电磁感应动力学问题归纳

合集下载

电磁感应中的动力学问题

电磁感应中的动力学问题

9.如图所示,两根相距L平行放置的光滑导电轨道,与
水平面的夹角均为α,轨道间有电阻R,处于磁感应强度
为B、方向竖直向上的匀强磁场中,一根
质量为m、电
阻为r的金属杆ab,由静止开始沿导电轨道下滑.设下滑
过程中杆ab始终与轨道保持垂直,且接触良好,导电轨
道有足够的长度,且电阻不计. (1)杆ab将做什么运动? (2)若开始时就给ab沿轨道向下的拉力F使其由静止开始 向下做加速度为a的匀加速运动(a>gsinα),求拉力F与 时间t的关系式.
• 2.(18分)如图所示,质量m1=0.1kg,电阻R1=0.3Ω, 长度l=0.4m的导体棒ab横放在U型金属框架上。框架 质量m2=0.2kg,放在绝缘水平面上,与水平面间的动 摩擦因数μ=0.2,相距0.4m的MM’、NN’相互平行,电 阻不计且足够长。电阻R2=0.1Ω的MN垂直于MM’。整 个装置处于竖直向上的匀强磁场中,磁感应强度 B=0.5T。垂直于ab施加F=2N的水平恒力,ab从静止开 始无摩擦地运动,始终与MM’、NN’保持良好接触,当 ab运动到某处时,框架开始运动。设框架与水平面间 最大静摩擦力等于滑动摩擦力,g取10m/s2. • (1)求框架开始运动时ab速度v的大小; • (2)从ab开始运动到框架开始运动的过程中,MN上 产生的热量Q=0.1J,求该过程ab位移x的大小。
答案 (1)1 A 方向由d到c (2)0.2 N (3)0.4 J
解析
(1)由v2-x图象可知:
v1=3 m/s做匀加速运动 v1=3 m/s做匀速运动
x1=0.9 m x2=1.0 m
x3=1.6 m,末速度v2=5 m/s,做匀加速运动 设线框在以上三段的运动时间分别为t1、t2、t3.

电磁感应中的动力学问题

电磁感应中的动力学问题

电磁感应中的动力学问题【动力学问题的规律】1. 动态分析:求解电磁感应中的力学问题时,要抓好受力分析和运动情况的动态分析,导体在拉力作用下运动,切割磁感线产生感应电动势T感应电流T通电导体受安培力T合外力变化T加速度变化T速度变化,周而复始地循环,当循环结束时,加速度等于零,导体达到稳定运动状态。

