恒压变频供水电气控制系统设计
变频恒压供水系统设计(论文)

1.2水泵供水系统具有管网特性:
通道管网的流量与所消耗的能量之间的关系,如图1所示,它同时表明水泵的能量用来克服泵系统的水位及压力差,液体在管道中流动的阻力。水泵运行工作点位置与水泵负载有关,在水泵负载经常变化的情况下,水泵不能总处在高效区域里工作。为使水泵适应外界负载变化的要求。我们可采用变速调节,即在管网特性曲线基本不变时,采用改变水泵转速来改变泵的Q—H特性曲线。从而改变它的工作点,达到既改变流量又能保证水泵恒定和输入功率减少的目的。
一、题目:变频恒压供水系统设计
二、摘要:
随着社会经济的发展,绿色、节能、环保已成为社会建设的主题。对于一个城市的建设,供水系统的建设是其中重要的一部分。供水的可靠性、稳定性、经济性直接影响到居民的生活质量。近年来,随着自动化技术、控制技术的发展,以及这些技术在供水系统的应用,高性能、高节能的变频恒压控制的供水系统已成为现在城市供水管理的必然趋势。经过一学期对《交流电机变频调速》的学习,以及以前对PLC控制器的了解。本次课程设计采用OMRON C系列小型PLC控制器结合富士FRENIC 5000G11S系列变频器控制两台水泵,实现变频恒压供水系统的设计,并结合一些辅助控制器件实现对系统的保护,使得系统控制可靠,操作方便。
0504
VVVF故障信号
0007
泵机组过载报警指示灯(HL6)
0505
VVVF故障报警指示灯(HL7)
0506
系统故障报警警铃
0507
图5变频恒压供水系统控制电路设计
2.4软件设计
要通过PLC控制器实现水泵的切换与系统的故障检测,本系统设计为:系统启动后,泵1首先进入变频运行,当出现压力上限时,变频泵切换为工频,启动另一台泵变频运行,当出现压力下限时,工频泵切除,仅又变频泵工作,系统程序设计流程图如图6。
基于PLC变频恒压供水控制系统设计

基于PLC变频恒压供水控制系统设计PLC变频恒压供水控制系统的设计供水系统是一种常见的工业和建筑领域常用的系统。
PLC变频恒压供水控制系统是一种可以控制和调节水泵的电气控制系统,以实现恒压供水的目的。
下面将介绍一个基于PLC变频恒压供水控制系统的设计。
设计目标:1.实现恒定的供水压力,不受进水压力和水流量的波动影响。
2.实现多台水泵的协调运行,实现水泵的均衡负荷运行,延长水泵寿命。
3.实现故障自动检测和报警,提高供水系统的可靠性。
系统组成:1.传感器:使用压力传感器和流量传感器来感知进水压力和供水流量。
2.PLC:使用可编程逻辑控制器(PLC)来实现逻辑控制和运算。
3.变频器:使用变频器来控制水泵的转速,从而实现恒扬程供水控制。
4.水泵:使用多台水泵来实现供水。
系统工作原理:1.系统启动:当水泵系统运行时,PLC会控制最初的启动过程,按照设定的启动顺序依次启动水泵,避免同时启动造成的电网冲击。
2.进水压力检测:系统通过压力传感器检测进水压力,当进水压力小于设定的最小进水压力时,PLC会自动启动水泵,以提供足够的进水压力。
3.恒压供水控制:PLC通过控制变频器,改变水泵的转速来实现供水流量和压力的稳定。
当供水压力低于设定的最小供水压力时,PLC会增加水泵的转速以提供足够的供水压力;当供水压力高于设定的最大供水压力时,PLC会降低水泵的转速以避免过高的压力。
4.水泵协调运行:通过PLC控制,多台水泵可以根据供水流量需求实现均衡负载运行,避免其中一台水泵长时间运行。
系统优势:1.系统能够自动检测供水压力,保持恒定的供水压力,避免由于进水压力和水流量的波动而导致的供水压力变化。
2.系统能够实现多台水泵的协调运行,避免单一水泵长时间运行而导致的设备损坏。
3.系统具有快速故障检测和报警功能,及时发现水泵等设备的故障,减少停机时间。
总结:基于PLC变频恒压供水控制系统的设计可以实现恒定的供水压力,提高供水系统的稳定性和可靠性。
变频恒压供水系统设计

