材料力学性能总结材料
安徽工业大学材料力学性能复习总结资料
安徽工业大学材料力学性能13周总复习资料整理人:料085 季承玺注:题后标注的(重要)或(必考)悉丁汉林老师所划,全题加粗表明重要。
第一章1、 解释下列名词。
1.弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加应变的现象称为滞弹性,也就是应变落后于应力的现象。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后在同向加载,规定残余应力增加;反向加载,规定残余应力降低的现象。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂的能力。
脆性:材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、 说明下列力学性能指标的意义。
答:E 弹性模量G 切变模量r σ规定残余伸长率2.0σ屈服强度3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
组织虽然改变了,原子的本性和晶格类型为发生改变,故弹性模量对组织不敏感。
4、试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?(必考)答:见丁汉林老师班级课堂笔记5、决定金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。
外在因素:温度、应变速率和应力状态。
6、试述韧性断裂与脆性断裂的区别。
为什么脆性断裂最危险?(重要)答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。
工程力学-材料力学部分总结
5. 梁弯曲变形计算
(1)积分法
EIz EIz M dx C
EIz Mdx dx Cx D
(2)叠加法
边界条件确定
约束条件 光滑连续条件
作图规律
无外力段 外
力
q=0
均布载荷段
q>0
q<0
集中力 集中力偶
P
m
c
c
水平直线
Q Q>0 图Q 特
Q<0
Q
上升直线
下降直线
自左向右, 突变与P同
2
( 3
Q
Q
Q Q1
征
X
X
X
X
X
c
Q2
Q1-Q2=P
M 上升直线 下降直线 开口向上曲线 开口向下曲线 M 转折
图M
M
M
M
M
特
征
X
X
X
X
cX
无变化
Q
X
c
自左向右, 突变与M同
M M1
cX
M2 M1-M2=m
6 静不定问题 (1)静不定问题的求解步骤
判断系统静不定的次数
建立变形协调方程 力与变形间的物理关系
EIz
y My EIz
max
max
M max
Wz
FS max
S
z
Izb
w w max
max
1. 一些基本概念
(1)变形固体的四个基本假设及其作用
(2)应力、应变的概念
应力 正应力σ 切应力τ
应变
线应变ε 切应变γ
(3)内力分析的截面法及其求解步骤
2. 一些基本定理
45
材料力学性能-考前复习总结(前三章)
材料力学性能-考前复习总结(前三章)金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。
材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性第一章单向静拉伸力学性能应力和应变:条件应力条件应变 =真应力真应变应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。
其中必有一主平面,切应力为零,只有主应力,且,满足胡克定律。
应力软性系数:最大切应力与最大正应力的相对大小。
1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
ae=1/2σeεe=σe2/2E。
取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。
需通过合金强化及组织控制提高弹性极限。
2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。
①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。
金属中点缺陷的移动,长时间回火消除。
弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。
吸收变形功循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。
②包申格效应:定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了)解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。
2024年材料力学性能总结
2024年材料力学性能总结材料科学与工程是一个不断发展的领域,随着科技的进步和经济的发展,新材料的研发和应用越来越受到关注。
在2024年,材料力学性能方面取得了一系列的突破和进展。
以下是对2024年材料力学性能的总结。
一、新材料的涌现在2024年,新材料的研发持续推进,涌现了一批具有优异力学性能的新材料。
其中包括高性能金属材料、高强度复合材料、高韧性陶瓷材料等。
这些新材料的力学性能远超传统材料,具有更高的强度、硬度、韧性、耐磨性等特点,为各行各业提供了更多的选择和可能。
二、金属材料的强度与塑性提升在金属材料领域,研究人员通过优化合金配方和热处理工艺,成功提升了金属材料的强度和塑性。
新型高强度钢材广泛应用于汽车、轨道交通、航空航天等领域,有效提高了产品的安全性和使用寿命。
同时,新型金属材料的塑性也得到了极大改善,使其更容易成形和加工,满足不同行业对材料的需求。
三、复合材料的应用扩展复合材料在2024年得到了进一步的应用扩展。
高强度复合材料被广泛应用于航空、航天、船舶等领域,可以减轻结构重量,提高载荷能力,提升产品性能。
