材料力学性能复习资料

合集下载

工程材料力学性能复习资料

工程材料力学性能复习资料

⼯程材料⼒学性能复习资料个⼈资料 | 复习资料 - 1 - ⼯程材料⼒学性能复习资料个⼈复习资料严禁外传本重点以⽼师最终给的复习重点归纳⼀、名词解释。

1、缺⼝效应:绝⼤多数机件的平⾯不是均匀变化的光滑体,往往存在截⾯的急剧变化,由于缺⼝的存在,在静载荷作⽤下缺⼝截⾯上的应⼒状态将发⽣变化,产⽣所谓的“缺⼝效应”,从⽽影响⾦属材料的⼒学性能。

简⾔之,缺⼝材料在静载荷作⽤下,缺⼝截⾯上的应⼒状态发⽣的变化。

2、韧脆转变温度:中、低强度钢在试验温度低于某⼀温度t k 时,会由韧性状态转变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断⼝特征由纤维状变为结晶状,这就是低温脆性,转变温度t k 称为韧脆转变温度(或者说在试验温度低于某⼀温度t k 时,会由韧性状态转变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断⼝特征由纤维状转变为结晶状,这就是低温脆性。

t k 称为韧脆转变温度)。

3、冲击韧性:指材料在冲击载荷作⽤下吸收塑性变形功和断裂功的能⼒,常⽤标准试样的冲击吸收功A K 表⽰。

4、应⼒腐蚀:⾦属在拉应⼒和特定的化学介质共同作⽤下,经过⼀段时间后所产⽣的低应⼒脆断现象。

5、接触疲劳:是机件两接触⾯作滚动或滚动加滑动摩擦时,在交变接触压应⼒作⽤下,材料表⾯应疲劳损伤,导致局部区域产⽣⼩⽚或⼩块状⾦属剥落⽽使材料流失的现象。

6、弹性⽐功:⼜称弹性⽐能,应变⽐能。

表⽰材料吸收弹性变形功的能⼒,⼀般⽤⾦属开始塑性变形前单位体积吸收的最⼤弹性变形功表⽰,即:A e =12σεεε=σε22E7、缺⼝敏感度:⽤缺⼝试样的抗拉强度bn σ与等截⾯尺⼨光滑试样的抗拉强度b σ的⽐值表⽰,即:n bn NSR σσ= 8、氢致延滞断裂:⾼强钢或钛合⾦中,含有适量的处于固溶状态的氢,在低于屈服强度的应⼒持续作⽤下,经过⼀段孕育期后,在⾦属内部,特别是在三向拉应⼒状态区形成裂纹,裂纹逐渐扩展,最后突然发⽣脆性断裂。

材料物理性能复习资料整理

材料物理性能复习资料整理

材料在外力作用下发生形状和尺寸的变化,称为形变。

材料承受外力作用、抵抗变形的能力及其破坏规律,称为材料的力学性能或机械性能。

材料在单位面积上所受的附加内力称为应力。

法向应力导致材料伸长或缩短,而剪切应力引起材料的切向畸变。

应变是用来表征材料在受力时内部各质点之间的相对位移。

对于各向同性材料,有三种基本类型的应变:拉伸应变ε,剪切应变γ和压缩应变Δ。

若材料受力前的面积为A0,则σ0=F/A0称为名义应力。

若材料受力后面积为A,则σT=F/A称为真实应力。

对于理想的弹性材料,在应力作用下会发生弹性形变,其应力与应变关系服从胡克(Hook)定律(σ=Eε)。

E是弹性模量,又称为弹性刚度。

弹性模量是材料发生单位应变时的应力,它表征材料抵抗形变能力(即刚度)的大小。

E越大,越不容易变形,表示材料刚度越大。

弹性模量是原子间结合强度的标志之一。

泊松比:在拉伸试验时,材料横向单位面积的减少与纵向单位长度的增加之比值。

粘性形变是指粘性物体在剪切应力作用下发生不可逆的流动形变,该形变随时间增加而增大。

材料在外应力去除后仍保持部分应变的特性称为塑性。

材料发生塑性形变而不发生断裂的能力称为延展性。

在足够大的剪切应力τ作用下或温度T较高时,材料中的晶体部分会沿着最易滑移的系统在晶粒内部发生位错滑移,宏观上表现为材料的塑性形变。

滑移和孪晶:晶体塑性形变两种基本形式。

蠕变是在恒定的应力σ作用下材料的应变ε随时间增加而逐渐增大的现象。

位错蠕变理论:在低温下受到阻碍而难以发生运动的位错,在高温下由于热运动增大了原子的能量,使得位错能克服阻碍发生运动而导致材料的蠕变。

扩散蠕变理论:材料在高温下的蠕变现象与晶体中的扩散现象类似,蠕变过程是在应力作用下空位沿应力作用方向(或晶粒沿相反方向)扩散的一种形式。

晶界蠕变理论:多晶陶瓷材料由于存在大量晶界,当晶界位相差大时,可把晶界看成是非晶体,在温度较高时,晶界粘度迅速下降,应力使得晶界发生粘性流动而导致蠕变。

工程力学--第五章 材料的力学性能

工程力学--第五章 材料的力学性能

材料名称
牌号
许用应力 /MPa 轴向拉伸 轴向压缩 170 230 160-200 7 10.3 10
低碳钢 低合金钢 灰口铸铁 混凝土 混凝土 红松(顺纹)
Q235 16Mn C20 C30
170 230 34-54 0.44 0.6 6.4
Ⅲ. 关于安全因数的考虑
(1) 考虑强度条件中一些量的变异。如极限应力(s,
3. 求三角架的许可荷载
先按每根杆的许可轴力求各自相应的许可荷载:
[ FN1 ] 369 .24 kN [ F1 ] 184 .6 kN 2 2
[ FN2 ] 486.20 kN [ F2 ] 280.7 kN 1.732 1.732
该三角架的许可荷载应是[F1] 和 [F2]中的小者,所以
mm 80 mm7 mm等边角钢组成,杆AB由两根10号工字钢 组成。两种型钢的材料均为Q235钢,[]=170 MPa。试求许 可荷载[F]。
解 : 1. 根据结点 A 的受力图(图b),得平衡方程:
Fx 0
解得
FN2 FN1 cos30 0 FN1 sin 30 F 0
A A1 100% A
A1——断口处最小横截面面积。 延性材料: >5%, 脆性材料:
Q235钢:≈60%
如低碳钢、低合金钢、青铜等
<5%, 如铸铁、硬质合金、石料等。
注意: 1. 低碳钢的s,b都还是以相应的抗力除以试样横截 面的原面积所得,实际上此时试样直径已显著缩小,因而 它们是名义应力。 2. 低碳钢的强度极限b是试样拉伸时最大的名义应力,
哪一个大?
Ⅲ. 其他金属材料在拉伸时的力学性能
由-e曲线可见:
材料 弹性阶段 屈服阶段 强化阶段 局部变形 阶段 锰钢 √ × √ ×