2. 两种状态的处理:当导体处于平衡态一一静止状态或匀速直线运动状态时,处理的途径是:根据合外力等于零分析。

当导体处于非平衡态一一变速运动时,处理的途径是:根据牛顿第二定律进行动态分析,或者结合动量的观点分析•3. 常见的力学模型分析:先电后力”,即:先做源”的分析一一分离出电路中由电磁感应所产生的电源,求出电源参数E和r;再进行路”的分析一一分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便求解安培力;然后是力”的分析一一分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;最后进行运动”状态的分析一一根据力和运动的关系,判断出正确的运动模型.【例1】如图所示,MN、PQ为足够长的平行金属导轨,间距L = 0.50 m,导轨平面与水平面间夹角0= 37° N、Q间连接一个电阻R= 5.0 R匀强磁场垂直于导轨平面向上,磁感应强度 B = 1.0 T.将一根质量为m= 0.050 kg的金属棒放在导轨的ab位置,金属棒及导轨的电阻不计•现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好•已知金属棒与导轨间的动摩擦因数卩=0.50,当金属棒滑行至cd处时,其速度大小开始保持不变,位置cd与ab之间的距离s= 2.0 m .已知g = 10 m/s2, sin 37 = 0.60, cos 37° 0.80.求:(1) 金属棒沿导轨开始下滑时的加速度大小;(2) 金属棒到达cd 处的速度大小;⑶金属棒由位置ab 运动到cd 的过程中,电阻 R 产生的热量.突破训练1如图所示,相距为 L 的两条足够长的平行金属导轨,与水平面的夹角为 0,导轨上固定有质量为 m 、电阻为R 的两根相同的导体棒,导体棒 MN 上方轨道粗糙、下方轨道光滑,整个空间存在垂直于导轨平面的匀强磁 场,磁感应强度为 B.将两根导体棒同时释放后,观察到导体棒MN 下滑而EF 保持静止,当MN 下滑速度最大时,EF 与轨道间的摩擦力刚好达到最大静摩擦力,下列叙述正确的是【例2】 如图所示,在倾角 0= 37°勺光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ ,磁感应强度B 的大小为5 T ,磁场宽度d = 0.55 m ,有一边长L = 0.4 m 、质量m 1= 0.6 kg 、电阻R = 2 Q 的正方形均 匀导体线框abed 通过一轻质细线跨过光滑的定滑轮与一质量为m 2= 0.4 kg 的物体相连,物体与水平面间的动摩擦因数 尸0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长. (取g = 10 m/s 2, sin 37° = 0.6, eos 37°=0.8)求:(1) 线框abed 还未进入磁场的运动过程中,细线中的拉力为多少? (2) 当ab 边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab 边距磁场MN 边界的距离x 多大?⑶在⑵问中的条件下,若 ed 边恰离开磁场边界 PQ 时,速度大小为2 m/s ,求整个运动过程中 ab 边产生的热量为多少?审题指导 1.线框abed 未进入磁场时,线框沿斜面向下加速, m 2沿水平面向左加速,属连接体问题.2. ab 边刚进入磁场时做匀速直线运动,可利用平衡条件求速度.3•线框从开始运动到离开磁场的过程中,线框和物体组成的系统减少的机械能转化为线框的焦耳热. 解析A •导体棒 MN 的最大速度为2mgRsin 02~2B 2L 2B .导体棒EF 与轨道之间的最大静摩擦力为mgs in 0C .导体棒D .导体棒 MN 受到的最大安培力为 MN 所受重力的最大功率为mgs in0 2 2 2m g Rsin 0B L突破训练2如图所示,光滑斜面的倾角为 B,斜面上放置一矩形导体线框 abcd,ab 边的边长为h,bc 边的边长为 J线框的质量为 m ,电阻为R ,线框通过绝缘细线绕过光滑的定滑轮与一重物相连,重物质量为 M.斜面上ef 线(ef 平 行底边)的右方有垂直斜面向上的匀强磁场, 磁感应强度为 B ,如果线框从静止开始运动,进入磁场的最初一段时间是做匀速运动的,且线框的ab 边始终平行于底边,则下列说法正确的是D .该匀速运动过程产生的焦耳热为(Mg — mgsin 0)12突破训练3如图所示,平行金属导轨与水平面间的倾角为 0,导轨电阻不计,与阻值为R 的定值电阻相连,匀强磁感应强度为B •有一质量为m 、长为I 的导体棒从ab 位置获得平行于斜面、 大小为v 的初也为R 的导体棒ab 与导轨垂直放置,它与导轨粗糙接触且始终接触良好. 当导体棒运动达到稳定状态时速率为 v ,此时整个电路消耗的电功率为重力功率的3.已知重力加速度为g ,导轨电阻不计,求:(1)匀强磁场的磁感应强度 B 的大小和达到稳定状态后导体棒 ab 中的电流强度I ;(2)如果导体棒ab 从静止释放沿导轨下滑 x 距离后达到稳定状态,这一过程回路中产生的电热是多少? (3)导体棒ab 达到稳定状态后,断开开关 S ,从这时开始导体棒 ab 下滑一段距离后,通过导体棒 ab 横截面的电荷量为q ,求这段距离是多少?A .线框进入磁场前运动的加速度为 Mg — mgsi n BB .线框进入磁场时匀速运动的速度为Mg — mgsin 0 RBl i22 B l iC .