新型的纳米复合材料在电子、光电、能源等领域也得到了广泛应用,具有优异的电、磁、光等特性,为新一代电子产品和能源装置的研发提供了重要支持。
四、陶瓷材料的韧性提升传统陶瓷材料脆性大,容易破裂,限制了其在工程应用中的广泛使用。
在2024年,陶瓷材料的韧性得到了重大突破。
通过引入纤维增强、晶体设计等手段,成功提升了陶瓷材料的韧性。
新型韧性陶瓷材料在航空、航天、汽车等领域得到了广泛应用,具有较高的强度和韧性,能够承受更大的载荷和冲击,提高了产品的安全性和可靠性。
五、仿生材料的发展仿生材料是以自然界生物体结构和性能为蓝本设计的新型材料。
在2024年,仿生材料得到了更多的关注和研究。
通过模仿昆虫翅膀、植物叶片等自然结构,研究人员开发出了一系列具有优异力学性能的仿生材料。
这些材料具有轻量化、高强度、高韧性的特点,适用于飞行器、船舶、建筑等领域。
材料力学性能总结3
2.磨损量的估算:J.F.Archard提出了粘着磨损量 估算方法。
在摩擦副接触处为三向压缩应力状态,其
接触压缩屈服强度近似为单向压缩屈服强度sc
的三倍。
设真实接触面积为A,接触压缩屈服强度为3sc,
作用于表面上的法向力为P 。假定磨屑呈半球 形,直径为d,任一瞬时有n个粘着点,设所有
粘着点的尺寸相同,直径为d,则:
2020/5/4
p
n d 2
4
3 sc
单位滑动距离内的接触点数
N
n d
4p
3scd 3
W
KNV' L
K
4p
3scd 3
2
3
d 2
3
L
K
pL
9 sc
K
pL 3H
接触点半球体积
V
'
2
d
3
3 2
H 3 sc
磨屑形成有个几率问题,几率为K --粘着磨 损系数 ,随压力增大而增加。
二、 表面强化及残余应力的影响
表面热处理及表面化学热处理:
整体加热(低淬透性钢、薄壳件) 利 表面淬火 火焰加热
用组织
相变获得表
感应加热
面强化,可使机
渗碳
件获得表硬心韧的 表面化学热处理
良好综合性能,可利用 组织相变及组织应力、热应
渗氮 碳氮共渗
力的变化,使机件表层获得很 高的强度和残余压应力。
复合强化
铁qf=0-0.05。 • (铸铁中石墨片尺寸一般大于临界裂纹扩展尺
寸,再有缺口影响不大)
2020/5/4
• 第三节 疲劳裂纹扩展速率 a
及扩展门槛值
ac1
材料的力学性能
材料的力学性能mechanical properties of materials主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。
它们是设计各种工程结构时选用材料的主要依据。
各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。
表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。
材料的各种力学性能分述如下:弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。
材料的这种性能称为弹性。
外力卸除后即可消失的变形,称为弹性变形。
表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。
拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。
长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截面试样,按照面积换算规定或者。
试样两端的粗大部分用以和材料试验机的夹头相连接。
试验结果通常绘制成拉伸图或应力-应变图。
图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力ζ=P/A)。
图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。
反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。
比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以ζp表示。
在应力低于ζp的情况下,应力和应变保持正比例关系的规律叫胡克定律。
载荷超过点p对应的值后,拉伸曲线开始偏离直线。
弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以ζe表示。
若在应力超出ζe后卸载,试样中将出现残余变形。
2024年材料力学性能总结范文
2024年材料力学性能总结范文____年材料力学性能总结摘要:本文对____年新材料的力学性能进行了总结。
通过对新材料的力学性能研究,可以更好地应用于工程实践中,提高产品的性能和可靠性。
本文主要对新材料的强度、硬度、韧性、耐热性等性能进行了介绍,并对其应用前景进行了展望。
关键词:新材料;力学性能;强度;硬度;韧性;耐热性一、强度强度是材料抵抗外力的能力,是一个材料最基本的力学性能之一。
____年新材料的强度有了显著的提高,主要得益于新材料结构和组成的优化。
新材料采用了多种复合材料技术,在不同材料的复合过程中,不同材料之间形成了一种互补的关系,使得新材料的强度得到了有效提升。
此外,新材料还采用了新的加工工艺,如纳米技术和超塑性成型技术,通过精确控制材料微观结构和缺陷,使新材料的强度得到了进一步提升。
二、硬度硬度是材料抵抗外界划痕和压痕的能力,表征了材料的抗磨性能。
____年新材料的硬度也得到了大幅提升。
在新材料的研发中,科学家们发现了一些新的硬化机制,如晶体缺陷的控制、固溶体弥散硬化和位错强化等。
通过合理地控制这些硬化机制,新材料的硬度可以得到有效提升。
此外,新材料还采用了一些表面处理技术,如化学镀、电沉积和离子注入等,通过改变材料表面的化学组成和相结构,来提高材料的硬度。
三、韧性韧性是材料抵抗破坏的能力,是反映材料抗拉伸、抗压和抗弯曲能力的重要指标。
____年新材料的韧性也得到了显著改善。
新材料采用了一些新的加工工艺,如冷变形和等离子注入等,通过调整材料的晶界和位错密度,使新材料的韧性得到了提高。
