《小波分析基础》PPT课件

合集下载

小波分析PPT

小波分析PPT

小波分析在雷达信号处况下都要求有快速算法. Mallat 塔式算法提供了离散正交小波变换的快速 分解与重构算法 ,其在小波分析中的地位如同 FFT(Fast Fourier Transform) 在傅氏分析中的地 位 一样. 文献[3]给出了一种对任一尺度计算复杂 度 为 O ( N) ,用非正交投影快速计算连续小波变 换 (CWT)的算法.
小波分析在雷达信号处理中的应用
除用于数据压缩外,小波 变换还有许多不同 应用. 小波 变换克服了短时傅里叶变换 分析窗大 小不变的缺点,具有 随频率成份的不同自动调节 分析窗大小的能力,使其成为 分析宽带非平稳信 号的有力 工具,为宽带雷达波形的综合 提供了有力的手段.
小波分析在雷达信号处理中的应用
小波分析及其应用
参与者:李明洪 李子东 丁均匀 朱一鸣
目录
1 2
小波分析简单介绍
小波分析在雷达信号处理上的应用
小波分析简单介绍
•1980’s初期,法国地质物理学家J.Morlet与理论物理学家 Grossmann提出小波概念 •1982年,J.O.Stromberg构造了第一个小波基 •1986年著名的数学家Y.Meyer与S.Mallat合作建立了构造小波 基的统一方法-多尺度分析 •1987年,S.Mallat还提出了小波变换的快速分解与重构算法 (Mallat算法) •1987在法国马赛召开了第一次小波国际会议 •1989年,Coifman 、Meyer等提出小波包的概念
小波分析在雷达信号处理中的应用
现代雷达技术的一个重要发展方向是超宽 带、 多功能、 智能化. 雷达所发射的信号向宽带和 超宽 带扩展 ,要处理的信号是具有局部细微特征 的多散 射中心的合成信号. 传统的傅里叶变换无 论是在利 用宽带模糊函数进行发射信号的波形设 计 ,还是在 对宽带回波信号的检测以及目标识别 方面都具有很 大的局限性 ,尤其是对非平稳信号 和奇异信号的处 理 ,常规的傅里叶技术则几乎无 法使用 ,而小波分析 在这方面却能发挥巨大作用. 在 SAR (Synthetic Aperture Radar) 图像降噪、 数 据压缩和分类上 ,小 波分析也取得了显著效果.

第六章小波分析基础ppt课件

第六章小波分析基础ppt课件
1、多分辨分析(MRA)的概念[5]
由母小波按如下方式的伸缩平移可构成L2(R)空间的标准正交基
j
j,k (t) 2 2 (2 j t k),j, k Z,t R
(3.1)
如何构造母小波呢?1989年,Mallat和Meyer提出了按多分辨分析 的思想来构造母小波,其基本思想是:
现构造一个具有特定性质的层层嵌套的闭子空间序列{Vj}jZ, 这个闭子空间序列充满了整个L2(R)空间。 在V0子空间找一个函数g(t),其平移{g(t-k)}k Z构成V0子空间的 Riesz基。
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
0 f (x, y) 255 0 x, y 511
y
x
2、L2(R)空间的正交分解和变换[1] 对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R ,
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到 小波域后,小波不仅能检测到高音与低音,而且还能将高音 与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
因此我们需要这样一个数学工具:既能在时域很好地刻画信号的局部性,