摘要:针对药品研发中试企业用水量具有间断性的特征,设计了一种变频恒压供水系统。
该系统利用PLC的逻辑控制与自诊断分析功能,实现了全自动恒压供水,水泵电机根据测量压力均可变频和工频供电,相互备用。
实际运行表明,该系统运行稳定性强,控制灵活,安全可靠。
关键词:节能;变频调速;PID应用宏;PLC控制;逻辑控制引言药品研发中试企业用水量具有间断性特征,有生产需求时用水量大,在药品研发小试阶段用水量较小,因此,离心水泵必须通过调整转速来满足水压稳定性的需求。
变频恒压供水系统集变频技术、电气技术、现代控制技术于一体,可实现对供水系统的集中管理与监控,并具有良好的节能效果。
1水泵变频调速节能原理水泵调速的H-Q曲线如图1所示,水泵运行工况点D是泵的特性曲线与管路阻力曲线的交点。
当用阀门控制流量时,若要减小流量,则需关小阀门开度,使阀门摩擦阻力变大,阻力曲线从R1移到R2,扬程则从H0上升到H1,流量从QN减小到Q1,运行工况点从D点移到A点。
调速控制时,阻力曲线不变,泵的特性取决于转速,如果将转速由nN变为n1,运行工况点从D点移到C点,扬程从H0降到H3,流量从QN减小到Q1,则泵在A点、C点工况运行时的轴功率分别为:式中:PA、PC为泵在工况点A、C的轴功率(kW);Q1为工况点流量(m3/s);H1、H3为工况点扬程(m);ρ为输出介质单位体积质量(kg/m3);η为工况点的泵效率(%)。
将PA与PC相减得出使用调速控制时节省的功率:Q、H、P、n之间的关系为:水泵采用调速控制方式时,若所需流量为额定流量的80%,则轴功率仅为额定轴功率的51.2%,节能效果相当显著。
变频恒压供水系统的优点是节约电能,节能量通常在10%~40%,流量越小,节能效果越明显。
2控制系统组成本系统供水泵采用两用一备方式,泵功率15 kW,Q=162 m3/s,H=42 m,泵前装有9.5 m×3 m×2.5 m的生产水箱,企业用水量经常出现间断性、阶梯性特征,且市政供水压力偏高,为保证生产用水的安全性,避免系统管网压力过高,本设计采用变频器一拖三运行方式,每台泵电机均可工作在变频/工频模式下,在主回路控制中,每台电机分别通过接触器与工频电源和变频器输出电源连接,工频回路装有过热继电器,工频和变频控制回路在硬件和软件方面互锁,当任意一台电机出现故障,PLC系统经过逻辑分析自动投入备用供电回路,确保管网供水压力稳定,安全供水。
基于PLC的变频恒压供水系统的设计

基于PLC的变频恒压供水系统的设计一、概述供水系统的重要性及其在现代社会中的应用:供水系统在现代社会中具有至关重要的地位。
随着城市化进程的加速和人口规模的不断扩大,稳定、高效、节能的供水系统已成为满足居民生活需求、保障工业生产和推动城市可持续发展的重要基础设施。
变频恒压供水系统的优势:变频恒压供水系统是指在供水管网中用水量发生变化时,出口压力保持不变的供水方式。
相比传统的水塔、高位水箱、气压罐等供水方式,变频恒压供水系统具有以下优势:高效节能:变频恒压供水系统能根据用水量自动调节水泵转速,节能效果显著,可节能3060。
PLC在变频恒压供水系统中的应用:PLC(可编程逻辑控制器)在变频恒压供水系统中的应用,使得系统能够通过微机检测、运算,自动改变水泵转速以保持水压恒定,满足用水需求。
PLC的应用不仅提高了系统的可靠性和稳定性,还简化了系统控制接线,方便了维修和调试。
系统原理:变频恒压供水系统以管网水压(或用户用水流量)为设定参数,通过微机控制变频器的输出频率从而自动调节水泵电机的转速,实现管网水压的闭环调节(PID),使供水系统自动恒稳于设定的压力值。
设备特点:变频恒压供水系统采用可编程控制器,程序灵活多变,精度高,可靠性强,功能多,反映速度快。
系统还配有稳压泵或稳压罐稳压,在用水量小到一定值时,主泵可停止运转,减少水泵电机的机械磨损并且节约电能。
应用前景:变频恒压供水系统作为一种先进的、合理的节能供水系统,在工业、商业和居民生活等领域具有广泛的应用前景。
它不仅能够满足用户对水压和水量的要求,还能够提高供水品质和供水效率,是一种理想的现代化建筑供水设备。
1. 供水系统的重要性和挑战供水系统在城市发展中扮演着至关重要的角色,它直接关系到居民的生活质量和健康。
一个可靠的供水系统能够确保居民获得充足、安全的饮用水,同时支持城市的工业、农业和其他用水需求。
保障居民健康:水质的好坏直接关系到居民的健康。
供水系统需要确保提供的水质符合卫生标准,以减少水源性疾病的传播。
变频恒压供水系统方案设计

变频恒压供水系统方案设计作者:赵毅来源:《职业·中旬》2012年第12期摘要:变频恒压供水系统由PLC、传感器、变频器及水泵机组组成闭环控制系统,经变频器内置PID进行运算,通过PLC控制变频与工频切换,实现闭环自动调节变频恒压供水,代替了传统的水塔供水控制方案。
关键词:恒压供水变频调速变频器 PLC一、系统总体方案的设计1.供水控制系统的结构供水控制系统的设计主要包括两方面:一方面是机械结构的设计;另一方面是PLC和变频器电气控制方面的设计。
(1)主要组成部分。
①压力传感器:作为系统的控制输入量,能否准确采集该信号决定控制系统的精度及可靠性。
②控制器:是整个控制系统的核心,通过对外界输入状态进行检测,输出控制量;对外界输入的数据进行运算处理后,输出相应的控制量。
例如单片机、可编程逻辑控制器、计算机等。
本系统采用西门子的SIMATIC S7-200系列。
CPU226具有24个输入点和16个输出点,共40个I/O点。
③变频器:作为核心控制器的后续控制单元,对终端设备进行控制,最终达到控制要求。
本系统主要采用全新一代标准变频器中的风机和泵类变转矩负载专用MM430型变频器。
功率范围7.5kW至250kW。
具有高度可靠性和灵活性。
④水泵:供水系统的执行机构,通过变频器控制电动机的转速,最后达到控制水泵流量大小的要求。
(2)电气控制系统。
电气控制系统主要包括操作面板、电气控制柜等单元。
在该系统中需要检测较多的数字输入量,并且还要检测模拟量的输入,然后根据设定的程序进行数据处理,供水系统的监控主要包括水泵的自动启停控制、供水压力的测量与调节、系统水处理设备运转的监视及控制、故障及异常状况的报警等。
电气控制系统安装在电气控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。
2.恒压供水系统的工作原理变频恒压供水系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。
恒压供水控制系统设计