材料力学性能总复习-知识归纳整理

材料力学性能总复习-知识归纳整理

知识归纳整理《材料力学性能》课程期末总复习一、名词解释刚度、形变强化、弹性极限、应力腐蚀开裂、韧性、等温强度、缺口效应、磨损、腐蚀疲劳、脆性断裂、等强温度、应力松弛、Bauschinger效应、粘着磨损、缺口敏感度、冲击韧度、滞弹性、韧脆转变温度、应力腐蚀、抗拉强度、蠕变、高温疲劳、低应力脆断、氢脆、弹性变形、应力状态软性系数、应力幅、应力场强度因子、变动载荷、抗热震性、弹性比功、残余应力、比强度、高周疲劳、约比温度、滑移、应变时效、内耗、断面收缩率、腐蚀磨损二、挑选题1、Bauschinger效应是指经过预先加载变形,然后再反向加载变形时材料的弹性极限()的现象。

A.升高B.降低C.不变D.无规律可循2、橡胶在室温下处于:()A.硬玻璃态B.软玻璃态C.高弹态D.粘流态3、下列金属中,拉伸曲线上有明显屈服平台的是:()A.低碳钢B.高碳钢C.白口铸铁D.陶瓷4、HBS所用压头为()。

A.硬质合金球B.淬火钢球C.正四棱金刚石锥D.金刚石圆锥体5、对称循环交变应力的应力比r为()。

A.-1 B.0 C.-∞D.+∞6、Griffith强度理论适用于()。

A.金属B.陶瓷C.有机高分子D.晶须7、疲劳裂纹最易在材料的什么部位产生()。

A.表面B.次表面C.内部D.不一定8、⊿Kth表示材料的()。

A.断裂韧性B.疲劳裂纹扩展门槛值求知若饥,虚心若愚。

C.应力腐蚀破碎门槛值D.应力场强度因子9、拉伸试样的直径一定,标距越长则测出的断面收缩率会()。

A.越高B.越低C.不变D.无规律可循10、下述断口哪一种是延性断口()。

A.穿晶断口B.沿晶断口C.河流花样D.韧窝断口11、与维氏硬度可以相互比较的是()。

A.布氏硬度B.洛氏硬度C.莫氏硬度D.肖氏硬度12、为提高材料的疲劳寿命可采取如下措施()。

A.引入表面拉应力B.引入表面压应力C.引入内部压应力D.引入内部拉应力13、材料的断裂韧性随板材厚度或构件截面尺寸的增加而()。

材料力学性能复习提纲

材料力学性能复习提纲

σs—材料的屈服强度,用应力表示材料的屈服点或下屈服点,表征材料对微量塑性变形的抗力。

σb抗拉强度,只代表金属材料所能承受的最大拉伸应力,表征金属材料对最大均匀塑性变形的抗力。

n应变硬化指数,反映金属材料抵抗均匀塑性变形的能力,是表征金属材料应变硬化行为的性能指标。

A断后伸长率,是试样拉断后标距的残余伸长(Lu-L0)与原始标距L0之比的百分率。

表征金属材料断裂前发生塑性变形的能力。

Agt它是金属材料拉伸时产生的最大均匀塑性变形量。

Z断面收缩率,它是指试样拉断后,缩颈处横截面积的最大缩减量与原始横截面积之比的百分率。

K:冲击吸收能量,材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。

KV: V型缺口的冲击吸收功。

KU: U型缺口的冲击吸收功。

NDT:Rmc:抗压强度,试样压至破坏过程中的最大应力。

σbb:抗弯强度,在三点弯曲试验中,试样弯曲至断裂前达到的最大弯曲力。

τm:抗扭强度,金属试样在扭断前承受的最大扭矩Tm与试样抗弯截面系数W的商NSR:缺口敏感度,表征材料的缺口敏感性。

HBW:压头为硬质合金球的材料的布氏硬度。

HRA:压头为金刚石圆锥的材料的洛氏硬度。

IC K 和C K:IC K 为平面应变下的断裂韧度,表示在平面应变条件下材料抵抗C K 为平面应力断裂韧度,表示平面应力条件下材料抵抗裂纹失稳扩展的能力。

同属于Ⅰ型裂纹的材料断裂韧性指标,但C K 与试样厚度有关。

IC K 与试样厚度无关,是真正的材料常数。

G1C:当增加到某一临界值时,能克服裂纹失稳扩展的阻力,则裂纹失稳扩展断裂。

J1C:断裂韧度,表示材料抵抗裂纹开始扩展的能力δC:断裂韧度,表示材料阻σscc:金属材料抗应力腐蚀性能指标表示材料不发生应力腐蚀的临界应力K1scc:应力腐蚀临界应力场强度因子,即试样在特定化学介质中不发生应条件下的断裂韧度。

K1HEC:氢脆临界应力场强度因子表示试样在化学介质中不发生应力腐蚀断裂的da/dt:应力腐蚀裂纹扩展速率,即单位时间内裂纹的扩展量。

材料力学性能复习重点

材料力学性能复习重点

期末复习资料一 名词解释1. 弹性比功:又称弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。

金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3. 循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力。

也叫金属的内耗。

4. 包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象。

5. 应力状态软性系数:金属所受的最大切应力τmax 与最大正应力σmax 的比值大小。

即:()32131max max 5.02σσσσσστα+--== 6. 缺口效应:绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。

缺口第一效应:引起应力集中,改变了缺口前方的应力状态,使缺口试样所受的应力由原来的单向应力状态改变为两向或三向应力状态。

缺口第二效应:缺口使塑性材料强度增高,塑性降低。

7. 缺口敏感度:缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即:8. 缺口试样静拉伸试验:轴向拉伸、偏斜拉伸两种。

