2018_2019学年七年级数学下册第二章二元一次方程组2.5三元一次方程组及其解法练习
人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题(附答案与全解全析)
人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题知识网络重难突破知识点一列二元一次方程组解应用题列二元一次方程组解应用题的一般步骤:1.审:审题,明确各数量之间的关系。
2.设:设未知数3.找:找题中的等量关系4.列:根据等量关系列出两个方程,组成方程组5.解:解方程组,求出未知数的值6.答:检验方程组的解是否符合题意,写出答案。
题型一二元一次方程组的应用- 方案问题典例1 (2020·监利县期中)1400元奖金要分给22名获奖员工,其中一等奖每人200元,二等奖每人50元。
试问经理,该怎样分发这1400元奖金?变式1-1(2018·大石桥市期末)已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.变式1-2(2019·贵港市期末)某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人,原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算.题型二二元一次方程组的应用–行程问题典例2(2018·广州市期末)从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少.变式2-1(2020·辉县市期中)一列快车长230米,一列慢车长220米,若两车同向而行,快车从追上慢车时开始到离开慢车,需90秒钟;若两车相向而行,快车从与慢车相遇时到离开慢车,只需18秒钟,问快车和慢车的速度各是多少?变式2-2(2019·许昌市期末)为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.题型三二元一次方程组的应用–工程问题典例3(2020·甘南县期中)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲,乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)变式3-1(2020·成都市期末)某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?变式3-2(2019·成都市期末)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此旄工进度,能够比原来少用多少天完成任务?题型四二元一次方程组的应用–数字问题典例4(2019·靖远县期末)一个两位数,个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18,则原两位数是多少?变式4-1(2020·海淀区期末)小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341。
2.5 三元一次方程组及其解法(解析版)
2020-2021学年浙教版七年级下册第2章《二元一次方程组》同步练习【2.5 三元一次方程组及其解法】一、单选题:1.下列方程组中,是三元一次方程组的是( )A. {x +y =0y +z =1z +w =5B. {x +y =0y +2x =1C. {3x +4z =72x +3y =9−z 5x −9y +7z =8D. {x 2−2y =0y +z =3x +y +z =1 【答案】 C【考点】三元一次方程组解法及应用【解析】【解答】解: A.4个未知数,不符合题意;B.2个未知数,不符合题意;C.有三个未知数,每个方程的次数是1,是三元一次方程组,符合题意;D.方程的次数为2,不符合题意;故答案为:C .【分析】利用三元一次方程组的定义判断即可.2.解方程组 {3x −y +2z =32x +y −4z =117x +y −5z =1,若要使计算简便,消元的方法应选取( ) A. 先消去x B. 先消去y C. 先消去z D. 以上说法都不对【答案】 B【考点】三元一次方程组解法及应用【解析】【解答】 y 的系数为1或1,故先消去 y .故B 符合题意.故答案为:B.【分析】经观察发现,3个方程中先消去y ,即可得到一个关于x 、z 的二元一次方程组,再用加减消元法和代入法解方程即可.三元一次方程组的解法,先把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”,把复杂问题转化为简单问题的思想方法.3.已知方程组 {2x −y +z =3①3x +4y −z =8②x +y −2z =−3③,若消去z , 得二元一次方程组不正确的为( )A. {5x +3y =115x −y =3B. {5x +3y =115x +7y =19C. {5x −y =35x +7y =19D. {5x +y =35x +7y =19【答案】 D【考点】三元一次方程组解法及应用【解析】【解答】解:在方程组 {2x −y +z =3①3x +4y −z =8②x +y −2z =−3③中,①+②得 5x +3y =11④ ,①×2+③得 5x −y =3⑤ , ②×2-③得 5x +7y =19⑥ ,所以由④与⑤可以组成A ,由④与⑥可以组成B ,由⑤与⑥可以组成C ,故D 不符合题意.故答案为:D.【分析】利用加减消元法消去z ,把三元一次方程组转化成二元一次方程组.4.如图所示,两个天平都平衡,则三个苹果的重量等于多少个香蕉的重量?答( )个.A. 2B. 3C. 4D. 5【答案】 D【考点】三元一次方程组解法及应用【解析】【解答】解:设一个苹果的重量为x ,一只香蕉的重量为y ,一个三角形的重量为z ,∴2x=5z ,2y=3z ,∴ 2x 5=z =2y 3 ,∴3x=5y ,故答案为:D.【分析】设一个苹果的重量为x ,一只香蕉的重量为y ,一个三角形的重量为z ,利用两个天平建立关于x ,y ,z 的方程组,分别用含x,y 的式子表示出z ,从而可得到x 与y 之间的数量关系.5.三角形的周长为18cm ,第一边与第二边的长度和等于第三边长度的2倍,而它们长度的差等于第三条边长的 13 ,这个三角形的各边长为( ) A. 7、5、8 B. 7、5、6 C. 7、1、9 D. 7、8、4【答案】 B【考点】三元一次方程组解法及应用【解析】【解答】解:设三角形的三边长分别是a 、b 、c 。
七年级下册数学二元一次方程组习题及答案
七年级下册数学二元一次方程组习题及答案8.1 二元一次方程组一、填空题1.当 $x=0,1,2,3$ 时,$y=-3,1,5,9$。
2.在 $x+3y=3$ 中,$y=\dfrac{3-x}{3}$,$x=3-3y$。
3.当 $k=2$ 时,方程为一元一次方程;当 $k=-1$ 时,方程为二元一次方程。
4.当 $x=0$ 时,$y=8$;当 $y=0$ 时,$x=7$。
5.方程 $2x+y=5$ 的正整数解是 $(2,1)$。
6.若 $(4x-3)^2+|2y+1|=0$,则 $x=-\dfrac{5}{4}$。
7.方程组 $\begin{cases}x+y=a\\x=2\end{cases}$ 的一个解为 $(2,a-2)$,那么这个方程组的另一个解是 $(a-2,2)$。
8.若 $\begin{cases}ax-2y=1\\\dfrac{1}{x}-by=2\end{cases}$ 的解互为倒数,则 $a-2b=0$。
二、选择题1.二元一次方程的有 1 个。
答案:A。
2.方程 $2x+y=9$ 在正整数范围内的解有 3 个。
答案:C。
3.与已知二元一次方程 $5x-y=2$ 组成的方程组有无数多个解的方程是 $4x-y=7$。
答案:B。
4.若是 $5x^2y^m$ 与 $4x^{n+m+1}y^{2n-2}$ 同类项,则$m-2n$ 的值为 $-1$。
答案:B。
5.在方程 $(k^2-4)x^2+(2-3k)x+(k+1)y+3k=0$ 中,若此方程为二元一次方程,则 $k$ 值为 $2$。
答案:A。
6.若 $\begin{cases}x=2\\y=-1\end{cases}$ 是二元一次方程组的解,则这个方程组是 $\begin{cases}x-3y=5\\y=x-3\end{cases}$。
答案:B。
7.在方程 $2(x+y)-3(y-x)=3$ 中,用含 $x$ 的代数式表示$y$,则 $y=-\dfrac{5}{2}x+\dfrac{3}{2}$。
人教版七年级数学下册课件《三元一次方程组的解法》
字与十位上的数字之和比个位上的数字大1.将百位与个位上的数 字对调后得到的新三位数比原三位数大495,求原三位数.
解:设原三位数百位、十位、个位上的数字分别为x、y、z.
由题意,得
y
3 4
z,
x y z 1,
100z 10 y x 100x 10 y z 495.
x 3,
解得: y 6,
35单位的铁、70单位的钙和35单位的维生素.现有一批营养师
根据上面的标准给幼儿园小朋友们配餐,其中包含A、B、C三 种食物,下表给出的是每份(50g)食物A、B、C分别所含的铁、
钙和维生素的量(单位)
食物 铁
A
5
B
5
C
10
钙 维生素
20
5
10
15
10
5
探究新知 (1)如果设食谱中A、B、C三种食物各为x、y、z份,请列出 方程组,使得A、B、C三种食物中所含的营养量刚好满足幼儿 营养标准中的要求. (2)解该三元一次方程组,求出满足要求的A、B、C的份数.
三元一次 消元 二元一次 消元 一元一次
方程组
方程组
方程
巩固练习
解方程组
x y z 23, ①
x y 1,
②
2x y z 20. ③
类似二元一次方程组 的“消元”,把“三 元”化成“二元”.
解:由方程②得 x=y+1. ④
把④分别代入①③得 2y+z=22, ⑤
3y-z=18. ⑥
x y z 7
C.