此外,新材料还采用了一些新的复合技术,如纳米复合和纤维复合等,通过增加材料内部的弥散相和增强相,来提高材料的韧性。
四、耐热性耐热性是材料在高温条件下能保持稳定性和性能的能力。
____年新材料的耐热性也得到了显著提升。
新材料采用了一些新的材料组成和结构设计,如金属间化合物、金属陶瓷复合材料和增强材料等,来提高材料的热稳定性。
材料力学性能知识要点
1、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。
2、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率断面收缩率 、 冲击功 。
3、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。
4、常用测定硬度的方法有 布氏硬度 、 洛氏硬度 和 维氏硬度 测试法。
1、聚合物的弹性模量对 结构 非常敏感,它的粘弹性表现为滞后环、应力松弛和 蠕变 ,这种现象与温度、时间密切有关。
2、影响屈服强度的内在因素有: 结构健 、 组织 、 结构 、 原子本性 ;外在因素有: 温度 、 应变速率 、 应力状态 。
3、缺口对材料的力学性能的影响归结为四个方面: (1)产生应力集中 、(2)引起三相应力状态,使材料脆化 、 (3)由应力集中带来应变集中 、(4)使缺口附近的应变速率增高 。
4、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。
5、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率 断面收缩率 、 冲击功 。
6、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。
请说明下面公式各符号的名称以及其物理意义7、c IC c a Y K /=σσc :断裂应力,表示金属受拉伸离开平衡位置后,位移越大需克服的引力越大,σc 表示引力的最大值;K 1C :平面应变的断裂韧性,它反映了材料组织裂纹扩展的能力;Y :几何形状因子a c : 裂纹长度 8、对公式m K c dNda )(∆=进行解释,并说明各符号的名称及其物理意义(5分) 答:表示疲劳裂纹扩展速率与裂纹尖端的应力强度因子幅度之间的关系。
dNda :裂纹扩展速率(随周次); c 与m :与材料有关的常数;K ∆:裂纹尖端的应力强度因子幅度9、εss-蠕变速率,反映材料在一定的应力作用下,发生蠕变的快慢;n为应力指数,n并非完全是材料常数,随着温度的升高,n略有降低;A为常数;σ为蠕变应力。
材料力学性能论文
《材料力学性能》学习之收获与体会通过开学至今近两个月对材料力学性能的学习,对本课程学习内容作出以下总结:一、材料的拉伸性能:拉伸试验虽然是简单的、但却是最重要的应用最广泛的力学性能试验方法。
拉伸试验可以测定材料的弹性、强度、塑性、应变硬化和韧性等许多重要的力学性能指标。
这些性能指标统称为拉伸性能。
它是材料的基本力学性能。
根据拉伸性能可以预测材料的其他力学性能。
本章主要介绍了在室温大气中,在单向拉伸载荷作用下,用用光滑试件测定的具有不同变形和硬化特性的材料的应力-应变曲线和拉伸性能参数。
二、弹性变形与塑性变形:任何构件在服役过程中都要承受一定的应力,但又不能产生塑性变形。
对于某些零构件,例如精密机床的构件,即使是微小的弹性变形也不允许,否则就会降低零件的加工精度。
零构件的刚度决定于两个因素:构件的几何和材料的刚度。
表征材料的力学性能指标是弹性模量。
当应力超过极限,金属就开始塑性变形。
塑性是材料的一种非常重要的力学性能。
正是因为金属有塑性,才能利用不同的加工方法将其制成各种几何形状的零件。
在加工过程中,应当提高材料的塑性,降低塑性变形应力——弹性极限和屈服强度。
在服役过程中,应当提高材料的弹性极限和屈服强度,使零构件能承受更大的应力,同时也要有相当的塑性以防止脆性断裂。
本章联系金属的微观结构讨论了弹性性能、弹性不完善性、塑性变形、应变硬化及有关的力学性指标和测定方法以及它们在工程中的实用意义。
三、其它静加载下的力学性能:机械和工程的很多零件是在扭曲、弯矩或轴向压力作用下服役的。
因此,需要测定材料在扭转、弯曲和轴向压缩加载下的力学性能,作为零件设计,材料选用和制订热处理工艺的根据。
若不考虑零件服役时的力学状态,采用不恰当的力学性能指标来评价材料,很有可能造成材料选用不合理,热处理工艺不当,以致零件的早期失效。
在工程中往往还应用一些低塑性、以至脆性材料,如高碳工具钢、铸造合金和结构陶瓷等,制作工具和零件。
关于材料性能总结
关于材料性能总结材料性能是指材料在使用过程中所表现出的各种性质和特点,包括力学性能、物理性能、化学性能、热学性能等多个方面。
了解材料性能,可以帮助人们更好的选择和应用材料,提高制造品质和使用寿命。
本文将总结一些常见的材料性能。
1.力学性能材料的力学性能是指材料在受到力的作用下发生形变、破坏或者塑性变形的能力。
力学性能包括抗拉强度、屈服强度、硬度、韧性、疲劳强度等。
抗拉强度和屈服强度是弹性或塑性形变下的应力,是评价材料抵抗拉伸作用的指标。
硬度是材料抵抗刮擦和压痕的能力。
韧性是材料在受到外力作用下,抵抗断裂破坏的能力。
疲劳强度是材料在反复载荷作用下的耐用性能。
2.物理性能物理性能是指材料表现出的磁性、电性、超导性、光学性能等。
其中,磁性是指材料具有磁感应强度、磁化强度等性能特点。
电性是指材料具有各种导电性和介电性。
超导性是指某些材料在一定的温度和磁场下,可以抑制电阻的产生。
光学性能是指材料在入射光线作用下,出现的折射、透射、反射、发射等特性。
3.化学性能化学性能主要涉及材料在各种化学环境中的耐腐蚀性能,包括物理腐蚀和化学腐蚀两种类型。
物理腐蚀多是由于机械力的磨损、挤压等引起的;化学腐蚀则是由于化学反应作用而导致的。
不同的材料在不同的化学环境中表现出不同的化学反应能力。
4.热学性能材料的热学性能包括导热性、膨胀性、热膨胀系数等。