3.若两台电机同时工作20分钟后还未到达设置值,则发出报警指示并自动停止供水工作。
4.两台电机均要有相应的保护措施及运行指示。
5.按照绘图原则,设计出主电路和控制电路,并选择合适的元器件。
使用的工具软件
(1)供水成本高。由于用水全部单纯采用水泵供水,造成电能的极大浪费和机电设备的大量损耗。
(2)供水可靠性低。由于水泵采用人工操作方式,高位水池的水位只能靠人为估计,而且高位水池离水泵房较远,无法做到准时开机和停机。会造成供水中断或出现高位水池水位过高而溢流,电能和水资源造成浪费。另外,如果蓄水池水位过低,还会造成水泵空转,导致电能浪费和机电设备的加速损耗。
若当电动机工作20分钟后水压未到达设置值,未指针指向SP2,指针仍指向SP1,线圈KA1仍电,KA1常开触头仍闭合,线圈KM1仍得电,指示灯HL1仍亮,同时依然KM1主触头闭合并且KM1常开触头闭合自锁,KM1的常闭触头断开,时间继电器KT2通电延时动作,KT2常开延时触头闭合,线圈KA3得电,KA3常开触头闭合自锁,KA3常闭触头断开,KT2常闭延时触头断开,同时线圈KM1失电,同时KM1主触头断开,KM1常开触头断开,KM1常闭触头闭合,此时,切除第一台电动机,指示灯HL1灭,同时线圈KM2失电,同时KM2主触头断开,KM2常开触头断开,KM2常闭触头闭合,指示灯HL2灭,此时,切除第二台电动机,两台电动机均停止工作,指示灯HL3灭。
Autocad、office2003
提交的设计资料
1.主电路和控制电路原理图1份
2.元器件明细表1份
3.设计说明书1份
进度计划
阶段日期
计划完成工作量
变频恒压供水系统方案设计

OCCUPATION 2012 12132研究R ESEARCH 变频恒压供水系统方案设计赵 毅摘 要:变频恒压供水系统由PLC、传感器、变频器及水泵机组组成闭环控制系统,经变频器内置PID进行运算,通过PLC控制变频与工频切换,实现闭环自动调节变频恒压供水,代替了传统的水塔供水控制方案。
关键词:恒压供水 变频调速 变频器 PLC一、系统总体方案的设计1.供水控制系统的结构供水控制系统的设计主要包括两方面:一方面是机械结构的设计;另一方面是PLC和变频器电气控制方面的设计。
(1)主要组成部分。
①压力传感器:作为系统的控制输入量,能否准确采集该信号决定控制系统的精度及可靠性。
②控制器:是整个控制系统的核心,通过对外界输入状态进行检测,输出控制量;对外界输入的数据进行运算处理后,输出相应的控制量。
例如单片机、可编程逻辑控制器、计算机等。
本系统采用西门子的SIMATIC S7-200系列。
CPU226具有24个输入点和16个输出点,共40个I/O点。
③变频器:作为核心控制器的后续控制单元,对终端设备进行控制,最终达到控制要求。
本系统主要采用全新一代标准变频器中的风机和泵类变转矩负载专用MM430型变频器。
功率范围7.5kW至250kW。
具有高度可靠性和灵活性。
④水泵:供水系统的执行机构,通过变频器控制电动机的转速,最后达到控制水泵流量大小的要求。
(2)电气控制系统。
电气控制系统主要包括操作面板、电气控制柜等单元。
在该系统中需要检测较多的数字输入量,并且还要检测模拟量的输入,然后根据设定的程序进行数据处理,供水系统的监控主要包括水泵的自动启停控制、供水压力的测量与调节、系统水处理设备运转的监视及控制、故障及异常状况的报警等。
电气控制系统安装在电气控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。
2.恒压供水系统的工作原理变频恒压供水系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。
plc变频恒压供水系统设计

《交流调速》课程设计课题名称变频恒压供水控制系统设计学院(部) 兴华学院专业电气工程及其自动化班级61130802学生姓名王平学号61130802366 月27 日至7 月 1 日共 1 周指导教师(签字)11年 5 月30 日一.概述随着社会的飞速发展和城市建设规模的扩大,人口的增多以及人们生活水平的提高,对城市供水的质量、数量、稳定性等问题提出了越来越高的要求,我国中小城市供水的自动化配置相对落后,机组的控制主要依靠值班人员的手操作,控制过程烦琐,而且手动控制无法对供水管网的压力和水位变化及时做出恰当的反应。
为了保证供水,机组常保持在超压的状态下运行,设计了一套基于PLC的变频恒压供水系统。
恒压供水技术以其节能、安全、供水高品质等优点,在供水行业得到了广泛应用。
恒压供水调速系统实现水泵电动机无级调速,依据用水量的变化自动调节系统的运行参数,恒压供水对水泵、电机也起到了很好的保护作用和有效地节约了电能的消耗。
结合使用可编程控制器,可实现循环变频,具有短路保护、过流保护功能,工作稳定可靠,延长了设备的使用寿命。
二.方案确定变频恒压自动控制供水系统由可编程控制器、变频器、水泵机组、压力传感器等组成。
系统采用一台变频器拖动二台水泵运行,起动,调速。
在变频调速恒压供水系统中,单台水泵工况的调节是通过变频器来改变电源的频率f来改变电机的转速n,从而改变水泵的性能曲线来实现的。
分析水泵的能耗比较图,可以看出利用变频器实现调速恒压供水,当转速降低时,流量与转速成正比,功率以转速的三次方下降,与传统供水方式阀门节流控制相比,在一定程度上可以减少能量损耗,能够明显节能。
系统正常运行时,用户用水管网上的压力传感器对用户的用水水压进行数据采样,传输至PLC,与用户设定的压力值进行比较,将结果转换为频率调节信号和水泵启动台数信号分别送至变频器和可编程控制器;变频器调节水泵电机的电源频率,进而调整水泵的转速;PLC控制水泵的运转。
变频恒压供水控制系统设计