9. 布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。

10. 洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度11. 维氏硬度——以两相对面夹角为136°的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。

材料力学性能

材料力学性能

填空1-1、金属弹性变形是一种“可逆性变形”,它是金属晶格中原子自平衡位置产生“可逆位移”的反映。

1-2、弹性模量即等于弹性应力,即弹性模量是产生“100%”弹性变形所需的应力。

1-3、弹性比功表示金属材料吸收“弹性变形功”的能力。

1-4、金属材料常见的塑性变形方式主要为“滑移”和“孪生”。

1-5、滑移面和滑移方向的组合称为“滑移系”。

1-6、影响屈服强度的外在因素有“温度”、“应变速率”和“应力状态”。

1-7、应变硬化是“位错增殖”、“运动受阻”所致。

1-8、缩颈是“应变硬化”与“截面减小”共同作用的结果。

1-9、金属材料断裂前所产生的塑性变形由“均匀塑性变形”和“集中塑性变形”两部分构成。

1-10、金属材料常用的塑性指标为“断后伸长率”和“断面收缩率”。

1-11、韧度是度量材料韧性的力学指标,又分为“静力韧度”、“冲击韧度”、“断裂韧度”。

1-12、机件的三种主要失效形式分别为“磨损”、“腐蚀”和“断裂”。

1-13、断口特征三要素为“纤维区”、“放射区”、“剪切唇”。

1-14、微孔聚集断裂过程包括“微孔成核”、“长大”、“聚合”,直至断裂。

1-15、决定材料强度的最基本因素是“原子间结合力”2-1、金属材料在静载荷下失效的主要形式为“塑性变形”和“断裂”。

2-2、扭转试验测定的主要性能指标有“切变模量”、“扭转屈服点τs”、“抗扭强度τb”。

2-3、缺口试样拉伸试验分为“轴向拉伸”、“偏斜拉伸”。

2-5、压入法硬度试验分为“布氏硬度”、“洛氏硬度”和“维氏硬度”。

2-7、洛氏硬度的表示方法为“硬度值”、符号“HR”、和“标尺字母”。

3-1、冲击载荷与静载荷的主要区别是“加载速率不同”。

3-2、金属材料的韧性指标是“韧脆转变温度tk4-1、裂纹扩展的基本形式为“张开型”、“滑开型”和“撕开型”。

4-2、机件最危险的一种失效形式为“断裂”,尤其是“脆性断裂”极易造成安全事故和经济损失。

4-3、裂纹失稳扩展脆断的断裂K判据:KI≥KIC 4-4、断裂G判据:GI≥GIC 。

工程材料力学性能各章节复习知识点

工程材料力学性能各章节复习知识点

⼯程材料⼒学性能各章节复习知识点⼯程材料⼒学性能各个章节主要复习知识点第⼀章弹性⽐功:⼜称弹性⽐能,应变⽐能,表⽰⾦属材料吸收弹性变形功的能⼒。

滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。

包申格效应:⾦属材料经预先加载产⽣少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应⼒(弹性极限或屈服极限)增加,反向加载,规定残余伸长应⼒降低的现象。

塑性:指⾦属材料断裂前发⽣塑性变形的能⼒。

脆性:材料在外⼒作⽤下(如拉伸,冲击等)仅产⽣很⼩的变形及断裂破坏的性质。

韧性:是⾦属材料断裂前洗⼿塑性变形功和断裂功的能⼒,也指材料抵抗裂纹扩展的能⼒。

应⼒、应变;真应⼒,真应变概念。

穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。

拉伸断⼝形貌特征?①韧性断裂:断裂⾯⼀般平⾏于最⼤切应⼒并与主应⼒成45度⾓。

⽤⾁眼或放⼤镜观察时,断⼝呈纤维状,灰暗⾊。

纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,⽽灰暗⾊则是纤维断⼝便⾯对光反射能⼒很弱所致。

其断⼝宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。

②脆性断裂:断裂⾯⼀般与正应⼒垂直,断⼝平齐⽽光亮,常呈放射状或结晶状。

板状矩形拉伸试样断⼝呈⼈字形花样。

⼈字形花样的放射⽅向也与裂纹扩展⽅向平⾏,但其尖端指向裂纹源。

韧、脆性断裂区别?韧性断裂产⽣前会有明显的塑性变形,过程⽐较缓慢;脆性断裂则不会有明显的塑性变形产⽣,突然发⽣,难以发现征兆拉伸断⼝三要素?纤维区,放射区和剪切唇。

缺⼝试样静拉伸试验种类?轴向拉伸、偏斜拉伸材料失效有哪⼏种形式?磨损、腐蚀和断裂是材料的三种主要失效⽅式。

材料的形变强化规律是什么?层错能越低,n越⼤,形变强化增强效果越⼤退⽕态⾦属增强效果⽐冷加⼯态是好,且随⾦属强度等级降低⽽增加。

在某些合⾦中,增强效果随合⾦元素含量的增加⽽下降。

材料的晶粒变粗,增强效果提⾼。

材料力学性能复习资料前(简单32课时)

材料力学性能复习资料前(简单32课时)

名词解释1.弹性:指材料在外力作用下保持和恢复固有形状和尺寸的能力2.塑性:指材料在外力作用下发生不可逆的永久变形的能力3.强度:指材料在外力作用下抵抗塑性形变和破坏的能力4.比例极限ζp:应力与应变保持正比关系的最大应力5.弹性极限ζe:在拉伸试验过程中,材料不产生塑性变形时的最大应力6.屈服极限:①对拉伸曲线上有明显屈服平台的材料,塑性变形硬化不连续,屈服平台所对应的应力即为屈服强度ζs②对拉伸曲线上没有屈服平台的材料,塑性变形硬化是连续的,此时将屈服强度定义为产生0.2%残余伸长时的应力ζ0.27.抗拉强度ζb:材料断裂前所能承受的最大应力8.应变强化:材料在应力作用下进入塑性变形阶段后,随着变形量的增大,性变应力不断提高的现象9.断裂延性:拉伸断裂时的真应变10.弹性比功We(弹性应变能密度):材料开始塑性变形前单位体积所能吸收的弹性变形功。