线框做匀速运动的总时间为Mg — mgRsi n 0 磁场垂直穿过导轨平面, 速度向上运动,最远到达 a b 位置,滑行的距离为 s ,导体棒的电阻也为 R , 与导 轨之间的动摩 擦因数 为e 则A •上滑过程中导体棒受到的最大安培力为1 2B .上滑过程中电流做功发出的热量为 ?mv — mgs(sin 0+ QOS0)1 2 C .上滑过程中导体棒克服安培力做的功为2mv 2 12【例3】 如图所示,足够长的金属导轨MN 、PQ 平行放置,间距为 L ,与水平面成 0角,导轨与定值电阻 Ri 和R 2相连,且 R i = R 2= R , R i 支路串联开关S ,原来S 闭合•匀强磁场垂直导轨平面向上,有一质量为 m 、有效电阻 现将导体棒ab 从静止释放,沿导轨下滑,3.在如图所示倾角为B 的光滑斜面上,存在着两个磁感应强度大小均为B 的匀强磁场,区域I 的磁场方向垂直斜注意:双棒类运动模型问题分析:如图所示,质量都为 m 的导线a 和b 静止放在光滑的无限长水平导轨上,两导轨间宽度为 L ,整个装置处于竖直向上的匀强磁场中,磁场的磁感强度为B ,现对导线b 施以水平向右的恒力 F ,求回路中的最大电流•程中加速度a 与下落距离h 的关系图象如图乙所示, g 取10 m/s 2,则 A .匀强磁场的磁感应强度为1 TB .杆ab 下落0.3 m 时金属杆的速度为1 m/sC .杆ab 下落0.3 m 的过程中R 上产生的热量为 0.2 JD .杆ab 下落0.3 m 的过程中通过 R 的电荷量为0.25 C 突破训练4 (多选题)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒 ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒 F 水平向右拉金属棒 cd ,经过足够长时间以后()A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于 2F/3D •两金属棒间距离保持不变1.如图所示,足够长的平行金属导轨倾斜放置,倾角为ab 、cd 的质量之比为2 L 用一沿导轨方向的恒力课后练习37°宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Q.导体棒MN 垂直导轨放置,质量为 0.2 kg ,接入电路的电阻为 1 Q,两端与导轨接触良好,与导轨间 的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒 10 m/s , sin 37 = 0.6)A . 2.5 m/s 1 W C . 7.5 m/s 9 WMN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取( )B . 5 m/s 1 W D . 15 m/s 9 W2•如图甲所示,电阻不计且间距 L = 1 m 的光滑平行金属导轨竖直放置,上端接一阻值 R = 2 Q 的电阻,虚线 00'F 方有垂直于导轨平面向里的匀强磁场,现将质量m = 0.1 kg 、电阻不计的金属杆 ab 从OO'上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平.已知杆 ab 进入磁场时的速度 v 0= 1 m/s ,下落0.3 m 的过 ( )5.如图所示,一对平行光滑轨道放置在水平面上,两轨道间距 I = 0.20 m ,电阻R = 1 Q 有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻均忽略不计,整个装置处于磁感应强度(1)杆的质量m 和加速度a 的大小;t 内,通过电阻 R 电量的表达式(用B 、l 、R 、a 、t 表示).面向上,区域n 的磁场方向垂直斜面向下, 磁场的宽度均为L.一质量为m 、电阻为R 、边长为专的正方形导体线圈, 在沿平行斜面向下的拉力 F 作用下由静止开始沿斜面下滑,当ab 边刚越过GH 进入磁场I 时,恰好做匀速直线运 动,下列说法中正确的有(重力加速度为g)A .从线圈的ab 边刚进入磁场I 到线圈 de 边刚要离开磁场n 的过程中,线圈 ab 边中 产生的感应电流先沿 b T a 方向再沿b 方向B .线圈进入磁场I 过程和离开磁场n 过程所受安培力方向都平行斜面向上 4R mgsin 0+ FC .线圈ab 边刚进入磁场 I 时的速度大小为 B L 「D •线圈进入磁场I 做匀速运动的过程中,拉力 F 所做的功等于线圈克服安培力所做的功 4.图中EF 、GH 为平行的金属导轨,其电阻可不计, R 为电阻,C 为电容器,AB 为可在EF 和GH 上滑动的导体横 杆.有匀强磁场垂直于导轨平面. 若用I 1和I 2分别表示 横杆AB( ) A .匀速滑动时,I i = 0, I 2= 0 B .匀速滑动时,丨1工0 12工0 C .加速滑动时,I 1= 0 , I 2= 0图中该处导线中的电流,则当 D .加速滑动时,11工0 12工0E A G B H垂直轨道面向下.现用一外力 F 沿轨道方向拉杆,使之做匀加速运动,测得外力 F 与时间t 的关系如图所示.求X XXX XX X X XXR L 2L X 1 ―> X FX X X X XB = 0.50 T 的匀强磁场中,磁场方向(2)杆开始运动后的时间6•两根足够长的光滑金属导轨平行固定在倾角为B的斜面上,它们的间距为d。