导热性是指材料具有传导温度的能力。
膨胀性是指材料在受热时、体积会发生变化的特性。
热膨胀系数是指材料受温度变化时,长度、体积发生变化的系数。
总之,材料的性能是很多方面的,不同类型的材料表现出不同的性能特点。
故在应用材料时,需要根据实际情况来选择材料,以此来满足制造要求。
针对材料的性能特点进行合理选材,可有效提高制造成本和品质、使用寿命。
材料的力学性能重点总结
名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。
2弹性比功:表示金属材料吸收塑性变形功的能力。
3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。
4包申格效应:金属材料通过预先加载产生少来塑性变形,卸载后再同向加载,规定参与伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5塑性:金属材料断裂前发生塑性变形的能力。
常见塑性变形方式:滑移和孪生6应力状态软性系数:最大切应力最大正应力应力状态软性系数α越大,最大切应力分量越大,表示应力状态越软,材料越易产生塑性变形α越小,表示应力状态越硬,则材料越容易产生脆性断裂7缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生拜年话,产生所谓―缺口效应―①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。
②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。
8缺口敏感度:有缺口强度的抗拉强度ζbm与等截面尺寸光滑试样的抗拉强度ζb的比值. NSR=ζbn / ζs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。
材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间13疲劳贝纹线:以疲劳源为中心的近于平行的一簇同心圆.是疲劳源裂纹扩展时前沿的痕迹14疲劳条带:具有略显弯曲并相互平行的沟槽花样,是疲劳断口最典型的微观特征15驻留滑移带:金属在循环应力长期作用下,形成永久留或再现的循环滑移带称为驻留滑移带,具有持久驻留性.16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象18氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下经过一段时间的孕育期后在金属内部,特别是在三向拉应力区形成裂纹,裂纹的逐步扩展,最后突然发生脆性断裂,这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂第一章2.力学性能指标的意义(1)δ0.2 对于拉伸曲线上没有屈服平台的材料,塑性变形硬化过程是连续的,产生0.2%残余伸长应力时刻的屈服强度。
材料力学性能重点总结
材料力学性能重点总结1.强度:强度是材料抵抗外部载荷引起的破坏的程度,通常使用屈服强度、抗拉强度和抗压强度来评价。
强度越高,材料越能承受外部载荷。
2.韧性:韧性是材料在受力时发生塑性变形以及能够吸收能量的能力。
材料具有较高的韧性时,能够在受到巨大应力时仍然保持不破裂。
3.硬度:硬度是材料抵抗表面破坏的能力,也可以理解为材料的抗刮伤能力。
硬度可以衡量材料的耐磨性和耐磨损能力。
4.弹性模量:弹性模量是材料在受力后恢复原状的能力,可以评估材料在受力后的变形程度。
弹性模量越大,材料的刚性越高。
5.延展性:延展性是材料在受力时能够发生塑性变形而不破坏的能力。
延展性高的材料可以更好地适应复杂应力和形状变化。
6.断裂韧性:断裂韧性是材料在受到外部载荷时能够抵抗破坏的能力。
它是强度和韧性的综合指标,可评估材料在极限条件下的断裂性能。
7.蠕变性:蠕变性是材料在长期受力情况下发生的塑性变形。
材料的蠕变性能评估了其在高温和持续应力下的稳定性。
8.疲劳性:疲劳性是材料在受到反复应力循环后发生破坏的能力。
疲劳性能评估了材料在长期使用过程中的可靠性和耐久度。
9.冲击韧性:冲击韧性是材料在受到突然冲击加载时抵抗破坏的能力。
它可以评估材料在极端工作条件下的抗冲击性能。
10.耐腐蚀性:耐腐蚀性是材料抵抗环境介质侵蚀和化学反应的能力。
材料的耐腐蚀性能评估了其在特定环境中的稳定性和使用寿命。
以上是材料力学性能的重点总结,它们通常都与材料的微观结构、成分、加工工艺和使用条件有关。
通过评估和选择材料的力学性能,可以确保材料在各种应用中具有足够的强度、韧性和稳定性。
2024年材料力学性能总结(三篇)
2024年材料力学性能总结摘要:材料力学性能是材料科学研究中非常重要的一个方面,它描述了材料在力学作用下的行为和性能。
2024年,随着科学技术的进步和工程需求的不断提高,材料力学性能也将取得许多重要的突破和进展。
本文将对2024年材料力学性能的发展进行总结,并对未来可能的应用和研究方向进行展望。
关键词:材料力学性能;2024年;发展总结;应用展望一、引言材料力学性能是材料科学研究中的一个重要方向,它考察材料在外力作用下的响应和变形行为。
材料力学性能的研究不仅对于理论研究有重要意义,也对工程应用具有重要影响。
2024年,随着科学技术的不断进步,材料力学性能也将迎来许多新的挑战和机遇。
本文将对2024年材料力学性能的发展进行总结,并对未来可能的应用和研究方向进行展望。
二、材料力学性能的发展总结2024年,预计会有以下几个方面的材料力学性能发展和突破:1.高强度材料的研发随着科技进步和工程需求的不断提高,对于高强度材料的需求将越来越迫切。
2024年,预计会有许多新型的高强度材料得到开发和研究。
这些材料不仅具有优良的力学性能,还具有其他良好的特性,如轻质、高温稳定性等。
这些高强度材料的研发和应用将对于航空航天、汽车和能源等领域具有重要的意义。
2.新型复合材料的研究复合材料是一种具有多种材料组成的材料,它的力学性能往往比单一材料更优越。