《小波分析》课件

《小波分析》课件

小波变换与其他数学方法的结合
小波变换与傅里叶分析的结合
小波变换作为傅里叶分析的扩展,能够提供更灵活的时频分析能力,适用于非平稳信号 的处理。
小波变换与数值分析的结合
小波变换在数值分析中可用于函数逼近、数值积分、微分方程求解等领域,提高计算效 率和精度。
小波变换在大数据分析中的应用
特征提取
小波变换能够提取大数据中隐藏的时间或频 率特征,用于分类、聚类和预测等任务。
正则性
小波基的正则性是指其在时频域的连续性和光滑 性,影响信号重构的精度和稳定性。
01
小波变换在信号处 理中的应用
信号的降噪处理
总结词
通过小波变换,可以将信号中的噪声成 分与有用信号分离,从而实现降噪处理 。
VS
详细描述
小波变换具有多尺度分析的特点,能够将 信号在不同尺度上进行分解,从而将噪声 与有用信号分离。在降噪处理中,可以选 择合适的小波基和阈值处理方法,对噪声 进行抑制,保留有用信号。
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
图像的压缩编码
01
通用性强
02
小波变换的通用性强,可以广泛 应用于各种类型的图像压缩,包 括灰度图像、彩色图像、静态图 像和动态图像等。
图像的边缘检测
精确检测
小波变换具有多尺度分析的特性,能 够检测到图像在不同尺度下的边缘信 息,实现更精确的边缘检测。
图像的边缘检测
抗噪能力强
小波变换能够有效地抑制噪声对边缘 检测的影响,提高边缘检测的准确性 和稳定性。
信号的压缩编码
总结词
小波变换可以将信号进行压缩编码,减小存储和传输所需的带宽和空间。
详细描述

小波基础知识 PPT课件

小波基础知识 PPT课件

设T : X
军事电子对抗与武器的智能化;计算机分 类与识别;音乐与语言的人工合成;医学 成像与诊断;地震勘探数据处理;大型机 械的故障诊断等方面;例如,在数学方面, 它已用于数值分析、构造快速数值方法、 曲线曲面构造、微分方程求解、控制论等。 在信号分析方面的滤波、去噪声、压缩、 传递等。在图象处理方面的图象压缩、分 类、识别与诊断,去污等。在医学成像方 面的减少B超、CT、核磁共振成像的时间, 提高分辨率等。
2
2
3
V,ej
2
v2
2
j 1
3 2
v1
1 2
v2
3 2
v1
1 2
v2
3 2
[
v1
2
v2
2]
3 2
V
定义、定理及证明
1. (巴拿赫)Banach空间与Hibert(西耳伯特) 空间
由于F(0) = 0,故 =0
2. 线性算子与同构
我们只考虑可分的Hilbert空间。
1986年著名数学家Y.Meyer偶然构造出一个真正的 小波基,并与S.Mallat合作建立了构造小波基的 同样方法及其多尺度分析之后,小波分析才开始 蓬勃发展起来,其中比利时女数学家 I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作 用。它与Fourier变换、窗口Fourier变换(Gabor 变换)相比,这是一个时间和频率的局域变换, 因而能有效的从信号中提取信息,通过伸缩和平 移等运算功能对函数或信号进行多尺度细化分析 (Multiscale Analysis),解决了Fourier变换 不能解决的许多困难问题,从而小波变化被誉为 “数学显微镜”,它是调和分析发展史上里程碑 式的进展。

小波分析简述(第五章)PPT课件

小波分析简述(第五章)PPT课件

六、多分辨率分析(Multi-resolution Analysis ,MRA),又称为多尺度分析
若我们把尺度理解为照相机的镜头的话,当尺 度由大到小变化时,就相当于将照相机镜头由 远及近地接近目标。在大尺度空间里,对应远 镜头下观察到的目标,只能看到目标大致的概 貌。在小尺度空间里,对应近镜头下观察目标, 可观测到目标的细微部分。因此,随着尺度由 大到小的变化,在各尺度上可以由粗及精地观 察目标,这就是多尺度(即多分辨率)的思想。
小波变换(Wavelet Transform)
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
主要内容
一、小波的发展历史 二、小波定义 三、连续小波变换 四、小波变换的特点 五、离散小波变换 六、多分辨率分析 七、Mallat算法 八、小波的应用 九、小波的进展
傅立叶分析是把一个信号分解成各种不同频率的正弦波, 因此正弦波是傅立叶变换的基函数。同样,小波分析是 把一个信号分解成由原始小波经过移位和缩放后的一系 列小波,因此小波是小波变换的基函数,即小波可用作 表示一些函数的基函数。
8
• 小波变换的反演公式
xtc1 0 a d2a W xa T ,a,td
26
小波基函数和滤波系数(db 2--正交,不对称 )
db小波
“近似”基函 数
“细节”基 函数
“正变换” 低频 和
高频 “滤波系数 “ ”反变换” 低频 和
• 小波基必须满足的条件—允许条件
ˆ2
c d
ˆ00
tdt0
9
四、小波变换的特点