专题十 电磁感应中的动力学和能量问题

专题十 电磁感应中的动力学和能量问题


课堂探究
学科素养培养
高考模拟
课堂探究
专题十 电磁感应中的动力学和能量问题
(3)设 cd 棒运动过程中在电路中产生的总热量为 Q 总, 由能量守恒定律有 1 m2gxsin θ=Q 总+ m2v2 2 R1 又 Q= Q总 R1+R2
解得 Q=1.3 J
答案 (1)由 a 流向 b (2)5 m/s (3)1.3 J
课堂探究
专题十 电磁感应中的动力学和能量问题
电磁感应与动力学问题的解题策略 此类问题中力现象和电磁现象相互联系、相互制约,解决问题前首 先要建立“动→电→动”的思维顺序,可概括为: (1)找准主动运动者, 用法拉第电磁感应定律和楞次定律求解感应电 动势的大小和方向. (2)根据等效电路图,求解回路中感应电流的大小及方向. (3)分析安培力对导体棒运动速度、 加性分析导体棒的最终运动情 况. (4)列牛顿第二定律或平衡方程求解.

课堂探究
学科素养培养
高考模拟
课堂探究
专题十 电磁感应中的动力学和能量问题
设电路中的感应电流为 I,由闭合电路欧姆定律有 E I= R1+R2 ③
设 ab 所受安培力为 F 安,有 F 安=BIL

此时 ab 受到的最大静摩擦力方向沿斜面向下,由平衡条件有 F 安=m1gsin θ+Fmax
综合①②③④⑤式,代入数据解得 v=5 m/s
B .导体棒 EF 与轨道之间的最大静摩擦力为
课堂探究
学科素养培养
高考模拟
课堂探究
专题十 电磁感应中的动力学和能量问题
【突破训练 1】如图 2 所示,相距为 L 的两条足 够长的平行金属导轨,与水平面的夹角为 θ,导 轨上固定有质量为 m、电阻为 R 的两根相同的 导体棒, 导体棒 MN 上方轨道粗糙、 下方轨道光 滑,整个空间存在垂直于导轨平面的匀强磁场, 由于当 MN 下滑速度最大时, EF 磁感应强度为 B.将两根导体棒同时释放后,观 察到导体棒 MN 下滑而 EF 保持静止, 当 MN 下 滑速度最大时,EF 与 轨道间的摩擦力刚好达 到最大静摩擦力,下列叙述正确的是( AC ) 2mgRsin θ A.导体棒 MN 的最大速度为 B2L2

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。

一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。

金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。

求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。

二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。

导轨顶端连接一个阻值为1 Ω的电阻。

在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。

质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。

金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。

(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。

三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。

精品专题 专题十四 电磁感应中的动力学问题

精品专题 专题十四  电磁感应中的动力学问题

高二智慧课堂专题十四电磁感应中的动力学问题电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类电磁感应中的力学问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律、机械能守恒定律等。

要将电磁学和力学的知识综合起来应用。

电磁感应与动力学、运动学结合的动态分析,思考方法是:电磁感应现象中感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,循环结束时,加速度等于零,导体达到稳定状态.例1.水平放置于匀强磁场中的光滑导轨上,有一根导体棒ab,用恒力F作用在ab上,由静止开始运动,回路总电阻为R,分析ab的运动情况,并求ab的最大速度。

例2.光滑平行导轨上有两根质量均为m,电阻均为R的导体棒1、2,给导体棒1以初速度v运动,分析它们的运动情况,并求它们的最终速度。

例3. 水平放置的导轨处于垂直轨道平面的匀强磁场中,今从静止起用力拉金属棒ab,若拉力为恒力,经t1秒ab的速度为v,加速度为a1,最终速度为2v, 若拉力的功率恒定,经t2秒ab的速度为v,加速度为a2,最终速度为2v, 求a1和a2的关系练习1:两根相距为L 的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平内,另一边垂直于水平面。

质量均为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为2R 。

整个装置处于磁感应强度大小为B ,方向竖直向上的匀强磁场中。

当ab 杆在平行于水平导轨的拉力F 作用下以速度V 1沿导轨匀速运动时,cd 杆也正好以速度V 2向下匀速运动。

重力加速度为g 。

以下说法正确的是 ( ) A. ab 杆所受拉力F 的大小为μmg + B 2L 2V 1/2R B. cd 杆所受摩擦力为零C. 路中的电流强度为D. μ与V 1大小的关系为 μ=例4.如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L, M 、P 两点间接有阻值为R 的电阻。

