历年中考数学压轴题及答案
(完整)中考数学压轴题精选及答案
一、解答题
1.在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点(1,0)A -和点B ,与y 轴交于点C ,顶点D 的坐标为(1,4)-.
(1)直接写出抛物线的解析式;
(2)如图1,若点P 在抛物线上且满足
,求点P 的坐标; (3)如图2,M 是直线BC 上一个动点,过点M 作MN x ⊥轴交抛物线于点N ,Q 是直线AC 上一个动点,当为等腰直角三角形时,直接写出此时点M 及其对应点Q 的坐标
2.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,与y 轴交于点C .
(1)求二次函数的解析式;
(2)点P 是直线AC 上方的抛物线上一动点,当ACP △面积最大时,求出点P 的坐标;
(3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A C M Q 、、、为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.
3.在平面直角坐标系xOy 中,⊙O 的半径为1.对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到⊙O 的弦B ′C ′(B ′,C ′分别是B ,C 的对应点),则称线段BC 是⊙O 的以点A 为中心的“关联线段”.
(1)如图,点A ,B 1,C 1,B 2,C 2,B 3,C 3的横、纵坐标都是整数.在线段B 1C 1,B 2C 2,B 3C 3中,⊙O 的以点A 为中心的“关联线段”是 ;
(2)△ABC 是边长为1的等边三角形,点A (0,t ),其中t ≠0.若BC 是⊙O 的以点A 为中心的“关联线段”,求t 的值;
中考数学压轴题100题精选及答案(全)
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
(1)求抛物线的解析式;
(2)已知点 在第一象限的抛物线上,求点 关于直线 对称的点的坐标;
(3)在(2)的条件下,连接 ,点 为抛物线上一点,且 ,求点 的坐标.
【019】如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CF—EO|,再以CM、CO为边作矩形CMNO
的函数关系式,并写出相应的 的取值范围.
【005】如图1,在等腰梯形 中, , 是 的中点,过点 作 交 于点 . , .
(1)求点 到 的距离;
(2)点 为线段 上的一个动点,过 作 交 于点 ,过 作 交折线 于点 ,连结 ,设 .
①当点 在线段 上时(如图2), 的形状是否发生改变?若不变,求出 的周长;若改变,请说明理由;
中考数学压轴题100题精选
【001】如图,已知抛物线 (a≠0)经过点 ,抛物线的顶点为 ,过 作射线 .过顶点 平行于 轴的直线交射线 于点 , 在 轴正半轴上,连结 .
中考数学压轴题 (含答案) 百度文库
一、中考数学压轴题
1.如图1,已知点B (0,9),点C 为x 轴上一动点,连接BC ,△ODC 和△EBC 都是等边三角形.
(1)求证:DE =BO ;
(2)如图2,当点D 恰好落在BC 上时.
①求点E 的坐标;
②在x 轴上是否存在点P ,使△PEC 为等腰三角形?若存在,写出点P 的坐标;若不存在,说明理由;
③如图3,点M 是线段BC 上的动点(点B ,点C 除外),过点M 作MG ⊥BE 于点G ,MH ⊥CE 于点H ,当点M 运动时,MH +MG 的值是否发生变化?若不会变化,直接写出MH +MG 的值;若会变化,简要说明理由.
2.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且m=2n -+2n -+4,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标;
(2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、Q ∠的数量关系并说明理由;
(3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线于,若设ADO α∠=,F β∠=,试求2αβ+的值.
3.如图1,在平面直角坐标系中,抛物线2393344
y x x =--与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C . (1)过点C 的直线5334
y x =-交x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:
中考数学压轴题100题精选及答案
中考数学压轴题100题精选
【001
】如图,已知抛物线
2
(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;
(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.
【
C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每
秒1个单位长的速度向点A 匀速运动,到达点
A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿A
B 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到A
C 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)
全国各地中考数学压轴题精选(含详细答案)
7
17.(厦门)已知点P(m,n)(m>0)在直线y=x+b(0<b<3)上,点A、B在x轴上( 点A在点B的左边),线段AB的长度为 b,设△PAB的面积为S,且S= b2+ b. (1)若b= ,求S的值; (2)若S=4,求n的值; (3)若直线y=x+b(0<b<3)与y轴交于点C,△PAB是等腰三角形,当CA∥PB时,求b的值 . 18.(乌鲁木齐)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,6), 点B坐标为 ,BC∥y轴且与x轴交于点C,直线OB与直线AC相交于点P.
