材料力学性能总结

合集下载

材料的力学性能重点总结

材料的力学性能重点总结

名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。

2弹性比功:表示金属材料吸收塑性变形功的能力。

3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。

4包申格效应:金属材料通过预先加载产生少来塑性变形,卸载后再同向加载,规定参与伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5塑性:金属材料断裂前发生塑性变形的能力。

常见塑性变形方式:滑移和孪生6应力状态软性系数:最大切应力最大正应力应力状态软性系数α越大,最大切应力分量越大,表示应力状态越软,材料越易产生塑性变形α越小,表示应力状态越硬,则材料越容易产生脆性断裂7缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生拜年话,产生所谓―缺口效应―①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。

②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。

8缺口敏感度:有缺口强度的抗拉强度ζbm与等截面尺寸光滑试样的抗拉强度ζb的比值. NSR=ζbn / ζs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。

材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间13疲劳贝纹线:以疲劳源为中心的近于平行的一簇同心圆.是疲劳源裂纹扩展时前沿的痕迹14疲劳条带:具有略显弯曲并相互平行的沟槽花样,是疲劳断口最典型的微观特征15驻留滑移带:金属在循环应力长期作用下,形成永久留或再现的循环滑移带称为驻留滑移带,具有持久驻留性.16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象18氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下经过一段时间的孕育期后在金属内部,特别是在三向拉应力区形成裂纹,裂纹的逐步扩展,最后突然发生脆性断裂,这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂第一章2.力学性能指标的意义(1)δ0.2 对于拉伸曲线上没有屈服平台的材料,塑性变形硬化过程是连续的,产生0.2%残余伸长应力时刻的屈服强度。

材料的力学性能 概念 总结

材料的力学性能 概念 总结
显微努氏硬度:维氏硬度实验方法的发展。
第四章 切口试件在静载和冲击载荷作用下的力学性能(六)
切口强度:用带切口的拉伸试件测定其断裂时的名义应力(净断面平均应力)。bn =
切口敏感度(NSR)
:切口强度对抗拉强度的比值。 NSR =
bn

bn

若 NSR≥1.0,表示材料对切口不敏感;
若 NSR<1.0,则材料对切口敏感。
微孔聚集断裂:通过微孔形核长大聚合而导致的断裂。常用金属材料一般均产生这类性质的断裂。
正断:断裂面垂直于外加应力。
切断:断裂面平行于外加应力。
断口:材料或构件受力断裂后的自然表面。
宏观断口:用肉眼或 20 倍以下的放大镜观察的断口,它反映了断口的全貌。
微观断口:用光学显微镜或扫描电镜观察的断口。

晶体的理论断裂强度(σm):将晶体原子分离开所需的最大应力。σ = √
得的布氏硬度值为 150
2、洛氏硬度(HR)
o
HRA(120 金钢石圆锥压头、60kgf 负荷),应用范围:70~85;
HRB(直径 1.588mm 钢球压头、100kgf 负荷),应用范围:25~100;
o
HRC(120 金钢石圆锥压头、150kgf 负荷),应用范围:20~67;
标注方法:HRC28
第三章
材料的硬度(四)
金属的硬度:金属在表面上的不大体积内抵抗变形或者破裂的能力。
1、布氏硬度(HB) 一般在 HB450 以上就不能使用了
标注方法:硬度值 HBW(或 HBS)球的直径/载荷大小/保压时间(注:淬硬钢球(HBS),硬质合金球(HBW),保压时间 10~15s 不用记)
150HBW10/1000/30 表示压头直径为 10mm 的硬质合金球,在 1000kgf 试验力的作用下,保持 30s 时测

2024年材料力学性能总结

2024年材料力学性能总结

2024年材料力学性能总结材料科学与工程是一个不断发展的领域,随着科技的进步和经济的发展,新材料的研发和应用越来越受到关注。

在2024年,材料力学性能方面取得了一系列的突破和进展。

以下是对2024年材料力学性能的总结。

一、新材料的涌现在2024年,新材料的研发持续推进,涌现了一批具有优异力学性能的新材料。

其中包括高性能金属材料、高强度复合材料、高韧性陶瓷材料等。

这些新材料的力学性能远超传统材料,具有更高的强度、硬度、韧性、耐磨性等特点,为各行各业提供了更多的选择和可能。

二、金属材料的强度与塑性提升在金属材料领域,研究人员通过优化合金配方和热处理工艺,成功提升了金属材料的强度和塑性。

新型高强度钢材广泛应用于汽车、轨道交通、航空航天等领域,有效提高了产品的安全性和使用寿命。

同时,新型金属材料的塑性也得到了极大改善,使其更容易成形和加工,满足不同行业对材料的需求。

三、复合材料的应用扩展复合材料在2024年得到了进一步的应用扩展。

高强度复合材料被广泛应用于航空、航天、船舶等领域,可以减轻结构重量,提高载荷能力,提升产品性能。

新型的纳米复合材料在电子、光电、能源等领域也得到了广泛应用,具有优异的电、磁、光等特性,为新一代电子产品和能源装置的研发提供了重要支持。

四、陶瓷材料的韧性提升传统陶瓷材料脆性大,容易破裂,限制了其在工程应用中的广泛使用。

在2024年,陶瓷材料的韧性得到了重大突破。

通过引入纤维增强、晶体设计等手段,成功提升了陶瓷材料的韧性。

新型韧性陶瓷材料在航空、航天、汽车等领域得到了广泛应用,具有较高的强度和韧性,能够承受更大的载荷和冲击,提高了产品的安全性和可靠性。

五、仿生材料的发展仿生材料是以自然界生物体结构和性能为蓝本设计的新型材料。

在2024年,仿生材料得到了更多的关注和研究。

通过模仿昆虫翅膀、植物叶片等自然结构,研究人员开发出了一系列具有优异力学性能的仿生材料。

这些材料具有轻量化、高强度、高韧性的特点,适用于飞行器、船舶、建筑等领域。

材料力学性能复习总结

材料力学性能复习总结

材料力学性能复习总结材料力学性能是指材料在外力作用下所表现出的力学特性和性能。

在材料力学性能的学习中,不仅需要了解材料的基本力学性质,还需要掌握材料的破坏机制、变形行为以及材料的力学性能测试方法等方面的知识。

以下是对材料力学性能复习的总结。

1.材料的破坏机制和破坏形态材料的破坏机制是指材料在受力作用下发生破坏的方式和过程。

常见的破坏机制有拉伸破坏、压缩破坏、剪切破坏等。

拉伸破坏时,材料会发生断裂;压缩破坏时,材料会出现压缩变形和压碎现象;剪切破坏时,材料会出现剪切变形和断裂等。

材料的破坏形态是指材料在受力作用下发生的形态变化。

常见的破坏形态有脆性断裂、塑性变形和疲劳破坏等。

脆性断裂是指材料在受静态或低应力下发生迅速断裂的性质;塑性变形是指材料在受力作用下发生塑性流动,而不发生断裂;疲劳破坏是指材料在反复受力下产生裂纹并最终导致断裂。

