新北师大版八年级下册《三角形的证明》资料

合集下载

北师大版八年级数学(下) 第一章 三角形的证明 第3节 等腰三角形的判定与反证法

北师大版八年级数学(下) 第一章  三角形的证明  第3节  等腰三角形的判定与反证法

图⑤中,∵AB∥DE,∴∠A=∠D=30°,∵∠BCD=∠A+∠B=60°,
∴∠B=60°﹣∠A=30°,∴∠B=∠A,∴△ABC 是等腰三角形;
能判定△ABC 是等腰三角形的有 4 个,故选:C.
例 2:如图,在△ABC 中,AB=AC,∠BAC=108°,BD=AD=AE,则图中等腰三角形的个数为( )
CBE 是等腰三角形.∴图中的等腰三角形有 8 个.故选:D.
B.6
C.7
D.8
例 3:已知:如图△ABC 中,∠B=50°,∠C=90°,在射线 BA 上找一点 D,使△ACD 为等腰三角
形,则∠ACD 的度数为

解:如图,有三种情形:
①当 AC=AD 时,∠ACD=70°. ②当 CD′=AD′时,∠ACD′=40°. ③当 AC=AD″时,∠ACD″=20°, 故答案为 70°或 40°或 20°
C.50°、60°
D.100°、30°
解:A、∵三角形中已知两个内角为30°、60°,∴第三个内角为 180°﹣30°﹣60°=90°,
∴这个三角形是直角三角形,不是等腰三角形,故选项 A 不符合题意;
B、∵三角形中已知两个内角为 40°、70°,∴第三个内角为 180°﹣40°﹣70°=70°,
∴这个三角形由两个内角相等,∴这个三角形是等腰三角形,故选项 B 符合题意;
反证法
在证明时,先假设命题的结论不成立,然后 由此推导出与定义、基本事实、已有定理或已知 条件相矛盾的结果,从而证明命题的结论一定成 立.这种证明方法称为反证法.
用反证法证题的一般步骤:
1. 假设: 先假设命题的结论不成立; 2. 归谬: 从这个假设出发进行推理,得出与定义、基本事实、 已有定理或已知条件相矛盾的结果;

北师大版八年级数学(下) 第一章 三角形的证明 第2节 等边三角形的性质

北师大版八年级数学(下) 第一章  三角形的证明  第2节  等边三角形的性质

北师大版八年级数学(下)第一章三角形的证明第2课时等边三角形的性质例1:如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,则∠ADB的度数为()A.25°B.60°C.85°D.95°解:∠ADB=∠DBC+∠C=35°+60°=95°.故选:D.练习:等边三角形的两个内角平分线所成的锐角是()A.30°B.50°C.60°D.90°解:如图:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵BO、CO是两个内角的平分线,∴∠OBC=∠OCB=30°,在△OBC中,∠DOC=∠OBC+∠OCB=30°+30°=60°.故选:C.作业:1.如图,在等边三角形ABC中,D是AC边上的点,延长BC到点E,使CE=CD,则∠E的度数为()A.15°B.20°C.30°D.40°解:∵△ABC是等边三角形,∴∠ACB=60°,∵CD=CE,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE=2∠E=60°,∴∠E=30°,故选:C.例2:如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=.解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.练习:如图,BD为等边△ABC的边AC上的中线,E为BC延长线上一点,且DB=DE,若AB=6cm,则CE=cm.解:∵BD为等边△ABC的边AC上的中线,∴BD⊥AC,∵DB=DE,∴∠DBC=∠E=30°∵∠ACB=∠E+∠CDE=60°∴∠CDE=30°∴∠CDE=∠E,即CE=CD=AC=3cm.故填3.作业:2. 如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.解:∵△ABC是等边三角形,∴∠C=∠A=60°,∵CG=CD,∴∠GDC=30°,∵DF=DE,∴∠E=15°.故答案为:15.例3:三个等边三角形的摆放位置如图所示,若∠1+∠2=120°,则∠3的度数为()A.90°B.60°C.45°D.30°解:如图,∵∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=540°﹣180°,∴∠3=180°﹣(∠1+∠2)=60°,故选:B.练习:如图,△ABC是等边三角形,BC=BD,∠BAD=20°,则∠BCD的度数为()A.50°B.55°C.60°D.65°解:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∵BC=BD,∴AB=BD,∠BAD=∠ADB=20°,∴∠ABD=140°,∴∠CBD=80°,又∵BC=BD,∴∠BCD=50°=∠BDC,故选:A.作业:3. 如图,△ABC是等边三角形,BC⊥CD,且AC=CD,则∠BAD的度数为()A.50°B.45°C.40°D.35°解:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∵BC⊥CD,∴∠BCD=90°,∴∠ACD=60°+90°=150°,∵AC=CD,∴∠DAC==15°,∴∠BAD=60°﹣15°=45°.故选:B.例4:如图,在等边△ABC中,DA=DC,DM⊥BC,垂足为M,E是BC延长线上的一点,CE=CD.求证:MB=ME.证明:连接BD.∵△ABC是等边三角形,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴MB=ME.练习:如图,△ABC是等边三角形,△ACE是等腰三角形,∠AEC=120°,AE=CE,F 为BC中点,连接AF.(1)直接写出∠BAE的度数为;(2)判断AF与CE的位置关系,并说明理由.解:(1)∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∵EA=EC,∠AEC=120°,∴∠EAC=∠ECA=30°,∴∠BAE=∠BAC+∠CAE=90°.故答案为90°.(2)结论:AF∥EC.理由:∵AB=AC,BF=CF,∴AF⊥BC,∵∠ACB=60°,∠ACE=30°,∴∠BCE=90°,∴EC⊥BC,∴AF∥EC.作业:4.已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.证明:在等边△ABC中,AB=CA,∠BAC=∠ACB=60°,∴∠EAB=∠DCA=120°.在△EAB和△DCA中,,∴△EAB≌△DCA(SAS),∴AD=BE.例5:已知:如图,等边三角形ABC中,D、E分别是BC、AC上的点,且AE=CD.(1)求证:AD=BE;(2)求:∠BFD的度数.解:(1)证明:∵△ABC是等边三角形,∴∠BAC=∠C=60°,AB=CA,在△ABE和△CAD中,∴△ABE≌△CAD(SAS),∴AD=BE(全等三角形对应边相等);(2)解:∵△ABE≌△CAD(已证),∴∠ABE=∠CAD(全等三角形对应角相等),又∵∠BFD=∠BAD+∠ABE,∴∠BFD=∠BAD+∠CAD=∠BAC,又∠BAC=60°,∴∠BFD=60°.练习:已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.解:(1)∵△ABC是等边三角形,∴∠B=∠A=∠C=60°,∵∠B+∠1+∠DEB=180°,∠DEB+∠DEF+∠2=180°,∵∠DEF=60°,∴∠1+∠DEB=∠2+∠DEB,∴∠2=∠1=50°;(2)∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°,又∵∠B=60°,∠DEF =60°,∠1=∠3,∴∠FDE=∠DEB,∴DF∥BC.作业:5.已知△ABC为等腰三角形,AC=BC,△ACE为等边三角形.(1)如图①,若∠ABC=70°,则∠CAB的大小=(度),∠EAB的大小=(度);(2)如图②,△BDC为等边三角形,AE与BD相交于点F,求证:FA=FB.解:(1)∵AC=CB,∴∠ABC=∠CAB=70°,∵△ACE为等边三角形,∴∠CAE=60°,∴∠EAB=∠CAB﹣∠CAE=70°﹣60°=10°;故答案为:70,10.(2)证明:∵AC=BC,∴∠CAB=∠CBA,∵△ACE,△BDC都为等边三角形,∴∠CAE=∠CBD=60°,∴∠CAB﹣∠CAE=∠CBA﹣∠CBD,即∠FAB=∠FBA,∴FA=FB.备用:在同一平面内,将两块正三角形的纸板的两个顶点重合在一起.(1)如图1重叠部分∠AOD=30°,求∠COB的大小;(2)如图2重叠部分∠AOD=15°,求∠COB的大小;(3)如图3,若两图形除O外没有重叠,∠AOD=10°,求∠COB的大小;(4)求∠AOD和∠COB的数量关系.解:(1)∵△COD和△AOB为正三角形,∠AOD=30°,∴∠COB=∠COD+∠AOB﹣∠AOD=60°+60°﹣30°=90°;(2)∵△COD和△AOB为正三角形,∠AOD=15°,∴∠COB=∠COD+∠AOB﹣∠AOD =60°+60°﹣15°=105°;(3)∵△COD和△AOB为正三角形,∠AOD=10°,∴∠COB=∠COD+∠AOB+∠AOD=60°+60°+10°=130°;(4)当∠AOD是两个角的重叠的角,则∠COB=120°﹣∠AOD;当∠AOD是两个角的相离时的角,且∠AOD≤60°,则∠COB=120°+∠AOD;当∠AOD是两个角的相离时的角,且∠AOD>60°,则∠COB=360°﹣(120°+∠AOD)=240°﹣∠AOD.。