一.摘要变频调速是一种新兴的技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。
随着社会经济的发展,绿色、节能、环保已成为社会建设的主题。
对于一个城市的建设,供水系统的建设是其中重要的一部分,供水的可靠性、稳定性、经济性直接影响到居民的生活质量。
近年来,随着自动化技术、控制技术的发展,以及这些技术在供水系统的应用,高性能、高节能的变频恒压控制的供水系统已成为现在城市供水管理的必然趋势。
本次课程设计采用CPM1A PLC控制器结合富士变频器控制两台水泵的各种转换,实现变频恒压供水系统的功能,并且实现故障转换与报警等保护功能,使得系统控制可靠,操作方便。
二.设计要求一楼宇供水系统,正常供水量为30m3/小时,最大供水量40m3/小时,扬程24米。
采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。
当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。
要求设计实现:⑴设二台水泵。
一台工作,一台备用。
正常工作时,始终由一台水泵供水。
当工作泵出现故障时,备用泵自投。
⑵二台泵可以互换。
⑶给定压力可调。
压力控制点设在水泵出口处。
⑷具有自动、手动工作方式,各种保护、报警装置。
采用OMRON CPM1APLC、富士变频器完成设计。
三.方案的论证分析传统的小区供水方式有:⑴恒速泵加压供水方式该方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,目前较少采用。
⑵气压罐供水方式气压罐供水具有体积小、技术简单、不受高度限制等特点,但此方式调节量小、水泵电机为硬起动且起动频繁,对电器设备要求较高、系统维护工作量大,而且为减少水泵起动次数,停泵压力往往比较高,致使水泵在低效段工作,也使浪费加大,从而限制了其发展。
基于PLC的变频调速恒压供水系统设计与实现

基于PLC的变频调速恒压供水系统设计与实现一、本文概述随着工业自动化的发展,变频调速技术在供水系统中的应用越来越广泛。
基于PLC(可编程逻辑控制器)的变频调速恒压供水系统,以其高效、稳定、节能的特点,成为当前供水系统设计的重要趋势。
本文旨在探讨基于PLC的变频调速恒压供水系统的设计与实现方法,以期为相关领域的工程应用提供有益的参考。
文章首先介绍了供水系统的基本构成和功能需求,包括恒压供水的重要性以及变频调速技术在供水系统中的应用优势。
随后,详细阐述了基于PLC的变频调速恒压供水系统的总体设计方案,包括硬件选型、软件编程、系统控制策略等方面。
在此基础上,文章重点探讨了系统实现过程中的关键技术问题,如PLC编程实现、变频器的选择与配置、压力传感器信号的采集与处理等。
通过本文的研究,期望能够为供水系统的设计与实现提供一种有效、可靠的解决方案,同时推动变频调速技术在供水领域的应用和发展。
二、系统需求分析和设计目标随着现代工业技术的快速发展,供水系统的稳定性和效率成为了评价一个城市或企业基础设施水平的重要指标。
传统的供水系统往往存在能耗高、调节性差、压力不稳定等问题,无法满足现代供水系统的要求。
为了解决这些问题,本文提出了一种基于PLC的变频调速恒压供水系统设计方案。
稳定性需求:供水系统需要保持长时间的稳定运行,确保供水压力的稳定性,避免因压力波动对供水质量造成影响。
节能性需求:传统的供水系统往往存在能耗高的问题,新的供水系统需要采用先进的控制技术,降低能耗,提高能源利用效率。
调节性需求:供水系统需要能够根据实际需求,自动调节供水流量和压力,以满足不同时段、不同区域的供水需求。
实现供水系统的恒压供水:通过PLC控制系统,实时监测供水压力,根据压力变化自动调节变频器的输出频率,从而控制水泵的转速,实现恒压供水。
提高供水系统的稳定性:采用先进的控制算法,确保供水系统在各种工况下都能保持稳定的运行状态,避免因压力波动对供水质量造成影响。
变频恒压供水系统设计[]
![变频恒压供水系统设计[]](https://img.taocdn.com/s3/m/18b87ccdf705cc175527099e.png)
1 绪论 (2)1.1引言 (5)1.2变频恒压供水产生的背景和意义 (7)1.3变频恒压供水的现况 (8)1.3.1国内外变频供水系统现状........................................................................................... .81.3.2变频供水系统应用范围 (10)1.3.3变频供水系统的发展趋势 (10)2 变频恒压供水的理论分析 (10)2.1水泵的工作原理 (11)2.2供水压力和变频器输出频率的关系 (11)3 变频恒压供水系统的构成及控制原理 (11)3.1 通用变频器+PLC (12)3.2变频恒压供水系统的结构 (13)3.2.1执行机构 (14)3.2.2信号检测 (14)3.2.3控制系统 (15)3.2.4人机界面 (16)3.2.5通讯接口 (16)3.2.6报警装置 (17)3.3变频恒压供水系统的控制方案 (176)3.4变频恒压供水系统的水压恒定控制 (17)3.5变频供水水泵加减的控制 (18)4 变频恒压供水系统的设计 (19)4.1理论可行性 (20)4.2技术可行性 (21)4.3硬件设计 (21)4.3.1变频供水主电路设计 (22)4.3.2控制系统硬件设计 (23)4.4软件设计 (24)4.4.1系统初始化程序设计 (25)4.4.3电机增减控制程序设计 (26)4.5本章小节 (27)参考文献 (29)摘要随着我国社会经济的发展,住房制度改革的不断深入,人们生活水平的不断提高,城市建设发展十分迅速,同时也对基础设施建设提出了更高的要求。
城市供水系统的建设是其中的一个重要方面,供水的可靠性、稳定性、经济性直接影响到用户的正常工作和生活,也直接体现了供水管理水平的高低。
传统供水厂,特别是中小供水厂所普遍采用的恒速泵加压供水方式存在效率较低、可靠性不高、自动化程度低等缺点,难以满足当前经济生活的需要。
变频恒压供水系统设计