2.材料的变形行为和变形机制材料的变形行为是指材料在受力作用下发生的形变现象。

常见的变形行为有弹性变形、塑性变形和粘弹性变形等。

弹性变形是指材料在受力作用下发生的可逆性变形。

材料在弹性变形时能够恢复到原始形状和尺寸。

弹性变形的机制是原子之间的键能发生弹性形变,即在受力作用下原子间的距离发生变化,但不改变原子间的相对位置。

塑性变形是指材料在受力作用下发生的不可逆性变形。

材料在塑性变形时会发生晶格的滑移和位错的运动。

塑性变形的机制是原子间的键能发生塑性形变,即原子间的相对位置发生改变。

粘弹性变形是指材料在受力作用下表现出介于弹性变形和塑性变形之间的性质。

材料在粘弹性变形时有一部分能量会被消耗掉,导致材料的不完全恢复。

粘弹性变形的机制是在外力作用下,分子间的键发生的弹性形变和分子间的长距离位移。

3.材料力学性能的测试方法拉伸试验是指将材料置于拉力下进行测试。

通过拉伸试验可以了解材料的弹性性能、破坏强度、延展性以及断裂形态等。

压缩试验是指将材料置于压力下进行测试。

通过压缩试验可以了解材料的强度和刚度等。

材料力学性能总结

材料力学性能总结

材料力学性能:材料在各类外力作用下抵抗变形和断裂的能力。

屈服现象:外力不增加,试样仍然继续伸长,或外力增加到必然数值时突然下降,随后在外力不增加或上下波动情况下,试样继续伸长变形。

屈服进程:在上屈服点,吕德斯带形成;在下屈服点,吕德斯带扩展;当吕德斯带扫过整个试样时,屈服伸长结束。

屈服变形机制:位错运动与增殖的结果。

屈服强度:开始产生塑性变形的最小应力。

屈服判据:屈雷斯加最大切应力理论:在复杂应力状态下,当最大切应力达到或超过相同金属材料的拉伸屈服强度时产生屈服。

米赛斯畸变能判据:在复杂应力状态下,当比畸变能等于或超过相同金属材料在单向拉伸屈服时的比畸变能时,将产生屈服。

消除办法:加入少量能夺取固溶体合金中溶质原子的物质,使之形成稳定化合物的元素;通过预变形,使柯氏气团被破坏。

影响因素:1.内因:a)金属本性及晶格类型:金属本性及晶格类型不同,位错运动所受的阻力不同。

b)晶粒大小和亚结构:减小晶粒尺寸将使屈服强度提高。

c)溶质元素:固溶强化。

d)第二相2.外因:温度(-);应变速率(+);应力状态。

第二相强化(沉淀强化+弥散强化):通过第二相阻碍位错运动实现的强化。

强化效果:在第二相体积比相同的情况下,第二相质点尺寸越小,强度越高,强化效果越好;在第二相体积比相同的情况下,长形质点的强化效果比球形质点的强化效果好;第二相数量越多,强化效果越好。

细晶强化:通过减小晶粒尺寸增加位错运动障碍的数量(阻力大),减小晶粒内位错塞积群的长度(应力小),从而使屈服强度提高的方式。

同时提高塑性及韧性的机理:晶粒越细,变形分散在更多的晶粒内进行,变形较均匀,且每一个晶粒中塞积的位错少,因应力集中引发的开裂机缘较少,有可能在断裂之前经受较大的变形量,即表现出较高的塑性。