xyz
1
x 3y 4
B. 4
x
-
y
z2ຫໍສະໝຸດ x - 2y 3z 9y
2019年春七年级数学下册第2章二元一次方程2.5三元一次方程组及其解法练习浙教版
2.5 三元一次方程组及其解法(选学)知识点 解三元一次方程组基本思路:用代入法或加减法消去一个未知数,化成二元一次方程组,再解这个二元一次方程组.[点拨] 一般步骤:三元(方程组)――→消元二元(方程组)――→消元一元(方程). 解方程组:⎩⎪⎨⎪⎧x -2y =9,x +y -z =7,2x -3y +z =12.一 方程组中每个方程都是三元一次方程的三元一次方程组的解法教材例1变式题解方程组: ⎩⎪⎨⎪⎧2x +4y -3z =9,3x -2y -4z =8,5x -6y -5z =7.[归纳总结] 当三元一次方程组中的每一个方程都是三元一次方程(即每个方程含三个未知数)时,有两种解法.解法一(代入法):首先选择未知数的系数的绝对值较小的方程,在这个方程中,用其他两个未知数表示这个系数绝对值较小的未知数,然后分别代入另外两个方程,得到一个二元一次方程组,并解之;解法二(加减法):当方程组中相同未知数的系数的绝对值之间存在相等或成整数倍数关系或最小公倍数较小时,就可消去这个未知数,转化为二元一次方程组.二 用特殊的方法解三元一次方程组教材补充题解方程组:(1)⎩⎪⎨⎪⎧x +y =7,y +z =8,z +x =9;(2)⎩⎪⎨⎪⎧x∶y=3∶2,y ∶z =5∶4,x +y +z =66.[反思] 本节学习的数学知识是三元一次方程组的概念及其解法,数学思想是消元思想和转化思想.若x 3=y 4=z 5≠0,则 x +2y +3z 2x=________.一、选择题1.下列方程组中,是三元一次方程组的是( ) A .⎩⎪⎨⎪⎧a =1,b =2,b -c =3 B .⎩⎪⎨⎪⎧x +y =2,y +z =1,z +c =3 C .⎩⎪⎨⎪⎧4x -3y =7,5x -2y =14,2x -y =4 D .⎩⎪⎨⎪⎧xy +z =3,x +yz =5,xz +y =7 2.解为⎩⎪⎨⎪⎧x =1,y =1,z =2的方程组是( )A .⎩⎪⎨⎪⎧x +y +z =4,2x +y -z =1,3x +2y -4z =-3B .⎩⎪⎨⎪⎧x -y -z =0,z +y -x =1,2x +y -2z =5 C .⎩⎪⎨⎪⎧x +y =4,y +z =5,x +z =6 D .⎩⎪⎨⎪⎧2x +3y -z =5,x +y +z =4,x -y +2z =2 3.三元一次方程组⎩⎪⎨⎪⎧x +y =1,y +z =5,z +x =6的解是( )A .⎩⎪⎨⎪⎧x =1,y =0,z =5B .⎩⎪⎨⎪⎧x =1,y =2,z =4 C .⎩⎪⎨⎪⎧x =1,y =0,z =4 D .⎩⎪⎨⎪⎧x =4,y =1,z =04.解三元一次方程组:⎩⎪⎨⎪⎧a +b -c =1,①a +2b -c =3,②2a -3b +2c =5.③具体过程如下:(1)②-①,得b =2,(2)①×2+③,得4a -2b =7.(3)所以⎩⎪⎨⎪⎧b =2,4a -2b =7.(4)把b =2代入4a -2b =7,得4a -2×2=7(以下求解过程略).其中错误的一步是( )A .(1)B .(2)C .(3)D .(4)5.若x ,y 同时满足下列三个等式:①5x+2y =a ,②3x -2y =7a ,③4x +y =a +1,则a 的值为( )A .-2B .-1C .1D .2 二、填空题6.已知三元一次方程2x -3y +4z =8,用含x ,y 的代数式表示z 是______________.7.若⎩⎪⎨⎪⎧x =-1,y =2,z =1是关于x ,y ,z 的方程3x +2y +mz =0的解,则m =________.8.已知⎩⎪⎨⎪⎧x +y =5,y +z =-2,z +x =3,则x +y +z =________.9.解三元一次方程组⎩⎪⎨⎪⎧x +2y -z =3,2x +y +z =5,3x +4y +z =10时,先消去z ,得二元一次方程组__________,再消去y ,得一元一次方程________,解得 ________,从而得y =________,z =________.三、解答题10.解下列方程组:(1)⎩⎪⎨⎪⎧2x +y -3z =3,3x -y +2z =-1,x -y -z =5;(2)x +3y =y -2z =x +z =5;(3)⎩⎪⎨⎪⎧2x +3y +z =6,x -y +2z =-1,x +2y -z =5.11.若|x -2|+|3x -6y|+(3y +z)2=0,求x +y +z 的值.12.某单位职工在植树节当天去植树,甲、乙、丙三个小组共植树50棵,乙组植树的棵数是甲、丙两组和的14,甲组植树的棵数恰好是乙组和丙组的和,问每组各植树多少棵?13.为确保信息安全,信息需加密传输,发送方由明文―→密文(加密),接收方由密文―→明文(解密).已知加密规则为明文x ,y ,z 对应密文2x +3y ,3x +4y ,3z.例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,请你求解密得到的明文.14.若规定⎪⎪⎪⎪⎪⎪ac bd =ad -bc ,如⎪⎪⎪⎪⎪⎪2 -13 0=2×0-3×(-1)=3.解方程组:⎪⎪⎪⎪⎪⎪3y 2x =1,⎪⎪⎪⎪⎪⎪x z -3 5=8, ⎪⎪⎪⎪⎪⎪3 z 6y =-3.[技巧性题目] 已知方程组⎩⎪⎨⎪⎧x +y =3a ,y +z =5a ,z +x =4a 的解使代数式x -2y +3z 的值等于-10,求a 的值.详解详析【预习效果检测】[解析] ⎩⎪⎨⎪⎧x -2y =9,①x +y -z =7,②2x -3y +z =12,③①中缺少未知数z ,解法一:由①得x =2y +9,把x =2y+9分别代入②③,得到一个关于y ,z 的二元一次方程组;解法二:既然①中不含z ,那么在②和③中消去z 后,得到一个关于x ,y 的方程3x -2y =19与①联立,得到一个关于x ,y 的二元一次方程组.解:⎩⎪⎨⎪⎧x -2y =9,①x +y -z =7,②2x -3y +z =12,③解法一:由①,得x =2y +9.④把④分别代入②③,得⎩⎪⎨⎪⎧3y -z =-2,y +z =-6.解这个方程组,得⎩⎪⎨⎪⎧y =-2,z =-4.把y =-2代入④,得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =-2,z =-4.解法二:②+③,得3x -2y =19.④联立①与④,得⎩⎪⎨⎪⎧x -2y =9,3x -2y =19.解这个方程组,得⎩⎪⎨⎪⎧x =5,y =-2.把x =5,y =-2代入②,得5-2-z =7, 所以z =-4.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =-2,z =-4.【重难互动探究】例1 [解析] ⎩⎪⎨⎪⎧2x +4y -3z =9,①3x -2y -4z =8,②5x -6y -5z =7,③解法一(用代入法):方程组中,未知数的系数绝对值较小的方程有①和②.若选用①,则用含y ,z 的式子表示x ,并分别代入②③消去x ,得关于y ,z 的二元一次方程组;若选用②,则用含x ,z 的式子表示y ,并分别代入①③,消去y ,得到关于x ,z 的二元一次方程组,其中选用先消去y 的解法较简单;解法二(用加减法):方程组中,相同未知数的系数绝对值之间存在相等或成整数倍的关系时,可用加减法.如本题可消去y.解:⎩⎪⎨⎪⎧2x +4y -3z =9,①3x -2y -4z =8,②5x -6y -5z =7,③解法一(用代入法):由②, 得-2y =8-3x +4z , y =-4+32x -2z.④把④代入①,得2x +4⎝ ⎛⎭⎪⎫-4+32x -2z -3z =9, 即8x -11z =25.⑤把④代入③,得5x -6⎝ ⎛⎭⎪⎫-4+32x -2z -5z =7, 即-4x +7z =-17.⑥⑤与⑥组成方程组为⎩⎪⎨⎪⎧8x -11z =25,-4x +7z =-17,解这个方程组,得⎩⎪⎨⎪⎧x =-1,z =-3.把x =-1,z =-3代入④,得y =12,所以原方程组的解是⎩⎪⎨⎪⎧x =-1,y =12,z =-3.解法二(用加减法):②×2,得6x -4y -8z =16.④①+④,得8x -11z =25.⑤ ②×(-3),得-9x +6y +12z =-24.⑥③+⑥,得-4x +7z =-17.⑦ 以下解法同解法一,略.例2 [解析] (1)⎩⎪⎨⎪⎧x +y =7,①y +z =8,②z +x =9,③因为三个方程相同未知数的系数之和相等,所以三个方程相加,除以2后,再分别与①②③相减,依次得到z ,x ,y 的值;(2)⎩⎪⎨⎪⎧x∶y=3∶2,①y ∶z =5∶4,②x +y +z =66,③解法一:由比例的性质,将①②分别变形为2x =3y 和4y =5z ;解法二:因为①②中的y 的份数分别为2份、5份,其最小公倍数为10份,所以将①化为x∶y=15∶10,将②化为y∶z=10∶8,则x∶y∶z=15∶10∶8,故可设x =15k ,y =10k ,z =8k(k≠0),然后代入③中,求出k 的值,即可求出x ,y ,z 的值.解: (1)⎩⎪⎨⎪⎧x +y =7,①y +z =8,②z +x =9,③①+②+③,得2x +2y +2z =24,x +y +z =12.④ ④-①,得z =5.④-②,得x =4.④-③,得y =3.所以原方程组的解是⎩⎪⎨⎪⎧x =4,y =3,z =5.(2)⎩⎪⎨⎪⎧x∶y=3∶2,①y ∶z =5∶4,②x +y +z =66,③由①,得x∶y=15∶10, 由②,得y∶z=10∶8, 所以x∶y∶z=15∶10∶8.设x =15k ,y =10k ,z =8k ,并代入③,得 15k +10k +8k =66,所以k =2, 所以x =30,y =20,z =16. 所以原方程组的解是⎩⎪⎨⎪⎧x =30,y =20,z =16.【课堂总结反思】 [反思] 133[解析] 解法一:设x =3k ,y =4k ,z =5k(k≠0),代入 x +2y +3z 2x ,得3k +8k +15k6k =133. 解法二:特值法(仅针对填空、选择题):假设x =3,y =4,z =5,代入求得x +2y +3x2x =133. 【作业高效训练】 [课堂达标] 1.A2.[解析] A 把⎩⎪⎨⎪⎧x =1,y =1,z =2代入四个选项逐一检验.3.[解析] A 把三个方程的两边分别相加,再除以2,得x +y +z =6或将选项逐一代入方程组验证.前一种解法称之为直接法;后一种解法称之为逆推验证法.4.[解析] B ①×2+③,得4a -b =7.⑤ 故(2)错,选择B . 5.C6.[答案] z =2-12x +34y[解析] 4z =8-2x +3y ,z =2-12x +34y.7.[答案] -1[解析] 把⎩⎪⎨⎪⎧x =-1,y =2,z =1代入方程,得3×(-1)+2×2+m·1=0,得m =-1.8.[答案] 3[解析] 三个方程相加得2x +2y +2z =6,所以x +y +z =3.9.[答案] (答案不唯一)⎩⎪⎨⎪⎧3x +3y =8,x +3y =5 2x =3x =32 76 5610.[解析] 利用加减法消掉一个未知数,将三元一次方程组转化为二元一次方程组,再进行解答.解:(1)⎩⎪⎨⎪⎧2x +y -3z =3,①3x -y +2z =-1,②x -y -z =5,③由①+③,得3x -4x =8.