人脸识别公选课论文
人脸识别技术的中英文论文
①现代的人脸识别,特指通过分析、比较人脸视觉特征信息进行身份鉴别的计算机技术。
具体而言,就是通过视频采集设备获取识别对象的面部图像,再利用核心的算法对其脸部的五官位置、脸型和角度进行计算分析,进而和自身数据库里已有的范本进行比对,最后判断出用户的真实身份。
这是一项高端的计算机图像处理技术。
②在全球范围内,人脸识别系统的研究始于20 世纪60 年代。
人脸识别的优势在于其自然性和不被被测个体察觉的特点。
所谓自然性,是指该识别方式同人类(甚至其他生物)进行个体识别时所利用的生物特征相同。
人脸识别就是通过观察比较人脸来区分和确认身份的。
不被察觉的特点会使该识别方法不令人反感,并且因为不容易引起人的注意而不易被欺骗。
相对于指纹识别而言,人脸识别还具有非接触式(非侵犯式)的特点,因此更加友好、自然,更易被人们接受。
③随着科技的发展,人脸识别技术的应用已经不是什么新鲜事了。
人脸识别 毕业论文
人脸识别毕业论文人脸识别:技术的进步与隐私的考量人脸识别技术是近年来快速发展的一项领域,它的应用范围涉及到安全监控、身份验证、智能手机解锁等诸多领域。
然而,随着这项技术的普及和应用,人们开始关注其中的隐私问题。
本文将探讨人脸识别技术的发展、应用场景以及对隐私的影响。
一、人脸识别技术的发展人脸识别技术源于计算机视觉领域,其目的是通过分析和识别人脸图像中的特征,来实现对人脸的自动识别。
随着计算机硬件和算法的不断改进,人脸识别技术在准确度和速度方面取得了巨大的突破。
现在,人脸识别技术已经广泛应用于安全监控、边境检查、身份验证等领域。
二、人脸识别技术的应用场景1. 安全监控:人脸识别技术在安全监控领域具有重要的应用。
通过将人脸图像与数据库中的照片进行比对,可以实现对特定人员的追踪和监控。
这种技术在公共场所的安全保障方面发挥了重要作用。
2. 身份验证:人脸识别技术在身份验证领域也得到了广泛应用。
无论是解锁智能手机还是进入某些场所,人脸识别技术都可以提供一种便捷的身份验证方式,取代传统的密码或卡片。
3. 人机交互:人脸识别技术还可以用于改善人机交互体验。
例如,智能电视可以通过人脸识别技术自动调整画面亮度和音量,以适应观看者的需求。
三、人脸识别技术对隐私的影响尽管人脸识别技术在许多领域都带来了便利和安全,但它也引发了人们对隐私的担忧。
首先,人脸识别技术需要大量的个人生物信息,如面部特征和身份信息,这可能会导致这些信息被滥用或泄露。
其次,人脸识别技术的准确度和误识率仍然存在一定的问题,可能会导致误认和冤假错案的发生。
此外,人脸识别技术的使用范围越来越广泛,可能会对个人的行踪和习惯进行跟踪和分析,进一步侵犯个人隐私。
面对这些问题,我们需要在技术发展和隐私保护之间寻求平衡。
一方面,政府和企业应加强对人脸识别技术的监管和管理,确保其合法、合规的使用。
另一方面,个人也应提高自身的隐私保护意识,避免随意泄露个人生物信息。
毕业设计论文-人脸识别系统
人脸识别方法的研究目录第一章绪论第一节课题背景一课题的来源------------------------------------------------------------------------------1二人脸识别技术的研究意义------------------------------------------------------------1 第二节人脸识别技术的国内外发展概况---------------------------------------------------3一国外发展概况---------------------- --------------------------------------------------2二国内发展概况---------------------------------------------------------------------------4 第二章系统的需求分析和方案选择---------------------------------------------------------5第一节可行性分析------------------------------------------------------------------------------5 一技术可行性分析------------------------------------------------------------------------5二操作可行性分析------------------------------------------------------------------------5 第二节需求分析---------------------------------------------------------------------------------6 一应用程序的功能需求分析------------------------------------------------------------6二开发环境的需求分析------------------------------------------------------------------7三运行环境的需求分析------------------------------------------------------------------7 第三节预处理方案选择------------------------------------------------------------------------7 一设计方案原则的选择------------------------------------------------------------------7二图像文件格式选择---------------------------------------------------------------------8三开发工具选择---------------------------------------------------------------------------8四算法选择分析---------------------------------------------------------------------------8 第三章系统的概要设计------------------------------------------------------------------------9第一节各模块功能简介------------------------------------------------------------------------9 第四章系统详细设计-------------------------------------------------------------------------14第一节系统整体设计简述-------------------------------------------------------------------14第二节图像处理详细设计-------------------------------------------------------------------14 