航空发动机简述..
航空发动机发展历程
航空发动机发展历程
航空发动机是飞机的核心部件之一,它的发展历程也是航空工业发展历史的重要组成部分。
随着航空技术的不断进步和需求的不断提高,航空发动机经历了从最初的活塞式发动机到现代的高涵道比涡扇发动机的转变。
20世纪初期,活塞式发动机是航空发动机的主流。
它们采用往复运动的活塞来压缩燃料混合物,然后点燃并产生推力。
这种发动机的缺陷是重量大、功率小、燃油消耗大、噪音大等。
到20世纪40年代中期,涡轮喷气式发动机开始进入市场。
它们利用高温高压气体驱动涡轮,从而带动飞机的推进。
这种发动机具有功率大、重量轻、燃油经济等优点,但其高温高压的工作环境使其耐久性和可靠性都受到了挑战。
20世纪60年代,高涵道比涡扇发动机开始成为主流。
这种发动机通过喷出大量的气流来产生推力,其高涵道比设计使得其能够更好地适应高空巡航,进一步提高了飞机的效率和经济性。
随着科技的不断进步,涡扇发动机的性能不断提高,同时也推动了航空业的发展。
目前,航空发动机已经发展到了涡扇发动机的第四代水平,这些发动机具有更高的安全性、更低的噪音和更好的燃油经济性。
未来,随着科技的不断进步,我们可以期待着更先进、更高效的航空发动机的出现,为航空业的发展注入新的动力和活力。
- 1 -。
航空发动机概述
(1)固体燃料火箭发动机
发动机采用黑色火药、无烟火药等固体燃 料。
固体燃料火箭发动机能产生巨大的推力, 但工作时间段且不易控制。
(2)液体燃料火箭发动机
发动机通常以煤油、酒精或液态氢作为燃 料,以液态氧、硝酸等作为氧化剂。
第二节 典型燃气涡轮动力装置的一般介绍
发动机的主要部件:进气道、压气机、燃 烧室、涡轮和尾喷管。
一、各部件的作用
进气道:用来引导足够数量的空气顺利进 入发动机,在飞行中还可通过冲压作用提 高气体压力。
压气机:用来提高气体的压力,它通过高 速旋转的叶轮,对进入压气机的气体做功, 达到增压目的。
飞机的螺桨是发动机的主要推进器。 飞行高度低飞行速度慢是使用涡轮螺桨发动机的
主要缺点。飞行高度不超过5000米,飞行速度一 般不超过700公里/小时。 图
3、涡轮风扇发动机
➢ 涡轮风扇发动机有内外两个涵道,在内涵燃气发 生器出口增加动力涡轮,将燃气发生器产生的一 部分或大部分可用功,通过动力涡轮传递给外涵 通道中的压气机,大多数情况下,外涵压气机叶 片是将内涵压气机叶片向外延伸,习惯上将内外 涵共用的压气机称为风扇。
注:2---压气机入口,2.5---低压压气机出口,3---燃烧室入 口,4---涡轮入口,4.5---高压涡轮出口,5---尾喷管入口, 8---尾喷管临界截面,9---尾喷管出口
各类发动机简图
➢ 涡扇发动机截面划分
➢ 对于涡扇发动机,其内涵截面标注方法与涡喷发 动机相同。其外涵截面标注方法在相应截面后加2。 如风扇压气机出口3截面写为32截面,尾喷管出 口9截面写为92截面。
燃烧室:用来组织燃油与空气混合、燃烧, 释放化学能,不断给气体加热,以提高气 体温度。
中国航空发动机简述
自上世纪40年代涡轮喷气发动机诞生以来,大大促进了飞机飞行速度、高度航程的增加,获得了巨大的军事和经济效益。
世界上的航空发达国家执行了一系列航空发动机技术基础研究计划,推出一代又一代先进军民用发动机,跨上了一个又一个技术新台阶。
在短短不到60年的时间内,表征涡轮发动机综合性能水平指标的推重比已由当初的2提高到10一级,军、民用航空发动机性能水平得到了持续不断的提高。
航空发动机行业已成为世界航空强国的军事工业和国民经济的支柱产业。
航空发动机不仅仅是性能与结构的堆砌,更反应出一个国家航空动力产业的科研基础和工业实力,期中涉及到研制思想的转变,工艺材料的进步,设计方法和设计平台的改进以及航空发动机型谱体系构建方法等等并没有在航空发动机单个型号上直接体现出来的潜在因素才是决定一个国家航空发动机产业扬帆驶向何方的灯塔。
笔者在业余关注航空发动机,尤其是大推力军用涡轮风扇发动机的过程中,收集到了大量的专业书籍和科研论文,慢慢了解到了航空发动机研制背后的故事。
本文就是对大量涉及到第四代大推力军用涡轮风扇发动机发展专业资料的重新整理,归纳和总结,并加入了笔者一点点浅薄的观点,为了不使个人的观点影响到论述大推力军用涡轮风扇发动机发展的客观性,笔者尽量只是对科研资料进行重新归纳和整理,保持了科研资料在客观事实和观点上的完整性。
特此代表业余关注,热爱祖国航空动力事业的朋友们,向这些科研资料的作者,整理者,收集者表示衷心的敬意和感谢。
在现代战斗机设计中,首先要确定的就是发动机的推力级别、推力曲线特性和推重比,因为发动机的性能决定了战斗机的设计概念和性能用途。
航空发动机的研制装备和性能指标关系到国家安全和领土完整。
没有合适的发动机型号通常都会对战斗机设计和装备产生致命性的影响,从而导致整个空军的战术体系不完整和效能低下,而一款性能先进可靠性优秀的航空发动机也可以让战斗机性能“化腐朽为神奇”。