④由②-③,得2x +3z =-6.⑤联立④⑤,得⎩⎪⎨⎪⎧3x -4z =8,④2x +3z =-6,⑤解得⎩⎪⎨⎪⎧x =0,z =-2.把x =0,z =-2代入③,得y =-3. 所以原方程组的解是⎩⎪⎨⎪⎧x =0,y =-3,z =-2.(2)依题意,得⎩⎪⎨⎪⎧x +3y =5,y -2z =5,x +z =5,①②③②+③×2,得2x +y =15.④由①④组成方程组,得⎩⎪⎨⎪⎧x +3y =5,2x +y =15,解得⎩⎪⎨⎪⎧x =8,y =-1.把x =8代入③,得z =-3.所以原方程组的解是⎩⎪⎨⎪⎧x =8,y =-1,z =-3.(3)⎩⎪⎨⎪⎧2x +3y +z =6,①x -y +2z =-1,②x +2y -z =5,③③+①,得3x +5y =11.④③×2+②,得3x +3y =9.⑤④-⑤,得2y =2,y =1.将y =1代入⑤,得3x =6,x =2.将x =2,y =1代入①,得z =-1.所以原方程组的解为⎩⎪⎨⎪⎧x =2,y =1,z =-1.11.解:由题意,得⎩⎪⎨⎪⎧x -2=0,3x -6y =0,3y +z =0,解得⎩⎪⎨⎪⎧x =2,y =1,z =-3,所以x +y +z =2+1+(-3)=0.12.解:设甲、乙、丙三个小组分别植树x 棵、y 棵和z 棵.根据题意,得⎩⎪⎨⎪⎧x +y +z =50,14()x +z =y ,x =y +z ,解得⎩⎪⎨⎪⎧x =25,y =10,z =15.答:甲、乙、丙三个小组各植树25棵、10棵和15棵.13.解:依题意,得⎩⎪⎨⎪⎧2x +3y =12,3x +4y =17,3z =27, 解得⎩⎪⎨⎪⎧x =3,y =2,z =9.答:解密得到的明文是3,2,9.14.解:根据规定得⎪⎪⎪⎪⎪⎪3 y 2x =3x -2y =1,⎪⎪⎪⎪⎪⎪x z -3 5=5x +3z =8,⎪⎪⎪⎪⎪⎪3 z 6 y =3y -6z =-3.所以⎩⎪⎨⎪⎧3x -2y =1,①5x +3z =8,②3y -6z =-3,③②×2+③,得10x +3y =13.④①与④组成二元一次方程组为⎩⎪⎨⎪⎧3x -2y =1,10x +3y =13, 解得⎩⎪⎨⎪⎧x =1,y =1.把y =1代入③,得z =1,所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =1,z =1.[数学活动]解:⎩⎪⎨⎪⎧x +y =3a ,①y +z =5a ,②z +x =4a ,③解法1:②-①,得z -x =2a.④③+④,得2z =6a ,z =3a.把z =3a 分别代入②和③,得y =2a ,x =a.∴⎩⎪⎨⎪⎧x =a ,y =2a ,z =3a.将其代入x -2y +3z =-10,得a -2×2a+3×3a=-10,解得a =-53. 解法2(技巧解法):①+②+③,得2(x +y +z)=12a ,即x +y +z =6a.⑤⑤-①,得z =3a ;⑤-②,得x =a ;⑤-③,得y =2a.∴⎩⎪⎨⎪⎧x =a ,y =2a ,z =3a.以下同解法1.。
最新北师大版初中数学目录
北师大版七年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从三个方向看物体的形状回顾与思考复习题第二章有理数及其运算1.有理数2.数轴3.绝对值4.有理数的加法5.有理数的剑法6.有理数的加减混合运算7.有理数的乘法8.有理数的除法9.有理数的乘方10.科学计数法11.有理数的混合运算12.用计算器进行运算回顾与思考复习题第三章整式及其加减1.字母表示数2.代数式3.整式4.整式的加减5.探索与表达规律回顾与思考复习题第四章基本平面图形1.线段、射线、直线2.比较线段的长短3.角4.角的比较5.多边形与圆的初步认识回顾与思考复习题第五章一元一次方程1.认识一元一次方程2.求解一元一次方程3.应用一元一次方程---水箱变高4.应用一元一次方程---打折销售5.应用一元一次方程---“希望工程”6.应用一元一次方程---追赶小明回顾与思考复习题第六章数据的收集与整理1.收据的收集2.普查与抽样调查3.数据的表示4.统计图的选择回顾与思考复习题综合与实践探寻神奇的幻方关注人口老龄化制作一个尽可能大的无盖长方体课题学习制作一个尽可能大的无盖长方体总复习北师大版七年级下册第一章整式的乘法1.同底数幂的乘法2.幂的乘方与积的乘方3.同底数幂的除法4.整式的乘法5.平方差公式6.完全平方公式7.整式的除法回顾与思考复习题第二章相交线与平行线1.两条直线的位置关系2.探索直线平行的条件3.平行线的性质4.用尺规作角回顾与思考总复习第三章三角形1.认识三角形2.图形的全等3.探索三角形全等的条件1.用尺规作三角形2.利用三角形全等测距离回顾与思考总复习第四章变量之间的关系1.用表格表示的变量之间的关系2.用关系式表示的变量之间的关系3.用图像表示的变量之间的关系回顾与思考总复习第五章生活中的轴对称1.轴对称现象2.探索轴对称的性质3.简单的轴对称图形4.利用轴对称进行设计回顾与思考总复习第六章概率初步1.感受可能性2.频率的稳定性3.等可能事件的概率回顾与思考总复习综合与实践设计自己的运算程序综合与实践七巧板总复习北师大版八年级上册第一章勾股定理1.探索勾股定理2.一定是直角三角形吗3.勾股定理的应用回顾与思考复习题第二章实数1.认识无理数2.平方根3.立方根4.估算5.用计算器开方6.实数7.二次根式回顾与思考复习题第三章位置与坐标1.确定位置2.平面直角坐标系3.平行线的判定4.平行线的性质5.三角形内角和定理回顾与思考复习题第四章一次函数1.函数2.一次函数与正比例函数3.一次函数图像4.一次函数的应用回顾与思考复习题第五章二元一次方程组1.认识二元一次方程组2.求解二元一次方程组3.应用二元一次方程组--鸡兔同笼4.应用二元一次方程组--增收节支5.应用二元一次方程组--里程碑的数6.二元一次放陈玉一次函数7.用二元一次方程组确定一次函数8.三元一次方程组回顾与思考复习题第六章数据的分析1.平均数2.中为数与众数3.从统计图分析数据的集中趋势4.数据的离散程度回顾与思考复习题第七章平行线的证明1.为什么要证明2.定义与命题3.平行线的判定4.平行线的性质5.三角形内角和定理回顾与思考复习题综合与实践计算器运用与功能探索综合与实践哪一款手资费套餐更合适综合与实践哪个城市更热北师大版八年级下册第一章三角形的证明1.等腰三角形2.直角三角形3.线段的垂直平分线4.角平分线回顾与思考复习题第二章一元一次不等式与一元一次不等式组1.不等关系2.不等式的基本性质3.不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组回顾与思考复习题第三章图形的平移与旋转1.图形的平移2.图形的旋转3.中心对称4.简单的图案设计回顾与思考复习题第四章因式分解1.因式分解2.提公因式法3.公式法回顾与思考复习题第五章分式与分式方程1.认识分式2.分式的乘除法3.分式的加减法4.分式方程回顾与思考复习题第六章平行四边形1.平行四边形的性质2.平行四边形的判定3.三角形的中位线4.多边形的内角和与外角和回顾与思考复习题综合与实践生活中的“一次模型”综合与实践平面图形的镶嵌总复习旧版资源第一章一元一次不等式和一元一次方程第二章因式分解第三章分式第四章相似图形第五章数据的收集与处理第六章证明(一)总复习北师大版九年级上册第一章证明(二)1.你能证明它们吗2.直角三角形3.线段的垂直平分线4.角平分线回顾与思考复习题第二章一元二次方程1.花边有多宽2.配方法3.公式法4.分解因式法5.为什么是0.618回顾与思考复习题第三章证明(三)1.平行四边形2.特殊的平行四边形回顾与思考复习题第四章视图与投影1.视图2.太阳光与影子3.灯光与影子回顾与思考复习题第五章反比例函数1.反比例函数2.反比例函数的图像与性质3.反比例函数的应用回顾与思考复习题课题学习猜想、证明与拓广第六章频率与概率1.频率与概率2.投针试验3.生日相同的概率4.池塘里有多少条鱼回顾与思考复习题总复习北师大版九年级下册第一章直角三角形的边角关系1.从梯子的倾斜成都谈起2.30、45、60角的三角函数值3.三角函数的有关计算4.船有触礁的危险吗5.测量物体的高度回顾与思考复习题第二章二次函数1.二次函数所描述的关系2.结识抛物线3.刹车距离与二次函数4.二次函数图像5.用三种方式表示二次函数6.何时获得最大利润7.最大面积是多少8.二次函数与一元二次方程回顾与思考复习题课题学习拱桥设计第三章圆1.车轮为什么做成圆形2.圆的对称性3.圆周角与圆心角的关系4.确定圆的条件5.直线和圆的位置关系6.圆与圆的位置关系7.弧长及扇形的面积8.圆锥的侧面积回顾与思考复习题课题学习设计遮阳蓬第四章统计与概率1.50年的变化2.哪种方式更合算3.游戏公平吗回顾与思考复习题总复习。
七年级数学下册第2章二元一次方程组2
12 某服装厂专门安排210名工人进行手工衬衣的缝制,每 件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人 每天能够缝制衣袖10个,或衣身15个,或衣领12个, 那么应该安排多少名工人缝制衣袖,多少名工人缝制 衣身,多少名工人缝制衣领,才能使每天缝制出的衣 袖、衣身、衣领正好配套?
所以三元一次方程组的解为yx==3530,, z=-12.
所以三个“○”里的数之和为 71,三个“○”里应填入的
数按先上后下,先左后右的顺序依次为 50,33,-12.
14 阅读理解:已知实数 x,y 满足32xx-+y3=y=5①7②,,求 x-4y 和 7x+5y 的值.仔细观察两个方程未知数的系数之间的 关系,本题可以通过适当变形整体求得代数式的值,如 由①-②可得 x-4y=-2,由①+②×2 可得 7x+5y=19. 这样的解题思想就是通常所说的“整体思想”.利用“整体 思想”,解决下列问题:
x=-152, 所以原方程组的解为y=-2,
z=153.
【点拨】 解三元一次方程组时,通常需在某些方程两边
同乘某常数,以便于消去同一未知数;在变形过 程中,易漏乘常数项而出现方程①变形为4x+2y+ 6z=1的错误.
9 已知x-2y+z=2x-y+z=3,且x,y,z的值中仅有一
个为0,解这个方程组. 解:原式化为x2-x-2yy++zz==33,,①② ②-①,得 x+y=0. ∵x,y,z 的值中仅有一个为 0,∴z=0. 由xx+-y2=y=0,3,解得xy==-1,1.∴原方程组的解为xyz===0-1.,1,
2x+y+3z=1,① 8 解方程组3x-2y+2z=2,②
2023-2024学年湘教版七年级数学下册课件:*1.4 三元一次方程组
4 + 2 =___________________________________.
+ 3 = 5.
7.在等式 = 2 + + 中,当 = −1时, = 3;当 = 1时,
= −1;当 = −2时, = −4.求,,的值.
① − ④,得 = 1.② − ④,得 = −1.③ − ④,得 = 2.所以原方程组
= 1,
的解为ቐ = −1,
= 2.
方法感悟
1.解三元一次方程组的方法与解二元一次方程组的方法相似,一般
都是通过“代入”或“加减”进行消元,把解三元一次方程组转化为解二元
一次方程组,进而再转化为解一元一次方程.
湘教版七年级数学下册课件
第1章 二元一次方程组
*1.4
三元一次方程组
(1课时)
自主学习
自主导学
三
1.三元一次方程组:含有____个未知数,每个方程中含未知数的项的次数
1
三
均为___,并且一共有____个方程,像这样的方程组叫做三元一次方程组.