33 层大楼变频恒压供水系统1 系统简介.................................................... 1.2 变频恒压供水系统构成及工作原理2.1 系统的构成1. .3.2.1.1执行机构 ............................................3..2.1.2信号检测 ............................................ 4..2.1.3控制系统 ............................................ 4..2.1.4通讯接口 ............................................ 5..2.1.5报警装置 ............................................ 6.. 2.2 工作原理................................................ 6.2.3 变频恒压供水系统中加减水泵的条件分析.................... 7..3基于PLC的变频恒压供水系统设计与实现....................... 9…3.1控制要求.............................................. 9 .....3.2变频器的选择与接线.................................... 1..0 3.3 压力传感器的接线图1..2 3.4原其它元器件的选择.................................... 1..3.. 3.5PLC 控制I/O 口配置.................................... 1..5.. 3.6电气控制系统原理及线图................................ 1..7.3.6.1主电路图 .......................................... 1..7..3.6.2控制电路接线图..................................... 1..8.. 3.7基于PLC的变频恒压供水系统程序流程 .................... 19.3.8 控制方式.............................................. 2..1..3.8.1 手动运行........................................... 2..13.8.2 自动运行........................................... 2..2 3.9 主要程序说明............................................ 2..3 3.9.1 总程序的顺序功能图................................. 2..3 3.9.2 自动运行顺序功能图................................. 2..3 3.9.3手动模式顺序功能图.................................. 2..5 3.9.4 程序说明........................................... 2..61 系统简介这是一套基于PLC变频恒压供水系统的可行性方案,选择了相应的器件,使系统通过安装在管网上的压力传感器,把水压转换成4~20mA 的模拟信号,通过变频器来控制改变水泵转速。
恒压供水自动控制系统设计

收稿日期:2020-02-26第一作者简介:刘建生(1962—),男,毕业于重庆大学,本科,电气工程师研究方向为自动化。
DOI:10.16525/ki.14-1362/n.2020.05.27总第191期2020年第5期Total of 191No.5,2020两化融合恒压供水自动控制系统设计刘建生(太原市滨河体育中心,山西太原03006)摘要:通过基于PLC 恒压供水控制系统的设计,然后分析了PLC 的工作原理以及交流电机利用变频器的调速原理,从而完成小区恒压供水系统硬件设计和通过梯形图进行软件设计,该系统保证了居民的用水质量且高效节能。
关键词:节能;恒压;变频调速;PLC 中图分类号:TP273文献标识码:A文章编号:2095-0748(2020)05-0066-03现代工业经济和信息化Modern Industrial Economy and Informationization 引言在供水系统中,通常以流量为控制目的;其工作原理是根据用户需水量的变化调整水泵电机的转速,使管网压力始终保持恒定。
本设计课题任务主要是基于PLC 的恒压供水系统,该系统由两台水泵供水,水泵电机分别为M1、M2;由交流接触器KM1和KM2控制。
监测管网中水压由装在泵站出口传感器PT 完成。
采用闭环单回路反馈控制,系统不断采集管网内压力信号与给定压力设定值进行比较,经过运算后将偏差值送给PLC 进行调节,PLC 输出信号送给执行机构,执行机构接收到指令来改变自己的工作运行方式,从而使管内的压力发生变化。
如此循环直到管网压力保持在一个恒定的状态[1]。
1基本原理恒压供水控制不但可以提高供水的质量,而且可以通过变频技术降低能耗,提高设备运行的可靠性。
当用水量增大时电机加速,用水量减小时电机减速,如此循环直到管网压力保持在一个恒定的工作状态[2]。
流量特性:阀门开度和水泵转速一定,流量越大,扬程越小。
管阻特性:阀门开度和水泵转速一定,流量越大,扬程越大。
全自动变频恒压供水电气控制系统

2} }泵变频双泵供水。仍然不能满足时,则会切断变频器,并把变频的
4—20mA的标准电流信号,送 入控制端口,经运算与给定 的标准信号
2舟泵转为工频运转,实现双泵都以工频运转供水,一直到供水正常为
进行比较,得出调节参数,以此参数作为变频器的输入量,从而使变频
止。3) 当水压逐渐升高后,分步关闭两个水泵,恢复正常状态。
变化 适时 调整 工频 运行 的水泵 和变 频运 行的 水泵 频率 。
量,不要因为压力的波动造成供水的障碍,另一方面要求保证供水的安
选择自动工作状态时,1) PLC首先利用变频器变频启动一台水泵,
全性,在发生火灾的时候仍然能够可靠供水。此外,还需要有很好的经
实现1# 泵变频供水,此时,安装在管网上的传感器将实测的管网压力
变频器对其进行控制,以魈 全自动恒压供水。
量较大,变频器输出频率接近工频,而管网压力仍达不到压力设定,则 PLC将当前工作的1 井泵由变频切换到工频,仍然不能满足管网压力时,
1设计思想
PLC将变 频器切换 到2#泵 ,由变 频器软启 动2#泵 ,实现 1#泵工频 、
我们可以在出水管网上安装压力传感器,可以把水压信号转变为
压,欠压,瞬时停电,制动晶体报警,PLC错误等多种保护。
3软件 设计
… 1)软件实 现PI D整 定的自动控制 方式原理在连续 控制系统中PID J ,I
控制规律是x@=K小o+}j .e( 下) d f +T乒掣l+Xo;削0,
’” 1i
o【
) ( o是偏差为O时的控制作用,是控制量的基准。2) 自动控制方式流程
[ 参考文献] …许志琴主编工业控制组态软件及应用.机械工业出版社. 【2】2三菱 变频器 一FR— A540使 用手册 .
恒压变频供水电气控制系统设计