《小波分析概述》课件

《小波分析概述》课件
小波变换在信号处理中发挥了重要作用,能够有效地分析信号的局部特征,如突变和奇异点,为信号 处理提供了新的工具。
泛函分析
泛函分析是研究函数空间和算子的性 质及其应用的数学分支。
小波分析在泛函分析的框架下,将函 数空间表示为小波基的线性组合,从 而能够更好地研究函数空间的性质和 算子的行为。
03
小波变换的算法实现
《小波分析概述》ppt课件
目录
• 小波分析的基本概念 • 小波变换的数学基础 • 小波变换的算法实现 • 小波分析在图像处理中的应用 • 小波分析在信号处理中的应用 • 小波分析的未来发展与挑战
01
小波分析的基本概念
小波的定义与特性
小波的定义
小波是一种特殊的数学函数,具有局 部特性和可伸缩性,能够在时间和频 率两个维度上分析信号。
一维小波变换算法
一维连续小波变换算法
01
基于连续小波基函数的变换方法,通过伸缩和平移参数实现信
号的多尺度分析。
一维离散小波变换算法
02
将连续小波变换离散化,便于计算机实现,通过二进制伸缩和
平移实现信号的多尺度分析。
一维小波包变换算法
03
基于小波包的概念,对信号进行更精细的分解,提供更高的频
率分辨率和时间分辨率。
图像增强
图像平滑
小波分析能够去除图像中的噪声 ,实现平滑处理,提高图像的视 觉效果。
细节增强
通过调整小波变换的参数,可以 突出图像中的某些细节,增强图 像的对比度和清晰度。
边缘检测
小波变换能够快速准确地检测出 图像中的边缘信息,有助于后续 的图像分析和处理。
图像识别
特征提取
小波变换可以将图像分解成不同频率的子带,提取出与特定任务 相关的特征,为后续的图像识别提供依据。

小波变换基础以及haar小波共47页PPT资料

小波变换基础以及haar小波共47页PPT资料

从公式可以看出,不同于傅里叶变换,变量只有频率 ω,小波变换有两个变量:尺度a和平移量 τ。尺度a 控制小波函数的伸缩,平移量 τ控制小波函数的平移。 尺度就对应于频率(反比),平移量 τ就对应于时间。
某一个尺度下乘出来的结果,就可以理解成信号所包 含的当前尺度对应频率成分有多少。其实这样相乘积 分也就是计算信号与基函数的相似程度。
连续小波变换:
W f(a ,b )f ,a ,b |1 a | f(t)(t a b )d, ta 0
连续小波反变换:
f(t)1
C
R RWf(a,b)a,b(t)daa 2 db
其中,a称|
连续小波变换的性质
⑴线性 f ( t ) A 1 ( t ) B f 2 ( t ) f W f ( a , b ) A f 1 ( a , b W ) B f 2 ( a , b W ) ⑵平移 g ( t ) f ( t t 0 ) W g ( a ,b ) W f( a ,b t 0 )
f(t) k 1 e 1 (t) k 2 e 2 (t) .. .k n .e n ( .t) .
如n果 ,那f么 (t) kiei(t)
i 1
小波对于分析瞬时时变信号非常有用. 它有效地从信号中提取信 息,通过伸缩和平移等运算对信号进行多尺度细化分析.
为什么叫小波??? 小波分析所用的波称为小波,小波的能量有限,有限长且会衰减,集 中在某一点附近. 即小波是一种能量在时域非常集中的波.
称φa,b(t)为连续小波. a,b(t)|a|12
(tb)
a
式中的变量a反映函数的尺度(或宽度),变量b检测沿t轴的平移位置.
a,b(t)|a|12
(tb)
a
为什么系数有个 |a |-1 / 2 ??? 为了保证在不同尺度a时,a.b (t) 的 (t) 能量相同 。