2.三元一次方程组的一个解:在三元一次方程组中,适合每一个方程的
中考链接
10.(2021·重庆B卷)盲盒为消费市场注入了活力,既能够营造消费者
购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家
将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为,,三种盲盒
各一个.其中盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;盒
中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与
一组未知数
____________的值,叫做这个方程组的一个解.
浙教版七年级数学下册第二章《二元一次方程组》常考题(解析版)
浙江七年级数学下册第二章《二元一次方程组》常考题(考试时间:90分钟 试卷满分:100分)一、选择题(本题有10个小题,每小题3分,共30分)1.(本题3分)(2021·浙江·浦江县教育研究和教师培训中心七年级期末)已知二元一次方程473x y -=.用x 的代数式表示y ,正确的是( ) A .374y- B .374y+ C .437x - D .437x + 【答案】C 【解析】 【分析】将x 看作已知数,y 看作未知数,求出y 即可. 【详解】 ∵4x -7y =3, ∵7y =4x -3, ∵437x y -=. 故选:C . 【点睛】本题考查解二元一次方程,解题的关键是将x 看作已知数,y 看作未知数,解方程即可.2.(本题3分)(2021·浙江·七年级专题练习)若一个方程组的一个解为21x y =⎧⎨=⎩,则这个方程组不可能是( )A .31x y x y +=⎧⎨-=⎩B .2231y xx y =⎧⎨-=⎩C .2420x y x y +=⎧⎨-=⎩D .45133424x y x y +=⎧⎨-+=⎩【答案】C 【解析】 【分析】把解代入各个方程组,根据二元一次方程解的定义判断即可 【详解】解:A 、x =2,y =1适合方程组31x y x y +=⎧⎨-=⎩中的每一个方程,故本选项不符合题意;B 、x =2,y =1适合方程组2231y xx y =⎧⎨-=⎩中的每一个方程,故本选项不符合题意;C 、x =2,y =1不是方程20x y -=的解,故该选项符合题意.D 、x =2,y =1适合方程组45133424x y x y +=⎧⎨-+=⎩中的每一个方程,故本选项不符合题意;故选C . 【点睛】本题考查了方程组的解.解决本题可根据方程组解的定义代入验证,也可以通过解方程组确定.3.(本题3分)(2021·浙江诸暨·七年级期末)若方程组327213x y x y -=⎧⎨+=⎩的解也是方程218kx y +=的解,则k 的值为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】先求出方程组的解,然后代入方程218kx y +=,即可解答. 【详解】解:327213①②-=⎧⎨+=⎩x y x y ∵+∵,得:420x = ,解得:5x = ,把5x =代入∵,得:5213y +=,解得: 4y = ,所以方程组的解为54x y =⎧⎨=⎩ , 把x ,y 代入方程218kx y +=,得:52418k +⨯= ,解得:2k = .故选:B 【点睛】本题主要考查了解二元一次方程组和二元一次方程的解,解题的关键是熟练掌握解二元一次方程组的步骤,以及方程的解就是把这个数代入方程使方程成立的值. 4.(本题3分)(2021·浙江萧山·七年级期中)某地响应国家号召,实施退耕还林政策.退耕还林之前,该地的林地面积和耕地面积共有180km 2.退耕还林之后,该地的耕地面积是林地面积的30%.设退耕还林之后该地的耕地面积为x km2,林地面积为y km2,则可列方程组()A.18030%x yy x+=⎧⎨=⎩B.18030%x yx y+=⎧⎨=⎩C.18030%x yx y+=⎧⎨-=⎩D.18030%x yy x+=⎧⎨-=⎩【答案】B【解析】【分析】设耕地面积x平方千米,林地面积为y平方千米,根据该地的林地面积和耕地面积共有180km2,退耕还林之后,该地的耕地面积是林地面积的30%列出方程即可.【详解】解:设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18030%x yx y+=⎧⎨=⎩.故选B.【点睛】本题主要考查了根据实际问题列二元一次方程组,解题的关键在于能够准确根据题意找到等量关系.5.(本题3分)(2021·浙江杭州·七年级期末)方程组2,3x yx y⎧+=⎪⎨+=⎪⎩的解为2,.xy=⎧⎪⎨=⎪⎩则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,4【答案】B【解析】【分析】把x=2代入方程组第二个方程求出y的值,再将x与y的值代入第一个方程左边求出所求即可.【详解】解:把x=2代入x+y=3得:y=1,把x=2,y=1代入得:2x+y=4+1=5,则被遮盖的两个数分别为5,1,此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.(本题3分)(2021·浙江·杭州市公益中学七年级开学考试)已知(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,则x ,y 的值为( ) A .x =﹣1,y =1 B .x =1,y =﹣1 C .x =﹣1,y =﹣1 D .x =1,y =1【答案】D 【解析】 【分析】根据非负数的性质,建立二元一次方程组,加减法解二元一次方程组即可求得x ,y 的值为 【详解】(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,∴(2x ﹣3y +1)2+|4x ﹣3y ﹣1|=023104310x y x y -+=⎧∴⎨--=⎩ 解得11x y =⎧⎨=⎩ 故选D 【点睛】本题考查了相反数的应用,非负数的性质,解二元一次方程组,建立二元一次方程组是解题的关键.7.(本题3分)(2020·浙江·群星外国语学校七年级阶段练习)设1a ,2a ,…,2016a 是从1,0,-1这三个数中取值的一列数,若12202069a a a ++⋯+=,()()()2221220201114007a a a ++++⋅⋅⋅++=,则1a ,2a ,…,2020a 中有( )个0.A .163 B .164 C .170 D .171【答案】D 【解析】 【分析】由(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007得a 12+a 22+…+a 20202=1849,设数列中1有x 个、0有y 个,-1有z 个,根据题意得出1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1853,解:(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007, a 12+2a 1+1+a 22+2a 2+1+…+a 20202+2a 2020+1=4007, (a 12+a 22+…+a 20202)+2(a 1+a 2+…+a 2020)+2020=4007, ∵a 1+a 2+…+a 2020=69, ∵a 12+a 22+…+a 20202=1849,设a 1,a 2,…,a 2020中1有x 个、0有y 个,-1有z 个,根据题意可得:1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1849,即691849x z x z -=⎧⎨+=⎩,解得:959890x z =⎧⎨=⎩, 则y =2020-959-890=171,即0有171个, 故选:D . 【点睛】本题主要考查三元一次方程组的应用和完全平方公式,根据题意列出关于x 、y 、z 的方程组是解题的关键.8.(本题3分)(2021·浙江·杭州市采荷中学七年级期中)若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩【答案】A 【解析】 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案. 【详解】解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=,∴113b =,3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩.故选:A . 【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.9.(本题3分)(2021·浙江浙江·七年级期末)已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中正确的有( )个 ∵当5a =时,方程组的解是1020x y =⎧⎨=⎩;∵当x ,y 的值互为相反数时,20a = ∵不存在一个实数a 使得x y =; ∵若23722a y -=,则2a =.A .1 B .2C .3D .4【答案】B 【解析】 【分析】∵把a =5代入方程组求出解,即可作出判断;∵由题意得x +y =0,变形后代入方程组求出a 的值,即可作出判断; ∵若x =y ,代入方程组,变形得关于a 的方程,即可作出判断;∵根据题中等式得2a ﹣3y =7,代入方程组求出a 的值,即可作出判断. 【详解】解:∵把a =5代入方程组得:3510(1)20(2)x y x y -=⎧⎨-=⎩, 由(2)得x =2y ,将x =2y 代入(1)得:y =10, 将y =10代入x =2y 得:x =20,解得:2010x y =⎧⎨=⎩,故∵错误; ∵当x ,y 的值互为相反数时,x +y =0, 即:y =﹣x代入方程组得:35225x x ax x a +=⎧⎨+=-⎩, 整理,得82(3)35(4)x a x a =⎧⎨=-⎩, 由(3)得:14x a =,将14x a =代入(4),得:354a a =-,解得:a =20,故∵正确;∵若x =y ,则有225x ax a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,∵不存在一个实数a 使得x =y ,故∵正确;∵352(5)25(6)x y a x y a -=⎧⎨-=-⎩, (5)-(6)×3,得:15y a =-, 将15y a =-代入(6),得:25x a =-,∵原方程组的解为2515x ay a=-⎧⎨=-⎩,∵23722a y -=, ∵2a ﹣3y =7, 把y =15﹣a 代入得: 2a ﹣45+3a =7,解得:a =525,故∵错误; ∵正确的选项有∵∵两个. 故选:B . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.10.(本题3分)(2021·浙江·杭州市公益中学七年级期中)用如图∵中的长方形和正方形纸板作侧面和底面,做成如图∵的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n 的值可能是( )A .200B .201C .202D .203【答案】A 【解析】 【分析】分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答. 【详解】解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得: 43{2x y n x y m+=+=, 则两式相加得 5()m n x y +=+,∵x 、y 都是正整数 ∵m n +一定是5的倍数;∵200、201、202、203四个数中,只有200是5的倍数, ∵m n +的值可能是200. 故选A. 【点睛】本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出5()m n x y +=+,是解答本题的关键.二、填空题(本题有7个小题,每小题3分,共21分)11.(本题3分)(2021·浙江浙江·七年级期末)若x ay b =⎧⎨=⎩是方程21x y -=的解,则362a b -+=________.【答案】5 【解析】 【分析】把x 与y 的值代入方程求出a 与b 的关系,代入原式计算即可得到结果. 【详解】解:把x ay b =⎧⎨=⎩代入方程x -2y =1,可得:a -2b =1,所以3a -6b +2=3(a -2b )+2=5. 故答案为:5. 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程中两边相等的未知数的值. 12.(本题3分)(2021·浙江慈溪·七年级期末)已知235x y -=,若用含x 的代数式表示y ,则y =______.【答案】253x - 【解析】 【分析】把方程化为:325,y x =-再两边都除以3, 即可得到答案. 