恒压变频供水电气控制系统设计摘要随着社会经济的迅速发展,人们对供水质量和供水系统可靠性的要求不断提高。
再加上目前能源紧缺,利用先进的自动化技术、控制技术以及通讯技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然趋势。
基于水泵供水流量和水泵转速的三次方成正比,论文分析了采取变压变频调速方式实现恒压供水相对于传统的阀门控制恒压供水方式的节能机理。
通过对变频器内置PID模块参数的预置,利用远传压力表的水压反馈量,构成闭环系统,根据用水量的变化,采取PID调节方式,在全流量范围内利用变频泵的连续调节和工频泵的分级调节相结合,实现恒压供水且有效节能。
本论文依据供水要求,设计了一套由PLC、变频器、远传压力表、多台水泵机组等主要设备构成的全自动变频恒压供水,具有全自动变频恒压运行、自动工频运行和现场手动控制等功能。
系统有效地解决了传统供水方式中存在的问题,并具有多种辅助功能,增强了系统的可靠性。
论文分析了多泵供水方式的各种供水状态及转换条件,分析了电机由变频转工频运行方式的切换过程及存在的问题。
给出了实现有效状态循环转换控制的电气设计方案和PLC控制程序设计方案。
论文还提出了一些增强系统运行可靠性的措施。
关键词:可编程序控制器, 变压变频调速, 恒压供水, PLCABSTRACTWith the rapid socio-economic development of water quality and water supply systems to improve reliability requirements. In addition, the current energy shortage, the use of advanced automation technology, control technology and communication technology, the design of high performance, high energy, able to adapt to different areas of constant pressure water supply system has become an inevitable trend.Pumps based on water flow and pump speed is directly proportional to the third power, to take paper analyzes the way VVVF speed control constant pressure water supply compared with the traditional way of constant pressure water supply valve to control the energy-saving mechanism. Converter built by the preset parameters of PID module, using the hydraulic pressure gauge feedback FarEasTone volume, constitute a closed-loop system, in accordance with changes in water consumption, the way to take PID regulator, the flow in the whole range of the continuous use of pump-conditioning pump frequency and adjust the combination of the classification, to achieve constant pressure water supply and effective energy conservation.In this paper, based on water requirements, the design of a set by the PLC, frequency converter, Far EasTone pressure, multi-pump unit consisting of major equipment such as automatic frequency conversion constant pressure water supply, with automatic constant frequency operation, automatic frequency run and on-site features such as manual control. System to effectively solve the traditional way of water supply problems, and have a variety of auxiliary functions, and enhance the reliability of the system.Paper analyzes the various ways water pump the state water supply and conversion conditions, analysis of the motor to change jobs by the frequency of the switching frequency operation and problems of the process. Given the state of the cycle to achieve an effective change of control of the electrical design and PLC control program design.Also made a number of papers to enhance system reliability measures.KEY WORDS: programmable logic controller, VVVF speed control, constant pressure water supply, PLC目录前言 (1)第1章恒压供水原理及工艺 (2)1.1任务 (2)1.2工艺要求 (2)1.3系统的组成和基本工作原理 (2)第2章PLC概述 (3)2.1PLC组成 (3)2.1.1LC的输入 (3)2.1.2 PLC的输出 (3)2.1.3 PLC的控制机制 (3)2.1.4 PLC的定义 (5)2.1.5 PLC的特点 (5)2.1.6 PLC的性能指标 (6)2.1.7 PLC的分类 (7)2.2PLC工作原理 (7)2.2.1 循环扫描 (7)2.2.2 I/O响应时间 (8)2.2.3 PLC中的存储器 (9)第3章系统硬件设计 (10)3.1恒压供水系统的基本构成 (11)3.2系统控制要求 (13)3.3控制系统的I/O点及地址分配 (14)3.4系统选型 (17)3.5PLC模拟量控制单元的配置以及应用 (17)3.5.1 EM235模拟量工作单元性能指标 (18)3.5.2 校准及配置 (18)3.5.3 EM235的安装使用 (18)3.5.4 EM235工作程序编制 (18)3.5.5 电气控制系统原理图 (20)第4章系统程序设计 (23)4.1由―恒压‖要求出发的工作泵组数量控制管理 (23)4.2泵组泵站泵组管理规范 (23)4.3程序的结果以及程序功能的实现 (23)结论 (33)致谢 (34)参考文献 (35)外文资料翻译 (36)前言随着各住宅小区的宿舍楼等一座座高楼拔地而起,相应的生活用水量也大幅度增加。
基于plc的恒压供水系统的设计