细晶粒金属中,裂纹不易萌生(应力集中少),也不易传播(晶界曲折多),因此在断裂进程中吸收了更多能量,表现出较高的韧性。

固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度。

2024年材料力学性能总结范文

2024年材料力学性能总结范文

2024年材料力学性能总结范文____年材料力学性能总结摘要:本文对____年新材料的力学性能进行了总结。

通过对新材料的力学性能研究,可以更好地应用于工程实践中,提高产品的性能和可靠性。

本文主要对新材料的强度、硬度、韧性、耐热性等性能进行了介绍,并对其应用前景进行了展望。

关键词:新材料;力学性能;强度;硬度;韧性;耐热性一、强度强度是材料抵抗外力的能力,是一个材料最基本的力学性能之一。

____年新材料的强度有了显著的提高,主要得益于新材料结构和组成的优化。

新材料采用了多种复合材料技术,在不同材料的复合过程中,不同材料之间形成了一种互补的关系,使得新材料的强度得到了有效提升。

此外,新材料还采用了新的加工工艺,如纳米技术和超塑性成型技术,通过精确控制材料微观结构和缺陷,使新材料的强度得到了进一步提升。

二、硬度硬度是材料抵抗外界划痕和压痕的能力,表征了材料的抗磨性能。

____年新材料的硬度也得到了大幅提升。

在新材料的研发中,科学家们发现了一些新的硬化机制,如晶体缺陷的控制、固溶体弥散硬化和位错强化等。

通过合理地控制这些硬化机制,新材料的硬度可以得到有效提升。

此外,新材料还采用了一些表面处理技术,如化学镀、电沉积和离子注入等,通过改变材料表面的化学组成和相结构,来提高材料的硬度。

三、韧性韧性是材料抵抗破坏的能力,是反映材料抗拉伸、抗压和抗弯曲能力的重要指标。

____年新材料的韧性也得到了显著改善。

新材料采用了一些新的加工工艺,如冷变形和等离子注入等,通过调整材料的晶界和位错密度,使新材料的韧性得到了提高。

此外,新材料还采用了一些新的复合技术,如纳米复合和纤维复合等,通过增加材料内部的弥散相和增强相,来提高材料的韧性。

四、耐热性耐热性是材料在高温条件下能保持稳定性和性能的能力。

____年新材料的耐热性也得到了显著提升。

新材料采用了一些新的材料组成和结构设计,如金属间化合物、金属陶瓷复合材料和增强材料等,来提高材料的热稳定性。

材料力学性能与应用总结

材料力学性能与应用总结

材料力学性能与应用总结在我们的日常生活和工业生产中,材料无处不在。

从建筑结构中的钢梁到汽车发动机的零部件,从电子产品中的芯片到航空航天领域的飞行器部件,材料的性能决定了其应用的范围和效果。

而材料力学性能则是评估材料质量和适用性的关键指标。

材料的力学性能主要包括强度、硬度、塑性、韧性、疲劳性能等。

强度是材料抵抗外力破坏的能力,通常用屈服强度和抗拉强度来表示。

屈服强度是材料开始产生明显塑性变形时的应力,而抗拉强度则是材料在拉伸过程中所能承受的最大应力。

例如,在建筑领域,高强度的钢材能够承受更大的载荷,使建筑物更加稳固可靠。

硬度反映了材料抵抗局部塑性变形的能力。

常见的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。

硬度高的材料通常具有较好的耐磨性,如用于制造刀具的高速钢,其硬度较高,能够在切削过程中保持锋利的刃口。

塑性是材料在断裂前产生塑性变形的能力,通常用伸长率和断面收缩率来衡量。

具有良好塑性的材料,如铝合金,在加工过程中容易成型,可以制造出各种复杂形状的零件。

韧性则是材料抵抗冲击载荷的能力。

韧性好的材料在受到突然的冲击时不容易断裂。

例如,汽车的保险杠通常采用具有高韧性的材料,以在碰撞时吸收能量,保护乘客的安全。

疲劳性能对于那些承受周期性载荷的零件至关重要。

长期的反复加载可能导致材料在低于其抗拉强度的应力下发生疲劳断裂。

例如,飞机的机翼在飞行过程中不断受到气流的冲击,其材料必须具备良好的疲劳性能,以确保飞行安全。

不同的材料具有不同的力学性能,这使得它们在不同的领域有着各自的应用。

金属材料,如钢铁、铝合金等,由于其良好的强度和塑性,广泛应用于机械制造、汽车工业、航空航天等领域。

钢铁具有较高的强度和硬度,常用于制造建筑结构和机械零部件;铝合金则具有轻质、高强度和良好的塑性,常用于航空航天和汽车工业中。

高分子材料,如塑料、橡胶等,具有重量轻、耐腐蚀、绝缘性好等优点。

塑料在电子设备、日用品和包装行业中应用广泛;橡胶则因其良好的弹性和耐磨性,常用于制造轮胎、密封件等。

材料的力学性能名词解释总结

材料的力学性能名词解释总结

屈服强度:表示金属对塑性变形的抗力
抗拉强度:试样断裂前所能承受的最大工程应力
断裂强度:指材料发生断裂时的最大应力与断裂横截面积的比值
断裂延性:拉伸断裂时的真塑性应变
段裂韧性:表征材料阻止裂纹扩展的能力
静力韧度:单位体积材料在断裂前所吸收的能量
冲击韧性:材料在冲击载荷下吸收变形功和断裂功的能力
疲劳强度:金属材料在无限多次交变载荷作用下而不破坏的最大应力持久强度:在给定的温度下和规定时间内,试样发生断裂的应力值蠕变极限:材料在高温长时间载荷作用下的塑性变形抗力指标
疲劳极限:在给定的疲劳寿命下,试件所能承受的上限应力幅值
强度:对塑性变形和断裂的抵抗力
塑性:材料产生不可逆变形的能力
韧性:表示材料在塑性变形和断裂过程中吸收能量的能力
解理断裂:材料在拉应力的作用下,由于原子间结合键遭到破坏,严格地沿一定的结晶学平面劈开而造成的
脆性断裂:断裂前不发生可测得塑性变形
冷脆转变温度:材料从韧性断裂变为脆性断裂时的温度
形变(应变)强化:阻止材料继续发生塑性变形的能力。

材料力学性能总结 材科适用!!!

材料力学性能总结 材科适用!!!

力。
6. 断后伸长率δ(A)(断后延伸率)和断面收缩率ψ(Z):试样拉断后标距的 伸长量(缩颈出横截面积的最大缩减量)与原始标距(横截面积)的百分比 (都是塑性性能指标,也是安全性能指标,但不是力学性能指标)塑性:指 材料断裂前发生塑性变形(不可逆永久变形)的能力
7. 静力韧度:首先,韧性(可以简单理解成弹性+塑性)作为力学性能(韧度 为力学性能指标,分为静力韧度、冲击韧度和断裂韧度),指的是材料断裂前 吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力。在静拉伸 时单位体积材料断裂前所吸收的功,是强度和塑性的综合指标。
在一定条件下(如低温),当外加正应力达到一定数值后,以极快的速率沿 一定晶体学平面(解理面,一般为密排面)产生脆性穿晶断裂。常见于 BCC 和 FCC。
由许多大致相当于晶粒大小的解理刻面集合而成,有解理台阶、河流花 样、舌状花样(类似于人舌)
包含三个阶段:塑性变形形成裂纹,裂纹在同一晶粒内初期长大,裂纹越 过晶界向相邻晶粒扩展
20. 为什么研究裂纹扩展的力学条件时,不用应力判据而用其他判据? 因为在材料中不可避免会出现微裂纹,进而引起材料的低应力脆断,传统 的应力判据工作应力σ<许用应力[σ]不能解释这一现象,所以,我们将微裂 纹尺寸作为一个影响因子,得出由应力和裂纹尺寸共同决定的应力场强度 因子 KⅠ,和断裂韧度的大小进行比较,得到 K 判据。
弹性比功 ae(弹性比能、应变比能)用弹性区的面积来表征,表示吸收弹性 变形功的能力,是韧性指标。等于弹性极限σe(材料发生弹性变形的最大应 力限度)除以刚度的二倍。
屈服强度(表征金属微量塑性变形抗力):有明显屈服平台的(称为不连续屈 服),用下屈服点对应的强度值来表示σs;没有屈服平台的(称为连续屈服), 用 0.2%残留变形的应力(规定塑性延伸强度)来表示σ0.2。塑性变形的方 式有滑移和孪生;屈服是在金属塑性变形开始阶段,外力不增加、甚至下降 的情况下,变形继续进行的现象。