2024年,预计会有许多新型的复合材料被研发和应用。
这些新型复合材料具有更好的强度、刚度和韧性,并且可以具备一些其他功能,如导电性、光学性能等。
这些新型复合材料的研究将有助于解决一些工程问题,同时也为制造行业提供更多的选择。
3.纳米材料的应用拓展纳米材料是一种具有纳米尺度结构的材料,具有许多特殊的力学性能。
2024年,预计纳米材料的应用范围将进一步拓展。
纳米材料不仅可以应用于催化剂、传感器等领域,还可以用于制备高强度和高韧性材料。
纳米材料的研究将有助于改进传统材料的性能,并带来许多新的应用领域。
材料结构与力学性能知识点总结
仅供参考, 自我感觉价值不大一、解释下列名词滞弹性:在外加载荷作用下,应变落后于应力现象。
静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。
弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
比例极限:应力—应变曲线上符合线性关系的最高应力。
二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能?答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。
改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。
三、什么是包辛格效应,如何解释,它有什么实际意义?答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。
包辛格效应可以用位错理论解释。
第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。
背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平均内应力的度量。
因为预变形时位错运动的方向和背应力的方向相反,而当反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。
这一般被认为是产生包辛格效应的主要原因。
其次,在反向加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。
实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。
其次,包辛格效应大的材料,内应力较大。
另外包辛格效应和材料的疲劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。
工程材料的力学性能
弹性后效
总结词
弹性后效是指材料在卸载后,弹性变形部分不能完全恢复的现象。
详细描述
当材料在弹性范围内受到外力作用时,会发生弹性变形。当外力卸载后,材料 的弹性变形部分不能完全恢复,这种现象称为弹性后效。弹性后效的程度取决 于材料的种类和加载条件。
03
塑性性能
屈服强度
定义
屈服强度是材料在受到外力作用时,开始发生屈服现 象的应力极限。
工程材料的力学性能
目录
• 引言 • 弹性性能 • 塑性性能 • 强度性能 • 韧性性能 • 工程材料的选用01引言定义与重要性定义
工程材料的力学性能是指材料在 受到外力作用时表现出的性质, 如强度、硬度、韧性、弹性等。
重要性
力学性能是评价材料性能的重要 指标,对于工程结构的稳定性、 安全性和使用寿命具有至关重要 的作用。
影响因素
材料的延伸率与材料的成分、组织结构和温度等因素有关。
弯曲强度
定义
01
弯曲强度是材料在受到弯曲应力作用时,发生弯曲破坏的应力
极限。
意义
02
弯曲强度是衡量材料抵抗弯曲变形和破坏的能力,对于材料的
弯曲性能有重要意义。
影响因素
03
材料的弯曲强度与材料的成分、组织结构、温度和受力状态等
因素有关。
04
材料选择的原则
适用性原则
材料应满足工程要求,具有所需的力学性能、 耐久性和稳定性。
可行性原则
材料应易于加工、制造和安装,能够实现工 程结构的制造和施工。
经济性原则
在满足性能要求的前提下,优先选择价格低 廉、易于加工和采购的材料。
环保性原则
优先选择可再生、可回收、低污染的材料, 减少对环境的负面影响。
材料力学性能情况总结
材料⼒学性能情况总结材料⼒学性能:材料在各种外⼒作⽤下抵抗变形和断裂的能⼒。
屈服现象:外⼒不增加,试样仍然继续伸长,或外⼒增加到⼀定数值时突然下降,随后在外⼒不增加或上下波动情况下,试样继续伸长变形。
屈服过程:在上屈服点,吕德斯带形成;在下屈服点,吕德斯带扩展;当吕德斯带扫过整个试样时,屈服伸长结束。
屈服变形机制:位错运动与增殖的结果。
屈服强度:开始产⽣塑性变形的最⼩应⼒。
屈服判据:屈雷斯加最⼤切应⼒理论:在复杂应⼒状态下,当最⼤切应⼒达到或超过相同⾦属材料的拉伸屈服强度时产⽣屈服。
⽶赛斯畸变能判据:在复杂应⼒状态下,当⽐畸变能等于或超过相同⾦属材料在单向拉伸屈服时的⽐畸变能时,将产⽣屈服。
消除办法:加⼊少量能夺取固溶体合⾦中溶质原⼦的物质,使之形成稳定化合物的元素;通过预变形,使柯⽒⽓团被破坏。
影响因素:1.内因:a)⾦属本性及晶格类型:⾦属本性及晶格类型不同,位错运动所受的阻⼒不同。
b)晶粒⼤⼩和亚结构:减⼩晶粒尺⼨将使屈服强度提⾼。
c)溶质元素:固溶强化。
d)第⼆相2.外因:温度(-);应变速率(+);应⼒状态。
第⼆相强化(沉淀强化+弥散强化):通过第⼆相阻碍位错运动实现的强化。
强化效果:在第⼆相体积⽐相同的情况下,第⼆相质点尺⼨越⼩,强度越⾼,强化效果越好;在第⼆相体积⽐相同的情况下,长形质点的强化效果⽐球形质点的强化效果好;第⼆相数量越多,强化效果越好。
细晶强化:通过减⼩晶粒尺⼨增加位错运动障碍的数⽬(阻⼒⼤),减⼩晶粒内位错塞积群的长度(应⼒⼩),从⽽使屈服强度提⾼的⽅法。
同时提⾼塑性及韧性的机理:晶粒越细,变形分散在更多的晶粒内进⾏,变形较均匀,且每个晶粒中塞积的位错少,因应⼒集中引起的开裂机会较少,有可能在断裂之前承受较⼤的变形量,即表现出较⾼的塑性。