We = ζeEe/2 = ζe^2/(2E)[需弹性较大材料时,增大We的措施是增加ζe,降低E]11.弹性后效:在弹性范围内加速加载或卸载后,随时间延长产生附加弹性应变的现象12.弹性滞后:在非瞬间加载条件下的弹性后效13.内耗Q-1=1/2π*△W/W:加载时消耗的变形功大于卸载时释放的变形功,或弹性滞后回线面积为一个循环所消耗的不可逆功,这部分被金属吸收的功,称为内耗14.循环韧性(消振性):金属材料在单向循环载荷或交变循环载荷作用下吸收不可逆功的能力15.包申格效应:产生了少量塑性变形的材料,再同向加载,则弹性极限与屈服强度升高,反向加载则弹性极限与屈服强度降低的现象16.孪生:在切应力作用下,晶体的一部分相对于另一部分沿一定的晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系17.硬度:指材料抵抗其他硬物体压入其表面的能力18.应力状态柔度因数:表示应力状态对材料塑性变形的影响。

α=ηmax/ζmax=(ζ1 –ζ3)/2[ζ1 –ν(ζ2 + ζ3)]19.解理断裂:材料在拉应力作用下,由于原子间结合键遭到破坏,严格地沿一定的结晶学平面(即所谓“解理面”)劈开而造成的断裂。

材料力学性能知识要点

材料力学性能知识要点

1、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。

2、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率断面收缩率 、 冲击功 。

3、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。

4、常用测定硬度的方法有 布氏硬度 、 洛氏硬度 和 维氏硬度 测试法。

1、聚合物的弹性模量对 结构 非常敏感,它的粘弹性表现为滞后环、应力松弛和 蠕变 ,这种现象与温度、时间密切有关。

2、影响屈服强度的内在因素有: 结构健 、 组织 、 结构 、 原子本性 ;外在因素有: 温度 、 应变速率 、 应力状态 。

3、缺口对材料的力学性能的影响归结为四个方面: (1)产生应力集中 、(2)引起三相应力状态,使材料脆化 、 (3)由应力集中带来应变集中 、(4)使缺口附近的应变速率增高 。

4、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。

5、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率 断面收缩率 、 冲击功 。

6、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。

请说明下面公式各符号的名称以及其物理意义7、c IC c a Y K /=σσc :断裂应力,表示金属受拉伸离开平衡位置后,位移越大需克服的引力越大,σc 表示引力的最大值;K 1C :平面应变的断裂韧性,它反映了材料组织裂纹扩展的能力;Y :几何形状因子a c : 裂纹长度 8、对公式m K c dNda )(∆=进行解释,并说明各符号的名称及其物理意义(5分) 答:表示疲劳裂纹扩展速率与裂纹尖端的应力强度因子幅度之间的关系。

dNda :裂纹扩展速率(随周次); c 与m :与材料有关的常数;K ∆:裂纹尖端的应力强度因子幅度9、εss-蠕变速率,反映材料在一定的应力作用下,发生蠕变的快慢;n为应力指数,n并非完全是材料常数,随着温度的升高,n略有降低;A为常数;σ为蠕变应力。

材料力学性能复习

材料力学性能复习

材料⼒学性能复习第⼆章材料在静载荷下的⼒学性能1.连续塑性变形强化材料和⾮连续塑性形变强化材料曲线、变形过程、屈服强度。

2.指出以下应⼒应变曲线与哪些典型材料相对应,并对其经历的变形过程做出说明。

3.拉伸断裂前,发⽣少量塑性变形,⽆颈缩,在最⾼载荷点处断裂;4.断裂前先发⽣弹性变形,然后进⼊屈服阶段,之后发⽣形变强化+均匀塑性变形,有颈缩现象,再发⽣⾮均匀塑性变形直⾄断裂;5.应⼒状态软性系数的定义及其意义、应⼒状态图的应⽤。

6.画出低碳钢的应⼒应变曲线,并说明获得该材料的强度和塑性指标?⽐例极限弹性极限屈服极限强度极限断裂强度延伸率断⾯收缩率7.⼯程应⼒、⼯程应变、真应⼒和真应变之间有什么关系?8.为什么灰⼝铸铁的拉伸断⼝与拉伸轴垂直,⽽压缩断⼝却与压缩⼒轴成45o⾓?9.材料为灰铸铁,其试样直径d=30mm,原标距长度h。

=45mm。

在压缩试验时,当试样承受到485kN压⼒时发⽣破坏,试验后长度h=40mm。

试求其抗压强度和相对收缩率。

10.布⽒、洛⽒、维⽒硬度的试验原理、特点、应⽤。

11.现有如下⼯件需测定硬度,选⽤何种硬度试验⽅法为宜? (1) 渗碳层的硬度分布;(2)灰铸铁;(3)淬⽕钢件;(4)氮化层;(5)双相钢中的铁素体和马⽒体;(6)⾼速钢⼑具;(7)硬质合⾦;(8)退⽕态下的软钢。

第三章材料的变形12.⾦属的弹性模量主要取决于什么?材料的弹性模量可以通过材料热处理等⽅式进⾏有效改变的吗?为什么说它是⼀个对结构不敏感的⼒学性能?弹性也称之为刚度,都是表征材料变形的能⼒?特点:单值性,可逆性,变形量⼩;物理本质:克服原⼦间⼒(双原⼦模型)组织不敏感:E主要取决于材料的本性,与晶格类型和原⼦间距有关,合⾦中固溶原⼦、热处理⼯艺、冷塑性变形,温度、加载⽅式等都对弹性模量影响不⼤;刚度:弹性与刚度是不同的,弹性表征材料弹性变形的能⼒,刚度表征材料弹性变形的抗⼒。

13.弹性变形的不完整性?灰⼝铸铁可以⽤作机床机⾝,为什么?对理想弹性体,在应⼒作⽤下产⽣的应变,与应⼒间存在三个关系:线性、瞬时和唯⼀性。

《材料的力学性能》西北工业大学出版社--复习资料

《材料的力学性能》西北工业大学出版社--复习资料

《材料的力学性能》第一章 材料的拉伸性能名词解释:比例极限P σ,弹性极限e σ,屈服极限s σ,屈服强度0.2σ,抗拉强度b σ,延伸率k δ,断面收缩率k ψ(P7-8),断裂强度f σ(k σ),韧度(P10)1、拉伸试验可以测定那些力学性能?对拉伸试件有什么基本要求? 答:拉伸试验可以测定的力学性能为:弹性模量E ,屈服强度σs ,抗拉强度σb ,延伸率δ,断面收缩率ψ。