一位图详细设计-------------------------------------------------------------------------14二图像点处理详细设计----------------------------------------------------------------15(二)光线补偿算法和代码实现----------------------------------------------------------16(三)图像灰度化算法和代码实现-------------------------------------------------------18(四)高斯平滑算法和代码实现----------------------------------------------------------20(五)灰度均衡算法和代码实现----------------------------------------------------------23(六)图像对比度增强算法和代码实现-------------------------------------------------25 第三节编程时的问题解决-------------------------------------------------------------------26 第五章结构设计-------------------------------------------------------------------------------28 第六章测试-------------------------------------------------------------------------------------35 第一节测试方案选择的原则----------------------------------------------------------------35 第二节测试方案-------------------------------------------------------------------------------36 结束语----------------------------------------------------------------------------------------------------------37 致谢参考文献摘要人脸识别因其在安全验证系统、信用卡验证、医学、档案管理、视频会议、人机交互、系统公安(罪犯识别等)等方面的巨大应用前景而越来越成为当前模式识别和人工智能领域的一个研究热点。
人脸识别技术设计论文
人脸识别算法摘要人脸自动识别是模式识别领域的一项热门研究课题,有着十分广泛的应用前景。
本文对人脸位置矫正,人脸的特征提取和识别这些方面进行了研究,并提出了相应的实现算法。
人脸位置矫正作为人脸检测定位的一个环节,在计算机人脸识别中具有重要的意义。
本文第二章提出了一种基于单人脸灰度图像中眼睛定位的人脸位置矫正方法,它是针对人眼灰度变化特点、人眼几何形状特征及双眼的轴对称性而设计的。
实验结果表明,该方法对于双眼可见单人脸灰度图像能实现快速有效矫正,并能在矫正结果中精确给出双眼瞳孔位置。
本文第三章提出了一种基于神经网络的主元分析人脸图像识别方法。
该方法利用非线性主元分析神经网络对人脸图像提取人脸特征(矢量),并在BP神经网络上实现了对人脸图像的识别。
实验结果证明了该方法的有效性和稳定性。
关键词人脸位置矫正,人脸特征提取,人脸识别,神经网络,灰度图像,图像块纵向复杂度,主元分析法,1-iThe Design and Implementation of Algorithms for Human FaceRecognitionAbstractThe automatic recognition of human faces is a hot spot in the field of pattern recognition , which has a wide range of potential applications . As the results of our in-depth research ,two algorithms are proposed : one for face pose adjustment , the other for facial feature extraction and face identification .Face pose adjustment , as a loop of human face location, is very important in computer face recognition. Chapter 2 of this thesis presents a new approach to automatic face pose adjustment on gray-scale static images with a single face . In a first stage , the right positions of eyes are precisely detected according to several designed parameters which well characterize the complex changes of the gray parameter in and around eyes and the geometrical shape of eyes . During the second stage , based on the location and the symmetry feature of eyes , the inclination angle is calculated and the face position is redressed . The experimentation shows that the algorithm performs very well both in terms of rate and of efficiency . What’s more , due to the precise location of eyes , the apples of the eyes are detected .In chapter 3, a novel approach to human face image recognition based on principal component analysis and neural networks has been proposed . By using BP neural networks , human face images are successfully classified and recognized according to the output of BPNN whose input is the eigenvector extracted from the human face images via nonlinear principal1-iicomponent analysis of a single layer neural network . Simulation results demonstrate the effectiveness and stability of the approach .KeywordsFace Pose Adjustment, Facial Feature Extraction , Human Face Recognition , Neural Networks , Gray-scale Static Image , Vertical-complexity of Image Block, Principal Component Analysis1-iii致谢首先要感谢我的毕业设计导师曹文明教授,他是我在人脸识别领域研究的启蒙老师。