八年级下册数学北师大版知识点总结

八年级下册数学北师大版知识点总结

八年级下册数学北师大版知识点总结一、三角形的证明。

1. 等腰三角形。

- 性质:- 等腰三角形的两腰相等,两底角相等(等边对等角)。

- 等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。

- 判定:- 有两边相等的三角形是等腰三角形。

- 有两角相等的三角形是等腰三角形(等角对等边)。

2. 等边三角形。

- 性质:- 等边三角形的三条边都相等,三个角都相等,且每个角都等于60°。

- 判定:- 三条边都相等的三角形是等边三角形。

- 三个角都相等的三角形是等边三角形。

- 有一个角是60°的等腰三角形是等边三角形。

3. 直角三角形。

- 性质:- 直角三角形的两个锐角互余。

- 直角三角形斜边上的中线等于斜边的一半。

- 勾股定理:直角三角形两直角边的平方和等于斜边的平方(a^2+b^2=c^2,其中a、b为直角边,c为斜边)。

- 判定:- 有一个角是直角的三角形是直角三角形。

- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形(勾股定理的逆定理)。

4. 线段的垂直平分线。

- 性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

- 判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

- 三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

5. 角平分线。

- 性质:角平分线上的点到这个角的两边的距离相等。

- 判定:在一个角的内部,且到角的两边距离相等的点在这个角的平分线上。

- 三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。

二、不等式(组)1. 不等式的基本性质。

- 不等式两边加(或减)同一个数(或式子),不等号的方向不变。

- 不等式两边乘(或除以)同一个正数,不等号的方向不变。

- 不等式两边乘(或除以)同一个负数,不等号的方向改变。

2. 一元一次不等式。

- 定义:只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式。

新北师大版八年级数学下册知识点总结

新北师大版八年级数学下册知识点总结

北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。

二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。

(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。

1231性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(外心)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

2、角平分线。

性质:角平分线上的点到这个角的两边的距离相等。

三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。

(内心)判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。

第二章一元一次不等式和一元一次不等式组1.定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

2.基本性质:性质1:.不等式的两边都加(或减)同一个整式,不等号的方向不变.如果a>b,那么a+c>b+c, a-c>b-c.(注:移项要变号,但不等号不变)性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变. 如果a>b,并且c>0,那么ac>bc,cb c a >.性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变. 如果a>b,并且c<0,那么ac<bc,cb c a < 说明: 比较大小:作差法9第三章 图形的平移与旋转一、图形的平移1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。

北师大版八年级数学下册第一章三角形的证明回顾与思考(教案)