电磁感应中的动力学问题和能量问题

电磁感应中的动力学问题和能量问题

自主探究:一、电磁感应中的动力学问题1.电磁感应与动力学、运动学结合的动态分析,分析方法是:导体受力运动产生感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至达到稳定状态.2.分析动力学问题的步骤(1)用和、确定感应电动势的大小和方向.(2)应用求出电路中感应电流的大小.(3)分析研究导体受力情况,特别要注意安培力方向的确定.有无摩擦力(4)列出动力学方程或平衡方程求解.3.两种状态处理(1)导体处于平衡态:静止或匀速直线运动状态.处理方法:根据平衡条件,列式分析.(2)导体处于非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.典例讲解:例题1:如图所示,两平行光滑金属导轨倾斜放置且固定,两导轨间距为L,与水平面间的夹角为 ,导轨下端有垂直于轨道的挡板,上端连接一个阻值R=2r的电阻,整个装置处在磁感应强度为B、方向垂直导轨向上的匀强磁场中.两根相同的金属棒ab、cd放在导轨下端,其中棒ab 靠在挡板上,棒cd在沿导轨平面向上的拉力作用下,由静止开始沿导轨向上做加速度a的匀加速运动.已知每根金属棒质量为m、电阻为r,导轨电阻不计,棒与导轨始终接触良好.求:(1)经多长时间棒ab对挡板的压力变为零;(2)棒ab对挡板压力为零时,电阻R的电功率;(3)棒ab运动前,拉力F随时间t的变化关系.合作探究变式:1、如图所示,两条平行的金属导轨相距L=1 m,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中,电阻为1 Ω的半圆形金属环MN和电阻为2 Ω的“V”形金属框架PQ 的质量均为m =0.1 kg ,端点连线MN 、PQ 均与导轨垂直且接触良好,MN =L =PQ ,半圆环置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,“V”形金属框架置于光滑的倾斜导轨上与倾斜导轨在同一平面内.t =0时让半圆金属环在水平外力F 1的作用下由静止开始以a =1 m/s 2的加速度向右做匀加速直线运动,此过程中“V”形金属框架在平行于斜面方向的力F 2作用下保持静止状态.t =4 s 时,F 2=0,不计导轨的电阻,水平导轨足够长,半圆环始终在水平导轨上运动.sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.(1)求磁感应强度B 的大小; (2)试推导F 2与时间t 的关系;(3)求0~4 s 时间内通过MN 的电荷量; (4)求t =6 s 时F 1的大小.自主探究:二、电磁感应中的能量问题1.电磁感应过程的实质是不同形式的能量转化的过程. 其他形式的能如:机械能――→安培力做负功电能――→电流做功其他形式的能如:内能 2.电能求解的思路主要有三种(1)利用克服安培力做功求解(2)利用能量守恒求解(3)利用电路特征求解典例讲解例2、如图所示,一根质量为m 的金属棒MN 水平放置在两根竖直的光滑平行金属导轨上,并始终与导轨保持良好接触,导轨间距为L ,导轨下端接一阻值为R 的电阻,其余电阻不计.在空间内有垂直于导轨平面的磁场,磁感应强度大小只随竖直方向y 变化,变化规律B=ky ,k 为大于零的常数.质量为M=4m 的物体静止在倾角θ=30°的光滑斜面上,并通过轻质光滑定滑轮和绝缘细绳与金属棒相连接.当金属棒沿y 轴方向从y=0位置由静止开始向上运动h 时,加速度恰好为0.不计空气阻力,斜面和磁场区域足够大,重力加速度为g .求:(1)金属棒上升h 时的速度;(2)金属棒上升h 的过程中,电阻R 上产生的热量;(3)金属棒上升h 的过程中,通过金属棒横截面的电量.合作探究:变式2、如图,两根相距l =0.4m 、电阻不计的平行光滑金属导轨水平放置,一端与阻值R =0.15Ω的电阻相连。

电磁感应中的动力学问题和能量问题

电磁感应中的动力学问题和能量问题
比棒PQ大的金属棒 C.将导轨的a、c两端用导线连接起来
D.将导轨的a、c两端和b、d两端分别用导线连接
起来
7.如图14甲所示,空间存在B=0.5 T,方向竖直向下 的匀强磁场,MN、PQ是处于同一水平面内相互平
行的粗糙长直导轨,间距L=0.2 m,R是连在导轨一
端的电阻,ab是跨接在导轨上质量m=0.1 kg的导 体棒.从零时刻开始,通过一小型电动机对ab棒施 加一个牵引力F,方向水平向左,使其从静止开始 沿导轨做加速运动,此过程中棒始终保持与导轨
0
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0
0.10
0.30
0.70
1.20
1.70
2.20
2.70
(1)在前0.4 s的时间内,金属棒ab电动势的平均值.
(2)金属棒的质量. (3)在前0.7 s的时间内,电阻R上产生的热量.
题型探究
题型1 电磁感应中的动力学问题
【例1】 如图2所示,光滑斜面的倾角
图6
感应强度B=1 T,如图6所示.有一质量m=0.5kg、电阻 r=0.4Ω 的 金属棒ab,放在导轨最上端,其余部分电阻不
计.当棒ab从轨道最上端由静止开始下滑到底端脱离轨
道时,电阻R上产生的热量 Q1 =0.6 J,取g=10m/s2, 试求:
变式练习2m、电阻为R的正方形导线框 竖直向上抛出,穿过宽度为b、磁感 应强度为B的匀强磁场,磁场的方向 垂直纸面向里.线框向上离开磁场时
=30°,在斜面上放置一矩形线框
abcd,ab边的边长l1=1 m,bc边的边长 l2=0.6 m,线框的质量m=1 kg,电阻
R=0.1 Ω ,线框通过细线与重物相