【详解】解: 235x y -=, 325,y x ∴=-25.3x y -∴=故答案为:25.3x - 【点睛】本题考查的是二元一次方程的变形,掌握利用含一个未知数的代数式表示另外一个未知数是解题的关键.13.(本题3分)(2020·浙江泰顺·七年级开学考试)每年五月的第二个礼拜日是母亲节,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组为__________.【答案】2552390x y x y +=⎧⎨+=⎩ 【解析】 【分析】设鲜花x 元/束,礼盒y 元/盒,根据“一束花+二盒花=55元,二束花+三盒花=90元”,列出二元一次方程组,即可. 【详解】设鲜花x 元/束,礼盒y 元/盒,由题意得:2552390x y x y +=⎧⎨+=⎩.故答案是:2552390x y x y +=⎧⎨+=⎩.【点睛】本题主要考查二元一次方程组的实际应用,找出等量关系,列出方程组,是解题的关键. 14.(本题3分)(2021·浙江浙江·七年级期中)已知关于x y 、的方程组342321x y mx y m +=⎧⎨+=-⎩的解满2x y +=,则m =________. 【答案】-1 【解析】 【分析】两式相减得,即可利用m 表示出x +y 的值,从而得到一个关于m 的方程,解方程从而求得m 的值. 【详解】解:两式相减得:x +y =1-m , ∵x +y =2.即1-m =2,解得:m =-1. 故答案是:-1.【点睛】本题考查了二元一次方程组的解,理解两个方程的系数之间的特点是关键.15.(本题3分)(2021·浙江浙江·七年级期末)把某个式子看成一个整体,用一个量代替它,从而使问题得到简化,这叫整体代换成换元思想,请根据上面的思想解决下面问题:若关于,m n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩,则关于,x y 的方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解是_______. 【答案】82x y =⎧⎨=⎩ 【解析】【分析】仿照已知方程组的解法求出所求方程组的解即可.【详解】解:∵关于m ,n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩, ∵方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解为106x y x y +=⎧⎨-=⎩, 解得:82x y =⎧⎨=⎩, 故答案为:82x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.16.(本题3分)(2021·浙江临海·七年级期中)在矩形ABCD 中,放入六个形状、大小相同的长方形,尺寸如图所示,则阴影部分的面积是___cm 2.【答案】44【解析】【分析】设这六个形状、大小相同的长方形的长为x cm,宽为y cm,然后根据图形可得26314y x y x y +=+⎧⎨+=⎩,然后求出x 、y 的值,进而问题可求解. 【详解】解:设这六个形状、大小相同的长方形的长为x cm,宽为y cm,由图形得:26314y x y x y +=+⎧⎨+=⎩,解得:82x y =⎧⎨=⎩, ∵AB =10cm,∵阴影部分的面积为14×10-8×2×6=44cm 2;故答案为44.【点睛】本题主要考查二元一次方程组与几何的应用,熟练掌握二元一次方程组的解法由图形得到基本关系量是解题的关键.17.(本题3分)(2021·浙江浙江·七年级期中)已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.【答案】11x y =-⎧⎨=⎩ 【解析】【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0,因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩,解得:11x y =-⎧⎨=⎩.故答案为:11x y =-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.三、解答题(请写出必要的解题过程,本题共6个小题,共49分)18.(本题6分)(2019·浙江东阳·七年级期末)解下列方程(组)(1)3263x y x y +=⎧⎨-=⎩(2)1122x xx x +=+--【答案】(1)12535x y ⎧=⎪⎪⎨⎪=-⎪⎩ ;(2)3x =-,经检验,3x =-是原方程的根.【解析】【分析】(1)根据加减消元法即可求解;(2)先将分母进行变形,再去分母即可求解.【详解】(1)3263x y x y +=⎧⎨-=⎩①②令∵+2∵得5x=12,解得x=125把x=125代入∵得y=35∵原方程组的解为12535x y ⎧=⎪⎪⎨⎪=-⎪⎩(2)1122x x x x+=+-- 1122x x x x +=-+-- x+1=-x+x-2解得x=-3,把x=-3代入原方程,符合题意,故x=-3是原方程的解.【点睛】此题主要考查方程的求解,解题的关键是熟知加减消元法及分式方程的求解.19.(本题8分)(2019·浙江·绍兴市柯桥区杨汛桥镇中学七年级期中)已知方程组44(1)214(2)ax y x by -=⎧⎨+=⎩,,由于甲看错了方程∵中的a 得到方程组的解为26x y ,,=-⎧⎨=⎩ 乙看错了方程∵中的b 得到方程组的解为44.x y =-⎧⎨=-⎩, 若按正确的a 、b 计算,求原方程组的解. 【答案】42x y =⎧⎨=⎩【解析】【分析】将甲得到的方程组的解代入第二个方程求出b 的值,将乙得到方程组的解代入第一个方程求出a 的值,确定出正确的方程组,求出方程组的解得到正确的x 与y 的值.【详解】解:将x=-2,y=6代入方程组中的第二个方程得:-4+6b=14,解得:b=3,将x=-4,y=-4代入方程组中的第一个方程得:-4a+16=4,解得:a=3,则方程组为()()344123142x y x y ⎧-=⎪⎨+=⎪⎩,,, (2)×3-(1)×2得:17y=34,解得:y=2,把y=2代入(1)得:x=4,即方程组的正确解为42 xy=⎧⎨=⎩.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入正确的a,b的值即可得出答案.20.(本题8分)(2021·浙江浙江·七年级期末)为了保护环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A B、两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万升汽油,求购买这批混合动力公交车需要多少万元?【答案】(1)a=120,b=100;(2)1120万元【解析】【分析】(1)根据“购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.”即可列出关于a、b的二元一次方程组,解之即可得出结论;(2)设A型车购买x台,则B型车购买(10-x)台,根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量即可得出关于x的一元一次方程,解之即可得出x值,再根据总费用=120×A型车购买的数量+100×B型车购买的数量即可算出购买这批混合动力公交车的总费用.【详解】解:(1)根据题意得:20 3260a bb a-=⎧⎨-=⎩,解得:120100ab=⎧⎨=⎩.(2)设A型车购买x台,则B型车购买(10-x)台,根据题意得:2.4x +2(10-x )=22.4,解得:x =6,∵10-x =4,∵120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)根据A 、B 型车价格间的关系列出关于a 、b 的二元一次方程组;(2)根据总节油量=2.4×A型车购买的数量+2×B 型车购买的数量列出关于x 的一元一次方程.21.(本题8分)(2021·浙江·杭州市公益中学七年级期中)已知关于x ,y 的方程组212398x y a x y a -=+⎧⎨+=-⎩,其中a 是实数. (1)若x y =,求a 的值;(2)若方程组的解也是方程53x y -=的一个解,求()20194a -的值;(3)求k 为何值时,代数式229x kxy y -+的值与a 的取值无关,始终是一个定值,求出这个定值.【答案】(1)12-;(2)-1;(3)k =6;定值为25. 【解析】【分析】(1)把a 看做已知数,利用加减消元法求出解即可;(2)把方程组的解代入方程计算求出a 的值,代入原式计算即可求出值;(3)将代数式x 2-kxy +9y 2的配方=(x -3y )2+6xy -kxy =25+(6-k )xy ,即可求解.【详解】解:(1)方程组212398x y a x y a -=+⎧⎨+=-⎩①②, ∵3⨯+∵得:5155x a =-,解得:31x a =-,把31x a =-代入∵得:2y a =-,则方程组的解为312x a y a =-⎧⎨=-⎩, 令312a a -=-,解得12a =-; (2)把方程组312x a y a =-⎧⎨=-⎩代入方程得:315103a a --+=, 解得:3a =,则20192019(4)(1)1a -=-=-;(3) 312x a y a =-⎧⎨=-⎩()3165,x y ∴-=---=229x kxy y -+2(3)6x y xy kxy =-+-25(6)k xy =+-,且代数式229x kxy y -+的值与a 的取值无关,∴当6k =时,代数式229x kxy y -+的值与a 的取值无关,定值为25.【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程,熟练掌握运算法则是解本题的关键.22.(本题9分)(2019·浙江长兴·七年级期末)阅读材料:小丁同学在解方程组435235x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩时,他发现:如果直接用代入消元法或加减消元法求解运算量比较大,也容易出错.如果把方程组中的(x+y)看作一个整体,把(x-y)看作一个整体,通过换元,可以解决问题.以下是他的解题过程:设m=x+y,n=x-y,这时原方程组化为435235m n m n ⎧+=⎪⎪⎨⎪-=-⎪⎩ 解得315m n =⎧⎨=⎩,即315x y x y +=⎧⎨-=⎩,解得96x y =⎧⎨=-⎩ 请你参考小丁同学的做法,解方程组:23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩ 【答案】914x y =⎧⎨=⎩【解析】【分析】设m=2x+3y,n=2x-3y,根据所给整体代换思路,按照所给方法求出方程的解即可.【详解】设m=2x+3y,n=2x-3y, 原方程可组化为743832m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:6024m n =⎧⎨=-⎩. ∵23602324x y x y +=⎧⎨-=-⎩, 解得:914x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,认真理解整体代换思路是解题关键.23.(本题10分)(2021·浙江浙江·七年级期末)用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a 张,正方形铁片b 张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b +的值可能是( )A .2019B .2020C .2021D .2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒【答案】(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【解析】【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设竖式纸盒c个,横式纸盒d个,由题意列出方程组可求解.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,由铁板的总数量及所需长方形铁片的数量为正方形铁皮的2倍,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,取其整数部分再将剩余铁板按一张铁板裁出1个长方形铁片和2个正方形铁片处理,即可得出结论.【详解】解:(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:43201421176 x yx y+=⎧⎨+=⎩,解得:100538 xy=⎧⎨=⎩,答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设竖式纸盒c个,横式纸盒d个,根据题意得:432c d a c d b+=⎧⎨+=⎩,∵5c+5d=5(c+d)=a+b,∵a+b是5的倍数,可能是2020,故选B;(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:35 324 m nm n+=⎧⎨=⨯⎩,解得:525116911mn⎧=⎪⎪⎨⎪=⎪⎩,∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∵共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∵可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程(组).。