材料力学性能重点总结

材料力学性能重点总结

材料力学性能重点总结1.强度:强度是材料抵抗外部载荷引起的破坏的程度,通常使用屈服强度、抗拉强度和抗压强度来评价。

强度越高,材料越能承受外部载荷。

2.韧性:韧性是材料在受力时发生塑性变形以及能够吸收能量的能力。

材料具有较高的韧性时,能够在受到巨大应力时仍然保持不破裂。

3.硬度:硬度是材料抵抗表面破坏的能力,也可以理解为材料的抗刮伤能力。

硬度可以衡量材料的耐磨性和耐磨损能力。

4.弹性模量:弹性模量是材料在受力后恢复原状的能力,可以评估材料在受力后的变形程度。

弹性模量越大,材料的刚性越高。

5.延展性:延展性是材料在受力时能够发生塑性变形而不破坏的能力。

延展性高的材料可以更好地适应复杂应力和形状变化。

6.断裂韧性:断裂韧性是材料在受到外部载荷时能够抵抗破坏的能力。

它是强度和韧性的综合指标,可评估材料在极限条件下的断裂性能。

7.蠕变性:蠕变性是材料在长期受力情况下发生的塑性变形。

材料的蠕变性能评估了其在高温和持续应力下的稳定性。

8.疲劳性:疲劳性是材料在受到反复应力循环后发生破坏的能力。

疲劳性能评估了材料在长期使用过程中的可靠性和耐久度。

9.冲击韧性:冲击韧性是材料在受到突然冲击加载时抵抗破坏的能力。

它可以评估材料在极端工作条件下的抗冲击性能。

10.耐腐蚀性:耐腐蚀性是材料抵抗环境介质侵蚀和化学反应的能力。

材料的耐腐蚀性能评估了其在特定环境中的稳定性和使用寿命。

以上是材料力学性能的重点总结,它们通常都与材料的微观结构、成分、加工工艺和使用条件有关。

通过评估和选择材料的力学性能,可以确保材料在各种应用中具有足够的强度、韧性和稳定性。

2024年材料力学性能总结(三篇)

2024年材料力学性能总结(三篇)

2024年材料力学性能总结摘要:材料力学性能是材料科学研究中非常重要的一个方面,它描述了材料在力学作用下的行为和性能。

2024年,随着科学技术的进步和工程需求的不断提高,材料力学性能也将取得许多重要的突破和进展。

本文将对2024年材料力学性能的发展进行总结,并对未来可能的应用和研究方向进行展望。

关键词:材料力学性能;2024年;发展总结;应用展望一、引言材料力学性能是材料科学研究中的一个重要方向,它考察材料在外力作用下的响应和变形行为。

材料力学性能的研究不仅对于理论研究有重要意义,也对工程应用具有重要影响。

2024年,随着科学技术的不断进步,材料力学性能也将迎来许多新的挑战和机遇。

本文将对2024年材料力学性能的发展进行总结,并对未来可能的应用和研究方向进行展望。

二、材料力学性能的发展总结2024年,预计会有以下几个方面的材料力学性能发展和突破:1.高强度材料的研发随着科技进步和工程需求的不断提高,对于高强度材料的需求将越来越迫切。

2024年,预计会有许多新型的高强度材料得到开发和研究。

这些材料不仅具有优良的力学性能,还具有其他良好的特性,如轻质、高温稳定性等。

这些高强度材料的研发和应用将对于航空航天、汽车和能源等领域具有重要的意义。

2.新型复合材料的研究复合材料是一种具有多种材料组成的材料,它的力学性能往往比单一材料更优越。

2024年,预计会有许多新型的复合材料被研发和应用。

这些新型复合材料具有更好的强度、刚度和韧性,并且可以具备一些其他功能,如导电性、光学性能等。

这些新型复合材料的研究将有助于解决一些工程问题,同时也为制造行业提供更多的选择。

3.纳米材料的应用拓展纳米材料是一种具有纳米尺度结构的材料,具有许多特殊的力学性能。

2024年,预计纳米材料的应用范围将进一步拓展。

纳米材料不仅可以应用于催化剂、传感器等领域,还可以用于制备高强度和高韧性材料。

纳米材料的研究将有助于改进传统材料的性能,并带来许多新的应用领域。

材料力学性能总结

材料力学性能总结

材料力学性能总结首先是强度。

强度是材料在受力时抵抗变形和破坏的能力。

常见的强度指标包括抗拉强度、抗压强度、抗扭强度和抗剪强度。

抗拉强度是材料在拉伸状态下抵抗断裂的能力,抗压强度是材料在受压状态下抵抗压碎破坏的能力,抗扭强度是材料在扭转状态下抵抗破坏的能力,抗剪强度是材料在受剪应力状态下抵抗破坏的能力。

强度越高,材料的承载能力越强。

其次是刚度。

刚度是材料在受力时抵抗形变的能力。

刚度可以用杨氏模量来衡量,杨氏模量是材料在弹性阶段的应变应力比。

刚度越高,材料的刚性越好,在受力时形变较小,保持较好的形状稳定性。

再次是韧性。

韧性是材料在受力时能够吸收大量能量而不断延展的能力。

韧性可以用抗拉伸功和冲击韧性来衡量。

抗拉伸功是材料断裂前吸收的能量,冲击韧性是材料在受冲击载荷作用下的能量吸收能力。

高韧性的材料能够在受力时吸收更多的能量,具有较好的抗震和耐久性能。

此外,还有硬度。

硬度是材料抵抗刮痕或压痕的能力,常用硬度指标有布氏硬度、洛氏硬度和维氏硬度等。

硬度越高,材料越难被刮伤或压痕,具有较好的耐磨性能。

最后是塑性。

塑性是材料在受力时变形能保留在材料内部的能力。

塑性可以用屈服强度和延伸率来衡量,屈服强度是材料在破坏前的最大抗拗力,延伸率是材料在断裂前拉伸变形的百分比。

高塑性的材料能够在受力时发生大量变形而不破裂,具有较好的可塑性。

总结起来,材料力学性能是评价和选择材料时需要考虑的重要因素,包括强度、刚度、韧性、硬度和塑性等指标。

不同材料的力学性能差异很大,根据具体应用需求进行选择合适的材料,以实现最佳性能。

材料力学性能总结

材料力学性能总结

材料⼒学性能总结材料⼒学性能第⼀章⼆节.弹变1,。

弹性变形:材料在外⼒作⽤下产⽣变形,当外⼒取消后,材料变形即可消失并能完全恢复原来形状的性质称为弹性。

这种可恢复的变形称为弹性变形。

2.弹性模量:表征材料对弹性变形的抗⼒3.弹性性能与特征是原⼦间结合⼒的宏观体现,本质上决定于晶体的电⼦结构,⽽不依赖于显微组织,因此,弹性模量是对组织不敏感的性能指标。

4.⽐例极限σp:应⼒与应变成直线关系的最⼤应⼒。

5.弹性极限σe:由弹性变形过渡到弹性塑性变形的应⼒。

6.弹性⽐功:表⽰单位体积⾦属材料吸收弹性变形功的能⼒,⼜称弹性⽐应变能。

7.⼒学性能指标:反映材料某些⼒学⾏为发⽣能⼒或抗⼒的⼤⼩。

8.弹性变形特点:应⼒与应变成⽐例,产⽣变形,当外⼒取消后,材料变形即可消失并能完全恢复原来形状9.滞弹性:在弹性范围内快速加载或卸载后,随时间延长产⽣附加弹性应变的现象,称为滞弹性。