人脸识别毕业设计论文
人脸识别毕业设计论文人脸识别毕业设计论文人脸识别技术是一种通过计算机对人脸图像进行分析和识别的技术。
随着科技的不断进步,人脸识别技术在各个领域得到了广泛的应用,如安全监控、人脸支付、智能手机解锁等。
本文将探讨人脸识别技术的原理、应用以及未来发展方向。
一、人脸识别技术的原理人脸识别技术的原理主要包括人脸检测、人脸特征提取和人脸匹配三个步骤。
首先,系统需要通过摄像头等设备检测到人脸区域,并将其与背景进行分离。
然后,通过特征提取算法,将人脸图像转化为数字特征向量,以便后续的比对。
最后,通过与数据库中的特征向量进行匹配,确定输入人脸的身份。
二、人脸识别技术的应用1. 安全监控领域人脸识别技术在安全监控领域发挥着重要作用。
传统的监控摄像头只能提供实时影像,但无法对监控区域进行有效的识别和分析。
而引入人脸识别技术后,监控系统可以自动识别出陌生人、犯罪嫌疑人等,并及时报警。
这种技术的应用可以大大提高安全监控的效率和准确性。
2. 人脸支付领域随着移动支付的普及,人脸支付成为一种便捷的支付方式。
通过人脸识别技术,用户可以在手机上进行人脸扫描,完成支付过程。
相比传统的密码支付方式,人脸支付更加安全和便利,无需记忆复杂的密码,同时也减少了密码被盗用的风险。
3. 智能手机解锁领域人脸识别技术也广泛应用于智能手机解锁。
用户只需将手机对准自己的脸部,系统便可通过人脸识别技术判断是否解锁。
相比传统的密码解锁方式,人脸解锁更加方便快捷,同时也提高了手机的安全性。
三、人脸识别技术的挑战与未来发展虽然人脸识别技术在各个领域取得了显著的应用效果,但仍然存在一些挑战。
首先,光线、角度、表情等因素对人脸识别的准确性有一定影响,需要进一步改进算法以提高识别率。
其次,隐私问题也是人脸识别技术面临的一大挑战。
人脸图像的采集和存储可能涉及个人隐私,需要加强数据保护和合规管理。
未来,人脸识别技术仍有很大的发展空间。
一方面,随着硬件设备的不断升级,如高清摄像头、深度摄像头等,人脸图像的采集质量将得到提高,进而提高人脸识别的准确性。
人脸识别毕业论文
人脸识别毕业论文人脸识别技术在当今社会中扮演着越来越重要的角色。
它不仅广泛应用于安全领域,如身份验证和视频监控,还在商业和娱乐领域中得到了广泛应用。
本文将探讨人脸识别技术的原理、应用和潜在的问题。
首先,我们来了解一下人脸识别技术的原理。
人脸识别是一种基于人脸特征的生物识别技术,通过对人脸进行采集、提取和比对,来判断一个人的身份。
在人脸识别过程中,首先需要对人脸进行采集,通常是通过摄像头获取人脸图像。
然后,通过图像处理算法,提取人脸的特征点,如眼睛、鼻子和嘴巴等。
最后,将提取到的特征与数据库中的已知人脸特征进行比对,以确定身份。
人脸识别技术在安全领域中得到了广泛应用。
例如,许多机场和边境检查站使用人脸识别技术来加强边境安全和打击恐怖主义。
此外,许多公司和政府机构也使用人脸识别技术来进行员工考勤和门禁控制。
人脸识别技术的高精度和高效率使其成为安全领域中的重要工具。
除了安全领域,人脸识别技术还在商业和娱乐领域中得到了广泛应用。
许多手机和电脑都配备了人脸识别解锁功能,使用户可以方便而安全地解锁设备。
此外,一些社交媒体平台也使用人脸识别技术来进行人脸标记和面部识别,以提供更好的用户体验。
然而,人脸识别技术也存在一些潜在的问题。
首先,隐私问题是人脸识别技术面临的主要挑战之一。
由于人脸识别技术需要收集和存储大量的人脸数据,这可能导致个人隐私泄露的风险。
此外,人脸识别技术的准确性也存在一定的局限性。
例如,当人脸图像受到光线、角度和遮挡等因素的影响时,人脸识别系统可能无法正确识别。
为了解决这些问题,研究人员正在不断改进人脸识别技术。
他们通过改进图像处理算法和模型训练方法,提高了人脸识别系统的准确性和鲁棒性。
此外,一些法律和政策也被制定,以保护个人隐私和规范人脸识别技术的使用。
总结起来,人脸识别技术在安全、商业和娱乐领域中发挥着重要作用。
它通过采集、提取和比对人脸特征,来判断一个人的身份。
然而,人脸识别技术也面临着隐私和准确性等问题。
人脸识别论文
人脸识别论文人脸识别是一种通过计算机视觉技术来识别和验证人脸的方法。
在过去的几十年里,人脸识别技术得到了极大的发展和应用。
其中,基于特征脸的人脸识别方法在早期被广泛研究和使用。
基于特征脸的人脸识别方法是一种基于统计学原理的方法,通过提取和比对人脸图像中的特征来完成人脸识别的过程。
其基本原理是将人脸图像投影到一个低维度的特征空间中,并利用特征空间中的向量表示人脸图像。
在图像训练过程中,通过计算图像集中每个人脸图像的特征向量,构建特征空间。
在识别过程中,将待识别人脸图像映射到特征空间,并比较特征向量之间的距离,选择距离最近的特征向量对应的人脸图像作为识别结果。
基于特征脸的人脸识别方法有以下几个关键步骤:1.数据集的准备:收集包含不同人的人脸图像的数据集,并提取出人脸图像中的特征。
3.投影:将待识别的人脸图像投影到特征脸空间中,得到对应的特征向量。
4.距离计算:计算待识别的人脸特征向量和特征脸空间中每个特征向量之间的欧式距离。
5.识别:选择距离最小的特征向量对应的人脸图像进行识别。
基于特征脸的人脸识别方法具有以下优点:1.算法简单易实现:特征脸算法的实现比较简单,不需要复杂的数学计算和操作,易于在实际应用场景中使用。
2.存储空间小:特征脸算法中只需要存储少量的特征向量,可以大大减小存储空间的需求。
然而,基于特征脸的人脸识别方法也存在一些缺点:1.光照和角度敏感:特征脸算法对光照和角度变化比较敏感,当人脸图像的光照条件或拍摄角度发生变化时,识别性能会受到影响。
2.高计算复杂度:特征脸算法需要对大量的图像进行降维处理和特征脸空间的计算,计算复杂度较高。
综上所述,基于特征脸的人脸识别方法在早期得到了广泛的研究和应用,在一些特定场景下仍然具有一定的优势。
随着深度学习和卷积神经网络的发展,基于特征脸的方法逐渐被替代。
但是,特征脸算法对于了解人脸识别的基本原理和理解人脸特征提取仍然具有重要意义,为后续的研究和发展奠定了基础。
高考作文材料之学校人脸识别系统篇
高考作文材料之学校人脸识别系统篇(一)继上海一小学计划启用人工智能系统,对学生打哈欠等进行监控后,澎湃新闻又报道,位于江苏南京的中国药科大学正在部分教室“试水”安装人脸识别系统:学生进教室后自动识别个人信息,系统自动签到签退,全程监控学生上课听讲情况,就连你发呆、打瞌睡和玩手机等动作行为都能被识别出来。
必须明确,大学生逃课、“替同学答到”等现象在各地高校都不同程度地存在,这是不可否认的现实。
加强课堂教学管理,严抓教学纪律,也的确是高校的责任。
放任学生不来上课,是对学生的不负责任,也是学校管理者的失职。
在全面振兴本科教育的背景下,改变“快乐的大学”,当然就必须严格教学管理。
因此,包括家长在内的公众都对学校加强课堂教学管理持支持态度。
但争议在于,学校采用什么样的方式来加强管理。
安装人脸识别系统全程监控学生上课听讲情况,“学生是否认真听讲,课堂上是否抬头低头,抬头低头了几次,抬头低头了多长时间,低头是否在玩手机,是否闭眼打瞌睡,都逃不过人脸识别系统的‘法眼’。
”这恐怕不是打造高效课堂的正确姿势,而是让教室变成令人窒息的监狱。
首先,发呆、打瞌睡这些动作很难说明学生的状态如何。