北师大版八年级数学下册第一章三角形的证明回顾与思考(教案)
2.在小组讨论环节,我发现部分学生参与度不高,可能是因为他们对讨论主题不感兴趣或缺乏自信。针对这一问题,我会尝试设计更多有趣且富有挑战性的讨论主题,激发学生的兴趣,鼓励他们积极参与。
3.教学过程中,我发现有些学生在解决实际问题时,难以将所学知识运用到具体情境中。为了提高学生的应用能力,我会在课堂上增加一些与生活密切相关的实例,让学生明白所学知识在实际生活中的重要性。
3.直角三角形的性质与判定
-直角三角形的内角和为180°
-直角三角形的斜边最长
-有一个角是直角的三角形是直角三角形
4.三角形全等的判定方法
- SSS(三边全等)
- SAS(两边和夹角全等)
- ASA(两角和边全等)
- AAS(两角和非夹边全等)
5.三角形相似的性质与判定
-对应角相等,对应边成比例的两个三角形相似
同学们,今天我们将要学习的是《三角形的证明回顾与思考》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要证明三角形全等或相似的情况?”(如拼图游戏、建筑设计等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形证明的奥秘。
- AA(两角对应相等)
- SAS(两边和夹角对应相等)
- SSS(三边对应成比例)
6.三角形在实际问题中的应用
本节课将结合教材内容,通过实例讲解、练习巩固,帮助学生回顾与思考三角形的相关知识,提高学生的几何证明能力。
二、核心素养目标
本章节的核心素养目标旨在培养学生以下能力:
1.掌握三角形的性质与判定方法,提高空间观念和几何直观能力;
五、教学反思
在本次教学过程中,我深感三角形证明这一章节的内容对于八年级学生来说具有一定的挑战性。从教学实践来看,以下几个方面值得我反思和改进:

新版北师大八年级下册第一章_三角形的证明_知识点填空

新版北师大八年级下册第一章_三角形的证明_知识点填空

八年级三角形全等证明知识梳理导学版知识点1 全等三角形的判定及性质判定定理简称判定定理的内容性质______________分别相等的两个三角形全等______ 边及其 _______ 分别相等的两个三角形全等________ 角及其 _______ 分别相等的两个三角形全等两____分别相等且其中_____________相等的两个三角形全等在直角三角形中,☆判定两个三角形全等时,必须有_____的参与,若有两边一角相等时,角必须是 ______ 角证题的思路:1.已知两边:找1) 2) 3)2.已知两角:找1) 2)3.已知一边一角1)若边为角的对边:找2)若边为角的邻边:找①②③注意:公共边、公共角、对顶角、最长的边(或最大的角)、最短的边(或最小的角)知识点2 等腰三角形的性质定理及推论定义有的三角形是等腰三角形。

性质定理①等腰三角形的相等。

(“等边对等角”)②等腰三角形的顶角平分线、、互相重合。

等腰三角形的判定定理内容几何语言条件与结论等腰三角形的_____相等。

简述为:________________在△ABC中,若_______=_______,则∠ ___ =∠ ___条件:____ 相等,即 ___ = ___结论:_____相等,即∠ __ = ∠ __推论等腰三角形顶角的_____线、底边上的 ____ 线及底边上的_____线互相____,简述为:________.在△ABC,AB=AC,AD⊥BC,则 _____ 是_____ 边上的_____线,且 ____平分∠______.1.条件:等腰三角形中,一条直线是顶点的平分线结论:该线也是 ______ 和_______线2.条件:等腰三角形中,一条直线是底边上的中线结论:该线也是 ______ 和_______线3.条件:等腰三角形中,一条直线是底边上的高线结论:该线也是 ______ 和_______线解读【注意】对“等角对等边”的理解仍然要注意,它的前提是“”拓展判定一个三角形是等腰三角形有两种方法(1)利用等腰三角形的定义;(2)利用等腰三角形的判定定理,即“等角对等边”相等线段1.等腰三角形两底角的平分线相等;2.等腰三角形两腰上的高相等3.两腰上的中线相等; 4.底边的中点到两腰的距离相等知识点3 等边三角形的性质定理定义的三角形是等边三角形。

新北师大版 八年级下册数学 第一章 三角形的证明 1.2.1 直角三角形

新北师大版 八年级下册数学 第一章 三角形的证明 1.2.1 直角三角形

巩固练习: 说出下列命题的逆命题,并判断每对 命题的真假: (1)四边形是多边形; (2)两直线平行,同旁内角互补; (3)如果ab=0,那么a=0,b=0.
提问:一个命题是真命题,它的逆命题一 定是真命题吗?
定理与逆定理
一个命题是真命题,它逆命题却不一定是 真命题.
如果一个定理的逆命题经过证明是真命 题,那么它是一个定理,这两个定理称为互逆 定理,其中一个定理称另一个定理的逆定理. 你还能举出一些例子吗?
想一想:互逆命题与互逆定理有何关系?
互逆定理:如果一个定理的逆命题经 过证明是真命题,那么它也是个定理,这 两个定理称为互逆定理,其中一个定理称 为另一个定理的逆定理.
判断正误: (1)互逆命题一定是互逆定理; (2)互逆定理一定是互逆命题. 我们已经学习了一些互逆定理,如勾 股定理及其逆定理、“两直线平行,内错 角相等与“内错角相等,两直线平行”等 . 请你再举出一些互逆定理的例子.
2 、 在 △ ABC 中 , 已 知 AB=13cm,BC=10cm,BC 边上的中线 AD=12cm.求证:AB=AC.
知识拓展
已知:△ABC中,∠ C=600,AB=14,AC=10, AD是BC边上的高,求BC的长 A 解后反思: 在直角三角形中,利用勾股定理 计算线段的长,是勾股定理的一 C 个重要应用,在有直角三角形时, 可直接应用,在没有直角三角形 时,常作垂线构造直角三角形, 为能应用勾股定理创造条件。
D
B
独立作业
3
3.如图,正四棱柱的底面边长为 5cm,侧棱长为8cm,一只蚂蚁欲从正 四棱柱的底面上的点A沿棱柱侧面 到点C1处吃食物,那么它需要爬行的 D C 最短路径是多少? C
1 1
习题1.4

新北师大版八年级数学下册知识点总结

新北师大版八年级数学下册知识点总结

新北师大版八年级数学下册知识点总结XXX版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形的判定和性质:判定方法:SSS、SAS、ASA、AAS、HL(直角三角形)对应边相等,对应角相等二、等腰三角形的性质和判定:有两边相等,底角相等等腰三角形的顶角平分线、底边中线和高线互相重合等边三角形的各角相等,每个角都等于60°判定方法:等角对等边三、直角三角形的性质和判定:两锐角互余直角边平方和等于斜边平方锐角等于30°的直角三角形,直角边等于斜边的一半斜边上的中线等于斜边的一半判定方法:三边平方和相等四、线段的垂直平分线和角平分线:垂直平分线上的点到两个端点的距离相等三角形三条边的垂直平分线相交于一点,这个点到三个顶点的距离相等(外心)角平分线上的点到两边距离相等三角形三条角平分线相交于一点,这个点到三条边的距离相等(内心)第二章一元一次不等式和一元一次不等式组本章主要介绍一元一次不等式和一元一次不等式组的概念、性质和解法。