10.循环韧性:指在塑性区加载时材料吸收不可逆变形功的能⼒。

11.循环韧性应⽤:减振、消振元件。

12.包申格效应:⾦属材料经过预先加载产⽣少量塑性变形,卸载后再同向加载,规定残余伸长应⼒增加;反向加载规定残余伸长应⼒降低的现象,称为包申格效应。

13.包申格应变:指在给定应⼒下,正向加载与反向加载两应⼒-应变曲线之间的应变差。

14.消除包申格效应:预先进⾏较⼤的塑性变形。

在第⼆次反向受⼒前先使⾦属材料于回复或再结晶温度下退⽕。

三节:塑性1.塑性:⾦属材料断裂前发⽣不可逆永久(塑性) 变形的能⼒.2.影响材料屈服强度的因素:㈠内在因素. 1. ⾦属本性及晶格类型.主滑移⾯位错密度⼤,屈服强度⼤。

2. 晶粒⼤⼩和亚结构.晶界对位错运动具有阻碍作⽤。

晶粒⼩可以产⽣细晶强化。

都会使强度增加。

3.溶质原⼦:溶质元素溶⼊⾦属晶格形成固溶体,产⽣固溶强化。

4,第⼆相. a.不可变形的第⼆相绕过机制.留下⼀个位错环对后续位错产⽣斥⼒, b.可以变形的第⼆相切过机制.由于,质点与基体间晶格错排及位错切过第⼆相质点产⽣新界⾯需要做功,使强度增加。

材料力学性能总结

材料力学性能总结

材料力学性能总结材料力学性能是指材料在受到不同形式的载荷或应力下,表现出不同的物理性质和机械性能。

材料力学性能的总结可以帮助我们更好地认识材料的特性,从而更加科学地选材和设计各种工程应用。

下面将从以下几个方面对材料力学性能进行总结。

一、强度与韧性材料的强度是指其在受到载荷或应力时所能承受的最大应力值。

强度高的材料在设计中可以承受更大的载荷或应力。

常见的材料强度指标有屈服强度、抗拉强度、压缩强度等。

但是,仅依靠强度指标来选材是不够的,因为材料的强度高并不代表它具有优良的力学性能。

例如,脆性材料的强度很高,但其韧性较差,容易发生断裂。

因此,韧性也是一个重要的材料性能。

韧性是指材料在受到载荷时能够吸收能量的能力,也称为能量吸收能力。

通常使用断裂韧性、冲击韧性等来描述材料的韧性指标。

在实际应用中,需要兼顾材料的强度和韧性,以确保其不仅能够承受载荷,还能保证结构的安全稳定。

二、硬度和耐磨性硬度是指材料抵抗各种形式的本质上属于局部破坏的作用或物理和化学作用的能力。

通常使用洛氏硬度、布氏硬度等指标来描述材料的硬度。

硬度高的材料有较强的抵抗力,并能够减少磨损和划痕的发生。

与硬度相似,耐磨性也是一个测量材料抗磨损能力的重要指标。

材料的耐磨性受到多种因素的影响,如材料本身的硬度结构、尺寸、表面形貌和应力等。

在应用中,已经开发出多种表面处理和涂层技术,可以提高材料的硬度和耐磨性,以应对不同的工程需求。

三、热性能材料的热性能包括热膨胀系数、热导率和热扩散等。

热膨胀系数是描述材料在热膨胀时的变形情况的指标。

不同的材料具有不同的热膨胀系数,而这种变形会限制材料的可靠性。

热导率是指材料在温度差异下传导热能的速率。

高热导率的材料有助于热能的传导和散热,减少过热和热膨胀的问题。

热扩散是指一个材料在受到热载荷时,能够在较短时间内吸收和释放热能的能力。

材料的热性能也同样需要在应用时进行考虑和选择。

四、协变效应协变效应是指材料在光滑的表面上受到应力或载荷时出现的变形现象。

2024年材料力学性能总结样本(2篇)

2024年材料力学性能总结样本(2篇)