(1)求点P的坐标; (2)若以点O为圆心,OP的长为半径作⊙O(如图2),求证:直线AC与⊙O相切于点P; (3)过点B作BD∥x轴与y轴相交于点D,以点O为圆心,r为半径作⊙O,使点D在⊙O内,点 C在⊙O外;以点B为圆心,R为半径作⊙B,若⊙O与⊙B相切,试分别求出r,R的取值范围 .
19.(随州)如图,直角梯形ABCD的腰BC所在直线的解析式为y=﹣ ,点A与坐标原点O重合,点D的坐标为(0,﹣4
9.(厦门)如图,在直角梯形OABD中,DB∥OA,∠OAB=90°,点O为坐标原点,点A在x轴 的正半轴上,对角线OB,AD相交于点M.OA=2,AB=2 ,BM:MO=1:2. (1)求OB和OM的值; (2)求直线OD所对应的函数关系式; (3)已知点P在线段OB上(P不与点O,B重合),经过点A和点P的直线交梯形OABD的边于 点E(E异于点A),设OP=t,梯形OABD被夹在∠OAE内的部分的面积为S,求S关于t的函数 关系式.
中考数学压轴题100题精选及答案(全)
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记 ,S2是否有最小值?若有,求出其最小值;若没有,请说明理由。
【022】一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.
(1)若点 在反比例函数 的图象的同一分支上,如图1,试证明:
① ;
② .
(2)若点 分别在反比例函数 的图象的不同分支上,如图2,则 与 还相等吗?试证明你的结论.
【010】如图,抛物线 与 轴交于 两点,与 轴交于C点,且经过点 ,对称轴是直线 ,顶点是 .
(1)求抛物线对应的函数表达式;
(2)经过 两点作直线与 轴交于点 ,在抛物线上是否存在这样的点 ,使以点 为顶点的四边形为平行四边形?若存在,请求出点 的坐标;若不存在,请说明理由;
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD
向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?
中考数学综合压轴题100题(含答案)
中考数学综合压轴题100题(含答案)
一、中考压轴题
1.如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.
(1)试问△OBC与△ABD全等吗?并证明你的结论;
(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;
(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示
m.
【分析】(1)由等边三角形的性质知,OBA=∠CBD=60°,易得∠OBC=∠ABD,又有OB=AB,BC=BD故有△OBC≌△ABD;
(2)由1知,△OBC≌△ABD⇒∠BAD=∠BOC=60°,可得∠OAE=60°,在Rt△EOA 中,有EO=OA•tan60°=,即可求得点E的坐标;
(3)由相交弦定理知1•m=n•AG,即AG=,由切割线定理知,OE2=EG•EF,在Rt△EOA中,由勾股定理知,AE==2,故建立方程:()2=(2﹣)(2+n),就
可求得m与n关系.
【解答】解:(1)两个三角形全等.
∵△AOB、△CBD都是等边三角形,
∴OBA=∠CBD=60°,
∴∠OBA+∠ABC=∠CBD+∠ABC,
即∠OBC=∠ABD;
∵OB=AB,BC=BD,
△OBC≌△ABD;
(2)点E位置不变.
∵△OBC≌△ABD,
∴∠BAD=∠BOC=60°,
∠OAE=180°﹣60°﹣60°=60°;
中考数学压轴题集锦精选100题(含答案)
中考数学压轴题集锦精选100题(含答案)
一、中考压轴题
1.如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且=,弦AD的延长线交切线PC于点E,连接BC.
(1)判断OB和BP的数量关系,并说明理由;
(2)若⊙O的半径为2,求AE的长.
【分析】(1)首先连接OC,由PC切⊙O于点C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半,证得OB=BP;
(2)由(1)可得OB=OP,即可求得AP的长,又由=,即可得∠CAD=∠BAC
=30°,继而求得∠E=90°,继而在Rt△AEP中求得答案.
【解答】解:(1)OB=BP.
理由:连接OC,
∵PC切⊙O于点C,
∴∠OCP=90°,
∵OA=OC,∠OAC=30°,
∴∠OAC=∠OCA=30°,
∴∠COP=60°,
∴∠P=30°,
在Rt△OCP中,OC=OP=OB=BP;
(2)由(1)得OB=OP,
∵⊙O的半径是2,
∴AP=3OB=3×2=6,
∵=,
∴∠CAD=∠BAC=30°,
∴∠BAD=60°,
∵∠P=30°,
∴∠E=90°,
在Rt△AEP中,AE=AP=×6=3.