专题10电磁感应中的动力学问题和能量问题

专题10电磁感应中的动力学问题和能量问题

电磁感应现象的定义
电磁感应现象的发现
电磁感应现象的应用
动力学问题的基本原理
电磁感应定律:法拉第电磁感应定律是电磁感应中的基本原理,它描述了磁场变化时在导体中产生感应电动势的现象。
动力学方程:在电磁感应中,由于磁场的变化,导体中的电荷会受到洛伦兹力的作用,从而产生加速度。因此,需要建立动力学方程来描述电荷的运动。
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
测量仪器误差
减小误差的方法
环境因素误差 减小误差的方法
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
选择高精度测量仪器
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
多次测量求平均值
阻尼效应:在电磁感应中,由于导体的电阻和电感的存在,电荷的运动会受到阻尼效应的影响。阻尼效应会导致电荷的运动逐渐减慢,直至停止。
能量转换:在电磁感应中,磁场能会转化为电能,而电能又会通过电阻和电感等元件转化为热能或其他形式的能量。因此,电磁感应中的动力学问题也涉及到能量转换的问题。
电磁感应与动力学问题的关系
解题思路和方法总结:总结典型例题的解题思路和方法,提炼出一般性的规律和技巧,帮助学生更好地理解和掌握电磁感应中的动力学问题。
实际应用举例:介绍电磁感应中的动力学问题在现实生活中的应用,如发电机、变压器等,增强学生对知识的理解和应用能力。
03
电磁感应中的能量问题
电磁感应中的能量转化
电磁感应中的能量损失与效率问题
电磁感应中的能量损失:主要来源于电阻发热、涡流损耗和磁滞损耗。
电磁感应中的效率问题:主要取决于电路的阻抗匹配和能量转换效率。
电磁感应中的能量损失与效率问题在现实生活中的应用:例如变压器、电动机等设备的效率问题,可以通过优化设计、选用合适的材料和改进工艺等方法来提高设备的效率和减少能量损失。

电磁感应中的动力学问题和能量问题

电磁感应中的动力学问题和能量问题

析清楚电磁感应过程中能量转化的关系,是解决电磁
感应问题的重要途径之一.
编辑课件
题型探究
题型1 电磁感应中的动力学问题
【例1】 如图2所示,光滑斜面的倾角
=30°,在斜面上放置一矩形线框
abcd,ab边的边长l1=1 m,bc边的边长
l2=0.6 m,线框的质量m=1 kg,电阻
R=0.1 Ω,线框通过细线与重物相
s-l2=v t3+12 at32
解得t3=1.2 s
因此ab边由静止开始运动到gh线所用的时间
t=t1+t2+t3=1.2 s+0.1 s+1.2 s=2.5 s
答案 (1)6 m/s
(2)2.5 s
编辑课件
规律总结 此类问题中力现象和电磁现象相互联系,相互制
约,解决问题首先要建立“动→电→动”的思维顺 序,可概括为 (1)找准主动运动者,用法拉第电磁感应定律和 楞次定律求解电动势大小和方向. (2)根据等效电路图,求解回路中电流的大小及 方向. (3)分析导体棒的受力情况及导体棒运动后对电 路中电学参量的“反作用”,即分析由于导体棒 受到安培力,对导体棒运动速度、加速度的影响, 从而推理得出对电路中的电流有什么影响,最后定 性分析出导体棒的最终运动情况. (4)列出牛顿第二定律或编平辑衡课件方程求解.
到最大这一关键.
编辑课件
特别提示 1.对电学对象要画好必要的等效电路图. 2.对力学对象要画好必要的受力分析图和过程示 意图. 热点二 电路中的能量转化分析 从能量的观点着手,运用动能定理或能量守恒定律. 基本方法是: 受力分析→弄清哪些力做功,做正功还是负功→明确 有哪些形式的能参与转化,哪些增哪些减→由动能定 理或能量守恒定律列方程求解.