2024年材料力学性能总结样本2023年材料力学性能总结材料力学性能是衡量材料质量的重要指标之一。

随着科技的不断发展和材料工程学的深入研究,2023年的材料力学性能得到了显著提升。

本文将从力学性能指标的改进、新材料的研究及应用以及未来的发展趋势等方面展开讨论。

首先,2023年的材料力学性能指标得到了革命性的进步。

在强度方面,新型高分子材料、纳米材料和复合材料的应用使得材料的强度得到了大幅提高。

这些材料不仅具有较高的力学强度,还具有较好的抗拉伸性能和耐磨性能。

例如,高分子纳米复合材料在汽车行业的应用使汽车的结构更加牢固,并大幅减轻了车身重量。

在刚度方面,新材料的出现也取得了巨大的突破。

例如,蜂窝状材料的应用使得材料的刚度得到了大幅提高,这种材料既轻便又具有较高的刚度,广泛应用于航空航天领域。

此外,新型材料具有更好的韧性和塑性,能够在承受外力时更好地抵抗变形和破损。

这些材料的出现使得结构设计更加灵活多样化,为人类创造了更多可能。

其次,2023年的材料力学性能的提升还得益于对于传统材料的改进研究。

对于金属材料来说,合金化是提高材料性能的重要途径之一。

通过调控合金元素的含量和比例,可以改变材料的晶体结构和相变行为,从而使得材料的强度、硬度和耐腐蚀性等得到提高。

例如,在航空航天领域,钛合金的应用已经普及。

通过添加适量的合金元素,钛合金不仅具有较高的强度和刚度,还具有良好的高温性能和耐磨性能。

对于陶瓷材料来说,通过调控材料的微观结构和晶粒尺寸,可以改善其力学性能。

例如,纳米陶瓷材料具有较高的硬度和强度,可以应用于刀具等高强度和高耐磨性要求的领域。

另外,新材料的研究也对材料力学性能的提升起到了至关重要的作用。

随着科技的不断发展,新材料的研发取得了显著的进展。

例如,碳纳米管、石墨烯和二维材料等新型材料的出现,使得材料的力学性能得到了革命性的提升。

这些材料的力学强度和刚度远高于传统材料,且具有良好的导电性和导热性。

材料力学性能重点总结

材料力学性能重点总结

材料力学性能重点总结1.强度:材料的强度是指材料抵抗外力破坏的能力。

常见的强度指标有屈服强度、抗拉强度、抗压强度等。

屈服强度是指材料在受力后开始出现塑性变形的应力值;抗拉强度是指材料在拉伸状态下的最大应力值;抗压强度是指材料在受到压缩力时的最大应力值。

强度高的材料具有较高的抵抗破坏能力,适用于需要承受大力的场合。

2.韧性:韧性是材料在受力过程中能够吸收能量并发生大变形的能力。

具有良好韧性的材料能够抵抗冲击或拉伸等动力载荷的作用,不易发生断裂或失效。

韧性材料通常具有较高的延展性和断裂韧性。

3.硬度:硬度是材料抵抗刮擦或压痕的能力。

硬度高的材料具有较强的抗刮擦能力和耐磨损性能。

常用的硬度测试方法有洛氏硬度和布氏硬度等。

4.延展性:延展性是指材料在受力时的塑性变形程度。

延展性高的材料能够在受力后产生大的形变而不发生断裂。

材料的延展性通常与其抗拉强度、韧性和冷加工性能有关。

5.抗疲劳性:抗疲劳性是指材料在重复应力作用下不发生疲劳断裂的能力。

材料的抗疲劳性能决定了其在长期运行过程中的耐久性,具有抗疲劳性的材料能够在长期受力下保持稳定性能。

6.温度效应:材料在高温或低温环境下的性能表现。

高温下,材料可能会发生软化或氧化等变化,降低其强度和韧性;而低温下,材料可能变脆,容易发生断裂。

温度效应的了解对于材料的设计和应用非常重要。

除了上述重点性能指标外,材料力学性能还与其他因素有关,如材料的组织结构、制备工艺、应力条件等。

因此,在材料性能的研究和应用过程中,需要综合考虑多因素的影响。

综上所述,材料力学性能的研究对于材料的设计、选择和应用具有重要意义。

材料力学性能名词总结

材料力学性能名词总结

名词解释第一章1.正应变是单位长度的伸缩变化量,亦称线应变;2.切应变一般指的是两个直线段间夹角的改变量,以角度变小的变化量为正,变大为负,以弧度表示。

3.主平面:切应力等于零的平面。

把此时该面上的正应力称作主应力。

4.平面应变状态:应变发生在同一个平面内。

5.胡克定律:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比。

6.应力集中:应力在局部增大的现象,一般出现在物体形状急剧变化的地方,如缺口、孔洞、沟槽以及有刚性的约束处。

7.理论应力集中因数:在材料的弹性范围内,最大局部应力与名义应力的比值;Kt=σmax σ8.应力状态软性系数:三个主应力可以按“最大切应力理论”计算最大切应力,按“相当最大正应力理论”计算最大正应力,而二者的比值表示他们的相对大小.第二章1.弹性模量E、比例极限Rp、弹性极限Re、上屈服强度Reh、下屈服强度Rel、抗拉强度Rm、断后伸长率A、断面收缩率Z(各定义的点以及公式)2.规定塑性延伸强度:拉伸中当试样的塑形伸长率等于L0的某一百分率时所对应的应力值;3.应变硬化指数:。

4.形变强化:屈服后的应力-应变曲线的上升被描述为形变强化(加工硬化)。

也就是随着应变的增加,材料的变形抗力增加5.静态韧性:在静载作用下,材料断裂前所吸收的能量,称作静态韧性,静态韧性可能包含三部分能量,即弹性变形能、塑性变形能和断裂能(形成两个断裂表面的能)。

6.静态韧度:静态韧度是表征静态韧性的力学性能指标,7.断裂强度:拉伸断裂时的真应力称为断裂强度,记为σf ;也有称为断裂真应力,记为Sk8.断裂延性:拉伸断裂后的真应变称为断裂延性,记为εf ,或称断裂真应变。

9.弹性比功:材料吸收变形功而又不发生永久变形的能力,也就是在开始塑性变形前,单位体积材料所能吸收的最大弹性变形功。

第三章1.比弹性模量:弹性模量与密度的比值;2.比刚度:刚度与密度的比值;3.弹性不完善性:应变不止与应力有关,还与时间和加载速率有关。

材料力学性能复习总结

材料力学性能复习总结

绪论弹性:指材料在外力作用下保持和恢复固有形状和尺寸的能力。

塑性:材料在外力作用下发生不可逆的永久变形的能力。

刚度:材料在受力时抵抗弹性变形的能力。

强度:材料对变形和断裂的抗力。

韧性:指材料在断裂前吸收塑性变形和断裂功的能力。

硬度:材料的软硬程度。

耐磨性:材料抵抗磨损的能力。

寿命:指材料在外力的长期或重复作用下抵抗损伤和失效的能。

材料的力学性能的取决因素:内因——化学成分、组织结构、残余应力、表面和内部的缺陷等;外因——载荷的性质、应力状态、工作温度、环境介质等条件的变化。

第一章 材料在单向静拉伸载荷下的力学性能1.1 拉伸力—伸长曲线和应力—应变曲线应力—应变曲线退火低碳钢在拉伸力作用下的力学行为可分为弹性变形、不均匀屈服塑性变形、均匀塑性变形和不均匀集中塑性变形和断裂几个阶段。

弹性变形阶段:曲线的起始部分,图中的oa 段。

多数情况下呈直线形式,符合虎克定律。

屈服阶段:超出弹性变形范围之后,有的材料在塑性变形初期产生明显的塑性流动。

此时,在外力不增加或增加很小或略有降低的情况下,变形继续产生,拉伸图上出现平台或呈锯齿状,如图中的ab 段。

均匀塑性变形阶段:屈服后,欲继续变形,必须不断增加载荷,此阶段的变形是均匀的,直到曲线达到最高点,均匀变形结束,如图中的bc 段。

不均匀塑性变形阶段:从试样承受的最大应力点开始直到断裂点为止,如图中的cd 段。

在此阶段,随变形增大,载荷不断下降,产生大量不均匀变形,且集中在颈缩处,最后载荷达到断裂载荷时,试样断裂。

弹性模量E :应力—应变曲线与横轴夹角的大小表示材料对弹性变形的抗力,用弹性模量E退火低碳钢应力—应变曲线表示。

塑性材料应力—应变曲线(a)弹性—弹塑性型:Oa为弹性变形阶段,在a点偏离直线关系,进入弹—塑性阶段,开始发生塑性变形,开始发生塑性变形的应力称为屈服点,屈服点以后的变形包括弹性变形和塑性变形。

