数字信号处理(期末复习题)

合集下载

数字信号处理复习题及参考答案

数字信号处理复习题及参考答案

数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。

(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。

①Ωs②.Ωc③.Ωc/2④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。

①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。

①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。

①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。

①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。

①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。

①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。

数字信号处理期末试题及答案

数字信号处理期末试题及答案

数字信号处理卷一一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴 B.原点 C.单位圆 D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是 ( ) A.N≥M B.N≤M C.N≤2M D.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B.∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理期末试题及答案

数字信号处理期末试题及答案

数字信号处理1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 ( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B.∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理期末试卷及答案

数字信号处理期末试卷及答案

A一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。

A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。

A.a Z <B.a Z ≤C.a Z >D.a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。

A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。

A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。

A.有限长序列B.右边序列C.左边序列D.双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。

2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。

3、对两序列x(n)和y(n),其线性相关定义为 。

4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。

5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。

三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点。

(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。

(完整版)《数字信号处理》期末试题库

(完整版)《数字信号处理》期末试题库

一、单项选择题(10小题,每小题2分,共20分)在每小题列出的三个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1. 下面说法中正确的是。

A.连续非周期信号的频谱为周期连续函数B.连续周期信号的频谱为周期连续函数C.离散非周期信号的频谱为周期连续函数D.离散周期信号的频谱为周期连续函数2. 要处理一个连续时间信号,对其进行采样的频率为3kHz,要不失真的恢复该连续信号,则该连续信号的最高频率可能是为。

A.6kHz B.1.5kHz C.3kHz D.2kHz3.已知某序列Z变换的收敛域为5>|z|>3,则该序列为。

A.有限长序列B.右边序列C.左边序列D.双边序列4. 下列对离散傅里叶变换(DFT)的性质论述中错误的是。

A.DFT是一种线性变换B. DFT可以看作是序列z变换在单位圆上的抽样C. DFT具有隐含周期性D.利用DFT可以对连续信号频谱进行精确分析5. 下列关于因果稳定系统说法错误的是。

A.极点可以在单位圆外B.系统函数的z变换收敛区间包括单位圆C.因果稳定系统的单位抽样响应为因果序列D.系统函数的z变换收敛区间包括z=∞6. 设系统的单位抽样响应为h(n),则系统因果的充要条件为。

A.当n>0时,h(n)=0 B.当n>0时,h(n)≠0C.当n<0时,h(n)=0 D.当n<0时,h(n)≠07. 要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条?答。

(I)原信号为带限II)抽样频率大于两倍信号谱的最高频率(III)抽样信号通过理想低通滤波器A.I、IIB.II、IIIC.I、IIID.I、II、III8. 在窗函数设计法,当选择矩形窗时,最大相对肩峰值为8.95%,N增加时,2π/N减小,起伏振荡变密,最大相对肩峰值则总是8.95%,这种现象称为。

A.吉布斯效应B.栅栏效应C.泄漏效应D.奈奎斯特效应9. 下面关于IIR滤波器设计说法正确的是。

数字信号处理期末试卷及答案

数字信号处理期末试卷及答案

A一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。

A 。

非周期序列B.周期6π=N C 。

周期π6=N D 。

周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。

A 。

a Z <B 。

a Z ≤C 。

a Z >D 。

a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积.A.70≤≤n B 。

197≤≤n C 。

1912≤≤n D 。

190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。

A.16>N B 。

16=N C 。

16<N D.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 .A 。

有限长序列 B.右边序列 C.左边序列 D 。

双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。

2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。

3、对两序列x (n)和y (n),其线性相关定义为 。

4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; .5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。

三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点.(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换.(8分)B一、单项选择题(本大题12分,每小题3分)1、)125.0cos()(n n x π=的基本周期是 。

数字信号处理期末试题附答案

数字信号处理期末试题附答案

数字信号处理卷一一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 ( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B.∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理期末试卷(共七套)

数字信号处理期末试卷(共七套)

第一套试卷学号 姓名 成绩一、 选择题(每题3分,共5题) 1、)63()(π-=n j en x ,该序列是 。

A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N2、序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。

A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R 3(n),则当输入为u(n)-u(n -2)时输出为 。

A.R 3(n)B.R 2(n)C.R 3(n)+R 3(n -1)D.R 2(n)+R 2(n -1) 4、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。

A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。

A.有限长序列 B.右边序列 C.左边序列 D.双边序列 二、填空题(每题3分,共5题)1、离散时间信号,其时间为 的信号,幅度是 。

2、线性移不变系统的性质有__ ____、___ ___和分配律。

3、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。

4、序列R 4(n)的Z 变换为_____ _,其收敛域为____ __。

5、对两序列x(n)和y(n),其线性相关定义为 。

三、10)(-≤≥⎩⎨⎧-=n n ba n x nn求该序列的Z 变换、收敛域、零点和极点。

(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。

(8分)五、已知两个有限长序列如下图所示,要求用作图法求。

(10分)六、已知有限序列的长度为8,试画出按频率抽选的基-2 FFT算法的蝶形运算流图,输入为顺序。

(10分)七、问答题:数字滤波器的功能是什么?它需要那几种基本的运算单元?写出数字滤波器的设计步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字信号处理》复习题
一 填空题
1 按信号的自变量和函数值的离散程度对信号进行分类,可将信号划分为 , 和 。