大推力军用涡轮风扇发动机是所有军用航空发动机中推力级别最高,研制技术难度最大和在型谱发展中最核心的发动机类型。
航空发动机的发展简述和思考
航空发动机的发展简述和思考摘要:这篇文章航空发动机的发展为主题。
本文简要的回顾了航空发动机的发展历程,对当前航空发动机发展特点和展望进行简述,思考和分析了我国航空发动机落后的原因,并提出了几点建议。
关键字:航空发动机;发展;特点Abstract: This article’s theme is the development of the aero-engine. This article briefly reviews the course of development of the aviation engine, briefly describes the current aero-engine development characteristics and its outlook, thinking and analysis of aero-engine backward, and put forward some suggestions.Key words: Aircraft engines; development; characteristics1航空发动机的发展历程建国50年来,航空发动机行业建成了一定规模的生产基地、配套比较齐全的科研设计与生产相结合的航空发动机行业体系,拥有一支14万人的庞大职工队伍,并有一个中国燃气涡轮研究院和3个设计研究所,共建7套批生产工厂。
生产了近6万台各型发动机,对保障战争胜利、国土防空和空军、海军、陆军及民航做出了积极贡献。
但是我们的航空发动机与发达国家还有很大的差距。
航空发动机研制从50 年代中期开始,起步并不算晚,但是由于长期在测绘仿制中徘徊,预先研究和型号研制都未走完一个全过程,科研技术基础薄弱,与世界先进技术水平相比,差距确实很大。
从现代国防需求情况来审视,中国航空发动机技术落后,已严重制约了我国空军装备的更新换代。
目前我国不论是军机或民机,都没有自已的先进发动机可用,而且所有新型军机,也不得不先买装国外发动机。
航空概论---航空发动机
我国航空发动机发展现状
歼 二 十
我国航空发动机发展现状
航空发动机是一个复杂的系统,它的发展成熟同样也是较为复杂的过 程,并非一朝一夕就能够得以顺利完成。相信以踏实认真的态度,刻 苦钻研的精神,一定会让我国的航空发动机工业一步步走向成熟,也 让中国不再只是一个航空大国,而成为一个航空强国。
Thank You!
涡轮螺旋桨发动机
第一台涡轮螺旋桨发动机为匈牙利于1937年 设计、1940年试运转的 Jendrassik Cs-1。美国在 1956年服役的涡桨发动机T56/501,装于C-130运 输机、P3-C侦察机和E-2C预警机。它的功率范围 为2580~4414 kW,是世界上生产数量最多的涡 桨发动机之一,至今还在生产 。 螺旋桨在吸收功率、尺寸和飞行速度方面的限 制,在大型飞机上涡轮螺旋桨发动机逐步被涡轮 风扇发动机所取代,但在中小型运输机和通用飞 机上仍有一席之地。
P-47,绰号“雷电”,装备R-2800发动机,是美国共和飞机公司研 制的战斗机。该种机型产量达到15683架,是美国战斗机史上生产量 最大的飞机之一。
活塞式航空发动机举例
B-29战略轰炸机,装备 莱特公司的R-3350发动 机。世称“超级空中堡 垒”“史上最强的轰炸 机”,在轰炸东京等二 战及之后的战场都可以 看到他的身影,广岛和 长崎的两次原子弹袭击, B-29也是空中平台。
涡轮螺旋桨发动机
美国C-130运输机
美国E-2C预警机
涡轮螺旋桨发动机工作原理
涡轮螺旋桨发动机由螺旋桨和燃气发生器组成,螺旋桨由涡轮带动。 工作原理与涡轮风扇发动机近似,但产生动力方面却有着很大的不同, 涡轮螺旋桨发动机的主要功率输出方式为螺旋桨的轴功率。 涡轮螺旋桨发动机的螺旋桨后的空气流就相当于涡轮风扇发动机的外 涵道,由于螺旋桨的直径比发动机大很多,气流量也远大于内涵道, 因此这种发动机实际上相当于一台超大涵道比的涡轮风扇发动机。
航空发动机及历史简介PPT
应用领域
是目前大型客机和货机的主要动 力装置,也用于一些军用飞机。
其他类型发动机
01
02
03
04
涡桨发动机
通过螺旋桨产生拉力,适用于 低速飞行,常见于一些支线客
机和通用航空飞机。
涡轴发动机
主要用于直升机,通过传动轴 将动力传递给旋翼产生升力。
火箭发动机
利用反作用力原理,将燃料和 氧化剂混合燃烧产生推力,用
更高的推力和燃油效率
期待新一代航空发动机能够提供更大 的推力和更高的燃油效率,以满足未 来航空运输的需求。
更低的排放和噪音
期待航空发动机在环保方面取得更大 突破,实现更低的排放和噪音水平, 减少对环境的影响。
更高的可靠性和安全性
期待航空发动机在设计和制造过程中 更加注重可靠性和安全性,确保飞行 安全。