在m点卸载,应力沿mn降至零,发生加工硬化。

(b)弹性-不均匀塑性-均匀塑性型:与前者不同在于出现了明显的屈服点aa′,有时呈屈服平台状,有时呈齿状。

材料力学性能总结

材料力学性能总结

材料力学性能材料受力后就会产生变形,材料力学性能是指材料在受力时的行为。

描述材料变形行为的指标是应力σ和应变ε,σ是单位面积上的作用力,ε是单位长度的变形。

描述材料力学性能的主要指标是强度、延性和韧性。

其中,强度是使材料破坏的应力大小的度量;延性是材料在破坏前永久应变的数值;而韧性却是材料在破坏时所吸收的能量的数值。

1.弹性和刚度材料在弹性范围内,应力与应变成正比,其比值E=σ/ε(MN/m2)称为弹性模量。

E标志着材料抵抗弹性变形的能力,用以表示材料的刚度。

E值主要取决于各种材料的本性,一些处理方法(如热处理、冷热加工、合金化等)对它影响很小。

零件提高刚度的方法是增加横截面积或改变截面形状。

金属的E值随温度的升高而逐渐降低。

2.强度在外力作用下,材料抵抗变形和破坏的能力称为强度。

根据外力的作用方式,有多种强度指标,如抗拉强度、抗弯强度、抗剪强度等。

当材料承受拉力时,强度性能指标主要是屈服强度和抗拉强度。

(1)屈服强度σs在图1-6(b)上,当曲线超过A点后,若卸去外加载荷,则试样会留下不能恢复的残余变形,这种不能随载荷去除而消失的残余变形称为塑性变形。

当曲线达到A点时,曲线出现水平线段,表示外加载荷虽然没有增加,但试样的变形量仍自动增大,这种现象称为屈服。

屈服时的应力值称为屈服强度,记为σS。

有的塑性材料没有明显的屈服现象发生,如图1-6(c)所示。

对于这种情况,用试样标距长度产生0.2%塑性变形时的应力值作为该材料的屈服强度,以σ0.2表示。

机械零件在使用时,一般不允许发生塑性变形,所以屈服强度是大多数机械零件设计时选材的主要依据也是评定金属材料承载能力的重要机械性能指标。

材料的屈服强度越高,允许的工作应力越高,零件所需的截面尺寸和自身重量就可以较小。

(2)抗拉强度σb材料发生屈服后,其应力与应变的变化如图1-1所示,到最高点应力达最大值σb。

在这以后,试样产生“缩颈”,迅速伸长,应力明显下降,最后断裂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学性能第一章二节.弹变1,。

弹性变形:材料在外力作用下产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状的性质称为弹性。

这种可恢复的变形称为弹性变形。

2.弹性模量:表征材料对弹性变形的抗力3.弹性性能与特征是原子间结合力的宏观体现,本质上决定于晶体的电子结构,而不依赖于显微组织,因此,弹性模量是对组织不敏感的性能指标。

4.比例极限σp:应力与应变成直线关系的最大应力。

5.弹性极限σe:由弹性变形过渡到弹性塑性变形的应力。

6. 弹性比功: 表示单位体积金属材料吸收弹性变形功的能力,又称弹性比应变能。

7.力学性能指标:反映材料某些力学行为发生能力或抗力的大小。

8.弹性变形特点:应力与应变成比例,产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状9.滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象,称为滞弹性。

10.循环韧性:指在塑性区加载时材料吸收不可逆变形功的能力。

11.循环韧性应用:减振、消振元件。

12.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载规定残余伸长应力降低的现象,称为包申格效应。

13.包申格应变:指在给定应力下,正向加载与反向加载两应力-应变曲线之间的应变差。

14.消除包申格效应:预先进行较大的塑性变形。

在第二次反向受力前先使金属材料于回复或再结晶温度下退火。

三节:塑性1.塑性:金属材料断裂前发生不可逆永久(塑性) 变形的能力.2.影响材料屈服强度的因素:㈠内在因素. 1. 金属本性及晶格类型.主滑移面位错密度大,屈服强度大。

2. 晶粒大小和亚结构.晶界对位错运动具有阻碍作用。

晶粒小可以产生细晶强化。

都会使强度增加。

3.溶质原子:溶质元素溶入金属晶格形成固溶体,产生固溶强化。

4,第二相. a.不可变形的第二相绕过机制.留下一个位错环对后续位错产生斥力, b.可以变形的第二相切过机制.由于,质点与基体间晶格错排及位错切过第二相质点产生新界面需要做功,使强度增加。

二)外在因素:1.温度温度越高原子间作用越小位错运动阻力越低 2.应变速率。

应变速率越高强度越高。

3.应力状态.切应力分量越大强度越低3.细晶强化:晶界是位错运动的阻碍,晶粒小相界多。

减少晶粒尺寸会减少晶粒内部位错塞积的数量,减少位错塞积群的长度,降低塞积点处的应力,相邻晶粒中位错源开动所需的外加切应力提高,屈服强度增加。

4.固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度,此即为固溶强化。

溶质原子与基体原子尺寸差别越大,引起的弹性畸变越大,溶质原子浓度越高,引起的弹性畸变越大,对位错的阻碍作用越强,固溶强化作用越大。

5.影响粒状第二相强化效果的因素:当粒子体积分数f一定时,粒子尺寸r越小、位错运动障碍越多,位错的自由行程越小,强比效果越显著。

当粒子尺寸一定时,体积分数f越大,强化效果亦越好。

网状分布时,位错堆积,应力不可以松弛,脆性增加.片状>球状6.珠光体对第二相的影响:1)片状珠光体,位错的移动被限制在渗碳体片层之间。

所以渗碳体片层间距越小,珠光体越细,其强度越高。

2)粒状珠光体,位错钱与第二相球状粒子交会的机会减少,即位错运动受阻的机会减少,故强度降低,塑性提高。

3)渗碳体以连续网状分布于铁素体晶界上时,使晶粒的变形受阻于相界,导致很大的应力集中,因此强度反而下降,塑性明显降低。

7.应变硬化:应变硬化是位错增殖、运动受阻所致8.n表示材料的应变强化能力或对进一步塑性变形的抗力。

9.影响n的因素:1) 层错能:层错能低,则交滑移难,加工硬化指数高。

2) 冷热变形退火态n大,冷加工n小3) 强度,强度高n低。

10塑性的指标:①延伸率:试样拉断时所测得的条件延伸率主要反映了材料均匀变形的能力。

②断面收缩率:断面收缩率主要反映了材料局部变形的能力11.韧性:韧性是指材料在断裂前吸收塑性变形功和断裂功的能力。

四节:金属的断裂1.裂纹的基本形成过程:裂纹形成和扩展。

2.段裂类型:1)根据断裂前金属是否有明显的塑性变形分:脆性断裂ψ<5%韧性断裂ψ>5% 2)从微观上按照裂纹的走向分:穿晶断裂沿晶断裂3.磨损,腐蚀,断裂是机件的三种失效形式。