2、拉伸图和工程应力-应变曲线有什么区别?试验机上记录的是拉伸图还是工程应力-应变曲线?答:拉伸图和工程应力—应变曲线具有相似的形状,但坐标物理含义不同,单位也不同。

拉伸图横坐标为伸长量(单位mm ),纵坐标为载荷(单位N );工程应力-应变曲线横坐标为工程应力(单位MPa ),纵坐标为工程应变(单位无)。

试验机记录的是拉伸图。

3、脆性材料与塑性材料的应力-应变曲线有什么区别?脆性材料的力学性能可以用哪两个指标表征?答:如下图所示,左图近似为一直线,只有弹性变形阶段,没有塑性变形阶段,在弹性变形阶段断裂,说明是脆性材料。

右图为弯钩形曲线,既有弹性变形阶段,又有塑性变形阶段,在塑性变形阶段断裂,说明是塑性材料。

脆性材料力学性能用“弹性模量“和”脆性断裂强度”来描述。

4、塑性材料的应力-应变曲线有哪两种基本形式?如何根据应力-应变曲线确定拉伸性能?答:分为低塑性和高塑性两种,如下图所示。

左图曲线有弹性变形阶段与均匀塑性变形阶段,没有颈缩现象,曲线在最高点处中断,即在均匀塑性变形阶段断裂,且塑性变形量小,说明是低塑性材料。

右图曲线有弹性变形阶段,均匀塑性变形阶段,颈缩后的局集塑性变形阶段,曲线在经过最高点后向下延伸一段再中断,即在颈缩后的局集塑性变形阶段断裂,且塑性变形量大,说明是高塑性材料。

5、何谓工程应力和工程应变?何谓真应力和真应变?两者之间有什么定量关系?答:6、如何测定板材的断面收缩率?答:断面收缩率是材料本身的性质,与试件的几何形状无关,其测试方法见P8。

第一章 材料的力学性能

第一章  材料的力学性能

第一章材料的力学性能一、名词解释1、力学性能:材料抵抗各种外加载荷的能力,称为材料的力学性能。

2、弹性极限:试样产生弹性变形所承受的最大外力,与试样原始横截面积的比值,称为弹性极限,用符号σe表示。

3、弹性变形:材料受到外加载荷作用产生变形,当载荷去除,变形消失,试样恢复原状,这种变形称为弹性变形。

4、刚度:材料在弹性变形范围内,应力与应变的比值,称为刚度,用符号E表示。

5、塑性:材料在外加载荷作用下,产生永久变形而不破坏的性能,称为塑性。

6、塑性变形:材料受到外力作用产生变形,当外力去除,一部分变形消失,一部分变形没有消失,这部分没有消失的变形称为塑性变形。

7、强度:材料在外力作用下抵抗变形和断裂的能力,称为强度。

8、抗拉强度:材料在断裂前所承受的最大外加拉力与试样原始横截面积的比值,称为抗拉强度,用符号σb表示。

9、屈服:材料受到外加载荷作用产生变形,当外力不增加而试样继续发生变形的现象,称为屈服。

10、屈服强度:表示材料在外力作用下开始产生塑性变形的最低应力,即材料抵抗微量塑性变形的能力,用符号σs表示。

11、σ0.2:表示条件屈服强度,规定试样残留变形量为0.2%时所承受的应力值。

用于测定没有明显屈服现象的材料的屈服强度。

12、硬度:金属表面抵抗其它更硬物体压入的能力,即材料抵抗局部塑性变形的能力,称为硬度。

13、冲击韧度:材料抵抗冲击载荷而不破坏的能力,称为冲击韧度,用符号αk表示。

14、疲劳:在交变载荷作用下,材料所受的应力值虽然远远低于其屈服强度,但在较长时间的作用下,材料会产生裂纹或突然的断裂,这种现象称为疲劳。

15、疲劳强度:材料经无数次应力循环而不发生断裂,这一应力值称为疲劳强度或疲劳极限,用符号σ-1表示。

16、蠕变:材料在高温长时间应力作用下,即使所加应力值小于该温度下的屈服极限,也会逐渐产生明显的塑性变形直至断裂,这种现象称为蠕变。

17、磨损:由两种材料因摩擦而引起的表面材料的损伤现象称为磨损。

材料力学性能-复习

材料力学性能-复习
应力场强度因子 ~ KI
断裂韧度 ~ KIC
K IC Y c ac
第四章 纲要:
断裂韧度 ~ KIC ~ 本课程极为重要的概念!
~ 与冲击韧性的联系 ~ 测试方法 ~ 对试样尺寸的基本要求
ቤተ መጻሕፍቲ ባይዱ
第四章 纲要:
断裂K判据的应用
某金属构件受到固定应力100 MPa。为避免失稳
断裂,计算其容许的最大边缘裂纹以及中心裂纹
2 E s c a
1 2
裂纹扩展的临界尺寸:
ac
2 E s

2
第一章 纲要:
断裂强度 ~ Griffith裂纹理论
各符号的物理意义
基本假设及其局限性
第二章 纲要:
应力状态软性系数
第二章 纲要:
缺口敏感度NSR
缺口试样与光滑试样 的力学性能差异。 硬度 布氏硬度HB;洛氏硬度HR;维氏硬度HV
的长度。 K IC 50 MPa m y 300 MPa
1 2
Y 1
第五章 纲要:
金属的疲劳现象及特点~ 平均应力
疲劳断口宏观特征 ~ 贝纹线
疲劳曲线的测定 ~ 升级法
疲劳极限 ~ S-N曲线
第五章 纲要:
造成材料疲劳破坏的三个基本要素
疲劳裂纹扩展曲线
疲劳裂纹扩展速率曲线
接触疲劳的破坏机理
Mechanical behavior of materials
stress
plasticity
strain
ductility
anelasticity
dislocation
necking
twinning