七年级下册数学二元一次方程组习题及答案
七年级下册数学二元一次方程组习题及答案8.1 二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y的值分别为-4,1,6,11.2、在x+3y=3中,用x表示y,则y=(3-x)/3;用y表示x,则x=3-3y。
3、已知方程(k^2-1)x^2+(k+1)x+(k-7)y=k+2,当k=2或k=-2时,方程为一元一次方程;当k不等于2或-2时,方程为二元一次方程。
4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=16;当y=0时,则x=20/3.5、方程2x+y=5的正整数解是(1,3)。
6、若(4x-3)^2+|2y+1|=0,则x+2=-1/2.7、方程组x+y=ax=2的一个解为(2,a-2),那么这个方程组的另一个解是(0,a)。
8、若x=1/2时,关于x、y的二元一次方程组ax-2y=1x-by=2的解互为倒数,则a-2b=-1/2.二、选择题1、方程2x-3y=5,xy=3,二元一次方程的有(B)个。
2、方程2x+y=9在正整数范围内的解有(C)个。
3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是(C)20x-4y=3.4、若是5x^2 ym与4xn+m+1y^2n-2同类项,则m-2n的值为(B)-1.5、在方程(k^2-4)x^2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为(B)-2.6、若x=2y=-1是二元一次方程组的解,则这个方程组是(A)x-3y=5y=x-32x-y=5x=2y7、在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则(A)y=5x-3.8、已知x=3-k,y=k+2,则y与x的关系是(A)x+y=5.9、下列说法正确的是(B)二元一次方程组有无数个解。
8.1 二元一次方程组一、填空题1.已知二元一次方程 4x-3y=12,当 x=0、1、2、3 时,分别解得 y=-4、1、6、11.2.对方程 x+3y=3,用 x 表示 y,则 y=(3-x)/3;用 y 表示 x,则 x=3-3y。
浙教版2022-2023学年数学七年级下册第2章二元一次方程组2
浙教版2022-2023学年数学七年级下册第2章 二元一次方程组(解析版)2.5三元一次方程组及其解法(选学)【知识重点】 1.三元一次方程含有三个未知数,且含有未知数的项的次数都是一次的方程叫做三元一次方程. 2.三元一次方程组概念由三个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 3.三元一次方程组的解同时满足三元一次方程组中各个方程的解,叫做这个三元一次方程组的解. 4.解三元一次方程组基本步骤为解三元一次方程组的消元方法也是“代入法”或“加减法”,通过消元使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程. 【经典例题】【例1】解方程组{2x −3y +4z =12x −y +3z =44x +y −3z =−2【答案】解:{2x −3y +4z =12(1)x −y +3z =4(2)4x +y −3z =−2(3)(2)+(3)得: 5x=2,∴x=25,由(2)得: y=x+3z-4 (4),将(4)代入(1)得: 2x-3(x+3z-4 )+4z=12,解得:z=-225,将x=25,z=-225代入(4)得:y=-9625, ∴原方程组的解为:{x =25y =−9625z =−225.【解析】观察方程组中同一个未知数的系数特点:方程②③中y ,z 的系数都互为相反数,因此由(2)+(3)消去y ,z 可求出x 的值;然后求出y ,z 的值,即可得到方程组的解.【例2】解方程组 {2x +y +z =−7①x +2y +z =−8②x +y +2z =−9③【答案】解:{2x +y +z =−7①x +2y +z =−8②x +y +2z =−9③由①+②+③得:4x+4y+4z=-24; x+y+z=-6④由①-④得:x=-1; 由②-④得:y=-2由③-④得:z=-3∴原方程组的解为:{x =−1y =−2z =−3.【解析】观察方程组中同一个未知数的系数和特点:①②③相加之后,x 、y 、z 的系数和相等,从而可以得出x+y+z 的值。
专题15 七年级数学下册 解二元一次方程组(知识点串讲)(原卷版)
专题15 解二元一次方程组知识网络重难突破知识点一消元的思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为熟悉的一元一次方程,即可先求出一个未知数,然后再求另一个未知数。
这种将未知数的个数由多化少、逐一解决的思想,叫做消元的思想。
代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
基本思路:未知数由多变少。
代入消元法解二元一次方程组的一般步骤:1.变:将其中一个方程变形,使一个未知数用含有另一个的未知数的代数式表示。
2.代:用这个代数式代替另一个方程中的相应未知数,得到一元一次方程。
3.解:解一元一次方程4.求:把求得的未知数的值带入代数式或原方程组中的任意一个方程中,求得另一个未知数的值。
5.写:写出方程组的解。
6.验:将方程组的解带入到原方程组中的每个方程中,若各方程均成立,则这对数值就是原方程组的解,负责解题有误。
加减消元法:两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
加减消元法解二元一次方程组的一般步骤:1.变形:将两个方程中其中一个未知数的系数化为相同(或互为相反数)。
2.加减:通过相减(或相加)消去这个未知数,得到一个一元一次方程。
3.求解:解这个一元一次方程,得到一个未知数的值。
4.回代:将求得的未知数的值代入原方程组中的任意一个方程,求出另一个未知数的值。
5.写解:写出方程组的解。
6.检验:将方程组的解带入到原方程组中的每个方程中,若各方程均成立,则这对数值就是原方程组的解,负责解题有误。
整体消元法:根据方程组各系数的特点,可将方程组中的一个方程或方程的一部分看成一个整体,带入另一个方程中,从而达到消去其中一个未知数的目的,并求得方程的解。
初中数学 二元一次方程组及其解法
二元一次方程组及其解法一、二元一次方程的概念1.二元一次方程:含有两个未知数,并且含未知数的项的最高次数是1的整式方程,叫做二元一次方程.二元一次方程的一般形式为:ax by c ++=0(,)a b ≠0≠0.【例】x y +2=5,x y 2=3,x y 3=-2,x y 2+3+6=0等都是二元一次方程. 2.二元一次方程的判定: 必须同时满足四个条件:(1)含有两个未知数——“二元”;(2)未知数项的最高次数为1——“一次”; (3)方程两边都是整式——整式方程; (4)未知数的系数不能为0.【例】x y +=1,()y x 1=+82,x y 3-1=2-5,x y 4=3等都是二元一次方程;y x 4+=5,x y z 2+3=,x y 21+=02,x x 2+3=-5等都不是二元一次方程. 3.二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解.【注】任何一个二元一次方程都有无数个解.【例】x y =1⎧⎨=2⎩和x y =3⎧⎨=1⎩是方程x y +2=5的解,可以看出x y +2=5有无数个解.二、二元一次方程组的概念和解法1.二元一次方程组:由几个一次方程组成并含有两个未知数的方程组,叫做二元一次方程组.【注意】(1)二元一次方程组不一定由几个二元一次方程合在一起.(2)方程可以超过两个.【例】x x y 2=6⎧⎨3-=1⎩,x x y 2=6⎧⎨3-=1⎩,x y x y =2⎧⎪=3⎨⎪+=4⎩等都是二元一次方程组.2.二元一次方程组的解:使二元一次方程组的几个方程左、右两边都相等的两个未知数的值(即几个方程的公共解),叫做二元一次方程组的解.【例】x x y 2=6⎧⎨3-=1⎩的解是x y =3⎧⎨=8⎩.3.二元一次方程组解的情况:一般情况下,一个二元一次方程组只有唯一一组解;但在特殊情况下,二元一次方程组也可能无解或有无数组解.【例】方程组x y x y +=1⎧⎨2+2=2⎩有无数组解,方程组x y x y +=2⎧⎨2+2=2⎩和x y x y =2⎧⎪=3⎨⎪+=4⎩无解.4.二元一次方程组的基本解法(1)代入消元法:①从方程组中选一个系数比较简单的方程,将该方程中的一个未知数用含另一未知数的式子表示出来,例如y ax b =+;②把y ax b =+代入另一个方程中,消去y ,得到一个关于x 的一元一次方程;③解这个一元一次方程,求出x 的值; ④把求得的x 的值代回y ax b =+中,求出y 的值,从而得出方程组的解;⑤把这个方程组的解写成x my n =⎧⎨=⎩的形式.解方程组:19,x y x y 3+4=⎧⎨-=4.⎩解:19,x y x y 3+4=⎧⎨-=4.⎩①②由②,得x y =4+,③ 把③代入①,()y y 34++4=19, ∴y y 12+3+4=19,得y =1. 把y =1代入③,得x =4+1=5.∴方程组的解为5x y =⎧⎨=1.⎩,(2)加减消元法:①把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数相反或相等;②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中,求出另一个未知数的值,从而得出方程组的解;⑤把这个方程组的解写成x my n=⎧⎨=⎩的形式.解方程组:x y x y +2=1⎧⎨3-2=11⎩解:x y x y +2=1⎧⎨3-2=11⎩①②①+②,得x 4=12,解得:x =3.将x =3代入①,得y 3+2=1, 解得y =-1.∴方程组的解是x y =3⎧⎨=-1⎩.5.解方程组的三大解题思想(1)消元思想;(2)整体思想;(3)换元思想.(1)在下列方程中,①x 4+5=1;②x y 3-2=1;③x y1+=1;④xy y +=14;⑤x y =;⑥()y x 1=+82,其中是二元一次方程的是__________.(填序号)(2)已知方程||n m x y m -1-1+2=是关于x 、y 的二元一次方程,则m =_____,n =______.(3)若已知方程()()()k x k x k y k 22-1++1+-7=+2,当k =______时,方程为一元一次方程,当k =_______时,方程为二元一次方程.【解析】(1)②⑤⑥;(2)m =0或2,n =2.(3)-1,1.模块一 二元一次方程的概念例题1(1)已知x y =1⎧⎨=-1⎩是方程x ay 2-=3的一个解,那么a 的值是_________.(2)若x ky k =2⎧⎨=-3⎩是二元一次方程x y 2-=14的解,则k 的值是_________.【解析】(1)1;(2)2.(1)下列方程组中,是二元一次方程组的是( )A .x y y 2+=1⎧⎪1⎨=-1⎪⎩ B .x xy 2=1⎧⎨=-1⎩ C .x y y z 2+=1⎧⎨-=-1⎩D .x y =1⎧⎨=-1⎩(2)已知x y =-4⎧⎨=3⎩是方程组ax y x by +=-1⎧⎨-=2⎩的解,则()a b 6+=______.(3)已知x y =2⎧⎨=1⎩是二元一次方程组ax by bx ay +=1⎧⎨+=2⎩的解,则a b -的值为______.【解析】(1)D ;(2)由题意得a =1,b =-2,a b +=1,∴()a b 6+=1.(3)把解代入方程组得a b b a 2+=1⎧⎨2+=2⎩①②,①-②得a b -=-1.(1)用代入消元法解方程组:x y x y 3+4=2⎧⎨2-=5⎩.(2)用加减消元法解方程组:x y x y 4+3=5⎧⎨-2=4⎩.例题2模块二二元一次方程组的概念和解法例题3例题4【解析】(1)由题意得,x yx y3+4=2⎧⎨2-=5⎩①②由②,得y x=2-5,③把③代入①,得()x x3+42-5=2,∴x x3+8-20=2,得x11=22,解得x=2.