专题二电磁感应中的动力学问题和能量问题

专题二电磁感应中的动力学问题和能量问题

高二物理兴趣班专题二电磁感应中的动力学问题和能量问题一、电磁感应中的动力学问题1.电磁感应与动力学、运动学结合的动态分析,分析方法导体受力运动产生感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至达到稳定状态.2.分析动力学问题的步骤(1)用电磁感应定律和 定律、 定则确定感应电动势的大小和方向. (2)应用 求出电路中感应电流的大小.(3)分析研究导体受力情况,特别要注意安培力 的确定. (4)列出 方程或 方程求解. 3.两种状态处理(1)导体处于平衡态——静止或匀速直线运动状态.处理方法:根据 条件——合外力等于零,列式分析. (2)导体处于非平衡态——加速度不为零.处理方法:根据 定律进行动态分析或结合功能关系分析. 【典型例题】1、如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是 ( )2、如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( ) A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F /3D .两金属棒间距离保持不变3、如图甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b 向a 方向看到的装置如图乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图.(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小.(3)求在下滑过程中,ab 杆可以达到的速度最大值.4、如图所示,两足够长的光滑金属导轨竖直放置,相距为L ,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m 、有效电阻为R 的导体棒在距磁场上边界h 处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I .整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)磁感应强度的大小B ;(2)电流稳定后,导体棒运动速度的大小v ; (3)流经电流表电流的最大值I m .二、电磁感应中的能量问题1.电磁感应过程的实质是不同形式的能量转化的过程.电磁感应过程中产生的感应电流在磁场中必定受到 作用,因此要维持感应电流存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为 ,“外力”克服安培力做多少功,就有多少其他形式的能转化为 ;当感应电流通过用电器时,电能又转化为其他形式的能.可以简化为下列形式:其他形式的能(如:机械能)――→安培力做负功电能――→电流做功其他形式的能(如:内能)同理,安培力做功的过程,是 转化为 的能的过程,安培力做多少功,就有多少电能转化为其他形式的能.2.能量问题的求解思路主要有三种(1)利用克服安培力做功求解:电磁感应中产生的 等于 所做的功; (2)利用能量守恒求解:机械能的减少量等于产生的; (3)利用电路特征求解:通过电路中所产生的电能来计算.【典型例题】1、如图所示,固定在水平绝缘平面上且足够长的金属导轨不计电阻,但表面粗糙,导轨左端连接一个电阻R ,质量为m 的金属棒(电阻也不计)放在导轨上并与导轨垂直,整个装置放在匀强磁场中,磁场方向与导轨平面垂直.用水平恒力F 把ab 棒从静止起向右拉动的过程中,下列说法正确的是( )A .恒力F 做的功等于电路产生的电能B .恒力F 和摩擦力的合力做的功等于电路中产生的电能C .克服安培力做的功等于电路中产生的电能D .恒力F 和摩擦力的合力做的功等于电路中产生的电能和获 得的动能之和2、光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程为y =x 2,其下半部处在一个水平方向的匀强磁场中,磁场的上边界是y =a 的直线(图中的虚线所示),一个质量为m 的小金属块从抛物线y =b(b>a)处以速度v 沿抛物线下滑,假设抛物线足够长,则金属块在曲面上滑动的过程中产生的焦耳热总量是( )A .mgb B.12mv 2C .mg(b -a)D .mg(b -a)+12mv 23、如图所示,先后两次将同一个矩形线圈由匀强磁场中拉出,两次拉动的速度相同.第一次线圈长边与磁场边界平行,将线圈全部拉出磁场区,拉力做功W 1、通过导线截面的电荷量为q 1,第二次线圈短边与磁场边界平行,将线圈全部拉出磁场区域,拉力做功为W 2、通过导线截面的电荷量为q 2,则( ) A .W 1>W 2,q 1=q 2 B .W 1=W 2,q 1>q 2 C .W 1<W 2,q 1<q 2 D .W 1>W 2,q 1>q 24.如图所示,电阻为R ,其他电阻均可忽略,ef 是一电阻可不计的水平放置的导体棒,质量为m ,棒的两端分别与ab 、cd 保持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的匀强磁场中,当导体棒ef 从静止下滑经一段时间后闭合开关S ,则S 闭合后( )A .导体棒ef 的加速度可能大于gB .导体棒ef 的加速度一定小于gC .导体棒ef 最终速度随S 闭合时刻的不同而不同D .导体棒ef 的机械能与回路内产生的电能之和一定守恒 3、 如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙 的两种情况相比较,这个过程 ( ) A .安培力对ab 棒所做的功不相等 B .电流所做的功相等 C .产生的总内能相等 D .通过ab 棒的电荷量相等4. 如图所示,在水平桌面上放置两条相距L 的平行且无限长的粗糙金属导轨ab 和cd ,阻值为R 的电阻与导轨的a 、c 端相连,其余电路电阻不计,金属滑杆MN 垂直于导轨并可 在导轨上滑动.整个装置放于匀强磁场中,磁场方向竖直向上,磁感应强度的大小为B .滑杆的中点系一不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一质量为m 的物块相连,绳处于拉直状态,现若从静止开始释放物块,用I 表示稳定后回路中的感应电流,g 表示重力加速度,设滑杆在运动中所受阻力恒为F f ,则在物体下落过程中 ( )A .物体的最终速度(mg -F f )RB 2L 2B .物体的最终速度I 2Rmg -F fC .稳定后物体重力的功率I 2RD .物体重力的最大功率可能为mg (mg -F f )RB 2L 25、两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L ,电阻不计.在导轨上端并接两个额定功率均为P 、电阻均为R 的小灯泡.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直.现将一质量为m 、电阻可以忽略的金属棒MN 从图示位置由静止开始释放.金属棒下落过程中保持水平,且与导轨接触良好.已知某时刻后两灯泡保持正常发光.重力加速度为g .求: (1)磁感应强度的大小;(2)灯泡正常发光时导体棒的运动速率.6、如图所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ角固定,轨间距为d .空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B .P 、M 间所接电阻阻值为R .质量为m 的金属杆ab 水平放置在轨道上,其有效电阻为r .现从静止释放ab ,当它沿轨道下滑距离s 时,达到最大速度.若轨道足够长且电阻不计,重力加速度为g .求:(1)金属杆ab 运动的最大速度;(2)金属杆ab 运动的加速度为12g sin θ时,电阻R 上的电功率;(3)金属杆ab 从静止到具有最大速度的过程中,克服安培力所做的功.。