基于plc的恒压供水系统的设计(恒压供水系统的原理及电气控制要求。
Plc在机电系统中的应用和工作原理.西门子变频器的工作原理MM440。
Plc编程原理及程序设计方法。
电器原理图,接线图。
)一.恒压供水系统的原理1.系统介绍生产生活中的用水量常随时间而变化,季节、昼夜相差很大.用水和供水的不平衡集中体砚在水压上,用水多而供水少则水压低,用水少而供水多则水压高。
以前大多采用传统的水塔、高位水箱或气压罐式增压设备容易造成二次污染,同时也增大了水泵的轴功率和能量损耗.随着电力电子技术的发展变频调速技术广泛应用于送水泵站、加压站、工业给水、小区和高楼供水等供水等领域。
相对于传统的技术而言,它具有节能效益明显、保护功能完善、控制灵活方便等优点。
恒压供水控制系统的基本控制策略是:采用电动机调速装置与可编程控制器(PLC)构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的.系统的控制目标是总管的出水压力及系统设定的给水压力值与反馈的总管压力实际值进行比较,其差值输入CPU运算处理后,发出控制指令,控制泵电动机的投运台数和运行变量泵电动机的转速,从而达到给水总管压力稳定在设定的压力值上。
恒压供水系统由PLC控制器,变频器,触摸屏显示器,压力变送器,水位变送器,软启动器,水泵电机组,电机保护装置以及其他电控设备等构成,如图1所示。
图1 恒压供水系统示意图2.系统构成系统采用了S7—200型PLC (14个输人点,10个输出点)、MM440型变频器、压力传感器及其他控制设备.系统构成如图2所示。
图2 系统构成图压力传感器将用户管网水压信号变成电信号(4一20mA),送给变频器内部PID控制器,PID控制器根据压力设定值与实际检测值进行PID运算,并给出信号控制水泵电动机的电压和频率.当用水量较少时,1#泵在变频器控制下变频运行。
变频器恒压供水