小波分析理论ppt课件

小波分析理论ppt课件

S(w,t ) f (t)g*(w t ) eiwt d t R
(1.12)
25
其中,“*”表示复共轭;g(t)为有紧支集的函数;f(t)为被 分析的信号。在这个变换中,ejwt起着频限的作用,g(t)起 着时限的作用。随着时间t的变化,g(t)所确定的“时间窗” 在t轴上移动,使f(t)“逐渐”进行分析。因此g(t)往往被称为
(1.4)
为序列{X(k)}的离散傅里叶逆变换(IDFT)。 在式(1.4)中,n相当于对时间域的离散化,k相当于频
率域的离散化,且它们都是以N点为周期的。离散傅里叶 变换序列{X(k)}是以2p为周期的,且具有共轭对称性。
9
若f(t)是实轴上以2p为周期的函数,即f(t)∈L2(0,2p) ,则f(t)可以表示成傅里叶级数的形式,即
(1.1)
F(w)的傅里叶逆变换定义为
f (t) 1 eiwt F (w)dw 2 π -
(1.2)
6
为了计算傅里叶变换,需要用数值积分,即取f(t)在R 上的离散点上的值来计算这个积分。在实际应用中,我们 希望在计算机上实现信号的频谱分析及其他方面的处理工 作,对信号的要求是:在时域和频域应是离散的,且都应 是有限长的。下面给出离散傅里叶变换(Discrete Fourier Transform,DFT)的定义。
。将母函数y(t)经伸缩和平移后,就可以得到一个小波序
列。
对于连续的情况,小波序列为
y a,b (t)
2
其中,短时傅里叶变换和小波变换也是因传统的傅里叶变 换不能够满足信号处理的要求而产生的。短时傅里叶变换 分析的基本思想是:假定非平稳信号在分析窗函数g(t)的 一个短时间间隔内是平稳(伪平稳)的,并移动分析窗函数,

小波分析基础 PPT课件

小波分析基础 PPT课件
(5) 对所有的尺度伸缩重复步骤(1)、(2)、(3)、(4)。
School of Jet Propulsion, BUAA
❖ 尺度与频率的关系
尺度与频率的关系如下: ➢ 小尺度a 压缩的小波快速变换的细节高频部分 ➢ 大尺度a 拉伸的小波缓慢变换的粗部低频部分
School of Jet Propulsion, BUAA
School of Jet Propulsion, BUAA
小波分析基础
2012.03.20
School of Jet Propulsion, BUAA
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
School of Jet Propulsion, BUAA
可以这样理解小波变换的含义:打个比喻,我们 用镜头观察目标信号f (t), ψ(t)代表镜头所起的所用。 b 相当于使镜头相对于目标平行移动,a的所用相当于 镜头向目标推进或远离。由此可见,小波变换有以下 特点: ➢ 多尺度/多分辨的特点,可以由粗及细地处理信号;
部化的。
School of Jet Propulsion, BUAA
一些著名的小波[3]:
1、Daubechies小波
School of Jet Propulsion, BUAA
2、Coiflets小波
3、Symlets小波
School of Jet Propulsion, BUAA
4、Morlet小波
a,b
(t)
a
1
2

第十一讲 小波分析基础

第十一讲 小波分析基础
c j ,k (W f )( k 1 , ) 2j 2j
式中 c j ,k 为离散小波变换的结果,称为小波系数。
4.1 多分辨分析
若空间 L2 ( R) 中有一列子函数空间 V j 1. 2. 3. 4. 5.

jZ
满足如下条件:
单调性: V j 1 V j V j 1 , j Z ; 逼近性: V j 0, V L2 (R) ;
S ( , ) f (t ) g (t )e jt dt
R
g (t ) 是一个具有紧支集的函数,可以看出是一个窗函数
f (t )
是待分析信号函数
e jt 起着频限的作用
g (t )
起着时限的作用
1.3 短时傅里叶的特点
S (, ) :大致上反映了信号f ( x) 在时刻 、频率为 的
频 率
时间
3.2 连续小波变换
ˆ ( ) ,当 ˆ ( ) 满足允 设 ( x) L2 (R) ,即满足 R ( x ) dx ,其傅里叶变换为
2
许条件(完全重构或恒等分辨条件)
ˆ ( ) C d R
称 ( x) 为一个小波或母小波,若采用以下定义式:
试求相应的正交小波函数
7 课后预习