2有模拟信号)302cos()(t t x a π=, 若对此信号以f s =90Hz 的采样频率进行采样,则其得到的时域离散序列x a (n)= , 该序列所包含的数字角频率ω= 。

3 有一模拟信号包含30Hz ,15Hz ,35Hz 三种频率成分,以某一采样频率对其采样,为使得不失真地由采样序列恢复原模拟信号,则采样频率f s 至少大于 70Hz 。

4 写出下面两个离散序列的最小正周期: x 1(n)=3cos (
10
4
π
π
+
n )的最小正周期为 x 2(n)=cos (
6
54π
π+n )的最小正周期为 5 有序列{ x 1(n)}={↑
3,2,4},{ x 2(n)}={↑
1,3,4,2},则:
{ x 1(n)}与{ x 2(n)}的线性卷积结果{y 1(n)}=
{ x 1(n)}与{ x 2(n)}作长度为4的循环卷积结果为{y 2(n)}= 6 有一长度为7,定义在-3≤n ≤3上的有限长序列{g(n)}={0,1+4j,-2+3j,↑
-j 24,-5-3j,-2j,3}
则其共轭对称序列{g e (n)}为 共轭反对称序列{g o (n)}为
7 作一次N=16的离散付立叶变换,若直接计算需 次复数乘法,需 次复数加法,若采用快速付立叶算法,需 次复数乘法,需 次复数加法。

8 作一次N=2m 的快速付立叶变换,可进行 级分解,每级包含了 个蝶形运算,每做一次蝶形运算需 次复数乘法, 次复数加法。

总共耗费的复乘次数为 ,复加次数为 。

9 LTI 系统为稳定系统的充要条件是:其单位脉冲响应序列{h(n)} LTI 系统为因果系统的充要条件是:其单位脉冲响应序列{h(n)}
10 常用的逆Z 变换为三种方法,分别为 , , 。

11 Z[)())3
1
(2(n u n
n
-+]= ,收敛域为 Z[)1()3
1()(2---+n u n u n
n ]= ,收敛域为
12已知x(n)是实序列,其8点DFT 的前5点值为{0.25,0.12-j0.3,0,0.25-j0.6,0.5},则后3点的值为 。

13 有限长序列的离散傅里叶(DFT ),付利叶变换以及Z 变换的关系分别是 。

14按时间抽取的基2 FFT 算法和按频率抽取的基2 FFT 算法的运算量哪个更大? 15 FFT 的基本运算单元称为 运算
16 下图所示信号流图的系统函数为
17 已知是实序列,其8点DFT的前5点值为{0.25,0.12-j0.3,0,0.25-j0.6,0.5},则后3点的值为()。

(1){0.25+j0.6,0,0.12-j0.3}(2){0.25+j0.6,0,0.12+j0.3}
(3){0.25-j0.6,0,0.12+j0.3}(4){0.25-j0.6,0,0.12-j0.3}
二简答
1 简要说明数字信号处理相比于模拟信号处理的优点。

2 请列举FIR滤波器相比于IIR滤波器的优点。

3 IIR滤波器网络结构有几种,每种结构的优缺点各是什么?
4 分别写出窗函数法和频率采样法设计FIR滤波器的步骤
5 FIR滤波器的线性相位有几类,条件分别是什么?
6为什么理想滤波器不能够实现?对理想滤波器冲激响应进行截断会出现什么现象?
三 计算
1 如图所示表示一个因果的线性非移变系统,求:该系统的系统函数,并画出极零点图;如果该系
统是稳定的,求
的取值范围;
2 某离散系统结构如图所示:试求
(1)该离散系统的Z 变换表示的系统函数H(Z) (2) 该离散系统的差分方程
(3)该离散系统的单位脉冲响应h(n) (因果序列)
3 x(n)是长度为8的序列{x (n)}={3,4,-2,↑
-3,0,2,1,-1} 令其付立叶变换为X(e jw )试求(1)X(e j0) (2) X(e j
π) (3)
ωπ
πω
d e
X j ⎰-
)( (4)
ωπ
πω
d e
X j 2
)(⎰-
4 试求双边序列x (n)=n
a 的Z 变换,讨论并画出其收敛域。

-1x(n)
y(n)
5 设{x (n)}是长度为8的序列,{x(n)}={3,2,4,1,0,3,6,5},对{x(n)}的付立叶变换X(e jw ) 在
),50(6
2≤≤=
k k k πω进行等间隔离散采样可得一复数序列Y (k ),(k=0,1,…5),试求Y(k)对应的IDFT 结果{y(n)}。

相关文档
最新文档