材料力学性能复习要点

材料力学性能复习要点

材料力学性能一、名词解释1. 内耗:加载时,有一部分变形功被材料所吸收,这部分被吸收的功成为内耗。

2. 塑性:是指材料断裂前产生塑性变形的能力3. 韧性:是材料的力学性能。

是指材料断裂前吸收塑性变形功和断裂功的能力。

4. 脆性断裂:是材料断裂前,基本不产生明显的宏观塑性变形,无明显预兆,突然发生的快速断裂过程。

5. 韧性断裂:是材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。

6. 解理断裂:在正应力作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶现象。

7. 剪切断裂:剪切断裂是材料在切应力作用下沿滑移面滑移分离而造成的断裂。

8. 应力状态软性系数:在一定加载方式下τmax和σmax的比值称为应力状态软性系数。

9. 缺口效应:①缺口造成应力应变集中②使材料所受的应力由原来单向拉伸改变为两向或三向拉伸③使塑性材料得到强化。

10. 缺口敏感度:缺口试样的抗拉强度σbn与等截面尺寸光滑试样的抗拉强度σb 的比值作为材料的缺口敏感性指标,并称为缺口敏感度。

11. 压入法硬度:是材料表面抵抗另一物体局部压入时所引起的塑性变形能力①动载压入法:超声波硬度、肖氏硬度、锤击、布氏硬度。

②静载压入法:布氏硬度、洛氏硬度、维氏硬度、显微硬度。

12. 低温脆性:当试验温度低于某一温度tk时,材料由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理。

断口特征由纤维状变为结晶状。

13. 韧脆转变温度:当试验温度低于某一温度tk时,材料由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理。

转变温度tk称为韧脆转变温度。

14. 冲击韧性:单位A吸收冲击功的能力。

15. 低应力脆断:高强度钢超高强度钢的机件,中低强度钢的大型机件常常在工作应力低于屈服极限的情况下,发生脆性断裂现象。

16. 应力场强度因子:反映了裂纹尖端区域应力场的强度KI17. 断裂韧性:KI随a或σ单独或共同增加而增加,当KI达到一定值时,裂纹失稳扩展断裂。

材料力学性能复习资料

材料力学性能复习资料

一、说明下列力学性能指标的意义 1) P σ 比例极限 2) e σ 弹性极限 3) b σ抗拉强度 4) s τ扭转屈服强度 5) bb σ抗弯强度6) HBW 压头为硬质合金球时的布氏硬度7) HK 显微努氏硬度8) HRC 压头为顶角120︒金刚石圆锥体、总试验力为1500N 的洛氏硬度 9) KV A 冲击韧性 10) K IC 平面应变断裂韧性 11) R σ应力比为R 下的疲劳极限 12) ∆K th 疲劳裂纹扩展的门槛值13) ISCC K 应力腐蚀破裂的临界应力强度因子14) /Tt εσ给定温度T 下,规定试验时间t 内产生一定的蠕变伸长率δ的蠕变极限 15) T t σ给定温度T 下,规定试验时间t 内发生断裂的持久极限二、单向选择题1)在缺口试样的冲击实验中,缺口越尖锐,试样的冲击韧性( b )。

a ) 越大; b) 越小;c ) 不变;d) 无规律2)包申格效应是指经过预先加载变形,然后再反向加载变形时材料的弹性极限( b )的现象。

a ) 升高 ;b ) 降低 ;c ) 不变;d ) 无规律可循3)为使材料获得较高的韧性,对材料的强度和塑性需要( c )的组合。

a ) 高强度、低塑性 ;b) 高塑性、低强度 ;c) 中等强度、中等塑性;d ) 低强度、低塑性4)下述断口哪一种是延性断口(d )。

a) 穿晶断口;b ) 沿晶断口;c) 河流花样 ;d ) 韧窝断口 5) 5)HRC 是( d )的一种表示方法.a) 维氏硬度;b ) 努氏硬度;c ) 肖氏硬度;d ) 洛氏硬度6)I 型(张开型)裂纹的外加应力与裂纹面(b );而II 型(滑开型)裂纹的外加应力与裂纹面( )。

a) 平行、垂直;b) 垂直、平行;c) 成450角、垂直;d) 平行、成450角 7)K ISCC 表示材料的( c )。

a) 断裂韧性; b) 冲击韧性;c ) 应力腐蚀破裂门槛值;d ) 应力场强度因子 8)蠕变是指材料在( B )的长期作用下发生的塑性变形现象。

材料力学性能复习提纲(答案)

材料力学性能复习提纲(答案)

一、名词解释弹性:指物体在外力作用下发生形变,当外力撤消后能恢复原来大小和形状的性质塑性:指金属材料断裂前发生塑性变形(不可逆永久变形)的能力。

弹性模量:单纯弹性变形过程中应力与应变的比值,表示材料对弹性变形的抗力。

(工程上弹性模量被称为材料的刚度,表征金属材料对弹性变形的抗力,其值越大,则在相同应力下产生的弹性变形就越小)包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余延伸强度(或屈服强度)增加;反向加载,规定残余延伸强度降低的现象。

滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

河流花样:是判断是否为解理断裂的重要微观证据。

解理面:指金属材料在一定条件下(如低温),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂;因与大理石的断裂相似,所以称这种晶体学平面为解理面。