减轻了发动机重量并提高了耐腐蚀性。
先进制造工艺
03
激光加工、3D打印等先进制造工艺的应用,提高了发动机制造
精度和效率。
控制系统及智能化技术应用
全权限数字电子控制
实现了对发动机各个部件的精确控制,提高了发动机性能和可靠 性。
智能化故障诊断与预测
利用传感器和大数据分析技术,实现了对发动机状态的实时监测和 故障诊断预测,提高了发动机维护性和安全性。
自适应控制
根据飞行条件和任务需求,自动调整发动机工作状态和参数设置, 实现了发动机性能的最优化。
05 航空发动机产业现状与趋 势
全球产业布局及竞争格局
全球航空发动机产业布局
全球航空发动机产业主要集中在美国、英国、法国等少数几个国家,其中美国的 通用电气、普拉特·惠特尼,英国的罗尔斯·罗伊斯等是全球领先的航空发动机制 造商。
航空小知识——飞机的心脏:航空发动机
尾喷管
尾喷管安装在涡轮的后部,也是发动机的重要部件之一。主要作用是将从涡轮流出的燃气膨胀加速,将燃气部分的焓转变为动能,提高燃气速度,使燃气以很大的速度排出,产生较大的推力。
GEnx
GEnx发动机是由GE公司研制生产的高涵道比双转子轴流式涡扇发动机,最大推力63800磅。核心机主要部件(详见示意图):轴流式压气机(包括1级风扇、4级低压压气机和10级高压压气机 )、环形燃烧室和轴流式涡轮(包括2级高压涡轮和7级低压涡轮 )。GEnx发动机现用于Boeing 787和Boeing747-8飞机,未来将用于A350等飞机。
航空发动机的五大部件
航空发动机主要分为五大部件,分别是进气道、压气机、燃烧室、涡轮和尾喷管,下文将对各大部件逐一进行介绍:
进气道
航空发动机进气道主要的作用是在各种工作状态下,能够将足够量的空气,以最小的流动损失,引入压气机。进气道可分为亚音速进气道和超音速进气道,民航发动机的进气道多为亚音速进气道。
TrentXWB
TrentXWB发动机是罗罗公司正在研制的高涵道比三转子轴流式涡扇发动机,未来将用于A350飞机。设计推力分别为75,000磅(适用于A350-800)、84,000磅(适用于A350-900)及97,000磅(适用于A350-1000)。
CFM56系列
CFM56系列发动机是由美国的GE公司和法国的斯纳克玛公司组成的CFM国际公司研制生产的高涵道比双转子轴流式涡扇发动机。于1974年6月投入使用,发动机的推力为18,000至34,000磅。主要型号有CFM56-3、CFM56-5B和CFM56-7B分别用于Boeing 737-300/400/500;A320系列;Boeing737-700/800/900。
活塞航空发动机原理
活塞航空发动机原理
活塞航空发动机是一种内燃机,采用往复运动的活塞来产生动力。
其基本原理是通过燃料的燃烧来产生高压气体,然后利用这些气体的压力推动活塞运动,从而驱动飞机的推进系统。
活塞航空发动机包括气缸、活塞、连杆、曲轴和燃料供应系统。
当燃料进入气缸后,通过火花塞的点火将燃料点燃,产生爆炸性燃烧。
燃烧产生的高温高压气体推动活塞向下运动,然后通过连杆和曲轴将往复运动转换为旋转运动。
曲轴的旋转驱动飞机的推进系统,使飞机获得推力,从而向前推进。
活塞航空发动机还需配备燃油供给系统,以确保燃料的准确供给和正常燃烧。
燃料供给系统包括燃料泵、喷油嘴和调节装置。
燃料泵将燃料从燃料箱中抽取,并提供适当的压力送入喷油嘴。
喷油嘴将燃油雾化喷入气缸,在点火后进行燃烧。
活塞航空发动机的工作过程是循环进行的,包括进气、压缩、爆燃和排气。
进气过程中,活塞向上移动,气缸内的空气通过进气阀进入气缸。
压缩过程中,活塞向下移动,将进气的空气压缩成高压。
然后,燃料喷入燃烧室,通过点火产生爆燃,推动活塞向下运动。
最后,排气门打开,将燃烧产生的废气排出气缸,完成一个工作循环。
总之,活塞航空发动机通过燃料的燃烧产生高压气体,利用活塞的往复运动转换为旋转运动,以驱动飞机的推进系统。
燃料供给系统确保燃料的供给和燃烧过程的正常进行。
活塞航空发
动机通过循环进行的进气、压缩、爆燃和排气过程来产生连续的动力,从而使飞机获得持续的推力和驱动力。
常用航空发动机的结构与原理
常用航空发动机的结构与原理展开全文一、活塞式航空发动机为航空器提供飞行动力的往复式内燃机称为活塞式发动机。
发动机带动空气螺旋桨等推进器旋转产生推进力。
活塞式发动机由汽缸、活塞以及把活塞的往复运动转变为曲轴旋转运动的曲柄连杆机构等主要部分组成。
曲柄连接着螺旋桨,螺旋桨随着曲柄转动而转动,曲轴则支承在轴承上。
汽缸上装有进气门和排气门" 进气门是控制空气和汽油的混合气进入的零件,汽油燃烧完以后有排气门排出。
活塞式航空发动机是一种四冲程、电嘴点火的汽油发动机。
曲轴转动两圈,每个活塞在汽缸内往复运动4次,每次称1个冲程。
4个冲程依次为吸气、压缩、膨胀(作功)和排气,合起来形成1 个定容加热循环。
从1903年第一架飞机升空到第二次世界大战末期,所有飞机都用活塞式航空发动机作为动力装置。