小波评价指标 各种母小波特点及适用性 正交小波构造方法(了解) 小波变换的应用



8 课堂练习

求下列分段函数的哈尔变换,并进行复原
v(t)
2
1 0.25 0.5 0.75 t
-1
-2
1 f ( x) C



da (W f )(b, a) b,a ( x) a 2 db

小波分析PPT课件

小波分析PPT课件
4
一首数学史诗
• 多年的政治生涯及颠簸不定的生活,并没有使他放弃研究数学的强 烈兴趣.事实上,早在1807年他就研究了现在称之为Fourier分析的核 心内容.
• 1822年,正式出版推动世界科学研究进展的巨著——《热的解析理 论》(The Analytic Theory of Heat).由于这一理论成功地求解了困扰 科学家150年之久的牛顿二体问题微分方程,因此Fourier分析成为几 乎每个研究领域科学工作者乐于使用的数学工具,尤其是理论科学家。
• 目前,Fourier的思想和方法被广泛用于线性规划、大地测量以及电 话、收音机、x射线等难以计数的科学仪器中,是基础科学和应用科 学研究开发的系统平台。所以物理学家Maxwell称赞Fourier 分析是一 首伟大的数学史诗。
5
Fourier分析的核心内容
①用数学语言提出任何一个周期函数都能表示为一组正弦函数和余 弦函数之和。这一无限和现称之为Fourier级数。也就是说,任 何一条周期曲线,无论多么跳跃或不规则,都能表示成一组光滑 的曲线之和,见图。
实际上是将信 号投影在由正 弦和余弦函数 组成的正交基 上,对其实施 Fourier变换。
6
Fourier分析的核心内容
②他解释了为什么这一数学论断是有用的。1807年,他显示任何周 期函数(最下图形)是由正弦和余弦函数叠加而成。 Fourier分析 从本质上改变了数学家对函数的看法.他提供了某些微分方程的 直接求解方法,为计算机和CD等数字技术的实现铺平了道路。
但FFT 的本质还是Fourier变换。
10
Fourier变换的缺点
① Fourier分析对非线性问题感到力不从心。
因为非线性系统具有高度不可预测性,输入端微小的 变化会对输出端产生重大影响。例如牛顿定律方程是非线 性的,若用它来预测空间三个物体之间较长时间的行为是 十分困难的,甚至是不可能的,原因是该系统高度不稳定。 正如著名科学家Korner指出:“19世纪的伟大发现是证 明自然方程是线性的,20世纪的伟大发现是证明自然方程 是非线性的。” ② Fourier变换公式没有反映出随时间变化的频率。实际

小波基本理论及应用PPT课件

小波基本理论及应用PPT课件
小波变换通过选取不同的小波基函数, 对信号进行多尺度分解,得到信号在 不同尺度和频率上的系数,这些系数 可以反映信号在不同时间和频率上的 特征。
小波变换的应用领域
信号处理
小波变换在信号处理领域应用广泛,可 以用于信号的降噪、压缩、识别和分类
等。
模式识别
小波变换可以用于模式识别中的特征 提取和分类器设计,如人脸识别、语
小波基本理论及应用ppt课 件
目录
• 小波理论概述 • 小波变换的数学基础 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换在其他领域的应用
01
小波理论概述
小波的定义与特性
小波的定义
小波是一种特殊的函数,其时间窗和频率窗都可以改变,且在时间域和频率域 都具有很好的局部化特性。
在信号处理中,通过调整小波变换的尺度和平移参数,可 以得到信号在不同时间和频率下的局部信息,从而更好地 理解信号的特征和性质。
03
小波变换的算法实现
一维小波变换算法
一维小波变换算法是实现小波变换的基本方法之一,它通过对一维信号进行多尺度分析,将信号分解 成不同频率和不同时间分辨率的成分。
一维小波变换算法可以分为连续小波变换和离散小波变换两种,其中离散小波变换在实际应用中更为广 泛。
量子纠缠的检测
小波变换可以用于检测量子纠缠,有 助于理解和应用量子纠缠的性质。
量子计算中的优化问题
小波变换可以用于优化量子计算中的 某些问题,提高量子计算的效率。
量子模拟中的近似方法
小波变换可以用于近似求解某些量子 模拟问题,提供一种有效的近似方法。
在金融领域的应用
金融数据分析
小波变换可以用于金融数据分析,如股票价 格、外汇汇率和商品价格等的分析。