断裂韧度:在弹塑性条件下,当应力场强度因子增大到某一临界值,裂纹便失稳扩展而导致材料断裂,这个临界或失稳扩展的应力场强度因子即断裂韧度。

韧脆转变:(体心立方合金随着温度的降低表现出从延性到脆性行为的转变。

该转变发生的温度范围可以通过摆锤式或悬臂梁式冲击实验来确定。

【材科定义】)当温度低于某一数值时,某些金属的塑性(特别是冲击韧性)会显著降低而呈现脆性的现象。

缺口敏感度:金属材料的缺口敏感性指标用缺口试样的抗拉强度σbn与等截面尺寸光滑试样的抗拉强度σb的比值表示,称为缺口敏感度,记为NSR。

冲击韧性:指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用标准试样的冲击吸收功A k表示。

应力松弛:在高温保证总应变不变的情况下,会发生应力随着时间延长逐渐降低的现象.该现象叫应力松弛。

疲劳贝纹线:贝纹线是疲劳区的最大特征,一般是由载荷变动引起的。

高周疲劳:指材料在低于其屈服强度的循环应力作用下,经10000-100000 以上循环次数而产生的疲劳。

低周疲劳:材料在循环载荷作用下,疲劳寿命为102~105次的疲劳断裂称为低周疲劳。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、说明下列力学性能指标的意义 1) P σ 比例极限 2) e σ 弹性极限 3) b σ抗拉强度 4) s τ扭转屈服强度 5) bb σ抗弯强度6) HBW 压头为硬质合金球时的布氏硬度7) HK 显微努氏硬度8) HRC 压头为顶角120金刚石圆锥体、总试验力为1500N 的洛氏硬度 9) KV A 冲击韧性 10) K IC 平面应变断裂韧性 11) R σ应力比为R 下的疲劳极限 12) K 疲劳裂纹扩展的门槛值13) ISCC K 应力腐蚀破裂的临界应力强度因子14) /Tt εσ给定温度T 下,规定试验时间t 内产生一定的蠕变伸长率δ的蠕变极限 15) Tt σ给定温度T 下,规定试验时间t 内发生断裂的持久极限二、单向选择题1)在缺口试样的冲击实验中,缺口越尖锐,试样的冲击韧性( b )。

a) 越大; b) 越小;c ) 不变;d) 无规律2)包申格效应是指经过预先加载变形,然后再反向加载变形时材料的弹性极限( b )的现象。

a) 升高 ;b) 降低 ;c) 不变;d) 无规律可循3)为使材料获得较高的韧性,对材料的强度和塑性需要( c )的组合。

a) 高强度、低塑性 ;b) 高塑性、低强度 ;c) 中等强度、中等塑性;d) 低强度、低塑性4)下述断口哪一种是延性断口(d )。

a) 穿晶断口;b) 沿晶断口;c) 河流花样 ;d) 韧窝断口 5) 5)HRC 是( d )的一种表示方法。

a) 维氏硬度;b) 努氏硬度;c) 肖氏硬度;d) 洛氏硬度6)I 型(张开型)裂纹的外加应力与裂纹面(b );而II 型(滑开型)裂纹的外加应力与裂纹面( )。

a) 平行、垂直;b) 垂直、平行;c) 成450角、垂直;d) 平行、成450角 7)K ISCC 表示材料的( c )。

a) 断裂韧性; b) 冲击韧性;c ) 应力腐蚀破裂门槛值;d) 应力场强度因子 8)蠕变是指材料在( B )的长期作用下发生的塑性变形现象。

a) 恒应变;b) 恒应力;c) 恒加载速率;d) 恒定频率 9)Tt σ表示给定温度T 下,恰好使材料经过规定的时间t 发生断裂的( b )。

a) 蠕变极限;b) 持久强度;c) 高温强度;d) 抗拉强度 10)th K ∆表示材料的( b )。

a) 断裂韧性; b) 疲劳裂纹扩展门槛值;c ) 应力腐蚀破裂门槛值;d) 应力场强度因 子11)在单向拉伸、扭转与单向压缩实验中,应力状态系数的变化规律是( C )。

a) 单向拉伸>扭转>单向压缩;b) 单向拉伸>单向压缩>扭转;c) 单向压缩>扭转> 单向拉伸;d) 扭转>单向拉伸>单向压缩12) 平面应变条件下裂纹尖端的塑性区尺寸( b )平面应力下的塑性区。

a) 大于;b) 小于; c) 等于; d) 不一定13)材料的断裂韧性随板材厚度或构件截面尺寸的增加而( a )。

a) 减小;b) 增大;c) 不变;d) 无规律14)与干摩擦相比,加入润滑剂后摩擦副间的摩擦系数将会( b )。

a) 增大;b) 减小;c) 不变;d) 不一定15) 拉伸试样的直径一定,标距越长则测出的延伸率会( B )。

a) 越大;b) 越小;c) 不变;d) 无规律可循16)拉伸试样的直径一定,标距越长则测出的断面收缩率会( C )。

a) 越高;b) 越低;c) 不变;d) 无规律可循17)拉伸试样的直径一定,标距越长则测出的抗拉强度会( C )。

a) 越高;b) 越低;c) 不变;d) 无规律可循材料和直径均相同的低碳钢长短试样各一个,用他们测得的伸长率,断面收缩率,和抗拉强度是否基本相同试样所以要规定一个标准要求的长度,是为了检测结果的标准化。

如果试样长度不同,虽然材料完全相同,但结果可能会有所不同。

如果试样长度相差不多,一般没有实质性的差别。

如果试样长度太短,将会出现一些使检测结果不能标准化的情况。

试样检测都是要夹持的,如果太短,这夹持引起的应力会影响到试样的受拉区域,则这种试样肯定是长度太短而影响到了检测结果。

如果试样长度长一些,因为这试样,不管如何说是均质的,其实肯定是不均质的,只是变化范围大小不同而已。

所以试样长度的加长,试样将会在其薄弱处出现破坏的原理,结果长的试样检测结果要比短试样的小一些。

小多少要看材料的不均匀程度与试样长度的差别。

标准检测,应该要按标准规定的要求来进行,才能使结果比较标准化,结果才能有权威性而让人信服。

其实,这种情况你可以做一下一些比对试验的,从而真实牢固地掌握一些基本的概念。

加载速度会对材料力学性能产生什么影响加载速度的快慢就是生产加工中材料变形速度的快慢。

通常情况下,塑性变形速度越快,变形后的材料储能越高,应变硬化率越高。

这样造成材料本体硬度提高,力学中的抗拉强度会相对高一些,耐磨性能也好一些。

加工硬化可以使屈服强度增加,但不能改变抗拉强度金属的抗拉强度其实就是抵御外力、不让内部由于各种原因产生的裂纹发生扩展的能力。

这个涉及到了材料的断裂韧性。

凡是提高或降低材料断裂韧性的措施或手段会会相应提高或降低材料的抗拉强度。

如(1)加入高强的分散均匀、界面结合良好的细长纤维第二相(金属中加入高强陶瓷纤维);(2)或采取措施诱发产生应力诱导的体积发生膨胀的相变过程使得裂纹前端压应力成分增加(如氧化铝中加入氧化锆);(3)加入极细的弥散分布硬颗粒,使得裂纹的扩展不沿直线而沿曲线传播(金属中加入碳化钛或氮化钛);(4)裂纹前端扩展时尽可能地发生较大的塑性变形,不过这与所述的金属的本性有关二、简答题1.简述洛氏硬度试验方法的原理、计算方法和优缺点。