20 世纪40年代中期,在军用飞机和大型民用机上,燃气涡轮发动机逐步取代了活塞式航空发动机,但小功率活塞式航空发动机比燃气涡轮发动机经济,在轻型低速飞机上仍得到应用。
二、燃气涡轮发动机由压气机、燃烧室和燃气涡轮组成的发动机称为燃气涡轮发动机。
它的优点是重量轻、体积小和运行平稳,广泛用作飞机和直升机的动力装置。
核心机:在燃气涡轮发动机中,由压气机、燃烧室和驱动压气机的燃气涡轮组成发动机的核心机。
空气在压气机中被压缩后,在燃烧室中与喷入的燃油混合燃烧,生成高温高压燃气驱动燃气涡轮作高速旋转,将燃气的部分能量转变为涡轮功。
涡轮带动压气机不断吸进空气并进行压缩,使核心机连续工作。
从燃气涡轮排出的燃气仍具有很高的压力和温度,经膨胀后释放出能量(称为可用能量)用于推进。
核心机不断输出具有一定可用能量的燃气,因此又称燃气发生器。
现代燃气涡轮发动机压气机的增压比(压气机出口空气总压与进口总压之比)范围为4-28,消耗功率可高达数十兆瓦(几万马力)。
燃气涡轮前的温度可达1200-1700K。
压气机分为离心式和轴流式两类,前者增压比低、直径大,仅用于小功率发动机;后者流量大、增压比高,应用广泛。
航空发动机技术的发展及未来趋势
航空发动机技术的发展及未来趋势随着技术的不断发展,航空发动机也逐渐成为了航空工业的核心。
航空发动机的发展几乎决定了现代民航的航行能力和安全水平。
从早期的活塞式发动机,到现代的涡轮喷气发动机,航空发动机经历了漫长的探索和飞跃的进步,成为了航空工业中最为重要的组成部分。
一、航空发动机技术的发展早期的飞机采用的是活塞式发动机,也叫往复式发动机。
火花塞在燃油喷入燃烧室后引燃气体,产生高温高压的气体从喷气口喷出,带动涡轮的旋转。
这种发动机具有结构简单、可靠性高等优点,但是机身较大,重量较重,燃油消耗量大,功率有限等不足。
20世纪40年代末到50年代初,随着发动机科技的进步和涡轮技术的创新,涡轮喷气发动机逐渐取代了往复式发动机。
涡轮喷气发动机采用的是压气机将进气压缩,将压缩后的气体引入燃烧室,燃油与空气混合后点燃,放出高温高压气体推动发动机输出动力。
这种发动机效率高、噪音低、耗油量小、功率大、速度快等特点,成为了现代民航飞机上的主力动力系统。
二、航空发动机技术的未来趋势在涡轮喷气发动机的基础上,航空发动机技术正在不断地向更加高效、更加节能、更加环保的方向发展。
1.提高发动机效率目前,航空发动机的效率已经很高,但是在实际应用中,还存在着折减和浪费的问题。
未来,航空发动机技术发展的关键就是提高其效率,将燃料的能量转化为动力的能量,并尽可能的减少能量损失。
其中,提高涡轮的热效率和压缩比,采用最新的材料技术,减小机身重量,都是提高效率的有效途径。
2.研发更加环保的发动机航空运输业对环保的要求越来越高,发动机燃烧产生的废气排放也成为了环境污染的一个关键因素。
未来,发动机技术将朝着更加环保的方向发展,例如使用生物燃料、燃氢技术、降低排放等。
3.数字化技术的应用数字化技术在航空工业中的应用越来越广泛,未来,数字化技术也将成为航空发动机的一大趋势。
数字化技术可以实现对发动机的监测、分析和预测,通过数据的分析和模拟,在发动机研发和运行维护中形成闭环式的监测和反馈,以优化发动机的研发和维护,提高效率和性能。
航空发动机原理知识点精讲
航发原理1、燃气涡轮发动机工作原理1.1、航空发动机概述活塞、涡喷、涡扇、涡轴、涡桨、桨扇,短距离垂直起降动力装置。
1.2、燃气涡轮发动机的工作原理空气连续不断地被吸入压气机,并在其中压缩增压后,进入燃烧室中喷油燃烧成为高温高压燃气,再进入涡轮中膨胀做功。
燃烧的膨胀功必然大于空气在压气机中被压缩所需要的压缩功,使得有部分富余功可以被利用。
燃气涡轮发动机的膨胀功可以分为两部分:一部分膨胀功通过传动轴传给压气机,用以压缩吸入燃气涡轮发动机的空气;另一部分膨胀功则对外输出,作为飞机、舰船、车辆或发电机等的动力装置。
1.3、喷气发动机热力循环(P123)涡喷发动机的理想循环:(p-v 、压力-比体积)等熵压缩:进气道、压气机(0、2、3,特征截面)等压加热:燃烧室(3、4)等熵膨胀:涡轮、喷管(4、5、9)等压放热:大气环境(9、0)(P125)理想循环功L id =q 1−q 2=C p (T t4−T t3)−C p (T 9−T 0)=C p T 0(e −1)(∆e −1)T t4T 0=∆ 加热比 (P t3P 0)k−1k =e P t3P 0=π 总增压比 加热比增加,理想循环功增加。
总增压比为1,理想循环功为0;总增压比为最大,理想循环功为0;存在使理想循环功最大的最佳增压比πopt 。
从物理意义分析,影响理想循环功L id 的是加热量q 1和热效率两个因素。
当π从1.0开始增加时,热效率急剧增加,使L id 增加,一直达到其最大值;此后π继续增加则q 1的减小起了主导作用,使L id 下降。