打个比方,老师的课讲得很精彩,学生听得入迷,陷入沉思状态,然而对于人工智能识别系统来说,这是否会被认为是在发呆,是否意味着学生听课不认真、需要纠正?而如果教师在讲台上照本宣科,课上得味同嚼蜡,就算学生们一个个鼓起眼睛盯着老师,这样的课堂就有效果吗?全程监控学生的上课情况,恐怕只会让整个教学活动变为表演。
管理者或许能得到理想的教学数据,却不到理想的教学效果。
教师如果过度依赖监控数据来评判课堂效果,也可能沉浸在虚假的数据中,而忽视了学生的真实课堂体验。
其次,这种把学生在课堂上是否抬头低头、抬头低头几次、花费多长时间都监控在案的教学管理方法,不仅是侵犯学生的隐私,也是违反人性的。
人又不是机器,怎么可能抬头低头的次数和时间都遵照管理者的期望进行?这种监控不是把学生当人,而是把学生当作被动接受知识灌输的学习机器。
人脸识别技术的研究与设计毕业论文
人脸识别技术的研究与设计毕业论文标题:基于人脸识别技术的研究与设计摘要:随着人脸识别技术的快速发展,其在安全监控、身份验证和图像等领域扮演着重要角色。
本论文旨在研究和设计基于人脸识别技术的系统,提供一种可行的解决方案。
首先,介绍人脸识别的原理和发展趋势。
然后,讨论设计和开发的关键要素,包括图像采集、特征提取、特征匹配和系统性能评估等。
最后,通过实验验证自己所提出的系统在实际应用中的有效性与准确性。
关键词:人脸识别,图像采集,特征提取,特征匹配,系统性能评估引言:人脸作为人类最基本的身份特征之一,一直以来都受到人们广泛关注。
人脸识别技术的发展为人们的生活和工作带来了极大的便利。
与传统的身份验证方法相比,人脸识别技术不需要接触式设备,而是通过对人脸图像的采集、提取和匹配等步骤实现自动识别。
然而,由于人脸图像的干扰、变化和质量等因素的存在,使得人脸识别技术的研究和设计变得复杂而具有挑战性。
本论文旨在对人脸识别技术进行深入研究,并基于所得到的研究成果设计一个高效、准确的人脸识别系统。
论文结构如下:一、人脸识别技术的原理和发展趋势二、系统设计与开发1.图像采集:通过选择合适的设备、摄像头和光线条件,实现高质量的人脸图像采集。
2.图像预处理:对采集的图像进行去噪、归一化和对齐等处理,提高识别系统的性能。
3.特征提取:通过选取适当的特征提取算法,提取人脸图像中的关键特征,并将其转化为数学表示。
4.特征匹配:利用已有的特征数据库与待识别的人脸特征进行比对,并计算相似度得分。
5.系统性能评估:通过对识别系统的准确率、召回率、误识率等指标进行评估,验证其性能以及对抗各种挑战的能力。
三、实验结果与讨论本部分将通过实验验证所设计的人脸识别系统的有效性与准确性,并对系统的性能进行分析。
同时,还将讨论实验结果中存在的问题,并提出解决方案。
结论:本论文针对人脸识别技术的研究与设计进行了全面的探讨。
通过分析人脸识别技术的原理和发展趋势,设计了一个基于人脸识别技术的高效、准确的系统。
人脸识别技术论文
人脸识别技术论文人脸识别,特指利用人脸视觉特征信息的分析比较结果进行身份鉴别的计算机技术。
下面是店铺为大家整理的人脸识别技术论文,希望你们喜欢。
人脸识别技术论文篇一人脸识别技术综述摘要:文章首先对人脸识别技术进行了介绍,其次回顾了人脸识别研究的发展历程及识别方法的基本分类,然后对当前主流的人脸识别方法展开了详细的论述,最后提出了人脸识别技术面临的问题及研究方向。
关键词:人脸识别;特征脸;线形判别分析;局部二值模式中图分类号:TP391Survey of face recognition technologyHe Chun(Education and Information Technology Center, China West Normal University, Nanchong Sichuan 637002, China) Abstract:This paper introduces technology of face recognition firstly, and reviews the development process and the basic classification method of face recognition. After that,the paper discusses the current methods of face recognition in detail, therefore proposes the existing problems in the research of recognition faces and future’s research direction.Key words:face recognition; Eigenface; linear discrimination analysis; LBP1 人脸识别技术简介人脸识别,特指利用人脸视觉特征信息的分析比较结果进行身份鉴别的计算机技术[1]。
人脸识别毕业设计论文
人脸识别毕业设计论文人脸识别技术是一种通过计算机进行人脸的检测、分析和识别的技术。
随着计算机技术的不断发展和应用的广泛,人脸识别技术被广泛应用于安全监控、刑侦破案、人机交互等领域。
本文将对人脸识别技术的原理、应用和发展前景进行研究和分析。
首先,人脸识别技术的原理主要分为三个步骤:人脸检测、人脸特征提取和人脸匹配。
在人脸检测的过程中,通过对图像的分析和处理,确定图像中是否存在人脸。
接下来,在人脸特征提取的过程中,通过对检测到的人脸进行分析,提取出人脸的特征信息,如眼睛、鼻子、嘴巴等特征点的位置和尺寸。
最后,在人脸匹配的过程中,将提取到的人脸特征与数据库中的人脸特征进行比较和匹配,以确定人脸的身份。
其次,人脸识别技术在实际应用中有广泛的应用前景。
首先,在安全监控领域,人脸识别技术可以应用于公共场所的出入口监控、机场、地铁等重要区域的安全检测等场景,提高安全性和便利性。
另外,人脸识别技术在刑侦破案方面也有重要的应用价值,可以帮助警方通过监控录像等材料,确定犯罪嫌疑人的身份,加快案件的破案速度。
此外,人脸识别技术还可以应用于人机交互领域,实现面部表情识别、情绪识别等,为用户提供更加智能化、个性化的服务。
最后,人脸识别技术还面临一些挑战和问题。
首先,人脸识别技术需要大量的样本数据进行训练和学习,但目前公开的人脸库很少,导致训练的准确度和鲁棒性较低。
另外,人脸识别技术在复杂环境下的识别准确度也存在一定的问题,如光线、角度、表情等因素的干扰。
此外,人脸识别技术的安全性也是一个值得关注的问题,例如人脸合成、伪造等攻击手段的出现,可能影响识别系统的准确性和可靠性。
总的来说,人脸识别技术是一种具有广泛应用前景的技术,在安全监控、刑侦破案和人机交互等领域都有重要的应用价值。
但在实际应用中,还需要进一步解决技术上的问题和挑战,提高人脸识别技术的准确性、鲁棒性和安全性,以更好地满足社会需求,并推动技术的进一步发展。
人脸识别的毕业论文
学号:3081818211题目类型:论文(设计、论文、报告)西安电子科技大学GUILIN UNIVERSITY OF TECHNOLOGY本科毕业设计(论文)题目:人脸检测技术研究及MATLAB实现学院:信息科学与工程学院专业(方向):电子信息工程班级:电信08-2班学生:许文强指导教师:蒋中正2012 年 5 月 20 日摘要人脸检测是当今视觉领域里非常重要和实用的研究课题,它应用于现实生活中的各个领域,如公安、金融、网络安全、物业管理以及考勤等。
基于视频的人脸检测属于动态检测,方法是先提取视频文件的帧,然后再对帧(图像)进行人脸检测,利用肤色特征的检测算法先对图像(帧)进行处理,然后建模,运用适当的算法把人脸检测出来,运用该方法完成了视频之中的的人脸检测。