一、一元一次不等式的概念和性质:形如ax+b0)的不等式称为一元一次不等式解不等式的基本方法是移项、化简、分段讨论不等式的解集可以用区间表示二、一元一次不等式的解法:通过移项将不等式化为ax)b的形式根据a的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况三、一元一次不等式组的概念和性质:形如ax+by)和dx+ey>f(或<)的不等式组称为一元一次不等式组解不等式组的基本方法是联立、消元、分段讨论不等式组的解集可以用平面区域表示四、一元一次不等式组的解法:通过联立将不等式组化为标准形式根据系数的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况总之,本章内容涵盖了三角形的证明和一元一次不等式及其组的解法,是初中数学中重要的基础知识。

定义:不等式是用符号“<”(或“≤”),“>”(或“≥”)连接的式子。

基本性质:不等式的两边都加(或减)同一个整式,不等号的方向不变;不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变。

北师大版八年级数学下册第一章 三角形的证明4 第2课时 三角形三条内角的平分线

北师大版八年级数学下册第一章 三角形的证明4 第2课时 三角形三条内角的平分线
你能证明以上 两个结论吗? 结论:过交点作三角形三边的垂线段相等.
1 三角形的内角平分线
证明结论
已知:如图,在△ABC 中,角平分线
BM 与角平分线 CN 相交于点 P,过点 P
分别作 AB,BC,AC 为 D,E,F.
的垂线,垂足分别
D N
求证:∠A 的平分线经过点 P,且
PD = PE = PF.
的两边距离相等的点在这个角的平分线上),
即∠A 的平分线经过点 P.
归纳总结
结论:三角形的三条角平分线相交于一点,并且 这一点到三条边的距离相等.
例1 如图,在△ABC 中,已知 AC = BC,∠C = 90°,
AD 是△ABC 的角平分线,DE⊥AB,垂足为 E.
(1) 如果 CD = 4 cm,求 AC 的长;
过点 O 作 OM⊥AC,若 OM=4,
B
(1) 点 O 到△ABC 三边的距离和
为 12 .
OP
A
DM C
温馨提示:不存在垂线段——构造应用
(2) 若 △ABC 的周长为 32,求 △ABC 的面积.
解:如图,过点 O 作 OE⊥AB 于点 E,ON⊥BC 于
点 N,连接 OC.
S ABC S AOC S BOC S AOB
三角形内角 平分线的性质
性质:三角形的三条角平分线交 于一点,并且这一点到三条边的 距离相等
应用:位置的选择问题
1. 如图,已知 △ABC,求作一点 P,使 P 到∠A 的两边
的距离相等,且 PA=PB.下列确定 P 点的方法正确的
是(B )
A. P 为∠A,∠B 两角平分线的交点
B. P 为∠A 的平分线与 AB 的垂直平分线的交点