e opt =√∆πopt =∆k2(k−1)L id =C p T 0(√∆−1)2ηti =1−1πk−1k 只与总增压比有关对应于有效功最大值的最佳增压比πopt 远小于对应于最大热效率的增压比πopt ′。
1.4、喷气发动机的推力(P13)F eff =F −X d −X p −X fX d :进气道附加阻力X p :短舱压差阻力X f:摩擦阻力F=W9c9+(p9−p0)A9−W a c0 1.5、涡喷发动机的总效率、热效率及推进效率η0=ηtηpηp=21+c9c0=推进功循环有效功遗留在空中的动能损失,称为离速损失,排气速度和飞行速度差别越大,动能损失越多。
航空发动机基本知识点
航空发动机基本知识点一、基础知识1. 力学分为静力学、运动学、动力学。
2. 力是不能离开物体而独立存在的。
3. 力的作用效果有力的大小、方向、作用点三个要素确定。
4. 常见的力:弹性力、摩擦力、重力。
5. 静摩擦系数由相互接触的物体材料和表面情况决定;最大静摩擦力的大小和正压力的大小成正比;静摩擦力与外力大小相等、方向相反。
6. 滑动摩擦力和正压力成正比;滑动摩擦力的方向永远与相对滑动的方向相反;对于给定的一对接触面来说,滑动摩擦系数稍小于静摩擦系数。
7. 牛顿第三定律:如果一物体以一力作用于另一物体上,那么另一物体一定同时以大小相等、方向相反、在同一直线上的力作用于该物体。
8. 表示力的转动效果的物理量叫做力矩。
9. 规定使物体作逆时针转动的力矩为正,作顺时针转动的力矩为负力矩。
10.作用于同一物体上的一对大小相等、方向相反但不在同一直线上的力叫做力偶。
11.力偶只能是物体发生转动,而不能是物体发生移动。
12.力偶对任意转轴的合力矩是一恒量,它等于力偶的任一力与力偶臂的乘积——力偶矩。
13.力偶矩和一个单力所产生的力矩不同,力偶矩与矩心的位置无关,单力对不同的矩心的力矩是不同的;力偶矩的正负号规定与力矩相同;力偶矩单位:牛顿*米或千克*米。
14.质量均匀分布而且形状规则的物体重心与其几何对称中心重合。
15.物体平衡的条件;作用力的合力等于零,同时合力矩也等于零。
16.牛顿第一定律:任何物体,如果没有受到其他物体的作用或受到的合力为零,这个物体就保持自己的静止状态或匀速直线运动状态不变。
这种状态性质叫惯性,即惯性定律。
17.表示物体所含物质多少的物理量叫质量,质量是物体惯性大小的度量。
18.牛顿第二定律:物体受到外力作用时,物体得到的加速度的大小和合外力的大小成正比,和物体的质量成反比,加速度方向和合外力方向相同。
19.基本量的单位市基本单位,导出量的单位是导出单位。
国际单位制中,长度L、质量M、时间T作为力学的基本量,其基本单位为‘米’‘千克’‘秒’。
航空发动机基础知识:几种航空发动机简介
航空发动机基础知识:几种航空发动机简介飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。
自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,时至今日,飞行器发动机已经形成了一个种类繁多,用途各不相同的大家族。
飞行器发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。
按发动机是否须空气参加工作,飞行器发动机可分为两类,大约如下所示:吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。
一般所说的航空发动机即指这类发动机。
如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。
火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。
它也可用作航空器的助推动力。
按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。
按产生推进动力的原理不同,飞行器的发动机又可分为直接反作用力发动机、间接反作用力发动机两类。
直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。
直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。
间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。
这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。
而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。
一、活塞式发动机航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。
航 空 发 动 机