把x=2代入③,得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩(2)由题意得,x yx y4+3=5⎧⎨-2=4⎩①②①×2+②×3,得x x8+3=10+12,∴x11=22,解得x=2.将x=2代入①,得y8+3=5,解得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩【提示】展示解二元一次方程组的基本解法.用合适的方法解下列二元一次方程组:(1)()()()x yy x3-1=+5⎧⎨5-1=3+5⎩(2)()()()x yx y+1=5+2⎧⎨32-5-43+4=5⎩(3)()()x y yx y4--1=31--2⎧⎪⎨+=2⎪23⎩(4)m n n mnm+-⎧-=2⎪⎪34⎨⎪4+=14⎪3⎩(5)x yx y3-22-1⎧+=2⎪⎪45⎨3+23+1⎪-=0⎪45⎩(6)...x yx y112⎧+=⎪535⎨⎪05-03=02⎩【解析】(1)由题意得,x yx y3-=8⎧⎨3-5=-20⎩①②①-②,得y4=28,解得y=7.将y=7代入①,得x3-7=8,解得x=5.∴方程组的解为xy=5⎧⎨=7⎩.(2)由题意得,x yx y-5=9⎧⎨-2=6⎩①②②-①,得y3=-3,解得y=-1.将y=-1代入①,得x+5=9,解得x=4.∴方程组的解为xy=4⎧⎨=-1⎩.(3)xy=2⎧⎨=3⎩.(4)mn18⎧=⎪⎪5⎨6⎪=-⎪5⎩.(5)xy=2⎧⎨=3⎩.(6)xy14⎧=⎪⎪17⎨12⎪=⎪17⎩.例题5【提示】练习解二元一次方程组的一般步骤:(1)去分母,去括号,最好转化为各项系数为整数的二元一次方程组; (2)多观察,系数为1±时优先使用代入消元法,其次才是加减消元法.解方程组:(1)x y x y 23+17=63⎧⎨17+23=57⎩(2)x y x y 2011-2013=4023⎧⎨2013-2011=4025⎩【解析】(1)两方程相加,得:x y 40+40=120,即x y +=3 ①两方程相减,得:x y 6-6=6,即x y -=1 ② ①+②得:x 2=4,解得x =2,①-②得:y 2=2,解得y =1,∴方程组的解为:x y =2⎧⎨=1⎩.(2)x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】系数对称的二元一次方程组的特殊解法.(1)若方程组.a b a b 2-3=13⎧⎨3+5=309⎩的解是..a b =83⎧⎨=12⎩,则方程组()()()().x y x y 2+2-3-1=13⎧⎨3+2+5-1=309⎩的解是( )A ...x y =63⎧⎨=22⎩B ...x y =83⎧⎨=12⎩C ...x y =103⎧⎨=22⎩D ...x y =103⎧⎨=02⎩(2)用适当的方法解下列方程组:()()x y x y x y x y 3+-2-=-1⎧⎪⎨+-+=1⎪⎩24.【解析】(1)A .比较两个方程组可知..x a y b +2==83⎧⎨-1==12⎩,解得..x y =63⎧⎨=22⎩.(2)令x y u +=,x y v -=,则u v u v 3-2=-1⎧⎪⎨+=1⎪⎩24,解得u v =1⎧⎨=2⎩,即x y x y +=1⎧⎨-=2⎩,解得x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】整体换元法.例题6例题7解方程组:(1)x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩ (2)x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩【解析】(1)由题意得,x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩①②③由①,得y z x =-,④把④代入②和③, 得x z x z 5-=5⎧⎨-+3=13⎩,解得x z =2⎧⎨=5⎩. 把x z =2⎧⎨=5⎩代入④得,y =3.∴方程组的解为x y z =2⎧⎪=3⎨⎪=5⎩.(2)由题意得,x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩①②③③①+得,④x y 3+5=21, 2③②⨯+得,⑤x y 3+3=9,④﹣⑤得y 2=12,y =6,将y =6代入⑤得,x 3=-9,x =-3,将x =-3,y =6代入①得,()z =16-2⨯-3-3⨯6=4, ∴方程组的解为x y z =-3⎧⎪=6⎨⎪=4⎩.【提示】三元一次方程组的基本解法:(1)通过消元把三元一次方程组转化为二元一次方程组; (2)解二元一次方程组.模块三 多元一次方程组的解法例题8(1) x y zx y z ⎧==⎪234⎨⎪5+2-3=8⎩ (2) x y z x y z x y z 2++=2⎧⎪+2+=4⎨⎪++2=6⎩【解析】(1)令x y zk ===234,即x k =2,y k =3,z k =4, 代入②可求得k =2,所以x y z =4⎧⎪=6⎨⎪=8⎩.(2)①+②+③得x y z ++=3,用①、②、③分别减去此式得x y z =-1⎧⎪=1⎨⎪=3⎩.【提示】三元一次方程组的特殊解法:(1)连比设k 型;(2)对称轮换型,整体相加.解方程组:(1)pq p q pq p q1⎧=⎪+5⎪⎨1⎪=⎪-3⎩ (2)xyx y yz y z zx z x ⎧=1⎪+⎪⎪=2⎨+⎪⎪=3⎪+⎩【解析】(1)原方程组可化为p q q p 11⎧+=5⎪⎪⎨11⎪-=3⎪⎩,解得q p 1⎧=4⎪⎪⎨1⎪=1⎪⎩,∴q p 1⎧=⎪4⎨⎪=1⎩.(2)原方程组可化为,解得,∴.【提示】均为可以转化为二元一次方程组或者三元一次方程组的分式方程.11111121113x y y z z x ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩151217121112x y z ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩12512712x y z ⎧=⎪⎪⎪=⎨⎪⎪⎪=-⎩例题9非常挑战(1)已知二元一次方程x y--1=023,下列用含x 的代数式表示y 正确的是( ). A .y x 3=-12 B .y x 3=+12 C .y x 3=-32 D .y x 3=+32(2)下列方程属于二元一次方程的是( )A .x y +=1B .xy +5=4C .y x 23-8=D .x y1+=2(3)已知方程||||()()a b a x b y -1-4-2-+5=3是关于x 、y 的二元一次方程,则a =________,b =__________.【解析】(1)C ;(2)A ;(3)根据题意可得:a -2≠0,b +5≠0,||a -1=1,||b -4=1,所以a =-2,b =5.(1)下列不是二元一次方程组的是( )A .x y =2⎧⎨=-1⎩B .m n n m =2+3⎧⎨3-=4⎩C .x y y z +=2⎧⎨+=3⎩D .(())a a b a b 4+2=5⎧⎨2-+1=2+-3⎩(2)二元一次方程ax by +=6有两组解是x y =2⎧⎨=-2⎩与x y =-1⎧⎨=-8⎩,求a 、b 的值.【解析】(1)C .(2)将两组解分别代入ax by +=6,可得a b a b 2-2=6⎧⎨--8=6⎩,解得a b =2⎧⎨=-1⎩.复习巩固演练1演练2解方程组:(1)m n m n 3+2=2⎧⎨5-4=7⎩(2)()()()()y x x y 3-1=4-4⎧⎨5-1=3+5⎩(3)()()y x x y y x -1⎧-=3⎪2⎨⎪2-+32-=-6⎩ (4)x y x y +1+2⎧=⎪⎪34⎨-3-31⎪-=⎪4312⎩【解析】(1)m n =1⎧⎪⎨1=-⎪⎩2. (2)x y =7⎧⎨=5⎩. (3)x y =2⎧⎨=-1⎩. (4)x y =2⎧⎨=2⎩.解下列方程组:(1)x y x y 21+23=243⎧⎨23+21=241⎩ (2)x y x y 2014+2013=2012⎧⎨2012+2011=2010⎩(3)x y x yx y x y 2+32-3⎧+=7⎪⎪43⎨2+32-3⎪+=8⎪32⎩【解析】(1)x y =5⎧⎨=6⎩.(2)x y =-1⎧⎨=2⎩.(3)设x y a 2+3=,x y b 2-3=,则原方程组可变为,,a ba b ⎧+=7⎪⎪43⎨⎪+=8⎪32⎩整理,得,,a b a b 3+4=84⎧⎨2+3=48⎩解得,.a b =60⎧⎨=-24⎩∴,,x y x y 2+3=60⎧⎨2-3=-24⎩解得,,x y =9⎧⎨=14⎩ ∴原方程组的解为,.x y =9⎧⎨=14⎩演练3演练4解方程组:(1)x z z y x y z -=4⎧⎪-2=-1⎨⎪+-=-1⎩(2)::::::x y z u x y z u =1234⎧⎨9+7+3+2=200⎩(3) x y z y z x z x y +-=11⎧⎪+-=3⎨⎪+-=1⎩(4)mn m n mn m n 1⎧=⎪⎪3+213⎨1⎪=⎪2+312⎩【解析】(1)x y z =-7⎧⎪=-5⎨⎪=-11⎩.(2)设x k =,y k =2,z k =3,u k =4,所以有k k k k 9+14+9+8=200, 即k =5,故x y z u =5⎧⎪=10⎪⎨=15⎪⎪=20⎩.(3)①+②+③得:x y z ++=15,分别去减①、②、③式可得:x y z =6⎧⎪=7⎨⎪=2⎩.(4)m n 1⎧=⎪⎪2⎨1⎪=⎪3⎩.演练5。
数学七年级下册二元一次方程组性质
数学七年级下册二元一次方程组性质数学七年级下册二元一次方程组性质导语:书是人类进步的阶梯,这句话说得真不错,我总是爱看书。
因为我从书本里明白了很多很多的道理。
下面是小编为大家整理的,数学知识,想要知更多的资讯,请多多留意CNFLA学习网!第一章二元一次方程组一、二元一次方程组 1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。
②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。
2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。
二元一次方程组的解的讨论:a1x + b1y = c1 已知二元一次方程组a2x + b2y = c2①、②、③、当a1/a2 ≠ b1/b2 时,有唯一解; 当a1/a2 = b1/b2 ≠ c1/c2时,无解; 当a1/a2 = b1/b2 = c1/c2时,有无数解。
x + y = 4 2x + 2y = 8x + y = 4 x + y = 3 例如:对应方程组:①、②、③、 3x - 5y = 9 2x + 2y = 5例:判断下列方程组是否为二元一次方程组:a +b = 2 ②、x = 4 ③、3t + 2s = 5 ④、x = 11 ①、b +c = 3 y = 5 ts + 6 = 0 2x + 3y = 03、用含一个未知数的代数式表示另一个未知数:用含X的代数式表示Y,就是先把X看成已知数,把Y看成未知数;用含Y的代数式表示X,则相当于把Y看成已知数,把X看成未知数。
七年级数学 第2章 二元一次方程 2.5 三元一次方程组及其解法 数学
⑤与⑥组成方程组为8-x4-x1+17zz==25-,17,解这个方程组,得xz==--13,.
x=-1,
把 x=-1,z=-3 代入④,得 y=12,所以原方程组的解是y=12,
12/6/2021
z=-3.
2.5 三元一次方程组及其解法(选学)
解法二(用加减法):②×2, 得 6x-4y-8z=16.④ ①+④,得 8x-11z=25.⑤ ②×(-3),得 -9x+6y+12z=-24.⑥ ③+⑥,得-4x+7z=-17.⑦ 以下解法同解法一,略.
消元思想和转化思想.若x3=y4=5z≠0,则 x+22xy+3z=___1_33____.
x+2y+3z
[解析] 解法一:设 x=3k,y=4k,z=5k(k≠0),代入
2x
,
得3k+86kk+15k=133.
解法二:特值法(仅针对填空、选择题):假设 x=3,y=4,z=5,代
入求得x+22yx+3x=133.
类型二 三元一次方程组的简单应用
例 2 教材补充例题 一个三位数各个数位上的数字之和是 17,百 位数字与十位数字的和比个位数字大 3,如果把个位数字与百位数字 的位置对调,那么所得的三位数比原数大 495,求原来的三位数.
12/6/2021
2.5 三元一次方程组及其解法(选学)
解:设原来的三位数的百位数字为 x,十位数字为 y,个位数字为 z.根据题意,得 x+y+z=17, x+y-z=3, (100z+10y+x)-(100x+10y+z)=495, 解得xy= =28, ,
12/6/2021
2.5 三元一次方程组及其解法(选学)
【归纳总结】解三元一次方程组的基本思路和一般步骤 基本思路:用代入法或加减法消去一个未知数,化成二元一次方程 组,再解这个二元一次方程组. 一般步骤:三元(方程组)―消―元→二元(方程组)―消―元→一元(方程).