4.韧性断裂宏观断口:断口粗糙、呈纤维状,灰暗色。

1)中、低强度钢光滑圆柱试样拉伸断口呈杯锥状。

5.宏观断口三要素:1)纤维区2)放射区3)剪切唇6.塑性变形量越大则放射线越粗。

温度降低或材料强度增加,由于塑性降低放射线由粗变细乃至消失。

7.影响断口三要素的因素:材料脆性越大,放射区越大,纤维区越小,剪切唇越小。

材料尺寸越大,放射区越大,纤维区基本不变。

8.脆性断裂宏观断口:脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。

9.沿晶断裂:当晶界的强度小于屈服强度时,晶界无塑性变形,断裂呈宏观脆性产生冰糖状断口。

当晶界的强度大于屈服强度时,晶界有塑性变形,产生石状断口10.微孔聚集型断裂断口微观特征:韧窝。

11.微孔聚集型断裂的过程:塑变过程中,位错运动遇到第二相颗粒形成位错环。

切应力作用下位错环堆积.位错环移向界面,界面沿滑移面分离形成微孔。

位错源重新开动,释放出新位错,不断进入微孔,使微孔长大。

在外力的作用下产生缩颈(内缩颈)而断裂(纤维区),使微孔聚合,形成裂纹;裂纹尖端应力集中,产生极窄的与径向大致呈45度的剪切变形带,新的微孔就在变形带内成核、长大和聚合,与裂纹连接时,裂纹扩展。

(大概说出)12.解理断裂:指金属材料在一定条件下(如低温),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂。

13.解理面:由于与大理石的断裂相似,所以称这种晶体学平面为解理面。

14.解理断裂过程分为三个阶段:a)塑性变形形成裂纹b)裂纹在同一晶粒内初期长大c)裂纹越过晶界向相邻晶粒扩展15.解理断裂的微观断口特征:1)解理台阶及河流状花样。

2)舌状花样16.准解理断裂:穿晶断裂;有小解理刻面;有台阶或撕裂棱及河流花样。

第二章一节:材料的软性系数1.α值越大,最大切应力分量越大,表示应力状态越“软”,越易于产生塑性变形和韧性断裂。

α值越小,最大正应力分量越大,应力状态越“硬”,越不易产生塑性变形而易于产生脆性断裂。

单向压缩试验的应力状态系数α=22.二节:压缩1.力学性能指标规定非比例压缩应力σpc 。

抗压强度σbc 。

相对压缩率δck 和相对断面扩胀率ψck.抗弯强度σbb 。

弯曲模量E b 切变模量G扭转比例极限τp和扭转屈服强度τs 抗扭强度五节:缺口试样静载荷试验1.缺口效应效应1:缺口引起应力集中,改变了缺口前方应力状态。

由单向应力状态变为两向或三向应力状态。

缺口效应2:缺口使塑性材料产生缺口附加强化,使强度增加,塑性降低。

六节:硬度1.压头材质:淬火钢球HBS≤450 硬质合金球HBW 450~6502.试样厚度:为h的10倍,d=0.25~0.6D在试件厚度足够时,应尽可能选用10 mm直径的压头。

洛氏硬度:压痕深度来表示材料的硬度。

直径为1/16’ (1.5875mm)~ ½’ (12.70mm)的钢球从材料角度看,淬火后经不同温度回火的钢材、各种工模具钢及渗层厚度大于0.5mm 的渗碳层等较硬的材料,常采用洛氏硬度C标尺法;如应HRC在20 ~ 67之间;若材料硬度小于HRC20,则应选用B标尺;若大于HRC67,则应选用A标尺.看课后第八题维氏硬度:测量压痕两对角线的长度后取平均值d。

第三章金属在冲击载荷下的力学性能三节:低温脆性1.冲击韧性:是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。

低温脆性:在试验温度低于某一温度事,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。

3.低温脆性的本质:低温脆性是材料屈服强度随温度下降急剧增加的结果。

4.影响冲击韧性和韧脆转变温度的因素:1.材料因素:a)晶体结构的影响。

低、中强度的bcc金属及其合金有冷脆现象。

高强度的bcc金属,冷脆转变不明显。

fcc金属一般情况下可认为无冷脆现象。

2)化学成分:a)加入能形成间隙固溶体的元素,使冲击韧性减小,冷脆转变温度提高b)α-Fe中加入能形成置换固溶体的元素。

c)杂质元素S、P、Pb、Sn、As等,会降低钢的韧性。

3)晶粒尺寸:细化晶粒能使材料的韧性增加,韧脆转变温度降低。

4) 金相组织:强度相同时S>B>P片>P球。

2.外在因素:1)缺口越尖锐,三向应力状态越严重脆性转变温度的升高。

2)尺寸因素试样尺寸增大,材料的韧性下降,断口中纤维区减少,脆性转变温度升高。

3)加载速度外加冲击速度增加,使缺口处塑性变形的应变率提高,促进材料的脆化。

5.Si、Cr等降低层错能,促进位错扩展,形成孪晶、交滑移困难。

在α-Fe中加入Ni和Mn,能显著地降低冷脆转变温度并提高韧断区的冲击值。

(重点看合金的影响)第四章金属的断裂韧度1.裂纹扩展的基本形式:1)张开型裂纹2)滑开型裂纹3)撕开型裂纹2.应力场强度因子KⅠ表示裂纹尖端应力场的强弱3.这个临界或失稳状态的KI值就记作KIC或KC称为断裂韧度。

表征材料对宏观裂纹失稳扩展的抗力。

4.影响断裂韧性KIC的因素:一、内因:1)晶粒尺寸晶粒愈细,K IC 也愈高。

2)合金化固溶使得K IC 降低。

弥散分布的第二相数量越多,其间距越小,K IC 越低; 第二相沿晶界网状分布,晶界损伤,K IC 降低;球状第二相的K IC >片状3)夹杂在晶内分布的夹杂物起缺陷源的作用,都使材料的K IC 值下降。

4)显微组织塑性高,松弛应力、裂纹扩展阻力大,可以提高K IC二、特殊热处理对断裂韧度的影响:1)形变热处理2)亚温淬火3)超高温淬火都使其提高三、外因:1)板厚随板材厚度或构件截面尺寸的增加而减小,最终趋于一个稳定的最低值2)温度金属材料断裂韧性随着温度的降低,低于此温度范围,断裂韧度保持在一个稳定的水平(下平台)3)应变速率应变速率每提高一个数量级,断裂韧性将降低10%。

很大时,绝热温度升高,断裂韧性反而提高。

第五章金属的疲劳一节:金属疲劳现象及特点1.疲劳:由于承受变动载荷而导致裂纹萌生和扩展以至断裂失效的全过程称为疲劳。

2.疲劳类别:按载荷类型分:弯曲、扭转、拉压、复合疲劳等。

按环境和接触情况分:大气疲劳、腐蚀疲劳、高温疲劳、热疲劳、接触疲劳、冲击疲劳等。

按应力大小和寿命分:高周疲劳低周疲劳4.疲劳断裂有如下的特点:1)低应力循环延时断裂,即有寿命的断裂。

2)是脆性断裂。

3)对缺陷(缺口、裂纹及组织缺陷),尤其是表面缺陷十分敏感。

4)疲劳分裂纹萌生和扩展两个阶段。

相关文档
最新文档