缺点:耗油量要比活塞式发动机大,随着功率的增加,此差距将会缩小。
垂直起降发动机
如图所示为一种可转喷口的涡轮风扇发动机,它既可用于垂直起落,也可用于水平飞行。发动机装有可转喷口和阀门机构,能改变发动机的推力方向。在垂直起落过程中,喷口逐渐旋转向下,燃气向下喷出,产生向上的推力使飞机起飞,巡航飞行时可转喷口转向后。
涡轮桨扇发动机
涡轮桨扇发动机是可用于800 km/h以上速度飞机飞行的一种燃气涡轮螺旋桨风扇发动机,简称桨扇发动机。这种发动机介于涡轮风扇和涡轮螺桨发动机之间,它既可看做是带先进高速螺旋桨的涡轮螺桨发动机,又可看做除去外涵道的超高涵道比涡轮风扇发动机,产生推力的装置是桨扇。桨扇无外罩壳,故又称开式风扇
桨扇一般有8 ~10片桨叶,桨叶的剖面形状为超临界翼型,桨叶薄而后掠,桨盘直径仅为普通螺旋桨的40%~50%,质量减轻到原来的50%~60%,这对于提高桨扇的转速较为有利。桨扇的桨叶数目较多,可以弥补桨叶短和后掠角带来的缺点。
桨扇发动机的突出优点是推进效率高,而且省油。桨扇发动机与正在使用的先进涡轮风扇发动机相比可省油20%。因此,这类发动机将在新一代亚声速(马赫数介于0.8~0.85之间)运输机上得到广泛地应用。
此类发动机的优点是可以产生较大的升力,且风扇排气速度较低,噪声小。但缺点是风扇体积较大,巡航飞行时升力风扇成为消极质量,实际使用存在一定困难。
是作为升力风扇的燃气发生器而工作的。当飞机水平飞行时,换向活门打开,燃气直接从尾喷管喷出,产生推力。
燃气涡轮
进气道压气机燃烧室
航空发动机的分类
航空发动机分类飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。
自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,飞行器发动机已经形成了一个种类繁多,用途各不相同的大家族。
飞行器发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。
按发动机是否须空气参加工作,飞行器发动机可分为两类,大约如下所示:吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。
一般所说的航空发动机即指这类发动机。
如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。
火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。
它也可用作航空器的助推动力。
按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。
按产生推进动力的原理不同,飞行器的发动机又可分为直接反作用力发动机、间接反作用力发动机两类。
直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。
直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。
间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。
这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。
而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。
军工行业航空发动机专题报告:航空发动机的演变及国内产业格局
航空发动机是飞机核心部件,约占飞机整机价值量的20%~30%,其设计研发水平、制造工艺直接影响飞机的性能及可靠性。
当前航空发动机主要包括涡喷、涡扇、涡桨、涡轴发动机,其中涡扇发动机凭借高效率低油耗,成为当前大多数客机及军机的主要动力类型。
航空发动机全生命周期主要经历研发、制造、维护三个阶段,目前我国已具备航空发动机完整的产业链,其中原材料配套主要以大型钢厂、研究院所等传统国企为主;零部件制造主要以航发集团为主,部分民参军企业共同参与;军民用航发整机生产由航发集团主导。
航空发动机是飞行器核心部件。
航空发动机是飞机核心部件,约占飞机整机价值量的20%~30%。
作为飞机动力的直接来源,其设计、研发、制造、工艺等均需要精尖的科学技术水平,直接影响飞机的性能、可靠性及经济性,其发展水平更是一个国家科技、工业和国防实力的重要体现。
按照工作原理不同,航空发动机可以分为活塞式和喷气式,早期飞机几乎全部使用活塞式,但由于功率限制,只适用于低速飞行,20 世纪40 年代以来,喷气式开始成为飞机的主要动力。
喷气式按有无压气机又主要分为涡轮发动机和冲压发动机,涡轮发动机是目前最核心的航空发动机。
涡扇发动机高效率低油耗,是当前主流应用类型。