细晶粒⾦属中,裂纹不易萌⽣(应⼒集中少),也不易传播(晶界曲折多),因⽽在断裂过程中吸收了更多能量,表现出较⾼的韧性。
固溶强化:在纯⾦属中加⼊溶质原⼦形成固溶合⾦,将显著提⾼屈服强度。
材料力学心得体会
材料力学心得体会篇一:材料力学性能学习与体会《材料的力学性能》之学习收获与体会转眼间半个学期就将过去,而《材料的力学性能》也即将结课,跟着孙老师学习这门课,真的让我收获不少。
不仅给学到了课本上的知识,还从孙老师那里了解到很多这方面的前沿科学,学到不少做人的道理等,而且还激发了我们做学问的兴趣与追求。
首先说一下本课程的学习内容。
按课本的说法,分为三部分,第一部分,课本的前七章,主要阐述金属的形变和断裂过程,机制和基本理论,材料在一次静加载条件下的力学性能。
在各种加载方式下,所测定的力学性能指标用于评价零件在服役过程中的抗过载实效能力和安全性。
第二部分,也就是第八至第十一章,论述了疲劳、蠕变、环境效应和磨损。
这是机件常见的四种失效形式。
材料对这四种形式失效的抗力将决定零件的寿命。
最后三章介绍了复合材料,高分子材料和陶瓷材料的力学性能。
在我看来,所谓的材料力学性能主要就是说金属的弹性,塑性和强度等力学性能。
而本课程的内容就是运用《金属学》的理论和知识,对《材料力学》的进一步说明,补充和扩展。
通过对《材料力学》,《金属学》和本课程的学习,进一步加强对材料的力学性能的认识和理解。
下面就本课程各章节学习的收获简述如下:第一章材料的拉伸性能本章首先学习的就是拉伸试验,记得在学习《材料力学》时已经做过拉伸实验,但那时只知道做实验,并不太清楚其意义之所在,现在才知道拉伸试验的重要性,因为通过拉伸试验不但可以测定材料的弹性、强度、塑性、应变硬化和韧性等许多重要的力学性能指标,而且还可以预测材料的其它力学性能,如抗疲劳、断裂等性能。
要想得到材料的力学性能,就必须做拉伸试验,做出材料的应力——应变曲线,通过曲线就可以比较方便地得到材料的比例极限、弹性极限、屈服极限、拉伸强度和延伸率等。
应当指出,应力——应变曲线有先上升后下降的趋势是应为那是工程应力——工程应变曲线,与《材料力学》里所说的真应力——真应变曲线是有区别的,且真应力比工程应力大,真应变比工程应变小。
材料力学性能重点总结
材料力学性能重点总结1.强度:材料的强度是指材料在外力作用下抵抗破坏的能力。
常用于评估材料抗拉强度、抗压强度、抗弯强度等。
强度与材料内部结构关系紧密,常用措施是通过原子间结合力和晶粒结构的稳定性提高强度。
2.韧性:材料的韧性是指承受冲击负载时材料能够发生塑性变形而不发生断裂的能力。
韧性与材料断裂韧度有关,断裂韧度越高,材料的韧性越好。
韧性的提高可以通过增加材料的塑性变形能力来实现,例如降低材料的晶界和相界的应力集中。
3.硬度:材料的硬度是指材料抵抗外部划痕或压痕的能力。
硬度可以用于评价材料的耐磨性和抗划伤性能。
通常,硬度较高的材料具有较好的耐磨性和较高的抗划伤能力。
硬度可以通过提高材料的晶粒尺寸和强化材料的位错密度来改善。
4.塑性:材料的塑性是指材料在受力后能够发生可逆性的非弹性形变的能力。
塑性变形是材料在受力过程中重要的变形方式,可以提高材料的韧性和变形能力。
材料的塑性与材料的熔点、晶粒尺寸和晶粒形态等因素有关。
5.疲劳寿命:材料的疲劳寿命是指材料在循环加载下能够承受的应力循环次数。
疲劳寿命是材料设计和选择的重要指标,特别是在机械和航空领域中。
疲劳寿命与材料中的微观缺陷、动态应力等因素密切相关。
6.脆性:材料的脆性是指材料在受力时容易发生断裂的性质。
脆性材料在受力作用下会发生紧急的破坏,通常不会发生明显的可逆塑性变形。
与韧性材料相比,脆性材料更容易发生断裂。
材料的脆性取决于材料中的缺陷结构和应力分布。
总的来说,材料力学性能是评价材料质量的重要指标。
强度、韧性、硬度、塑性、疲劳寿命和脆性是材料力学性能的关键指标。
合理设计和选择材料可以改善材料力学性能,提高材料的耐久性和可靠性。
材料力学性能总结
材料力学性能材料受力后就会产生变形,材料力学性能是指材料在受力时的行为。
描述材料变形行为的指标是应力σ和应变ε,σ是单位面积上的作用力,ε是单位长度的变形。
描述材料力学性能的主要指标是强度、延性和韧性。
其中,强度是使材料破坏的应力大小的度量;延性是材料在破坏前永久应变的数值;而韧性却是材料在破坏时所吸收的能量的数值。
1.弹性和刚度材料在弹性范围内,应力与应变成正比,其比值E=σ/ε(MN/m2)称为弹性模量。
E标志着材料抵抗弹性变形的能力,用以表示材料的刚度。
E值主要取决于各种材料的本性,一些处理方法(如热处理、冷热加工、合金化等)对它影响很小。
零件提高刚度的方法是增加横截面积或改变截面形状。
金属的E值随温度的升高而逐渐降低。
2.强度在外力作用下,材料抵抗变形和破坏的能力称为强度。
根据外力的作用方式,有多种强度指标,如抗拉强度、抗弯强度、抗剪强度等。
当材料承受拉力时,强度性能指标主要是屈服强度和抗拉强度。
(1)屈服强度σs在图1-6(b)上,当曲线超过A点后,若卸去外加载荷,则试样会留下不能恢复的残余变形,这种不能随载荷去除而消失的残余变形称为塑性变形。
当曲线达到A点时,曲线出现水平线段,表示外加载荷虽然没有增加,但试样的变形量仍自动增大,这种现象称为屈服。
屈服时的应力值称为屈服强度,记为σS。
有的塑性材料没有明显的屈服现象发生,如图1-6(c)所示。
对于这种情况,用试样标距长度产生0.2%塑性变形时的应力值作为该材料的屈服强度,以σ0.2表示。
机械零件在使用时,一般不允许发生塑性变形,所以屈服强度是大多数机械零件设计时选材的主要依据也是评定金属材料承载能力的重要机械性能指标。
材料的屈服强度越高,允许的工作应力越高,零件所需的截面尺寸和自身重量就可以较小。
(2)抗拉强度σb材料发生屈服后,其应力与应变的变化如图1-1所示,到最高点应力达最大值σb。
在这以后,试样产生“缩颈”,迅速伸长,应力明显下降,最后断裂。
力学性能技术工作总结
力学性能技术工作总结
力学性能技术是一项重要的工作,它涉及到材料的力学性能测试、分析和评估。