(北师版)八年级数学下册 第一章 三角形的证明 辅导讲义

(北师版)八年级数学下册 第一章 三角形的证明 辅导讲义

第一阶梯三角形证明基础巩固训练一.角平分线的性质(共1小题)1.如图,已知∠A=90°,BD平分∠ABC,AD=1cm,BC=6cm,则△BDC的面积为()A.1cm2B.6cm2C.3cm2D.12cm2二.线段垂直平分线的性质(共5小题)2.△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9B.8C.7D.63.到平面上三点A、B、C距离相等的点有()A.只有一个B.有两个C.有三个或三个以上D.有一个或没有4.△ABC中,∠C=90°,AB的垂直平分线交AB于E,交BC于点D,若CD:BD=1:2,BC=6cm,则点D到点A的距离为()A.1.5cm B.3cm C.2cm D.4cm5.如图所示,AB=AD,∠ABC=∠ADC=90°,则①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正确的结论有()A.①②B.①②③C.①②③④D.②③6.如果一个三角形一边上的中线和这边上的高重合,那么这个三角形是三角形.三.等腰三角形的性质(共9小题)7.等腰三角形周长是32cm,一边长为10cm,则其他两边的长分别为()A.10cm,12cm B.11cm,11cm C.11cm,11cm或10cm,12cm D.不能确定8.等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A.16cm B.4cm C.20cm D.16cm或4cm9.一个等腰而非等边的三角形,它的所有的内角平分线、中线和高的条数为()A.9B.6C.7D.310.等腰三角形的周长为22cm,其中一边的长是8cm,则其余两边长分别为.11.顶角为60°的等腰三角形,两个底角的平分线相交所成的角是°.12.AB边上的中线CD将△ABC分成两个等腰三角形,则∠ACB=度.13.如果等腰三角形一腰上的高与腰的夹角为30°,则该三角形的顶角的度数为.14.如图,△ABC中,AB=AC,O是△ABC内一点,且∠OBC=∠OCB,求证:AO⊥BC.15.如图,在△ABC中,AB=AC,CD为AB边上的高,求证:∠BCD=∠A.四.等腰三角形的判定与性质(共1小题)16.△ABC中,AB=AC,∠ABC=36°,D,E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形有个.五.等边三角形的性质(共2小题)17.如图,等边△ABC中,E,D在AB,AC上,且EB=AD,BD与EC交于点F,则∠DFC=度,18.如图所示,△ABC、△ADE与△EFG都是等边三角形,D和G分别为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是.六.等边三角形的判定(共2小题)19.三角形中有两条中线分别平分它的两个内角,则这个三角形是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形20.已知a,b,c是△ABC的三边,且a2+b2+c2=ab+ac+bc,则△ABC是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形第二阶梯三角形证明能力提升训练一.直角三角形全等的判定(共1小题)1.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.角平分线的性质(共1小题)2.如图,已知∠A=90°,BD平分∠ABC,AD=1cm,BC=6cm,则△BDC的面积为()A.1cm2B.6cm2C.3cm2D.12cm2三.线段垂直平分线的性质(共3小题)3.已知△ABC中,AD⊥BC于点D,且BD=CD,若AB=3,则AC=.4.M、N、A、B是同一平面上的四个点,如果MA=MB,NA=NB,则点、在线段的垂直平分线上.5.△ABC中,AB比AC大2cm,BC的垂直平分线交AB于D,若△ACD的周长是14cm,则AB=,AC=.四.等腰三角形的性质(共6小题)6.等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A.16cm B.4cm C.20cm D.16cm或4cm7.一个等腰而非等边的三角形,它的所有的内角平分线、中线和高的条数为()A.9B.6C.7D.38.已知:等腰三角形的周长为50厘米,若底边长为x厘米,则x的取值范围是.9.如图:△ABC中,∠B=∠C,E是AC上一点,ED⊥BC,DF⊥AB,垂足分别为D、F,若∠AED=140°,则∠C=度,∠A=度,∠BDF=度.10.分别以等腰三角形的腰与底边向三角形外作正三角形,其周长为24和36,求等腰三角形的周长.11.在△ABC中,AB=AC,它的两条边分别为3cm,4cm,那么它的周长为多少.五.等腰三角形的判定与性质(共5小题)12.如图,在△ABC中,已知∠ABC和∠ACB的平分线相交于点F.过点F作DF∥BC,交AB于点D,交AC于点E.若BD=4,DE=9,则线段CE的长为()A.3B.4C.5D.613.如图,在△ABC中,AB=AC=10,点D为BC上一点,过点D分别作DF∥AC交AB于点F,DE∥AB交AC于点E.求四边形AFDE的周长.14.在△ABC中,AB≠AC,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)如图1,写出图中所有的等腰三角形.猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图2,△ABC中∠ABC的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB 于E,交AC于F.图中还有等腰三角形吗?如果有,分别指出它们.写出EF与BE、CF关系,并说明理由.15.如图,AD是△ABC的角平分线,过点D作直线DF∥BA,交△ABC的外角平分线AF于点F,DF与AC交于点E.求证:DE=EF.16.如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,请判断△ADE是不是等边三角形,并说明理由.六.等边三角形的性质(共3小题)17.如图,等边三角形ABC的边长为2,则它的高为.18.△ABC是等腰三角形,AB=AC,分别以两腰为边向外作等边△ADB和等边△ACE,若∠DAE=∠DBC,则∠BAC的度数为.19.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.七.等边三角形的判定(共1小题)20.三角形中有两条中线分别平分它的两个内角,则这个三角形是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形第三阶梯三角形的证明综合训练(一)一、填空题1.如图,修建抽水站时,沿着倾斜角为30°的斜坡铺设管道,若量得水管AB的长度为80米,那么点B 离水平面的高度BC的长为米.2.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是三角形.3.如图,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是或.4.命题“全等三角形的对应角相等”的逆命题是,这个逆命题是(填“真”或“假”).5.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=度.6.在△ABC中,已知AB=AC,AD是中线,∠B=70°,BC=15cm,则∠BAC=,∠DAC=,BD=cm.7.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC 于E,若BC=10 cm,则△ODE的周长cm.第7题图第8题图8.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是度.9.如图,△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若DC=7,则点D到AB的距离DE=.10.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.二、选择题11.等腰三角形底边上的高与底边的比是1:2,则它的顶角等于()A.60°B.90°C.120°D.150°12.下列两个三角形中,一定全等的是()A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形13.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点14.△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于点D,若BC=a,则AD等于()A.B.C.D.15.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°三、解答题16.如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°.求:(1)∠ABC的度数;(2)AD、CD的长.17.已知:如图,△ABC中,AB=AC,∠A=120度.(1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法).(2)猜想CM与BM之间有何数量关系,并证明你的猜想.四、证明题18.已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.19.已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.五、阅读下面的题目及分析过程,并按要求进行证明.20.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB =CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.第四阶梯三角形的证明综合训练(二)一、填空题:1.三角形三个角的度数之比为1:2:3,它的最大边长等于16cm,则最小边长是cm.2.已知等腰三角形的一个角是36°,则另两个角分别是.3.Rt△ABC中,锐角∠ABC和∠CAB的平分线交于点O,则∠BOA=.4.如图,在△ABC中,∠B=115°,AC边的垂直平分线DE与AB边交于点D,且∠ACD:∠BCD=5:3,则∠ACB的度数为度.第4题图第5题图5.如图,已知∠ABD=∠C=90°,AD=12,AC=BD,∠BAD=30°,则BC=.6.如图,将矩形纸片ABCD沿BD对折,使点C落在E处,BE与AD相交于点O,写出一组相等线段、相等角(不包括矩形的对边、对角).7.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为.8.命题“全等三角形的对应角相等”的逆命题是,这个逆命题是(填“真”或“假”).9.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是度.10.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.二、选择题:11.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B =∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个12.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点13.如图,在等边三角形ABC中,BD⊥BC,过A作AD⊥BD于D,已知△ABC周长为M,则AD=()A.B.C.D.14.在△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于D,AB=a,则DB等于()A.B.C.D.15.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm216.如图,在△ABC中,AB=AC,AB的垂直平分线交BC的延长线于E,交AC于F,∠A=50°,AB+BC =16cm,则△BCF的周长和∠EFC分别为()A.16cm,40°B.8cm,50°C.16cm,50°D.8cm,40°17.如图所示,已知△ABC中,AB=AC,∠BAC=90°,直角△EPF的顶点P是BC中点,两边PE、PF 分别交AB、AC于点E,F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的有()A.①④B.①②C.①②③D.①②③④18.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°三、解证题:19.如图,在△ABC中,AB=AC,BC=12,∠BAC=120°,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N.(1)求△AEN的周长.(2)求∠EAN的度数.(3)判断△AEN的形状.20.已知:如图,D是等腰△ABC底边BC上一点,它到两腰AB、AC的距离分别为DE、DF,当D点在什么位置时,DE=DF?并加以证明.21.如图,在△ABD和△ACE中,有下列四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.已知:.求证:.证明:22.如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.(1)求证:∠PCD=∠PDC;(2)求证:OP是线段CD的垂直平分线.23.已知:如图,△ABC中,AB=AC,∠A=120度.(1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法).(2)猜想CM与BM之间有何数量关系,并证明你的猜想.24.如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?并说明理由.参考答案第一阶梯三角形证明基础巩固训练一.角平分线的性质(共1小题)1.C;二.线段垂直平分线的性质(共5小题)2.A;3.D;4.D;5.B;6.等腰;三.等腰三角形的性质(共9小题)7.C;8.B;9.C;10.7cm、7cm或8cm、6cm;11.60或120;12.90;13.120°或60°;四.等腰三角形的判定与性质(共1小题)16.6;五.等边三角形的性质(共2小题)17.60;18.15;六.等边三角形的判定(共2小题)19.C;20.C;第二阶梯三角形证明能力提升训练一.直角三角形全等的判定(共1小题)1.B;二.角平分线的性质(共1小题)2.C;三.线段垂直平分线的性质(共3小题)3.3;4.M;N;AB;5.8cm;6cm;四.等腰三角形的性质(共6小题)6.B;7.C;8.0<x<25;9.50;80;40;五.等腰三角形的判定与性质(共5小题)12.C;六.等边三角形的性质(共3小题)17.;18.20°;七.等边三角形的判定(共1小题)20.C;第三阶梯三角形的证明综合训练(一)一、填空题1.40;2.等腰;3.∠ABC=∠DCB;AC=DB;4.对应角相等的三角形是全等三角形;假;5.220;6.40°;20°;7.5;7.10;8.10;9.7;10.2;二、选择题11.B;12.C;13.B;14.C;15.B;第四阶梯三角形的证明综合训练(二)一、填空题:1.8;2.72°,72°或36°,108°;3.135°;4.40;5.6;6.DE=DC,∠OBD=∠ODB等.;7.;8.对应角相等的三角形是全等三角形;假;9.10;10.2;二、选择题:11.D;12.B;13.B;14.A;15.A;16.A;17.C;18.B;三、解证题:21.在△ABD和△ACE中,AB=AC,AD=AE,BD=CE;∠1=∠2;。