变频器恒压供水变频器恒压供水系统设计目录工艺简介实验目的与要求系统设计内容及要求一、供水系统的具体要求二、总体设计方法三、变频器恒压供水系统原理四、水泵切换条件分析五、系统主电路分析六、系统控制电路分析七、系统的硬件设计参数设置系统主要设备的选型基本运行操作方式变频器恒压供水系统的技术要求实习心得1工艺简介一、变频恒压供水系统介绍变频恒压供水系统是指在供水管网中用水量发生变化时,出口压力保持不变的供水方式。
供水管网的出口压力值是根据用户需求确定的。
传统的恒压供水方式是采用水塔、高水位箱、气压罐等设施实现的。
近年来,随着变频调速技术的日益成熟,其显著的节能效果和可靠稳定的控制方式,在供水系统中得到广泛的应用。
变频恒压供水系统对水泵电机实行无级调速,依据用水量及水压变化通过微机检测、运算,自动改变水泵转速保持水压恒定以满足用水要求,是目前最先进,合理的节能供水系统。
与传统的水塔、高位水箱、气压罐等供水方式比较,不论是投资、运行的经济性、还是系统的稳定性、可靠性、自动化程度等方面都具有优势:(1)高效节能。
与传统供水方式相比变频恒压供水能节能30%-60%。
(2)占地面积小,投入少,效率高。
(3)配置灵活,自动化程度高,功能齐全,灵活可靠。
(4)运行合理,由于一天内的平均转速下降,轴上的平均扭矩和磨损减少,水泵的寿命将大为提高。
(5)由于能对水泵实现软停和软起,并可消除水锤效应(水锤效应:直接起动和停机时,液体动能的急剧变大,导致对管网的极大冲击,有很大破坏力)。
2(6)操作简便,省时省力。
二、城市供水系统的要求众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能己成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。
主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能导致水管爆破和用水设备的损坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恒压变频供水电气控制系统设计摘要随着社会经济的迅速发展,人们对供水质量和供水系统可靠性的要求不断提高。
再加上目前能源紧缺,利用先进的自动化技术、控制技术以及通讯技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然趋势。
基于水泵供水流量和水泵转速的三次方成正比,论文分析了采取变压变频调速方式实现恒压供水相对于传统的阀门控制恒压供水方式的节能机理。
通过对变频器内置PID模块参数的预置,利用远传压力表的水压反馈量,构成闭环系统,根据用水量的变化,采取PID调节方式,在全流量范围内利用变频泵的连续调节和工频泵的分级调节相结合,实现恒压供水且有效节能。
本论文依据供水要求,设计了一套由PLC、变频器、远传压力表、多台水泵机组等主要设备构成的全自动变频恒压供水,具有全自动变频恒压运行、自动工频运行和现场手动控制等功能。
系统有效地解决了传统供水方式中存在的问题,并具有多种辅助功能,增强了系统的可靠性。
论文分析了多泵供水方式的各种供水状态及转换条件,分析了电机由变频转工频运行方式的切换过程及存在的问题。
给出了实现有效状态循环转换控制的电气设计方案和PLC控制程序设计方案。
论文还提出了一些增强系统运行可靠性的措施。
关键词:可编程序控制器, 变压变频调速, 恒压供水, PLCABSTRACTWith the rapid socio-economic development of water quality and water supply systems to improve reliability requirements. In addition, the current energy shortage, the use of advanced automation technology, control technology and communication technology, the design of high performance, high energy, able to adapt to different areas of constant pressure water supply system has become an inevitable trend.Pumps based on water flow and pump speed is directly proportional to the third power, to take paper analyzes the way VVVF speed control constant pressure water supply compared with the traditional way of constant pressure water supply valve to control the energy-saving mechanism. Converter built by the preset parameters of PID module, using the hydraulic pressure gauge feedback FarEasTone volume, constitute a closed-loop system, in accordance with changes in water consumption, the way to take PID regulator, the flow in the whole range of the continuous use of pump-conditioning pump frequency and adjust the combination of the classification, to achieve constant pressure water supply and effective energy conservation.In this paper, based on water requirements, the design of a set by the PLC, frequency converter, Far EasTone pressure, multi-pump unit consisting of major equipment such as automatic frequency conversion constant pressure water supply, with automatic constant frequency operation, automatic frequency run and on-site features such as manual control. System to effectively solve the traditional way of water supply problems, and have a variety of auxiliary functions, and enhance the reliability of the system.Paper analyzes the various ways water pump the state water supply and conversion conditions, analysis of the motor to change jobs by the frequency of the switching frequency operation and problems of the process. Given the state of the cycle to achieve an effective change of control of the electrical design and PLC control program design.Also made a number of papers to enhance system reliability measures.KEY WORDS: programmable logic controller, VVVF speed control, constant pressure water supply, PLC目录前言 (1)第1章恒压供水原理及工艺 (2)1.1任务 (2)1.2工艺要求 (2)1.3系统的组成和基本工作原理 (2)第2章PLC概述 (3)2.1PLC组成 (3)2.1.1LC的输入 (3)2.1.2 PLC的输出 (3)2.1.3 PLC的控制机制 (3)2.1.4 PLC的定义 (5)2.1.5 PLC的特点 (5)2.1.6 PLC的性能指标 (6)2.1.7 PLC的分类 (7)2.2PLC工作原理 (7)2.2.1 循环扫描 (7)2.2.2 I/O响应时间 (8)2.2.3 PLC中的存储器 (9)第3章系统硬件设计 (10)3.1恒压供水系统的基本构成 (11)3.2系统控制要求 (13)3.3控制系统的I/O点及地址分配 (14)3.4系统选型 (17)3.5PLC模拟量控制单元的配置以及应用 (17)3.5.1 EM235模拟量工作单元性能指标 (18)3.5.2 校准及配置 (18)3.5.3 EM235的安装使用 (18)3.5.4 EM235工作程序编制 (18)3.5.5 电气控制系统原理图 (20)第4章系统程序设计 (23)4.1由―恒压‖要求出发的工作泵组数量控制管理 (23)4.2泵组泵站泵组管理规范 (23)4.3程序的结果以及程序功能的实现 (23)结论 (33)致谢 (34)参考文献 (35)外文资料翻译 (36)前言随着各住宅小区的宿舍楼等一座座高楼拔地而起,相应的生活用水量也大幅度增加。
人们对提高供水质量的要求越来越高,另外人们的节能意识及对运行的可靠性的要求越来越强。
采用变频器及PLC技术实现的无塔恒压供水系统,不仅能提高供水质量,而且在节约能源和运行可靠性具有较好的改善。
其中,采用变频调速的主要目的是通过调速来恒定用水管道的压力以达到节能的目的,恒压供水则是为了满足用户对流量的要求。
变频恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小区生活消防供水系统。
然而,由于新系统多会继续使用原有系统的部分旧设备(如水泵),在对原有供水系统进行变频改造的实践中,往往会出现一些在理论上意想不到的问题。
本文介绍的变频控制恒压供水系统,是在对一个典型的水塔供水系统的技术改造实践中,根据尽量保留原有设备的原则设计的,该系统很好的解决了旧设备需要频繁检修的问题,既体现了变频控制恒压供水的技术优势,同时有效的节省了资金。
应用PLC技术是为了实现系统的软启动,减少手动操作或抚慰操作,同时替代部分继电器减少机械触点的故障,增强可靠性。
下面笔者根据这方面的工作经验谈谈在恒压供水系统设计和实践过程中的一些思路和做法。
第1章恒压供水原理及工艺1.1任务随着社会的发展和进步,城市高层建筑的供水问题日益突出。
以方面要求提高供水质量,不要因为压力的波动造成供水的障碍;另一方面要求保障供水的可靠性和安全性,在发生火灾时能可靠供水。
针对这两方面的要求,新的供水方式和控制系统应运而生,这就是PLC控制的恒压无塔供水系统。
恒压无塔供水系统包括生活用水的恒压控制和消防用水的恒压控制——即双恒压系统。
恒压供水保证了供水的质量,以PLC为主机的控制系统丰富了系统的控制功能,提高了系统的可靠性。
1.2 工艺要求对三泵生活/消防双恒压供水系统的基本要求是:1. 生活供水时,系统应底恒压值运行,消防供水时系统应高恒压值运行;2.三台泵根据恒压的需要,采用―先开先停‖的原则介入和退出;3. 在用水量小的情况下,如果一台泵连续运行的时间超过3H,则要切换到下一台泵,即系统具有―倒泵功能‖,避免某一台泵工作时间过长;4. 三台泵在启动时要又软启动功能;1.3系统的组成和基本工作原理以一个三泵生活/消防双恒压无塔供水系统为例来说明其工艺过程,市网来水用高低水位控制器EQ来控制注水阀TV1,它们自动把水注满储水池,只要水位低于高水位,则自动往水箱中注水。
水池的高/低水位信号也直接送给PLC,作为底水位报警用。
为了保障供水的持续性,水位上下限传感器高低距离不是相差很大。
生活用水和消防用水共用三台泵,平时电磁阀YV2处于失电状态,关闭消防管网,三台泵根据生活用水的多少,按一定的控制逻辑运行,使生活用水的恒压状态(生活用水底恒压值)下进行;当有火灾发生时,电磁阀YV2得电,关闭生活用水管网,三台泵共消防用水使用,并根据用水量的大小,使消防供水也在恒压状态(消防用水高恒压值)下进行。