本文采用MATLAB软件进行仿真,包括实现提取视频文件的帧,对输入图像检测有人脸(如果存在)的位置,大小和位姿,程序运行结果基本实现了上述功能。
关键词:人脸检测;视频检测;肤色特征Research of Face Detection and Implementation of Matlab Student: xu wenqiang Teacher:jiang zhong zhengAbstract:Face detection is very important and practical research topic in the visual field,it is applied to many areas in our lives Such as public security, finance, network security, property management and attendance, Based on the video's face detection is dynamic detection ,The idea is to extract video file frame, then as the image face to detectionUse the skin color characteristics of the detection algorithm , first to do processing testing, Then e appropriate algorithm, the face detection out.By using this method the video to finish face detection. this paper, we also use Matlab software simulationIncluding realize The input image for face detection, Video file frame extraction then That is to make sure that there is an image input face (if present) of location, size and posture of the process.To run the program results basically achieved the functionKey Words:Face Detection;Video Detection;Skin color characteristics目次摘要 (I)Abstract (II)1 绪论 (1)1.1论文的研究历史背景及目的 (1)1.2国内外研究现状 (2)1.3论文的主要内容安排 (3)2 人脸检测及其算法简介 (5)2.1人脸检测介绍 (5)2.2人脸检测的常用方法 (5)2.2.1基于特征的人脸检测方法 (5)2.2.2模块匹配法的人脸检测 (6)2.2.3基于adaboost算法的人脸检测方法 (7)3 基于视频的人脸检测研究及其实现 (8)3.1 MATLAB图像处理工具箱中的视频操作 (8)3.2提取AVI视频文件的帧 (9)3.3对图像进行肤色特征的人脸检测 (11)3.3.1色彩空间及其内容介绍 (11)3.3.2对图像进行预处理 (11)3.3.3对人脸肤色进行建模 (13)3.3.4 检测人脸区域的选定 (14)3.4图像向AVI视频文件的转换 (16)4 人脸检测在MATLAB软件下仿真实现 (18)4.1设计条件 (18)4.2设计流程 (18)4.4.1基于视频的人脸检测的总设计模块图 (18)4.4.2对图像进行人脸检测具体框图 (19)4.3人脸检测的MATLAB实现 (19)4.3.1人脸检测运行结果 (19)4.3.2人脸检测结果分析 (21)5 结论 (22)致谢 (23)参考文献 (24)附录 (25)1 绪论当前,人脸检测越来越受到大家的关注,它作为生物特征识别中一个非常重要的一个分支,已成为计算机视觉与模式识别领域中非常活跃的一个研究领域。
人脸识别技术综述论文
人脸识别技术综述论文本科生毕业论文(设计)题目人脸识别技术综述学院计算机学院专业计算机科学与技术学生姓名陶健学号 0643041077 年级 2006 指导教师周欣教务处制表二Ο年月日人脸识别技术综述计算机科学与技术学生陶健老师周欣[摘要]随着社会信息化,网络化得不断发展,个人身份趋于数字化,隐性化,如何准确的鉴定,确保信息安全得到越来越多的重视。
人脸识别,一种应用比较广泛的生物识别方法,在基于人脸固有的生物特征信息,利用模式识别和图行图像处理技术来对个人身份进行鉴定,在国家安全,计算机交互,家庭娱乐等其他很多领域发挥着举足轻重的作用,能提高办事效率,防止社会犯罪等,有着重大的经济和社会意义。
本文主要研究了人脸识别在图像检测识别方面的一些常用的方法。
由于图像处理的好坏直接影响着定位和识别的准确率,因此本文对图像的一些识别算法做了着重的介绍,例如基于二维Gabor小波矩阵表征人脸的识别算法,基于模型匹配人脸识别算法等。
此外,本文还提及了一般人脸识别系统的设计,并着重介绍了图像预处理环节的光线补偿,图像灰度化等技术,使图像预处理模块在图像处理过程中能取到良好的作用,提高图像识别和定位的准确率。
[主题词]:人脸识别;特征提取;图像预处理;光线补偿Face Recognition OverviewComputer ScienceStudent:TAO Jian Adviser: ZHOU Xin[Abstract] With the information society, network was growing, personal identity tends to digital, hidden, how to accurately identify, to ensure that information security is more and more attention. Face recognition, an application of biometric identification methods more widely, based on biometric facial information inherent in the use of pattern recognition and image processing techniques to map line of personal identity ,play a great role in the national security, computer interaction, family entertainment and many other areas. Face recognition can improve efficiency, prevent social crime, of course it has significant economic and social significance.This paper studies aspects of face recognition in image detection and some common methods of identification. As the image processing directly impact on the accuracy of location and identification, so some of image recognition algorithm will be focused presentation, such as Gabor wavelet-based two-dimensional matrix representation of face recognition algorithms, model-based matching face recognition algorithm. In addition,the article also mentioned a general recognition system design, and highlights the image preprocessing part of the light compensation, gray image techniques, the image preprocessing module in the image processing to get to the good , and improve image recognition and positioning accuracy.