新北师大版八年级下册数学第一章三角形的证明 章节全部知识框架

新北师大版八年级下册数学第一章三角形的证明 章节全部知识框架

判定
③勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。 性质:垂直平分线上的任意点到线段两端点的距离相等。 (等腰三角形中三线合一的线段就是底边上的垂直平分线)
垂直 平分 线
判定:到线段两端点距离相等的点在线段的垂直平分线上。 (可用于证明点在直线上或三线共点的问题) 三角形三边垂直平分线的性质:三角形三边垂直平分线交于一点,且这点到三顶点的距离相等(外心) ①作线段垂直平分线:以端点为圆心,以大于线段一半长为半径画弧,并连结四弧的交点的直线 尺规作图
判定
③“三线合一”的逆定理:三角形中只要高线.中线.角平分线任意有二线重合,这个三角形是等腰三角形. A、如果三角形中任一角的角平分线和它所对边的高重合 B、如果三角形中任一边的中线和这条边上的高重合 C、如果三角形中任一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。 (不能直接使用结论证
直角三角形 等边三角形 等腰三角形
性质
③两角相等(相等的两个角称为底角)→等角对等边。
前提条件:在同一个三角形中,等角对等边,等边 对等角。可用于证明线段或角相等(等腰三角形)
④“三线合一” :等腰三角形顶角平分线,底边上的中线,底边上的高线互相重合。 ⑤等腰三角形两底角平分线相等,两腰上的高线相等,两腰上的中线相等。 (对称性全等) ①根据定义:有两条边相等的三角形是等腰三角形。 ②根据推论:有两内角相等的三角形是等腰三角形。
全等三角形
一般三角形全等的判定定理: SSS SAS ASA AAS
判定
两直角三角形全等的判定定理: HL 定理 斜边和一条直角边对应相等的两个直角三角形全等。
①轴对称图形,顶角平分线(底边上的中线,底边上的高线)是对称轴。 ②两边相等(相等的边称为腰)→等边对等角。

(知识+练习)新北师大版八年级下数学第一章三角形的证明3。15

(知识+练习)新北师大版八年级下数学第一章三角形的证明3。15

1八年级下第一章三角形的证明3。

15 姓名 【基础知识】1、全等三角形(1)定义: 能够完全 的三角形是全等三角形。

(2)性质:全等三角形的 、 相等。

(3)判定:“SAS ”、 、 、 。

三边:边边边(SSS )两边: 边角边(SAS )一边 边角边(ASA )角角边(AAS )※ ※注:SSA,AAA 不能作为判定三角形全等的方法,判定两个三角形全等时,※ 必须有边的参与,若有两边一角相等时,角必须是两边的夹角※※证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 注意:公共边、公共角、对顶角、最长的边(或最大的角)、最短的边(或最小的角)、Rt △中,同角的余角相等。

2、等腰三角形(1)定义:有两条 的三角形是等腰三角形。

(2)性质:①等腰三角形的 相等。

(“等边对等角”)②等腰三角形的顶角平分线、 、 互相重合。

(3)判定:①定义:有两条 的三角形是等腰三角形。

②“ ”3、等边三角形(1) 定义: 的三角形是等边三角形。

(2)性质:①三角都等于②具有等腰三角形的一切性质。

(3)判定:①定义: 的三角形是等边三角形。

②三个角都相等的三角形是等边三角形③有一个角 是等边三角形。

4、直角三角形(1)定理:在直角三角形中,如果一个锐角是30度,那么它所对的直角边等于斜边的一半。

(2)勾股定理及其逆定理 直角三角形两条直角边的平方和等于斜边的平方。

如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(3)“斜边、直角边”或“HL ” 直角三角形全等的判定定理:斜边和一条直角边分别相等的两个直角三角形全等。