第1章(268)教材配套课件

第1章(268)教材配套课件

第1章 小波分析基础
定理1 设Wn是由形如 kZ ak(2n x k)( ak R)的函数所组成
的线性空间,其中ak含有限个非0项,则Wn构成Vn在Vn+1中 的正交补,并且Vn1 Vn Wn 。
定理2 能量有限空间L2(R)可以分解为如下形式之和: L2 (R) V0 W0 W1
第1章 小波分析基础
定理3 设 {Vn;n Z} 为一个具有尺度函数的正交多分辨
分析,则下列尺度关系式成立:
( x) hk (2x k )
kZ
其中,hk
2

(x) (2x k)dx
,并且有 (2 j1 x l)
, hk2l (2 j x k )
~ˆ () ˆ *()
ˆ (2 j ) 2
j
由上式可以看出,稳定条件实际上是对上式分母的约束
条件,它的作用是保证对偶小波的傅里叶变换存在。
Wf (a, b)
第1章 小波分析基础
1.4 离散小波变换
在实际运用中,尤其是在计算机上实现时,连续小波
变换必须加以离散化。因此,有必要讨论连续小波 a,b (t)
是一个仅有4个非0系数的小波(俗称D4小波),相关系数hk的值为
h0
1 4
3

h1

3
4
3
h2
3 4
3

h3

1
4
3
第1章 小波分析基础
而其他的系数为0,对应尺度函数的图形如图1.7和图 1.8所示。

j,k
(t)

a0
j
2

t

ka0 a0 j

小波PPT

小波PPT
其MATLAB程序如下: t=0:0.001:1.3; %时间间隔为0.001说明采样频
率为1000 Hz
x=sin(2*pi*50*t)+sin(2*pi*300*t);%产生主要频率 为50 Hz和300 Hz的信号
19 f=x+3.5*randn(1,length(t));%在信号中加入白噪
(1.7)
该性质表明,时间函数f(t)沿t轴向左或向右位移t0的傅里叶 变换等于f(t)的傅里叶变换乘以因子 ei wt 0 或
e