[Key Words] Face recognition; feature extraction; image preprocessing; light compensation目录1前言 (6)1.1 课题背景 (6)1.1.1 人脸识别技术研究的背景[1] (6)1.2人脸识别技术研究的意义 (6)1.3国内外现状与趋势 (7)1.3.1 人脸识别的发展阶段[1] (7)1.3.2 国内的发展概况 (8)2人脸识别技术 (9)2.1 人脸识别概述 (9)2.1.1 人脸识别的研究范围 (9)2.2 人脸检测算法 (10)2.2.1 基于肤色特征的检测方法 (10)2.2.2 基于启发式模型的方法 (10)2.2.3 基于特征空间的方法 (10)2.2.4 基于统计模型的方法 (10)2.3 人脸识别算法 (11)2.3.1 基于二维Gabor小波矩阵表征人脸的识别方法 (11)2.3.2 基于多特征融合和Boosting RBF神经网络的人脸识别方法..122.3.3 基于模型匹配人脸识别方法 (15)2.3.4 基于分块小波变换与奇异值阈值压缩的人脸特征提取与识别算法173 人脸图像预处理实验 (21)3.1 需求分析 (21)3.2 预处理技术 (21)3.2.1 光线补偿 (21)3.2.2 灰度变化 (21)3.2.3 高斯平滑处理 (21)3.2.4 对比度增强 (22)3.2.5 直方图均衡 (22)3.3 概要设计 (22)3.4 程序设计与实验 (22)3.4.1 光线补偿 (22)3.4.2 图像灰度化 (23)3.4.3 高斯平滑处理 (24)3.4.4 直方图均衡 (26)4 总结 (29)参考文献 (30)声明 (31)致谢 (32)附录(原文及译文) (33)1 前言1.1 课题背景1.1.1 人脸识别技术研究的背景[1]现在地球上居住着六七十亿人,其中几乎每一个人的脸都是由眉毛、眼睛、鼻子、嘴巴等部分组成,这些器官的大体位置基本是固定的,并且每张脸的大小面积也相差不是很大。
人脸识别gabor论文
1 绪论1.1 研究背景及意义人脸识别是生物特性鉴别技术的一个主要方向,它涉及图像处理,模式识别,计算机视觉等多个研究领域,具有十分广泛的应用前景,多年来一直是一个研究热点。
相对于其它人体生物特征识别技术,如指纹识别、虹膜识别、掌纹识别,人脸识别技术是最直接、最自然、最容易被人接受的。
与其它技术相比,它具有侵犯性小、较少需要或不需要用户的主动配合、样本采集方便、应用场合广泛、潜在的数据资源丰富、设备成本低等优点[1]。
人脸识别系统具备操作及流程简单、适用面广、支持一对一或一对多比对、支持多点同时采集比对、带有数据库支持记录及查询功能,对采集现场环境要求较低,可在极短的时间里判断出进出者的身份是否合法,杜绝使用他人钥匙、密码、磁卡等非法进入。
人脸识别技术的安全性、可靠性较高,且拥有广泛的市场需求,它可以应用于公安部门的犯人档案管理、犯人辨认查找、刑侦破案、安全验证系统、信用卡验证、医学、档案管理、视频会议、人机交互系统、证件核对、保安监视、门禁控制及至自动柜员机(ATM)等多种场合[2]。
人脸识别对人类来说是件自然而然的事情,但对计算机而言,人脸识别却远非一个已解决的课题。
所有的人脸都具有相似的结构,在纹理上也十分相近。
另外图像受光照、成像角度及成像距离等外界条件影响,具有“一人千面”的特点,欲建立一种具有各种不变性的描述模型还是比较困难的。
此外,人脸识别技术研究与相关科学的发展及人脑的认识程度紧密相关[3]。
诸多因素都使人脸识别研究成为一项极富挑战性的课题,一方面信息化进程的日益加快,电子商务、重要场所的安全认证、智能化环境等许多应用领域对与人脸有关的信息处理提出了迫切要求;另一方面,硬件和软件技术的发展,为满足实际应用系统对人脸检测、跟踪及识别技术的实时化要求提供了可能性[2]。
所以,人脸识别的研究不仅涉及心理学、生理学、人工智能、模式识别、计算机视觉、图像分析与处理等多个学科领域,更是模式识别、人工智能和计算机视觉的典型案例之一[2]。
人脸识别综述(模式识别论文)
人脸识别技术综述控制工程陈龙斌12013002342摘要:简要介绍了人脸识别技术的研究背景及其发展历程;对人脸识别技术的常用方法进行了分类总结;重点对近年来人脸识别方法的研究进展进行综述并对各种方法加以评价;总结了现阶段存在的研究困难并提出今后的发展方向。
关键词:人脸识别;人脸检测;人脸定位;特征提取1 引言随着计算机和生物医学工程技术迅速发展,利用生物特征来鉴别个人身份成为安全验证首选方式,具有普遍性、安全性、唯一性、稳定性等。
可选的生物特征包括生理特征(如人脸、指纹、虹膜掌纹等)或行为特征(如笔迹、语音、步态等)。
人脸识别技术是一种最友好的生物识别技术(非接触、非侵犯),它结合了图像处理、计算机图形学、模式识别、可视化技术、人体生理学、认知科学和心理学等多个研究领域。
人脸识别应用领域:身份鉴定、身份确认、视频监控、面部数据压缩。
从二十世纪六十年代末至今,人脸识别算法技术的发展共经历了如下四个阶段:1.基于简单背景的人脸识别人脸识别研究的初级阶段。
利用人脸器官的局部特征来描述人脸。
但由于人脸器官没有显著的边缘且易受到表情的影响,因此它仅限于正面人脸(变形较小)的识别。
2.基于多姿态/表情的人脸识别人脸识别研究的发展阶段。
探索能够在一定程度上适应人脸的姿态和表情变化的识别方法,以满足人脸识别技术在实际应用中的客观需求。
3.动态跟踪人脸识别人脸识别研究的实用化阶段。
通过采集视频序列来获得比静态图像更丰富的信息,达到较好的识别效果,同时适应更广阔的应用需求。
4.三维人脸识别为了获得更多的特征信息,直接利用二维人脸图像合成三维人脸模型进行识别,即将成为该领域的一个主要研究方向。
人脸识别系统,是指不需要人为干预,能够自动获取人脸图像并且辨别出其身份的系统。
包括:数据采集、人脸检测与跟踪、人脸识别这三个子系统。
目前国内比较成熟的人脸识系统有:1.中科奥森人脸识别系统 2.南京理工的人脸识别系统3.深圳康贝尔人脸识别系统人脸识别技术的研究范围主要包括以下几个方面:1.人脸检测:在输入的图像中寻找人脸区域。
人脸识别技术研究(毕业论文)
a.特殊物品,包括各种证件和凭证,如身份证、驾驶执照、房门钥匙、印章等;
b.特殊知识,包括各种密码、口令和暗号等;
表1-2人脸识别技术的应用
人脸识别最初的应用源于公安部门关于罪犯照片的存档管理和刑侦破案。现在该技术在安全系统、商业领域和日常生活中都有很多应用,主要有以下几类应用:
1。刑侦破案。当公安部门获得罪犯的照片后,可以利用人脸识别技术,在存储罪 犯照片的数据库中找出最相像的人作为嫌疑犯,极大的节省了破案的时间和人力物力。还有一种应用就是根据目击证人的描述,先由专业人员画出草图,然后用此图到库里去找嫌疑犯.罪犯数据库往往很大,由几千幅图像组成。如果这项搜索工作由人工完成,不仅效率低,而且容易出错,因为人在看了上百幅人脸图像后,记忆力会下降,而由计算机来完成则不会出现此问题。
c.人类生物特征,包括各种人类的生理和行为特征,如人脸、指纹、手形、掌纹、虹膜、DNA、签名、语音等。
前两类识别方式属于传统的身份识别技术,其特点是方便、快捷,但致命的缺点是安全性差、易伪造、易窃取。特殊物品可能被丢失、偷盗和复制,特殊知识容易被遗忘、混淆和泄露。相比较而言,由于生物特征是人的内在属性,具有很强的自身稳定性和个体差异性,因此生物特征是身份识别的最理想依据。基于以上相对独特的生物特征,结合计算机技术,发展了众多的基于人类生物特征的身份识别技术,如NDA识别技术、指纹识别技术、虹膜识别技术、语音识别技术和人脸识别技术等.表1-1为各种生物识别技术的综合比较。
人脸是自然界存在的一种特殊的、复杂的视觉模式,它包含着极其丰富的信息。首先,人脸具有一定的不变性和唯一性,人脸识别是人类在进行身份确认时使用的最为普遍的一种方式,其次,人脸图像还能提供一个人的性别、年龄、种族等有关信息。人类在人脸识别中所表现出来的能力是令人惊异的,但是让计算机能够识别人脸,却是非常困难的问题。迄今为止,人脸识别的认知过程和内在机理仍然是一个未解之谜,如何实现一个自动的人脸识别系统仍然是一个悬而未决的难题。
人脸识别范文
人脸识别范文人脸识别技术在当今社会已经得到了广泛的应用,它不仅可以帮助我们解锁手机、进入大楼,还可以用于安全监控、身份识别等方面。
然而,人脸识别技术也引发了一些争议,有人担心它会侵犯个人隐私,甚至可能被用于监控和追踪。
本文将探讨人脸识别技术的优势和劣势,并提出一些解决方案,以期能够更好地平衡安全和隐私的关系。
首先,人脸识别技术的优势是不可忽视的。
它可以帮助我们更方便地进行身份验证,不再需要携带身份证件或密码。
在公共场所,人脸识别技术可以加强安全监控,帮助警方及时发现犯罪嫌疑人。
在商业领域,人脸识别技术可以帮助企业更好地了解客户需求,提供个性化的服务。
此外,人脸识别技术还可以帮助失踪人口的寻找,提高社会安全。
然而,人脸识别技术也存在一些劣势。
首先,它有可能侵犯个人隐私。
在没有得到明确授权的情况下,个人的脸部信息可能被滥用,导致个人隐私权受到侵犯。
其次,人脸识别技术可能存在误识别的问题,尤其是在光线不好或者面部有变化的情况下,识别的准确性会受到影响。
最后,人脸识别技术的使用也可能被滥用,例如用于监控和追踪个人活动,侵犯个人自由。
为了解决人脸识别技术可能存在的问题,我们可以采取一些措施。
首先,政府和企业应该建立明确的法律法规,保护个人隐私权,禁止未经授权的脸部信息收集和使用。
其次,人脸识别技术的开发商应该不断提高技术的准确性和安全性,减少误识别的可能性。
最后,社会应该加强对人脸识别技术的监督和管理,确保其合法合规的使用,防止滥用。
综上所述,人脸识别技术在提高社会安全和便利性方面发挥了重要作用,但同时也存在一些潜在的问题。
为了更好地平衡安全和隐私的关系,我们需要加强监管,提高技术准确性,保护个人隐私权。
只有这样,人脸识别技术才能更好地为社会服务。
人脸识别课程设计论文
人脸识别课程设计论文一、教学目标本课程旨在让学生掌握人脸识别的基本原理和技术,培养学生运用人脸识别技术解决实际问题的能力。
具体目标如下:1.知识目标:理解人脸识别的基本概念、原理和技术;掌握人脸图像处理、特征提取和匹配算法;了解人脸识别技术在实际应用中的优势和局限。
2.技能目标:能够使用人脸识别技术进行身份验证、监控和图像搜索等实际应用;具备处理和分析人脸图像的能力,进行简单的人脸识别系统设计和开发。
3.情感态度价值观目标:培养学生对技术的兴趣和好奇心,提高学生运用科技解决实际问题的意识;使学生认识到人脸识别技术在保护个人隐私和国家安全等方面的重要性,增强社会责任感。
二、教学内容根据课程目标,教学内容主要包括以下几个方面:1.人脸识别概述:介绍人脸识别的定义、发展历程和应用领域;2.人脸图像处理:讲解人脸图像的预处理、特征提取和增强等方法;3.特征提取与匹配:学习人脸特征点的提取、特征匹配算法及其优缺点;4.人脸识别算法:介绍主流的人脸识别算法,如模板匹配、特征映射和深度学习等;5.实际应用案例:分析人脸识别技术在安防、金融、医疗等领域的具体应用;6.伦理与法律问题:探讨人脸识别技术在保护个人隐私和国家安全等方面的伦理和法律问题。
三、教学方法为了提高教学效果,本课程采用多种教学方法相结合:1.讲授法:讲解人脸识别的基本概念、原理和技术;2.案例分析法:分析人脸识别技术的实际应用案例,让学生深入理解其原理和应用;3.实验法:引导学生动手实践,进行人脸识别系统的搭建和调试;4.讨论法:学生分组讨论,分享学习心得和研究成果,互相启发和借鉴。
四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选用权威、实用的教材,如《人脸识别技术》等;2.参考书:提供相关领域的经典著作和最新研究论文,供学生拓展阅读;3.多媒体资料:制作精美的PPT、教学视频和动画,帮助学生形象地理解人脸识别技术;4.实验设备:提供人脸识别实验所需的硬件设备和技术支持,如摄像头、人脸识别开发平台等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物特征识别人脸识别姓名:学号:13041316专业:电子信息工程一、摘要这个学期的生物医学信息学导论课中,给我印象最深的就是生物特征识别了。
它使用了人体本身所固有的生物特征,与传统的身份识别方法完全不同,具有更高的安全性、可靠性、和有效性,越来越受到人们的重视。
人脸识别技术作为生物特征识别技术的重要组成部分,在近三十年里得到了广泛的关注和研究,我就来探讨一下。
人脸识别技术可采用非接触式的、连续的和实时的方式,在国家安全、军事安全和公安、司法、民政、金融、民航、海关、边境、口岸、保险及民用等领域实际应用具有极广阔的前景。
本文第一部分主要介绍了人脸识别研究的现状与应用;第二部分主要阐述了脸部特征定位方法和人脸识别方法;第三部分则对人脸识别技术以后的发展方向做了总结。
关键词:人脸识别、面部表情识别二、前言人脸是人最重要的外貌特征,由于脸部信息可以通过非接触的方式(如摄像头)取得,所以非常适合于作为身份鉴别的依据。
人脸识别就是对于输入的人脸图像或者视频,首先判断其中是否存在人脸,如果存在人脸,则进一步确定每张人脸的位置、大小和各个主要面部器官的位置信息,并依据这些信息,进一步提取每张人脸中所蕴含的身份特征,并将其与已知人脸库中的人脸进行对比,从而识别每张人脸所代表的个人。
情绪使人产生生理和行为的显著变化,面部表情是情绪的外显行为的一个重要方面。
眼、眉、嘴、鼻、脸色等的变化最能表示一个人的情绪。
由于人的各种情绪同脸部肌肉和血管等的变化有关,故而脸部肌肉和血管的变化能表示一定的情绪状态。
例如,喜悦与颧肌有关,痛苦与皱眉肌有关,忧伤与三角肌有关,羞愧因血管舒张而脸红,恐怖因血管收缩而苍白。
因此可以通过对人面部表情进行识别来达到对人的情绪的判断。
三、人脸识别的现状与应用3.1人脸图像检测方法现状人脸图像检测与定位就是在输入图像中找到人脸确切的位置,它是人脸表情识别的第一步。
人脸检测的基本思想是用知识或统计的方法对人脸建模,比较待检测对象与所建的人脸模型的匹配程度,从而得到可能存在人脸的区域。