【点评】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.
2.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.
初中数学试卷中考压轴题精选(含详细答案)
精品基础教育教学资料,仅供参考,需要可下载使用!
一.解答题(共30小题)
1.(顺义区)如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2:相交于点
P(﹣1,0).
(1)求直线l1、l2的解析式;
(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…
照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…
①求点B1,B2,A1,A2的坐标;
②请你通过归纳得出点A n、B n的坐标;并求当动点C到达A n处时,运动的总路径的长?
2.(莆田)如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=.
(1)求直线AC的解析式;
(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)抛物线y=﹣x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴的正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处.
3.(资阳)已知Z市某种生活必需品的年需求量y1(万件)、供应量y2(万件)与价格x (元/件)在一定范围内分别近似满足下列函数关系式:y1=﹣4x+190,y2=5x﹣170.当y1=y2
(完整)中考数学压轴题精选含答案
一、解答题
1.如图,在直角梯形ABCD 中,AB ∥CD ,∠B =90°,AB =4,BC =8,CD =2m (m >
2),P 为CD 中点,以P 为圆心,CP 为半径作半圆P ,交线段AC 于点E ,交线段AD 于点F .
(1)当E 为CA 中点时,
①求证:E 是弧CF 的中点.
②求此时m 的值.
(2)连结PF ,若PF 平行△ABC 的某一边时求出满足条件的m 值.
(3)连结PE ,将PE 绕着点E 顺时针旋转90°得到EP ',连结AP ',当AP '⊥AC 时,求此时CE 的长.
2.如图1,在菱形ABCD 中,∠D =120°,AB =8,点M 从A 开始,以每秒1个单位的速度向点B 运动;点N 从C 出发,沿C →D →A 方向,以每秒2个单位的速度向点A 运动,若M 、N 同时出发,其中一点到达终点时,另一个点也随之停止运动.设运动的时间为t 秒,过点N 作NQ ⊥DC ,交AC 于点Q .
(1)当t =2时,求线段NQ 的长;
(2)设△AMQ 的面积为S ,直接写出S 与t 的函数关系式及t 的取值范围;
(3)在点M 、N 运动过程中,是否存在t 值,使得△AMQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.
3.如图,在平面直角坐标系中,抛物线2y x bx c =-++,与y 轴交于点A 与x 轴交于点E 、B .且点()0,5A ,()5,0B ,点P 为抛物线上的一动点.
(1)求二次函数的解析式;
(2)如图1,过点A 作AC 平行于x 轴,交抛物线于点C ,若点P 在AC 的上方,作PD 平行于y 轴交AB 于点D ,连接PA ,PC ,当245
中考数学压轴题20题(含答案_)
中考数学压轴题复习20题
1.在平面直角坐标系xO y 中,抛物线y =-
4
1 m x
2+45m
x +m
2-3m +2与x 轴的交点分别为原点O 和点A ,
点B (2,n )在这条抛物线上.
(1)求点B 的坐标;
(2)点P 在线段OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).
①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;
②若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点、N 点也随之运动).
若P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.
2.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.
(Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;
(Ⅱ)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.
中考数学压轴题100题及答案
中考数学压轴题100题精选
【001
】如图,已知抛物线
2
(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;
(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.
【
C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每
秒1个单位长的速度向点A 匀速运动,到达点
A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿A
B 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到A
C 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)
中考数学压轴题 (附答案)
一、中考数学压轴题
1.附加题:在平面直角坐标系中,抛物线21y ax a =-
与y 轴交于点A ,点A 关于x 轴的对称点为点B ,
(1)求抛物线的对称轴;
(2)求点B 坐标(用含a 的式子表示);
(3)已知点11,P a ⎛⎫ ⎪⎝⎭
,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求a 的取值范围. 2.已知:如图,AB 为
O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;
(2)如图2,连接HC ,若HC HF =,求证:HC HA =;
(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK
的值.
3.如图,已知抛物线()2
y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.
(1)求抛物线的解析式;
(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;
(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.
4.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .
中考数学压轴题100题(附答案)
中考数学压轴题100题(附答案)
一、中考压轴题
1.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.
(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;
(2)在(1)的条件下,若cos∠PCB=,求P A的长.
【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;
(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.
【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.
∵P是优弧BAC的中点,
∴=.
∴PB=PC.