答:洛氏硬度试验方法的原理是以一定的压力(600N、1000N、1500N)将顶角为1200的金刚石圆锥体压头或直径为1/钢球压入试样表面,以残留于表面的压痕深度e来表示材料的硬度。

洛氏硬度的计算方法为:(1)对以金刚石圆锥体为压头、总试验力为1500N的C标尺,有HRC=100-e/;(2)对以钢球为压头、总试验力为600N和1000N的A和B标尺,有HRA(B)=130-e/。

洛氏硬度试验的优点是:(1)因有硬质、软质两种压头,故适于各种不同硬质材料的检验,不存在压头变形问题。

(2)因为硬度值可从硬度机的表盘上直接读出,故测定洛氏硬度更为简便迅速,工效高。

(3)对试件表面造成的损伤较小,可用于成品零件的质量检验。

(4)因加有预载荷,可以消除表面轻微的不平度对试验结果的影响。

洛氏硬度的缺点是:(1)洛氏硬度存在人为的定义,使得不同标尺的洛氏硬度值无法相互比较,不像布氏硬度可以从小到大统一起来。

(2)由于压痕小,所以洛氏硬度对材料组织的不均匀性很敏感,测试结果比较分散,重复性差,因而不适用具有粗大组成相(如灰铸铁中的石墨片)或不均匀组织材料的硬度测定。

2)什么是低温脆性并阐述低温脆性的物理本质。

答:材料因温度的降低由韧性断裂转变为脆性断裂,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理,断口特征由纤维状变为结晶状的现象,称为低温脆性或冷脆。

低温脆性是材料屈服强度随温度的下降而急剧增加、但材料的断裂强度σf却随温度变化较小的结果。

3)切口冲击韧性实验能评定那些材料的低温脆性哪些材料不能用此方法检验和评定局限性答:切口冲击韧性实验能综合评定缺口、低温和高应变速率对对材料脆化的影响。

塑性很好的材料及表面光滑无裂纹的材料不能用此方法检验和评定。

局限性表现在材料的冲击韧性是定性的,无法用理论公式确定,而且,对缺口、材料缺陷敏感,不能定量研究。

4)从宏观和微观分析为什么有些材料有明显的韧脆转变温度,有些没有答:宏观上,体心立方中、低强度结构钢明显的韧脆转变温度,高强度度结构钢在很宽的温度范围内,冲击功都很低,没有明显的韧脆转变温度。

面心立方金属及其合金一般没有韧脆转变现象。

微观上,体心立方金属中位错运动的阻力对温度变化非常敏感,位错运动阻力随温度下降而增加,在低温下,该材料处于脆性状态。

而面心立方金属因滑移系较多,对温度不敏感,故一般不显示低温脆性。

5)材料的厚度或截面尺寸对材料的断裂韧性有什么影响在平面应变断裂韧性KIC的测试过程中,为了保证裂纹尖端处于平面应变和小范围屈服状态,对试样的尺寸有什么要求答:材料的断裂韧性随材料厚度或截面尺寸的增加而减小,因此为保证裂纹尖端处于平面应变和小范围屈服状态,对试样在z向的厚度B、在y向的宽度W与裂纹长度a之差(即W-a,称为韧带宽度)和裂纹长度a设计成如下尺寸:6)高周疲劳与低周疲劳的区别是什么并从材料的强度和塑性出发,分析应如何提高材料的抗疲劳性能答:高周疲劳是指小型试样在变动载荷(应力)试验时,疲劳断裂寿命高于105周次的疲劳过程。

高周疲劳试验是在低载荷、高寿命和控制应力下进行的疲劳。

而低周疲劳是在高应力、短寿命、控制应变下进行的疲劳过程。

对高周疲劳,由于承受的载荷较小、常处于弹性变形范围内,因而材料的疲劳抗力主要取决于材料强度。

于是提高的材料就可改善材料的高周疲劳抗力。

而对低周疲劳,承受的载荷常大于材料的屈服强度、处于塑性变形内,因而材料的疲劳抗力主要取决于材料的塑性。

于是增加材料的塑性,可提高材料的低周疲劳抗力。

7)叙述区分高强钢发生应力腐蚀破裂与氢致滞后断裂的方法。

答:应力腐蚀与氢致滞后断裂,虽然都是由于应力和化学介质共同作用而产生的延滞断裂现象,但可通过以下的方法进行区分:(1)利用外加电流对静载下产生裂纹的时间或裂纹扩展速率的影响来判断。

当外加小的阳极电流而缩短产生裂纹时间的是应力腐蚀;当外加小的阴极电流而缩短产生裂纹时间的是氢致延滞断裂。

(2)应力腐蚀的断裂源在试样的表面;而氢致开裂的断裂源在表面以下的某一深度处。

(3)应力腐蚀断口的颜色灰暗,常有腐蚀产物存在;而氢致断裂断口一般较光亮、没有腐蚀产物或腐蚀产物的量很少。

(4)应力腐蚀的主裂纹有较多的二次裂纹存在;而氢致断裂的主裂纹没有分枝。

8)与常温下力学性能相比,金属材料在高温下的力学行为有哪些特点答:与常温下力学性能相比,金属材料在高温下的力学行为有如下特点:(1)材料在高温下将发生蠕变现象。

即在应力恒定的情况下,材料在应力的持续作用下不断地发生变形。

(2)材料在高温下的强度与载荷作用的时间有关了。

载荷作用的时间越长,引起一定变形速率或变形量的形变抗力及断裂抗力越低。

(3)材料在高温下工作时,不仅强度降低,而且塑性也降低。

应变速率越低,载荷作用时间越长,塑性降低得越显著。

因而在高温下材料的断裂,常为沿晶断裂。

(4)在恒定应变条件下,在高温下工作的材料还会应力松弛现象,即材料内部的应力随时间而降低的现象。

9)金属材料在高温下的变形机制与断裂机制,和常温比较有何不同答:变形机制:高温下晶内变形以位错滑移和攀移方式交替进行,晶界变形以滑动和迁移方式交替进行。

相关文档
最新文档