航空用燃气涡轮发动机主要包括涡喷、涡扇、涡桨、涡轴发动机,不同的设计速度与油耗特性差异决定了各自应用场景:涡喷发动机高速度高油耗,已逐步被涡扇发动机替代,主要用于部分尚未退役的军用二代战机;涡扇发动机由于其高速度、中等油耗的特点,是现在大多数客机及军机的主要动力类型;涡桨发动机油耗低、推力较大,但飞行速度受限,多用于低速运输机、轻型飞机及加油机等;涡轴发动机功率大、易于起动,主要用作直升机的动力。
我国已具备完整的航空发动机产业链。
航空发动机全生命周期主要经历研发、制造、维护三个阶段,三者的价值量比例分别为10%、40%、50%。
制造环节中,按部件价值拆分,涡轮部分占比最高,约30%,其次为压气机,约20%-30%;按制造成本拆分,原材料占比最高,约50%,用材主要以高温合金和钛合金为主,人工成本占25%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航空发动机分类: 在过去的一个航空百年里,人类所使用的 主要的航空发动机,可分为两大类: 1、活塞式发动机 •冷却方式(液冷式、气冷式)。 •气缸排列方式(星形、V形、直列式、对列式、 X形 ) 2、空气喷气式发动机 •无压气机(冲压式发动机、脉动式发动机)。 •有压气机(涡轮喷气发动机、涡轮风扇发动机 、涡轮螺旋桨发动机、涡轮轴发动机、浆扇发 动机)。
使用最广泛的燃气涡轮发动机: • 加力的涡喷发动机 • 加力的涡扇发动机 燃气涡轮发动机的共同特点: • 获得高温高压燃气; • 利用着部分燃气产生推力或机械功(在 尾喷管内继续膨胀,高速喷出产生推力; 或者在后续涡轮内继续膨胀获得机械功, 带动风扇、螺浆或其它装置)
1、WP 主要部件:进气装置、压气机, 燃烧室,燃气涡轮,尾喷管 ,( 加力燃烧室) 特点: (1)涡轮只带动压气机压缩空气。 (2)发动机的全部推力来自高速 喷出的燃气所产生的反作用力。 2、WS 主要部件:风扇、外涵道、内 涵道(压气机、燃烧室、涡 轮),尾喷管 特点:发动机的推力是内外涵 道气流反作用力的总和。 涵道比(流量比):外、内涵 道空气流量之比。
涡轮发动机
制作:何学康 收集资料:王永亮 主讲人:陈延人
发动机是飞机上的动力装置。自从人类尝试进行有 翼飞行器飞行以来,经历了无数次失败,只是在使用 了活塞式内燃机以后,才在20世纪初把第一架飞机送 上蓝天。 二战后 , 由于喷气发动机的迅速发展 , 活塞式发动 机逐渐被淘汰。 20 世纪 60 年代,由于涡扇发动机的问世,大大降 低了耗油率,才有可能设计制造成大型喷气飞机,大 幅度提高载重量和航程。 燃气涡轮发动机大大提高了战斗机的性能,使其 飞行速度达到 2 倍以上的音速。直到现在还被广泛应 用于各种类型的飞机上。
涡轮
构造上与轴流式压缩机相 似,同样是一组定子与 一组转子合称为一级。 涡轮叶片与螺旋桨及飞 机机翼相似,气流流过 时产生作用力,对转子 叶片作功而使其转动, 而能将气流的能量转换 成机械能输出,因此气 流在通过涡轮后,温度 与压力都会下降
喷管
• 喷管(nozzle,或称喷嘴)的 形状结构决定了最终排除的 气流的状态,早期的低速发 动机采用单纯收敛型喷管, 以达到增速的目的。 • 推力矢量技术能让发动机推 力的一部分变成操纵力,代 替或部分代替操纵面,从而 大大减少了雷达反射面积; 不管迎角多大和飞行速度多 低,飞机都可利用这部分操 纵力进行操纵,这就增加了 飞机的可操纵性。
燃烧室
• 燃烧室由外壳(套)、火焰 筒、喷(油)嘴、涡流器、 点火装置等组成。由压气机 扩散段出来的高压空气分成 两股:一股(约占1/4~2/5) 进入火焰筒前部,与喷嘴喷 出来的燃油混合形成油气混 合气,经点火装置点火后燃 烧。另一股(占3/4~3/5)从 火焰筒与外套间流过,对火 焰筒壁面进行冷却,然后进 入火焰筒与高温燃气掺混, 使燃气温度降低,达到涡轮 所要求的温度。通常要求燃 烧室具有燃烧稳定、燃烧效 率高、点火范围宽、流动阻 力小以及结构简单、尺寸小、 安全可靠和寿命长等特性
WS10
• WS-10A的研制分为三个阶段实:第一阶段:1999年初~2002年 末完成完成了三大核心部件的修改、完善以及核心机的工程设计 和试制,并进行三大高压部件匹配技术、亦即核心机的设计试验研 究,2001年5月核心机首次试验,对核心机进行了大量的地面和高 空性能试验,对可靠性与耐久性方面的进行大量试验,大幅度的提高 热端部件寿命, • 第二阶段:2002年末-2003年第三季度,完成了验证机设计与验证 工作, • 第三阶段: 2003年国庆节后~2006年11月为原型机研制时期, 原 形机研制经过两个阶段,一是FRET(飞行前鉴定试验阶段),二是 QT(定型试验阶段). 2004年5月原型机首次运转并开始地面台架试 车,并且加速发动机的成熟,延长零部件的寿命,降低生产成本和 后勤保障费用, 飞行前鉴定试验于2006年11月完成, 于2006年末,在 J10上进行首飞,定于2009年第二季度完成设计定型试验。于2010 年第四季度完成生产定型试验.