新北师大版 八年级下册数学 第一章 三角形的证明 1.3.2线段的垂直平分线

新北师大版 八年级下册数学 第一章 三角形的证明 1.3.2线段的垂直平分线

议一议
(2)已知等腰三角形的底边,你能用尺规作出等 腰三角形吗?如果能,能作几个?所作出的三角形都 全等吗? 这样的等腰三角形也有无数多个 .根据线段垂直平分线上的点到线段 两个端点的距离相等,只要作底边的 垂直平分线,取它上面除底边的中点 外的任意一点,和底边的两个端点相 连接,都可以得到一个等腰三角形. 如图所示,这些三角形不都全等 .
剪一个三角形纸片,通过折叠找出每 条边的垂直平分线,观察这三条垂直平分 线,你是否发现同样的结论?与同伴交流.
M A E O Q
P
B
C N
F
用心想一想,马到功成
证明结论:三角形三边的垂直平分线交于一点. 已知:在△ABC中,设AB、BC的垂直平分线交于点O. 求证:O点在AC的垂直平分线上. 证明:连接AO,BO,CO. ∵点P在线段AB的垂直平分线上, A
议一议
(3)已知等腰三角形的底边及底边上的高,你能 用尺规作出等腰三角形吗?能作几个?
这样的等腰三角形应该只 有两个,并且它们是全等的, 分别位于已知底边的两侧. 你能尝试着用尺规作出这 个三角形吗?
已知底边及底边上的高,求作等腰三角形.
已知:线段a、h 求作:△ABC,使AB=AC,BC=a,高 AD=h 作法:1.作BC=a; 2.作线段BC的垂直平分线MN交BC 于D点; 3.以D为圆心,h长为半径作弧交 MN于A点; 4.连接AB、AC ∴△ABC就是所求作的三角形 B
2.作线段BC的垂直平分线L,交BC于点D.
3.在L上作线段DA,使DA=DB.
4.连接AB,AC.
∴△ABC为所求的等腰直角三角形.
习题1.8 知识技能1、2
问题解决3、4
∴OA=OB(线段垂直平分线上的点到线段两 个端点的距离相等).

北师大版八年级数学下册第一章 三角形的证明4 第1课时 角平分线的性质

北师大版八年级数学下册第一章 三角形的证明4 第1课时 角平分线的性质

应用格式:
C
∵ PD⊥OA,PE⊥OB,PD = PE,
P
∴ 点 P 在∠AOB 的平分线上. O
E
B
典例精析
例2 如图,在△ABC中,∠BAC= 60°,点 D 在 BC 上
,AD = 10,DE⊥AB,DF⊥AC,垂足分别为 E,F,且
DE = DF,求 DE 的长.
A
E F
B
D
C
解:∵ DE⊥AB,DF⊥AC,垂足分别为E,F
改变点 C 的位置,线段 CD 和 CE 还相等吗?
对此你能得出什么结论?动手证一证.
结论:角的平分线上的点到角
的两边的距离相等.
O
A D
C
CB E
结论证明
已知:如图,OC 是∠AOB 的平分线,点 P 在 OC 上,
PD⊥OA,PE⊥OB,垂足分别为 D,E.
求证:PD = PE. 证明:∵ PD⊥OA,PE⊥OB,
(1) 角的平分线;
(2) 点在该平分线上;
(3) 垂直距离.
O
定理的作用:证明线段相等.
应用格式:
DA PC
EB
∵ OP 是∠AOB 的平分线,推理的理由有三个,必须写
PD⊥OA,PE⊥OB, ∴ PD = PE
完全,不能少了任何一个.
(角平分线上的点到这个角的两边的距离相等).
典例精析
例1 如图,AM 是∠BAC 的平分线,点 P 在 AM 上,
PD⊥AB,PE⊥AC,垂足分别是 D、E,PD = 4 cm,
则 PE = ___4___cm.
B D
M P
A
EC
温馨提示:存在两条垂线段——直接应用
2 角平分线的判定