又∵∠PBD=∠PCA(圆周角定理),
∴当BD=AC=4,△PBD≌△PCA.
∴P A=PD,即△P AD是以AD为底边的等腰三角形.
(2)过点P作PE⊥AD于E,
由(1)可知,
当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,
则AE=AD=1.
∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),
∴cos∠P AD=cos∠PCB=,
∴P A=.
【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.
2.如图,一次函数y=﹣x﹣2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=.
(1)求k的值;
(2)连接OP、AQ,求证:四边形APOQ是菱形.
【分析】(1)由一次函数解析式确定A点坐标,进而确定C,Q的坐标,将Q的坐标代入反比例函数关系式可求出k的值.
中考数学压轴题100题含答案解析
中考数学压轴题100题精选【含答案】
【001】如图,已知抛物线y a(x 3 3( a z 0)经过点A2 °),抛物线的顶点为D , 过O作射线OM // AD •过顶点D平行于x轴的直线交射线OM于点C , B在x轴正半轴上,连结BC •
(1)求该抛物线的解析式;
(2)若动点P从点0出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s) •问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?
(3)若0C °B,动点P和动点Q分别从点0和点B同时出发,分别以每秒1个长度单位和2 个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动•设它
们的运动的时间为t (s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.
【002】如图16,在Rt A ABC中,/ C=90 , AC = 3 , AB = 5 .点P从点C出发沿CA以每秒1
个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发
沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,
且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,
点P也随之停止.设点P、Q运动的时间是t秒(t >0).
(1) 当t = 2时,AP = ,点Q到AC的距离是:
(2) 在点P从C向A运动的过程中,求△ APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3) 在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;
中考数学压轴题专项训练十套(含答案)
做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日
三、解答题
23.(11分)如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,
1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速
度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日
三、解答题
23. (11分)如图,抛物线22++=bx ax y 与x 轴交于A (-1,0),B (4,0)两点,
与y 轴交于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点.
(1)求抛物线的解析式及点D 的坐标.
(2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标.
(3)过点P 作直线CD 的垂线,垂足为Q .若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′,是否存在点P ,使点Q ′恰好在x 轴上?若存在,求出此时点P 的坐标;若不存在,请说明理由.
备用图
做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日
三、解答题
23.(11分)如图,已知直线
1
1
2
y x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历年中考数学压轴题及答案(精选)
1.(2011年四川省宜宾市)
已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.
(1) 求该抛物线的解析式;
(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;
(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.
2. (11浙江衢州)已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;
(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式;
(2)当纸片重叠部分的图形是四边形时,求t 的取值范围;
(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由.
3. (11浙江温州)如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于
R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.
(1)求点D 到BC 的距离DH 的长;
(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.
4.(11山东省日照市)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .
(1)用含x 的代数式表示△MNP 的面积S ;
(2)当x 为何值时,⊙O 与直线BC 相切?
(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?
5、(2007浙江金华)如图1,已知双曲线y=x
k (k>0)与直线y=k ′x 交于A ,B 两点,点A 在
第一象限.试解答下列问题:(1)若点A 的坐标为(4,2).则点B 的坐标为 ;若点A 的横坐标为m ,则点B 的坐标可表示为 ;
(2)如图2,过原点O 作另一条直线l ,交双曲线y=x
k (k>0)于P ,Q 两点,点P 在第一象限.①说明四边形APBQ 一定是平行四边形;②设点A.P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出mn 应满足的条件;若不可能,请说明理由.
6. (2011浙江金华)如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;
(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于
4
3,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.
7.(2011浙江义乌)如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:
(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系;
②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论
是否仍然成立,并选取图2证明你的判断.
(2)将原题中正方形改为矩形(如图4—6),且AB=a ,BC=b ,CE=ka , CG=kb (a ≠b ,
k >0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.
(3)在第(2)题图5中,连结DG 、BE ,且a =3,b =2,k =
12
,求22BE DG +的值.
8. (2011浙江义乌)如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .
(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的
面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,
MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.
①求梯形上底AB 的长及直角梯形OABC 的面积;
②当42< (2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合), 在直线..AB .. 上是否存在点P ,使PDE ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由. 9.(2011山东烟台)如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2. (1)求证:△BDE ≌△BCF ; (2)判断△BEF 的形状,并说明理由; (3)设△BEF 的面积为S ,求S 的取值范围. 10.(2011山东烟台)如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式; (2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由; (3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.