燃气涡轮发动机的基本机理---喷气推进原理: 喷气推进是牛顿第三定律(作用在物体上的每一 个力都有一方向相反大小相等的反作用力)的实际应 用。 喷气式飞机飞行时,它向后高速喷出大量气体, 这表明发动机对喷出的气体作用了“力”。根据牛顿 第三定律(就飞机推进而言,“物体”是通过发动机 时受到加速的大气中的空气),该高速气体也必然会 给发动机一个大小相等方向相反的反作用力,使飞机 向前运动。高速喷出的气体给发动机的这一反作用力 ,就称为喷气发动机的推力,喷出的气体越多,速度 越大,所产生的推力也就越大。
•
压气机 压气机由定子(stator)页片
与转子(rotor)页片交错组成, 一对定子页片与转子页片称 为一级,定子固定在发动机 框架上,转子由转子轴与涡 轮相连。现役涡喷发动机一 般为8-12级压气机。级数越 多越往后压力越大,当战斗 机突然做高g机动时,流入压 气机前级的空气压力骤降, 而后级压力很高,此时会出 现后级高压空气反向膨胀, 发动机工作极不稳定的状况, 工程上称为“喘振”,这是 发动机最致命的事故,很有 可能造成停车甚至结构毁坏。 防止“喘振”发生有几种办 法。经验表明喘振多发生在 压气机的5,6级间,在次区 间设置放气环,以使压力出 现异常时及时泄压可避免喘 振的发生。
航空发动机的作用
•航空发动机是航空器飞行的动力,也是航空事
业发展的推动力;
•航空发动机是飞机性能、可靠性和成本的决定
性因素;
•航空发动机的发展对冶金、机械、电子、仪表 等行业的发展具有重要的带动和促进作用。
航空发动机研究工作的特点 •技术难度大
一台发动机内有十几个部件和系统及数万个零件
研制一种新的发动机需要1万小时的整机试验和10万小时的部件 和系统试验。
•周期长
先进发动机的研制周期为 9-15年, F119从 1986 年开始到2005年 投入使用,前后达19年。
•费用高
F119 的研制费用超过 20亿美元;发动机的研究和发展费用占航 空总费用的1/4。
军用发动机设计要求 A 性能要求,包括地面台架性能和空中飞行性能(推力和 耗油率)、起动性能、加减速性能、引气量、功率提取和过载; B 适用性要求,包括发动机在飞行包线内稳定工作和油门 杆使用不受限制,加力接通、切断不受限制,飞行状态变化、 极限机动状态等时的发动机稳定工作; C 结构和安装要求,包括安装节位置、外廓尺寸、重量和 重心位置; D 可靠性要求 包括发动机寿命和工作循环、发动机各状态连 续工作时间和平均故障时间; E 维修性要求,包括发动机外场可更换件的更换时间、每 飞行小时的平均维修工时和更换发动机时间等; F 其他要求,如满足飞机隐身要求的红外信号和雷达反射 特性以及飞行控制的用就是将空 气在进入压气机之前调整到 发动机能正常运转的状态。 在超音速飞行时,机头与进 气道口都会产生激波 (shockwave,又称震波), 空气经过激波压力会升高, 因此进气道能起到一定的预 压缩作用,但是激波位置不 适当将造成局部压力的不均 匀,甚至有可能损坏压气机。 所以一般超音速飞机的进气 道口都有一个激波调节锥, 根据空速的情况调节激波的 位置。