北师大版数学八年级下册知识点汇总

北师大版数学八年级下册知识点汇总

北师大版数学八年级下册知识点汇总第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。

二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。

(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。

2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。

性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的证明【知识点一:全等三角形的判定与性质】 1.判定和性质一般三角形直角三角形判定边角边(SAS )、角边角(ASA )角角边(AAS )、边边边(SSS ) 具备一般三角形的判定方法斜边和一条直角边对应相等(HL )性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 【典型例题】1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是( ) A .SSS B .ASAC .AASD .角平分线上的点到角两边距离相等 2.下列说法中,正确的是( )A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等 3.如图,△ABC ≌ΔADE ,若∠B =80°,∠C =30°,∠DAC =35°, 则∠EAC 的度数为( ) A .40°B .35°C .30°D .25°4.已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM .5.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON(如图5-7),再分别过点M、N 作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.图5-7【巩固练习】1.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等2.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙4.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?图4-95.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10 (2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11【知识点二:等腰三角形的判定与性质】等腰三角形的判定:有两个角相等的三角形是等腰三角形(等角对等边)等腰三角形的性质:①等腰三角形的两底角相等(等边对等角);②等腰三角形“三线合一”的性质:顶角平分线、底边上的中线、底边上的高互相重合;③等腰三角形两底角的平分线相等,两腰上的高、中线也相等.【典型例题】1.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.182.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°3.已知△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是()A.0<x<3 B.x>3 C.3<x<6 D.x>64.如图,∠MON=43°,点A在射线OM上,动点P在射线ON上滑动,要使△AOP为等腰三角形,那么满足条件的点P共有()A.1个B.2个C.3个D.4个5.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,DE过O且平行于BC,已知△ADE的周长为10cm,BC的长为5cm,求△ABC的周长.6、如下图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠ABC的平分线于点D,求证:MD=MA.【巩固练习】1.如图,已知直线AB∥CD,∠DCF=110°且AE=AF,则∠A等于()A.30°B.40°C.50°D.70°2.下列说法错误的是()A.顶角和腰对应相等的两个等腰三角形全等B.顶角和底边对应相等的两个等腰三角形全等C.斜边对应相等的两个等腰直角三角形全等D.两个等边三角形全等3.如图,是一个5×5的正方形网格,网格中的每个小正方形的边长均为1.点A和点B 在小正方形的顶点上.点C也在小正方形的顶点上.若△ABC为等腰三角形,满足条件的C点的个数为()A.6 B.7 C.8 D.94.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6 B.7 C.8 D.95.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,过D 作DG∥AC交BC于G.求证:(1)△GDF≌△CEF;(2)△ABC是等腰三角形.【知识点三:等边三角形的判定与性质】判定:有一个角等于60°的等腰三角形是等边三角形;三条边都相等的三角形是等边三角形;三个角都是60°的三角形是等边三角形;有两个叫是60°的三角形是等边三角形.性质:等边三角形的三边相等,三个角都是60°.【典型例题】1.下列说法中不正确的是()A.有一腰长相等的两个等腰三角形全等B.有一边对应相等的两个等边三角形全等C.斜边相等、一条直角边也相等的两个直角三角形全等D.斜边相等的两个等腰直角三角形全等2.如图,在等边△ABC中,∠BAD=20°,AE=AD,则∠CDE的度数是()A.10°B.12.5°C.15°D.20°3、如右图,已知△ABC和△BDE都是等边三角形,求证:AE=CD.【变式练习】1.下列命题:①两个全等三角形拼在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线所在直线;③等边三角形一边上的高所在直线就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形.其中错误的有()A.1个B.2个C.3个D.4个2.如图,AC=CD=DA=BC=DE.则∠BAE是∠BAC的()A.4倍B.3倍C.2倍D.1倍3.如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为.4.如图,等边△ABC中,点D、E分别为BC、CA上的两点,且BD=CE,连接AD、BE交于F点,则∠FAE+∠AEF的度数是()A.60°B.110°C.120°D.135°5.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.646.如图①,M、N点分别在等边三角形的BC、CA边上,且BM=CN,AM、BN交于点Q.(1)求证:∠BQM=60°;(2)如图②,如果点M、N分别移动到BC、CA的延长线上,其它条件不变,(1)中的结论是否仍然成立? 若成立,给予证明;若不成立,说明理由.7.如图,C为线段BD上一点(不与点B,D重合),在BD同侧分别作正三角形ABC和正三角形CDE,AD与BE交于一点F,AD与CE交于点H,BE与AC交于点G.(1)求证:BE=AD;(2)求∠AFG的度数;(3)求证:CG=CH.【知识点四:反证法】反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.【基础练习】1、否定“自然数a、b、c中恰有一个偶数”时的正确反正假设为()A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数2、用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反证假设正确的是()A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°3、证明:在一个三角形中至少有两个角是锐角.【知识点五:直角三角形】1、直角三角形的有关知识.●勾股定理:直角三角形两条直角边的平方和等于斜边的平方;●勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;●在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.2、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.【典型例题】1、说出下列命题的逆命题,并判断每对命题的真假:(1)四边形是多边形;(2)两直线平行,同旁内角互补;(3)如果ab =0,那么a =0,b =0; (4)在一个三角形中有两个角相等,那么这两个角所对的边相等 2.使两个直角三角形全等的条件是( ) A .一个锐角对应相等 B .两个锐角对应相等 C .一条边对应相等D .两条边对应相等3.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A .7B .6C .5D .44.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1B .43C .32D .25.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是∠BAC 的平分线,若CD =2,那么BD 等于( ) A .6B .4C .3D .26.如图,在4×4正方形网格中,以格点为顶点的△ABC 的面积等于3,则点A 到边BC 的距离为( ) A .3 B .22C .4D .37.如图,△ACB 和△ECD 都是等腰直角三角形,A ,C ,D 三点在同一直线上,连接BD ,AE ,并延长AE 交BD 于F .(1)求证:△ACE ≌△BCD ;(2)直线AE 与BD 互相垂直吗? 请证明你的结论.8.如图,在每个小正方形的边长均为1个单位长度的方格纸中有一个△ABC,△ABC的三个顶点均与小正方形的顶点重合.(1)在图中画△BCD,使△BCD的面积=△ABC的面积(点D在小正方形的顶点上).(2)请直接写出以A、B、C、D为顶点的四边形的周长.9.如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.【变式练习】1.利用基本尺规作图,下列条件中,不能作出唯一直角三角形的是()A.已知斜边和一锐角B.已知一直角边和一锐角C.已知斜边和一直角边D.已知两个锐角2.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365B.1225C.94D.3343.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E 的面积是.4.已知Rt△ABC中,∠C=90°,且BC=12AB,则∠A等于()A.30°B.45°C.60°D.不能确定5.已知:如图,在△ABC中,∠A=30°,∠ACB=90°,M、D分别为AB、MB的中点.求证:CD⊥AB.6.如图,在5×5的方格纸中,每一个小正方形的边长都为1,∠BCD是不是直角? 请说明理由.7.正方形网格中的每个小正方形边长都是1.每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中,画△ABC,使△ABC的三边长分别为3、22、5;(2)在图2中,画△DEF,使△DEF为钝角三角形且面积为2.【提高练习】1.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.62.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4 B.6 C.16 D.55n 2 3 4 5 …3.张老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a ,b ,c 与n 之间的关系,并用含自然数n (n >1)的代数式表示:a = ,b = ,c = ;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形并证明你的猜想.4.如图,AC =BC =10cm ,∠B =15°,AD ⊥BC 于点D ,则AD 的长为( )A .3cmB .4cmC .5cmD .6cm5.如图,在△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线交AB 于E ,交BC 于D ,BD =8,则AC = .6.图1、图2分别是10×8的网格,网格中每个小正方形的边长均为1,A 、B 两点在小正方形的顶点上,请在图1、图2中各取一点C (点C 必须在小正方形的顶点上),使以A 、B 、C 为顶点的三角形分别满足以下要求:(1)在图1中画一个△ABC ,使△ABC 为面积为5的直角三角形; (2)在图2中画一个△ABC ,使△ABC 为钝角等腰三角形.7.已知,如图,△ABC 为等边三角形,AE =CD ,AD 、BE 相交于点P . (1)求证:△AEB ≌△CDA ; (2)求∠BPQ 的度数;a 22-1 32-1 42-1 52-1 … b46810…c 22+1 32+1 42+1 52+1 …(3)若BQ ⊥AD 于Q ,PQ =6,PE =2,求BE 的长.【知识点六:线段的垂直平分线】● 线段垂直平分线上的点到这一条线段两个端点距离相等。

相关文档
最新文档