根据思想的不同基本上分为下面两种检测方法:(1)基于统计的人脸检测是将人脸图像视为一个高维向量,将人脸检测问题转化为高维空间中分布信号的检测问题。
(2) 基于知识的人脸检测是利用人的知识建立若干规则,从而将人脸检测问题转化为假设→ 验证问题。
3.2基于统计的人脸检测方法(1)样本学习:将人脸检测视为从非人脸样本中识别人脸样本的模式分类问题,通过比较人脸样本和非人脸样本来提取各自的特征,进行学习来产生分类器。
目前国际上普遍采用的是人工神经网络。
(2)模板法:模板法是把测试样本与参考模板进行比较,由阈值大小来判断测试样本是否是人脸。
阈值一般是通过对大量的模板进行统计得来的,并不是一个固定的值。
(3)子空间方法:Pentland 将KL 变换引入了人脸检测,利用主元子空间(特征脸) ,而人脸检测利用的是次元子空间(特征脸空间的补空间) 。
用待检测区域在次元子空间上的投影能量,也即待检测区域到特征脸子空间的距离作为检测统计量,距离越小,表明越像人脸。
子空间方法的特点在于简便易行,但由于没有利用反例样本信息,对与人脸类似的物体辨别能力不足。
3.3人脸识别的应用1.身份鉴定:在鉴定模式下,确定一个人的身份,该技术可以快速地计算出实时采集到的面纹数据与面像数据库中已知人员的面纹数据之间的相似度,给出一个按相似度递减排列的可能的人员列表,或简单地返回鉴定结果(相似度最高的)和相对应的可信度。
2.身份确认:在确认模式下,待确认人已知的面纹数据可以存储在智能卡中或数码记录中,该技术只需要简单地将实时的面纹数据与存储的数据相比对,如果可信度超过一个指定的阀值,则比对成功,身份得到确认。
3.监视:可以在监控范围内发现人脸,而不论其远近和位置,能连续地跟踪该人脸图像并将其从背景中分离出来,将面像与监控列表进行比对。
整个过程完全是无需干预的,连续的和实时的。
4.面像数据压缩:能将面纹数据压缩到84字节以便用于智能卡、条形码或其他仅含有有限存储空间的设备中。
5.多通道的人机交互界面:可以把跟踪得到的人脸表情作为一种人机交互的手段。
为使用者提供一个个性化、智能、便捷的工作环境,这也是智能计算机研究的重要内容。
四、人脸识别方法4.1基于特征的方法基于特征的方法不仅可以从已有的面部特征而且可以利用面部特征点的几何关系进行人脸检测。
这种方法是寻找人脸的不变特征用于人脸检测,这与基于知识的方法正好相反。
人们已经提出了许多先检测人脸面部特征,后推断人脸是否存在的方法。
面部特征,如眉毛、眼睛、鼻子、嘴和发际,一般利用边缘检测器提取,根据提取的特征,通过与统计模型比较来确定人脸是否存在。
基于特征的算法存在的问题是,由于光照、噪声和遮挡等使图像特征被严重地破坏,人脸的特征边界被弱化,阴影可能引起很强的边缘,而这些边缘可能使得算法难以使用。
4.2基于知识的方法基于知识的方法实质是基于规则的人脸检测方法,而这种规则来源于研究者关于人脸的先验知识。
一般比较容易提出简单的规则来描述人脸特征和它们的相互关系,如在一幅图像中出现的人脸,通常具有互相对称的两只眼睛、一个鼻子和一张嘴。
特征之间的相互关系可以通过它们的相对距离和位置来描述。
在输入图像中首先提取面部特征,确定基于规则的人脸候选区域。
这种方法存在的问题是很难将人类知识转换为明确定义的规则。
如果规则是严格的,由于输入图像很可能不能通过所有的规则检测而导致失败;相反,如果规则太简单,可能会有较高的错误接收率,输入许多错误图像。
此外,很难将这种方法扩展到在不同的情况下检测人脸,因为列举所有的情况是一项很困难的工作。
许多表情识别方面的专家通过研究,提出了一些克服这些缺点的方法。
4.3模板匹配方法Sakai等人使用眼睛、鼻子、嘴和人脸轮廓等子模板建模,检测照片中的正面人脸。
每一个子模板按照线分割定义。
基于最大梯度变化提取输入图像的线,然后与子模板匹配。
计算子图像和轮廓模板之间的相互关系去检测人脸的候选区域,完成用其他子模板在候选区域的匹配。
Craw等人提出了一种基于正面人脸的形状模板(也就是人脸的外形)定位方法[。
用Sobel 滤波器提取边缘,将边缘组织在一起,根据几个约束条件去搜索人脸模板。
在头轮廓定位以后,用相同的过程以不同的尺度重复定位眼睛、眼眉和嘴唇等特征。
4.4脸部特征定位方法分类近年来,国内外学者们已提出了许多种脸部特征定位方法。
根据定位所依据的基本信息的类型,以将现有方法分为基于先验规则、基于几何形状信息、基于色彩信息、基于外观信息和基于关联信息等5类:1.基于先验规则根据脸部特征的一般特点总结出一些经验规则,搜索前,先对输人图像作变换使目标特征得到强化,而后根据上述规则从图中筛选出候选点或区域。
2.基于几何形状信息根据脸部特征的形状特点构造一个带可变参数的几何模型,并设定一个评价函数量度被检测区域与模型的匹配度。
搜索时不断调整参数使评价函数最小化,从而使模型收敛于待定位的脸部特征。
3.基于色彩信息使用统计方法建立起脸部特征的色彩模型,搜索时遍历候选区域,根据被测点的色彩与模型的匹配度筛选出候选点。
4.基于外观信息将脸部特征附近一定区域(窗口)内的子图像作为一个整体,映射为高维空间中的一个点,这样,同类脸部特征就可以用高维空间中的点集来描述,并可以使用统计方法得到其分布模型。
在搜索中,通过计算待测区域与模型的匹配度即可判定其是否包含目标脸部特征。
5.基于关联信息在局部信息的基础上,引人脸部特征之间的相对位置信息,以缩小候选点范围,从运算量、准确率与鲁棒性(包括图像质量需求和姿态表情光照等影响)3个方面对各类方法的性能作了粗略的比较。
五、人脸识别发展方向5.1发展方向前面所介绍的表情识别实现方法都取得了一定的效果,对表情识别的发展起到了很大的作用。
已经有许多关于人脸表情识别方面的研究,但是对特定人脸表情的再现效果还不是特别理想,使用一般人脸模型进行变形来表现特定人脸的表情时,是通过一组特征点的位置变换来得到一个新的人脸网格模型,当稳定一个特征点匹配到图像上的特征位置时,变形算法模拟人脸皮肤的粘弹特性,自动计算出与该移动相关的网格点的新坐标位置,这样就存在匹配程度和逼真程度的问题了,这是因为一般人脸模型已经固定,采用固定算法虽然能够模拟人脸皮肤的变化,但是大部分采用的还是一般人脸模型的样子,这样就对特定人脸表情的再现有一定的虚假性。
能否直接采用特定真人脸的表情特征点(位置、灰度值)来建立特定人脸的表情模型,在仿真真人脸表情动画中的一个关键技术就是要提取真人表情的特征点,找出特征点运动前后的关系,确定特征点运动后的位置,以便来建立真人面部表情模型。
在这方面还需要做的工作就是要建立真人表情点的提取系统,为实现仿真真人脸部表情动画系统做准备,因为通过对三维视图中相关二维视图特征的识别与匹配,就可以完成三维基本特征体素的提取及关系判断即三维重建。
5.2目标要求在表情识别领域,国外已经取得了很大成果,我国在这个领域的很多方面的研究很少甚至是一片空白。
在学习外国先进技术的同时,我们有要发挥自己的优势,摆脱前人在算法上的影响提出更新更实用的算法。
可以预见随着我国科研人员在这个领域的研究,我国的表情识别将会越来越好。
六、结语本文主要从人脸识别研究的现状与应用、脸部特征定位方法和人脸识别方法、人脸识别技术以后的发展前景等三方面做了研究,对人脸识别有了更深入的认识。
但是人脸识别是一个多学科领域的挑战性难题,近30年来人脸识别的研究虽然取得了巨大的进步,但与人类的感知能力相距甚远。
人脸识别涉及到很多理论和技术问题,本文只是进行初步的探索和尝试。
七、参考文献[1] 聂祥飞. 人脸识别综述. 重庆三峡学院学报, 2009, 25(117):14.[2] 朱金魁. 人脸识别算法的研究. 东北林业大学硕士论文. 2009.。