二元一次方程组及三元一次方程组
二元一次方程组学习目标:1.解三元一次方程组2.二元一次方程解应用题3.中考真题演练基础篇1.某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?解:设到甲工厂的人数为x人,到乙工厂的人数为y人题中的两个相等关系:(1)抽9人后到甲工厂的人数=到乙工厂的人数可列方程为:x-9=_____________(2)抽5人后到甲工厂的人数=_____________可列方程为:__________________________2.小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小?解;设共买x枚10分邮票,y枚20分邮票题中的两个相等关系:(1)10分邮票的枚数+20分邮票的枚数=总枚数可列方程为:__________________________(2)10分邮票的总价+_____________=全部邮票的总价可列方程为:10x+_____________=_____________3.小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?题中的两个相等关系:(1)做4个小狗的时间+_____________=3时42分可列方程为:__________________________(2)_____________+做6个小汽车的时间=3时37分可列方程为:__________________________4.甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇.二人的平均速度各是多少?解:设甲每小时走x千米,乙每小时走y千米题中的两个相等关系:(1)同向而行:甲的路程=乙的路程+_____________可列方程为:__________________________(2)相向而行:甲的路程+_____________=_____________可列方程为:__________________________5.某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加工厂1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?解:这个市现在的城镇人口有x万人,农村人口有y万人题中的两个相等关系:(1)现在城镇人口+_____________=现在全市总人口可列方程为:__________________________(2)明年增加后的城镇人口+_____________=明年全市总人口可列方程为:(1+0.8%)x+_____________ = _____________6.某幼儿园分萍果,若每人3个,则剩2个,若每人4个,则有一个少1个,问幼儿园有几个小朋友?解:设幼儿园有x个小朋友,苹果有y个题中的两个相等关系:(1)苹果总数=每人分3个+_____________可列方程为:__________________________(2)苹果总数=__________________________可列方程为:__________________________7.要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?解:设含盐10%的盐水有x千克,含盐85%的盐水有y千克.题中的两个相等关系:(1)含盐10%的盐水中盐的重量+含盐85%的盐水中盐的重量=__________________________可列方程为:10% x+_____________=_____________(2)含盐10%的盐水重量+含盐85%的盐水重量=_____________可列方程为:x + y =_____________8.需要用多少每千克售4.2元的糖果才能与每千克售3.4元的糖果混合成每千克售3.6元的杂拌糖200千克?解:设每千克售4.2元的糖果为x千克,每千克售3.4元的糖果为y千克题中的两个相等关系:(1)每千克售4.2元的糖果销售总价+_____________=_____________可列方程为:__________________________(2)每千克售4.2元的糖果重量+_____________=_____________可列方程为:__________________________9.如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?解:设小长方形的长是x厘米,宽是y厘米题中的两个相等关系:(1)小长方形的长+_____________=大长方形的宽可列方程为:__________________________(2)小长方形的长=__________________________可列方程为:__________________________10.一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?解:设有__________________________题中的两个相等关系:(1)制作桌面的木材+_____________=_____________可列方程为:__________________________(2)所有桌面的总数:所有桌脚的总数=_____________可列方程为:__________________________11.一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?解:设个位数字为x,十位数字为y.题中的两个相等关系:(1)个位数字=_____________-5可列方程为:__________________________(2)新两位数=__________________________可列方程为:__________________________12.一批货物要运往某地,货主准备租用汽运公司的甲、乙两种货车,已知过去租用这两种汽车运货的情况如左表所示,现租用该公司5辆甲种货车和6辆乙种货车,一次刚好运完这批货物,问这批货物有多少吨?解:设____________________________________________________题中的两个相等关系:(1)第一次:甲货车运的货物重量+_____________=36可列方程为:__________________________(2)第二次:甲货车运的货物重量+_____________=26可列方程为:__________________________提高篇,链接中考,实战篇一、选择题1.(2009年台湾)若二元一次联立方程式23461515503x yx y −⎧=⎪⎪⎨+−⎪=⎪⎩的解为x =a ,y =b ,则a −b =?( ) A .35B .59C .329D .−31392.(2009年四川绵阳)小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗−=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x后来发现“⊗”“⊕”处被墨水污损了,请你帮他找出⊗、⊕处的值分别是( )A .⊗ = 1,⊕ = 1B .⊗ = 2,⊕ = 1C .⊗ = 1,⊕ = 2D .⊗ = 2,⊕ = 23.(2009年广西桂林)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨−=⎩的解,则a b −的值( ) A .1B .-1C . 2D .34.(2009年福建福州)二元一次方程组2,x y x y +=⎧⎨−=⎩的解是( )A .0,2.x y =⎧⎨=⎩B .2,0.x y =⎧⎨=⎩C .1,1.x y =⎧⎨=⎩D .1,1.x y =−⎧⎨=−⎩5.(2009年山东日照)若关于x ,y 的二元一次方程组⎩⎨⎧=−=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为( )A .43−B .43C .34D .34−6.(2009年黑龙江齐齐哈尔)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( )A .4种B .3种C .2种D .1种二、填空题1.(2009年湖南株洲)孔明同学在解方程组2y kx by x =+⎧⎨=−⎩的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为12=−⎧⎨=⎩x y ,又已知直线=+y kx b 过点(3,1),则b 的正确值应该是___________.2.(2009年湖南怀化)方程组321026x y x y +=⎧⎨+=⎩,的解为___________.3.(2009年甘肃定西)方程组25211x y x y −=−⎧⎨+=⎩,的解是___________.4.(2009年四川达州)将一种浓度为15℅的溶液30 kg ,配制成浓度不低于20℅的同种溶液,则至少需要浓度为35℅的该种溶液____________kg.5.(2009年河北)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是___________cm .三、解答题1.(2009年北京市)列方程或方程组解应用题:北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?2.(2009年江苏省)一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元..一次方程组.....解决的问题,并写出解答过程.3.(2009年湖北襄樊)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?4.(2009年山东淄博)如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.5.(2009年广东肇庆)2008 年北京奥运会,中国运动员获得金、银、铜牌共 100 枚,金牌数位列世界第一.其中金牌比银牌与铜牌之和多 2 枚,银牌比铜牌少 7 枚.问金、银、铜牌各多少枚?–23 4(备用图)2y–x–23 4 xy(第4题)abc6.(2009年湖南邵阳)为迎接“建国60周年”国庆,我市准备用灯饰美化红旗路,需采用A、B两2.种不同类型的灯笼200个,且B灯笼的个数是A灯笼的3(1)求A、B两种灯笼各需多少个?(2)已知A、B两种灯笼的单价分别为40元、60元,则这次美化工程购置灯笼需多少费用?7.(2009年新疆乌鲁木齐市)某超市为“开业三周年”举行了店庆活动.对A、B两种商品实行打折出售.打折前,购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元.而店庆期间,购买50件A商品和50件B商品仅需960元,这比不打折少花多少钱?8.(2009年福建宁德)某刊物报道:“2008年12月15日,两岸海上直航、空中直航和直接通邮启动,‘大三通’基本实现.‘大三通’最直接好处是省时间和省成本,据测算,空运平均每航次可节省4小时,海运平均每航次可节省22小时,以两岸每年往来合计500万人次计算,则共可为民众节省2900万小时……”根据文中信息,求每年采用空运和海运往来两岸的人员各有多少万人次.9.(2009年湖南益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选学2.5 三元一次方程组及其解法
A 组
1.运用加减法解方程⎩⎪⎨⎪
⎧11x +3z =9,3x +2y +z =8,2x -6y +4z =5,
较简单的方法是(C )
A. 先消去x ,再解⎩⎪⎨⎪⎧22y +2z =61,
66y -38z =-37
B. 先消去z ,再解⎩⎪⎨⎪
⎧2x -6y =-15,38x +18y =21
C. 先消去y ,再解⎩
⎪⎨⎪⎧11x +7z =29,
11x +3z =9
D. 三个方程相加再除以2,得8x -2y +4z =11再解
2.已知a +b =16,b +c =12,c +a =10,则a +b +c 的值为(A ) A. 19 B. 38 C. 14 D. 22
3.有甲、乙、丙三种商品,如果购买3件甲商品,2件乙商品,1件丙商品共需315元;购买1件甲商品,2件乙商品,3件丙商品共需285元,那么购买甲、乙、丙三种商品各一件共需(C )
A. 50元
B. 100元
C. 150元
D. 200元
4.三元一次方程组⎩⎪⎨⎪
⎧a +b +c =12,2a +b -c =3,a -b +c =2
的解为⎩⎪⎨⎪⎧a =5
3
,
b =5,
c =163
.
5.已知a ,b ,c 是有理数,观察表中的运算,在空格内填上相应的数.
6.解下列方程组:
(1)⎩⎪⎨⎪
⎧x +z -3=0,①2x -y +2z =2,②x -y -z =-3.③
【解】 ②-③,得x +3z =5.④ ④-①,得2z =2, ∴z =1.
把z =1代入①,得x +1-3=0,
∴x =2.
把⎩
⎪⎨⎪⎧x =2,z =1代入③,得y =4. ∴原方程组的解为⎩⎪⎨⎪
⎧x =2,y =4,z =1.
(2)⎩⎪⎨⎪⎧x 2=y 3=z 5,①
x -2y +3z =33.②
【解】 设x 2=y 3=z
5
=k ,
则x =2k ,y =3k ,z =5k .③
把③代入②,得2k -6k +15k =33,解得k =3.
把k =3代入③,得到原方程组的解为⎩⎪⎨⎪
⎧x =6,y =9,z =15.
7.已知|x -z +4|+|z -2y +1|+|x +y -z +1|=0,求x +y +z 的值.
【解】 由题意,得⎩⎪⎨⎪
⎧x -z +4=0,①z -2y +1=0,②x +y -z +1=0,③
③-①,得y =3.
把y =3代入②,得z =5. 把z =5代入①,得x =1. ∴x +y +z =1+3+5=9.
B 组
(第8题)
8.如图,在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数之和都相等,则x ,y 的值分别是(B )
A. x =1,y =-1
B. x =-1,y =1
C. x =2,y =-1
D. x =-2,y =1
【解】 设每行每列及对角线上三个方格中的数之和为m ,由题意,得 ⎩⎪⎨⎪⎧2x +3+2=m ,2+(-3)+4y =m ,2x +y +4y =m , 解得⎩⎪⎨⎪
⎧x =-1,y =1,m =3. 9.已知x +2y -3z =0,2x +3y +5z =0,则
x +y +z x -y +z 的值为__7
29
__.
【解】 联立⎩
⎪⎨⎪⎧x +2y -3z =0,2x +3y +5z =0,得⎩⎪⎨⎪⎧x =-19z ,
y =11z .
∴
x +y +z x -y +z =-7z -29z =729
.
10.为确保信息安全,在传输时往往需要加密,发送方发出一组密码a ,b ,c 后,接收方对应收到的密码为A ,B ,C .双方约定:A =2a -b ,B =2b ,C =b +c ,例如发出1,2,3,则收到0,4,5.
(1)当发送方发出一组密码为2,3,5时,接收方收到的密码是多少? (2)当接收方收到一组密码为2,8,11时,发送方发出的密码是多少? 【解】 (1)当a =2,b =3,c =5时, A =2a -b =2×2-3=1, B =2b =2×3=6, C =b +c =3+5=8.
答:接收方收到的密码是1,6,8.
(2)由题意,得⎩⎪⎨⎪
⎧2a -b =2,2b =8,b +c =11,
解得⎩⎪⎨⎪
⎧a =3,b =4,c =7.
答:发送方发出的密码是3,4,7.
数学乐园
11.要把一个棱长为6的正方体分割成49个边长为整数的小正方体(小正方体大小可以不等),应如何分割?并画图示意.
【解】 ①设切出棱长为5的正方体1个,棱长为1的正方体48个.
∵48+53≠63
,∴不能分割出棱长为5的正方体.
②设分割出棱长为4的正方体1个,棱长为2的正方体b 个,棱长为1的正方体a 个,则
⎩
⎪⎨⎪⎧a +23
b +43
=63
,a +b =48.
解得b =146
7
,不合题意,舍去.
即不能分割出棱长为4的正方体.
③设分割出棱长为3的正方体c 个,棱长为2的正方体b 个,棱长为1的正方体a 个,则
⎩
⎪⎨⎪⎧a +23
b +33
c =63
,a +b +c =49. 消去a ,得7b +26c =167.
(第11题解)
∵a ,b ,c 均为正整数, ∴c =4,b =9,a =36.
∴可分割成棱长分别为1,2和3的正方体各36个,9个和4个,共计49个.分割法如解图所示.。