =S m m +S 3m3m ,S m =30,S 2m =100∴S 3m =210.评述:一般地,对于等差数列{a m }中,有S p -S q p -q =S p +qp +q(p ≠q ). [例5]在a ,b 之间插入10个数,使它们同这两个数成等差数列,求这10个数的和.分析:求解的关键有二:其一是求和公式的选择;其二是用好等差数列的性质.解法一:设插入的10个数依次为x 1,x 2,x 3,…,x 10,则a ,x 1,x 2,…,x 10,b 成等差数列. 令S =x 1+x 2+x 3+…+x 10,需求出首项x 1和公差d . ∵b =a 12=a 1+11d∴d =b -a 11 ,x 1=a +b -a 11 =10a +b 11∴S =10x 1+10×92 d =10·10a +b 11 +10×92 ·b -a11=5(a +b )解法二:设法同上,但不求d .依x 1+x 10=a +b∴S =10(x 1+x 10)2=5(a +b )解法三:设法同上,正难则反∴S =S 12-(a +b )=12(a +b )2-(a +b )=5(a +b )评述:求和问题灵活多变,要注意理解和运用.[例6]在凸多边形中,已知它的内角度数组成公差为5°的等差数列,且最小角是 120°,试问它是几边形?解:设这是一个n 边形,则 ⎩⎪⎨⎪⎧S m =n ×1200+n (n -1)2 ·50=(n -2)×18001200+(n -1)·50<180⇔⎩⎨⎧n 2-25n +144=0n <13 ⇔n =9所以这是一个九边形. Ⅲ.课堂练习课本P 42练习1,2,3,4. Ⅳ.课时小结通过本节学习,要熟练掌握等差数列前n 项和公式:S n =n (a 1+a n )2 =na 1+n (n -1)2d 及其获取思路.Ⅴ.课后作业课本P 45习题 1,2,3。