傅里叶逆变换亦具有类似的位移性质。
14 3.微分性质
设F(w)为函数f(t)的傅里叶变换,f(t)表示函数f(t)的微
分,则有
f (t) jwF(w)
(1.8)
功率谱图(图1.1(b))中,我们可以明显地看出该信号是由频
率为50 Hz和300 Hz的正弦信号和频率分布广泛的白噪声信 号组成的,也可以明显地看出信号的频率特性。
23 虽然傅里叶变换能够将信号的时域特征和频域特征联
系起来,能分别从信号的时域和频域观察,但不能把二者
有机地结合起来。这是因为信号的时域波形中不包含任何 频域信息,而其傅里叶谱是信号的统计特性。从其表达式
为序列{ fn}的离散傅里叶变换,称
i
2πk n N
(1.3)
9
1 fn N
X (k )e
k 0
N 1
i
2πk n N
k 0,1,, N 1
(1.4)
为序列{X(k)}的离散傅里叶逆变换(IDFT)。
在式(1.4)中,n相当于对时间域的离散化,k相当于频
率域的离散化,且它们都是以N点为周期的。离散傅里叶 变换序列{X(k)}是以2p为周期的,且具有共轭对称性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于给定信号f(t),关键是选择合适的基gi(t) ,使得f(t)在这 组基下的表现呈现出我们需要的特性,但是如果某一个基不
满足要求,可通过变换将函数转换到另一个基下表示,才能
得到我们需要的函数表示。常用的变换[2]有:
(1) K-L变换
(2) Walsh变换
(3) 傅立叶变换
(4) 小波变换
如图所示是信号f(t)的傅立叶变换示意图。信号f(t)经傅立叶
College of Mathematics and Computer Science, Hebei University
精选PPT
College of Mathematics and Computer Science, Hebei University
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
从数学上已经证明了,傅立叶级数的前N项和是原函数f(t) 在给定能量下的最佳逼近:
精选PPT
College of Mathematics and Computer Science, Hebei University
N l im 0 Tf(t) a 2 0k N 1a kck o0 ts b ksikn 0 t 2 d (1 .8x 0 )
精选PPT
College of Mathematics and Computer Science, Hebei University
3、傅立叶变换与时频分析[4] 我们知道,任何复杂的周期信号f(t)可以用简单的调和振荡函
数表示成如下形式:
f(t)a 2 0i 1 (akco k0 stbksikn 0t)
f (t) cigi(t)
(1.2)
i1
其中
ci f(t),gi(t)f(t)gi(t)dt
gk(t),gl(t) gk(t)gl(t)d t k, l k,lZ (1.3)
精选PPT
College of Mathematics and Computer Science, Hebei University
1、Daubechies小波
精选PPT
College of Mathematics and Computer Science, Hebei University
2、Coiflets小波 3、Symlets小波
精选PPT
College of Mathematics and Computer Science, Hebei University
4、Morlet小波
5、Mexican Hat小波
6、Meyer小波
精选PPT
SKIP
College of Mathematics and Computer Science, Hebei University 不是小波的例
精选PPT
College of Mathematics and Computer Science, Hebei University RETURN
ak
2 T
T
f
0
(t)coks0td, t k0,1,2
(1.5)
bk
2 T
0Tf(t)sink0td, t k0,1,2
(1.6)
于是,周期函数f(t) 就与下面的傅立叶序列产生了一一对应, 即
f( t ) a 0 ,( a 1 ,b 1 ) ( a 2 , ,b 2 ) , (1.7)
对于L2(R)上的非周期函数f(t) ,有
fˆ() f(t)eitdt
(1.9)
称 fˆ ( ) 为f(t)的傅立叶变换,反变换公式为
f(t) fˆ()eitd
(1.10)
精选PPT
College of Mathematics and Computer Science, Hebei Univx ,y 511
y
精选PPT
x
College of Mathematics and Computer Science, Hebei University
2、L2(R)空间的正交分解和变换[1]
对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R , i=1,2,…使得
精选PPT
College of Mathematics and Computer Science, Hebei University
一个信号从数学的角度来看,它是一个自变量为时间t的函 数f(t)。因为信号是能量有限的,即
f
(t)2dt0
(1.1)
满足条件(1.1)的所有函数的集合就形成L2(R) 图像是二维信号,同样是能量有限的。实际上任何一幅数字
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
图像都是从真实的场景中经过采样和量化处理后得到的。从数 学上看,图像是定义在L2(R2)上的函数。
精选PPT
College of Mathematics and Computer Science, Hebei University
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
变换由时域变换到频域,基底不同得到大变换也不同。
在信号处理中,有两类非常重要的变换即傅立叶变换和小波
变换。目前,可简单地将小波理解为满足以下两个条件的特
殊信号:
(1) 小波必须时振荡的;
(2) 小波的振幅只能在一个很短的一段区间上非零,即是局
部化的。
精选PPT
College of Mathematics and Computer Science, Hebei University 一些著名的小波[3]:
(1.4)
这就是著名的傅立叶级数,co ks0t和 sikn 0t都是简单的调和
振荡函数,直观讲都是正弦波。ak和bk 是函数f(t)的傅立叶系数,
可由以下公式计算:
精选PPT
College of Mathematics and Computer Science, Hebei University
相关文档
最新文档