在工程领域中,力学性能技术的工作总结对于材料的选用、设计和制造具有重要意义。
下面我们来总结一下力学性能技术工作的一些关键点。
首先,力学性能技术工作需要对材料的力学性能进行全面的测试。
这包括拉伸、压缩、弯曲、硬度等各种力学性能的测试。
通过这些测试,我们可以了解材料的强度、韧性、硬度等性能参数,为材料的选用提供参考。
其次,力学性能技术工作需要对测试结果进行分析和评估。
通过对测试结果的
分析,我们可以了解材料的性能特点和优缺点,为材料的设计和制造提供指导。
同时,对测试结果的评估也可以为材料的使用和维护提供参考。
另外,力学性能技术工作还需要不断地进行技术研究和创新。
随着科技的发展,新材料和新工艺层出不穷,力学性能技术工作也需要不断地更新和改进。
只有不断地进行技术研究和创新,才能更好地适应新材料和新工艺的发展。
总的来说,力学性能技术工作是一项重要的工作,它对材料的选用、设计和制
造具有重要意义。
通过对材料的力学性能进行全面的测试、分析和评估,可以为工程领域的发展提供有力支持。
希望在未来的工作中,我们可以不断地进行技术研究和创新,为力学性能技术工作做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学性能:材料在各种外力作用下抵抗变形和断裂的能力。
屈服现象:外力不增加,试样仍然继续伸长,或外力增加到一定数值时突然下降,随后在外力不增加或上下波动情况下,试样继续伸长变形。
屈服过程:在上屈服点,吕德斯带形成;在下屈服点,吕德斯带扩展;当吕德斯带扫过整个试样时,屈服伸长结束。
屈服变形机制:位错运动与增殖的结果。
屈服强度:开始产生塑性变形的最小应力。
屈服判据:屈雷斯加最大切应力理论:在复杂应力状态下,当最大切应力达到或超过相同金属材料的拉伸屈服强度时产生屈服。
米赛斯畸变能判据:在复杂应力状态下,当比畸变能等于或超过相同金属材料在单向拉伸屈服时的比畸变能时,将产生屈服。
消除办法:加入少量能夺取固溶体合金中溶质原子的物质,使之形成稳定化合物的元素;通过预变形,使柯氏气团被破坏。
影响因素:1.因:a)金属本性及晶格类型:金属本性及晶格类型不同,位错运动所受的阻力不同。
b)晶粒大小和亚结构:减小晶粒尺寸将使屈服强度提高。
c)溶质元素:固溶强化。
d)第二相2.外因:温度(-);应变速率(+);应力状态。
第二相强化(沉淀强化+弥散强化):通过第二相阻碍位错运动实现的强化。
强化效果:在第二相体积比相同的情况下,第二相质点尺寸越小,强度越高,强化效果越好;在第二相体积比相同的情况下,长形质点的强化效果比球形质点的强化效果好;第二相数量越多,强化效果越好。
细晶强化:通过减小晶粒尺寸增加位错运动障碍的数目(阻力大),减小晶粒位错塞积群的长度(应力小),从而使屈服强度提高的方法。
同时提高塑性及韧性的机理:晶粒越细,变形分散在更多的晶粒进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量,即表现出较高的塑性。
细晶粒金属中,裂纹不易萌生(应力集中少),也不易传播(晶界曲折多),因而在断裂过程中吸收了更多能量,表现出较高的韧性。
固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度。
原因:溶质原子与位错的弹性相互作用,使溶质原子扩散到位错周围,形成柯氏气团;柯氏气团钉扎位错,提高位错运动阻力。
强化效果:间隙固溶体的强化效果大于置换固溶体;溶质和溶剂原子尺寸差越大,强化效果越好;溶质浓度越大,强化效果越好。
应变硬化(形变强化):金属材料塑性变形过程中所需要的外力不断增大,表明金属材料有一种阻止继续塑性变形的能力。
原因:塑性变形过程中,位错不断增殖,运动受阻所致。
断裂韧度:临界或失稳状态下的应力场强度因子的大小。
塑性变形:作用在物体上的外力取消后,物体的变形不完全恢复而产生的永久变形。
1.单晶体:滑移+孪生;2.多晶体:各个晶粒塑性变形的综合结果。
特点:各晶粒变形的不同时性;不均匀性;相互协调性。
弹性变形:当外力去除后,能恢复到原来形状或尺寸的变形。
物理实质:晶格中原子自平衡位置产生可逆位移的反映。
特点:可逆性;单值性;全程性;变形量很小。
构件的刚度:构件产生单位弹性变形所需要的载荷。
物理意义:表示构件的弹性稳定性的参量,刚度越大,构件工作时越稳定。
在工程上,为了减轻重量,必须选择E较大的材料。
弹性极限:金属产生弹性变形而不产生塑性变形时所受的最大应力。
它表示材料发生弹性变形的极限抗力。
缩颈:韧性金属材料在拉伸试验时变形集中于局部区域的特殊现象。
原因:应变硬化与截面积减小共同作用的结果。
当应变硬化引起的承载力增加不能补偿截面积减小引起的承载力减小时,就会产生缩颈。
缩颈判据1:当应变硬化速率等于该处的真应力时,发生缩颈。
缩颈判据2:当应变硬化指数等于最大真实均匀塑性应变量时,发生缩颈。
为什么真实应力-应变曲线需要校正?因为缩颈产生后,应力状态由单向应力变为三向应力,为了求得仍然是均匀轴向应力状态下的真实应力,以得到真正的真实应力-应变曲线。
为什么校正后的曲线应力下降?因为三向应力状态下,材料塑性变形比较困难,所以必须提高轴向应力,使塑性变形继续发生。
静力韧度:金属材料光滑试样在静载荷作用下拉伸至断裂,单位体积材料所吸收的能量。
韧度指能量,韧性指能力。
韧度:指金属材料拉伸断裂前单位体积材料所吸收的能量。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
纯剪切断裂:特征:在切应力作用下,金属产生塑性变形,沿滑移面分离而造成的断裂。
试样部不产生孔洞,位错只能从试样表面放出。
微孔聚集型断裂:1.通过微孔形核、长大聚合而导致材料分离的。
2.宏观特征:杯锥状断口;微观特征:韧窝。
3.微孔形核:位错运动到第二相与基体界面处,塞积产生应力集中,使第二相质点与基体分离,形成微孔。
4.长大与聚合:每个微型拉伸试样产生缩颈而断裂,相邻微孔聚合,形成微裂纹。
然后在裂纹尖端的三向拉应力区及应力集中区形成新的微孔,借助缩颈与裂纹连通,如此扩展直到裂纹断裂。
5.韧窝大小的影响因素:第二相质点的大小和密度;应变硬化指数;基体材料的塑性变形能力。
6.韧窝形状的影响因素:正应力:等轴韧窝;切应力:拉长韧窝;撕裂应力:撕裂韧窝。
解理断裂:在一定条件下,当外加正应力达到一定数值后,以极快速率沿解理面产生的穿晶断裂。
基本微观特征:河流花样,解理台阶,舌状花样。
解理裂纹的形成和扩展:1.甄纳-斯特罗位错塞积理论a)形成:一群刃型位错沿滑移面运动遇到晶界等障碍而形成位错塞积群,产生的应力集中有可能达到断裂强度而在材料部沿某一晶体学平面拉出一个裂口。
b)长大扩展:塑性变形形成裂纹;裂纹在同一晶粒初期长大;裂纹越过晶界向相邻晶粒扩展。
晶粒尺寸小于临界值时,材料受力后先屈服,后断裂;晶粒尺寸大于临界值时,材料受力后直接脆性断裂。
2. 柯垂尔位错反应理论a) 位错反应必须满足柏氏矢量守恒性和能量降低性。
b) 原理:通过各相交滑移面上的位错滑移,相遇后发生反应形成新位错,新位错塞积产生应力集中,使解理面开裂。
3. 相同点:都是由于位错运动受阻产生应力集中,从而形成初始裂纹的,即裂纹形成前都有少量塑性变形;裂纹扩展力学条件相同。
4. 不同点:甄纳-斯特罗位错塞积理论的位错在晶界处受阻,裂纹产生于晶界;柯垂尔位错反应理论的位错在晶解理面处受阻,裂纹产生于晶。
理论断裂强度(理想晶体解理):是指在正应力作用下,将晶体的两个原子面沿垂直于外力方向拉断所需的应力。
是晶体在弹性状态下的最大结合力。
σm =(Eγs 0)12 其中γs 为表面能,E 为弹性模量,a 0为原子间的平衡距离。
适用于脆性断裂。
格雷菲斯公式(裂纹物体的实际断裂强度):σc =(2Eγs )12其中γs 为表面能,a 为裂纹的半长度,只适用于薄板。
适用于有裂纹试样的脆性断裂。
断裂判据:外加应力大于σc 时裂纹扩展;裂纹半长度大于a c 时裂纹扩展。
位错塞积及位错反应理论(解理裂纹断裂应力):σc =sk y √d 其中G 为切变模量,k y 为钉扎常数,d 为晶粒直径。
适用于塑性变形中的断裂及无裂纹的完整试样。
金属在单向静拉伸载荷下的性能1.名词解释a)弹性比功:金属开始塑性变形前单位体积吸收的最大弹性变形功。
b)弹性模量E:表征材料对弹性变形的抗力,其值越大,则在相同应力下产生弹性变形就越小。
影响因素:原子本性及晶格类型。
c)滞弹性:在弹性围快速加载或卸载后,随时间延长产生附加弹性应变,即应变落后于应力的现象。
d)循环韧性:金属材料在交变载荷作用下吸收不可逆变形功的能力。
e)包申格效应:材料经预先加载并产生少量塑性变形,卸载后,再同向加载,规定残余伸长应力增加,反向加载规定残余伸长应力降低的现象。
f)塑性:金属断裂前发生塑性变形(不可逆永久变形)的能力。
意义:i.延伸率和断面收缩率是安全性能指标,一定的塑性可缓和应力集中,避免脆性断裂;ii.金属的塑变能力是压力加工成型工艺的基础;iii.用纵横向延伸率之差也可评定钢材的质量。
g)断后伸长率δ:试样拉断后标距的伸长与原始标距的百分比。
h)断面收缩率ψ:试样拉断后缩颈横截面积的最大缩减量与原始横截面积的百分比。
对于在单一拉伸条件下工作的长形零件,用断后伸长率δ评定其塑性;对于非长形零件,用断面收缩率ψ评定其塑性。
i)脆性:材料在外力作用下产生很小的变形即断裂破坏的能力。
j) 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
k) 解理台阶:相互平行且位于不同高度的解理面连接形成的台阶。
l) 河流花样:若干解理台阶汇合形成的花样。
m) 解理刻面:大致以晶粒大小为单位的解理面。
解理裂纹的扩展:晶界应力集中→一系列相互平行而位于不同高度的解理面相互连接形成解理台阶→若干解理台阶汇合形成河流状花样(支流汇合方向即为裂纹扩展方向)n) 解理面:金属材料在外力作用下严格沿着一定晶体学平面发生解理断裂时的平面,一般是低指数晶面或表面能最低的晶面。
o) 穿晶断裂:裂纹穿过晶发生的断裂;p) 沿晶断裂:裂纹沿晶界扩展发生的断裂;q) 韧脆转变:在一定温度下,材料由韧性状态转变为脆性状态的现象。
r) σ0.2:规定残余伸长率为0.2%时的应力,用以表示材料的屈服强度。
s) 屈服点σs :屈服状态的金属材料拉伸时,试样在外力不增加仍能继续伸长时的应力。
t) 抗拉强度σb :韧性金属材料拉断过程中最大载荷所对应的应力。
u) 应变硬化指数n :表示金属的应变硬化能力,反映了金属材料抵抗均匀塑性变形的能力。
(其值越大,曲线越陡,抵抗均匀塑性变形的能力就越强,并不代表其塑性差。
)2. 金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能?弹性模量主要取决于原子本性及晶格类型。
由于弹性变形是原子间距在外力作用下可逆变化的结果,应力与应变关系实际上是原子间作用力与原子间距的关系,所以弹性模量与原子间作用力与原子间距有关,导致合金化,热处理,冷塑性变形对弹性模量的影响较小,因此说它对结构不敏感。
3. 今有45、40Cr 、35CrMo 钢和灰铸铁几种材料,你选择那种材料作为机床机身?为什么?机床床身需要良好的减震性能,即选择高循环韧性的材料。
而灰铸铁的循环韧性最高,nKe S消振性最好,因此选择灰铸铁。
4.试举出几种能显著强化金属而又不降低其塑性的方法。
a)细晶强化:通过减小晶粒尺寸增加位错运动障碍的数目(阻力大),减小晶粒位错塞积群的长度(应力小),从而使屈服强度提高的方法。
由于细化晶粒后晶界面积增大,而晶界是位错运动的障碍,因此可以提高屈服强度。
而且细晶可以使塑性变形分散到每个晶粒进行,以此提高塑性和韧性。
b)应变硬化:金属材料塑性变形过程中所需要的外力不断增大,因此可以通过使金属材料发生塑性变形来强化金属的方法。
由于它只是提高了金属抵抗均匀塑性变形的能力,并没有影响金属的塑性变形量,因此它可以在不影响塑性的情况下强化金属。
5.为何工程应力-应变曲线上,塑性变形到一定程度时应力却开始下降?因为工程应力-应变曲线上的应力和应变是用试样原始截面积和原始标距长度来度量的,并不代表实际瞬时的应力和应变。