电磁感应中的动力学和能量问题

电磁感应中的动力学和能量问题
(1)确定研究对象(导体棒或回路);
(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量
相互转化;
(3)根据能量守恒定律列式求解.
(18 分)(2012·高考天津卷)如图所示,一对光滑的平行金属 导轨固定在同一水平面内,导轨间距 l=0.5 m,左端接有阻值 R=0.3 Ω 的电阻.一质量 m=0.1 kg,电阻 r=0.1 Ω 的金属棒 MN 放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁 场的磁感应强度 B=0.4 T.棒在水平向右的外力作用下,由静
力为多大?整个过程拉力的最大值为多大?
(3)若第 4 s 末以后,拉力的功率保持不变,ab 杆能达到的最大
速度为多大?
[答案] (2)μmg μmg ma (3)(μmg+BR2l+2vrm)vm
(2012·山东潍坊一模理综)如图所示,水平地面上方矩形
虚线区域内有垂直纸面向里的匀强磁场,两个闭合线圈Ⅰ和
止开始以 a=2 m/s2 的加速度做匀加速运动,当棒的位移 x=9
m 时撤去外力,棒继续运动一段距离后停下来,已知撤去外力
前后回路中产生的焦耳热之比 Q1∶Q2=2∶1.导轨足够长且电
阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良 好接触.求:
(1)棒在匀加速运动过程中,
通过电阻 R 的电荷量 q;
一、电磁感应中的能量问题 1.能量转化 导体切割磁感线或磁通量发生变化,在回路中产生感应 电流,这个过程中机械能或其他形式的能转化为电能 .具有 感应电流的导体在磁场中受安培力作用或通过电阻发热,又 可使电能转机化械为能 内或能 .因此,电磁感应过程中总是 伴随着能量的转化. 2.能量转化的实质:电磁感应现象的能量转化实质是其 他形式能和电能之间的转化. 3.热量的计算:电流做功产生的热量用焦耳定律计算, 公式为Q= I2Rt .

电磁感应中的动力学问题

电磁感应中的动力学问题
分析:ab 在F作用下向右加速运动,切割磁感应线,产生感应 电流,感应电流又受到磁场旳作用力f,画出受力图:
a=(F-f)/m
v
E=BLv
I= E/R
f=BIL
最终,当f=F 时,a=0,速度到达最大,
F=f=BIL=B2 L2 vm /R
a
vm=FR / B2 L2
vm称为收尾速度.
R f1
F
F
f2
合力减小,加速度a 减小,速度v 增大,I 和 F 增大
当 F+f=mgsinθ时 ab棒以最大速度v m 做匀速运动
F=BIL=B2 L2 vm /R
F
N
· f a
B
= mgsinθ- μ mgcosθ
vm= mg (sinθ- μ cosθ)R/ B2 L2
θ
mg
文档仅供参考,如有不当之处,请联系改正。
K
a
b
解: ab 棒由静止开始自由下落0.8s时速度大小为 文档仅供参考,如有不当之处,请联系改正。 v=gt=8m/s
则闭合K瞬间,导体棒中产生旳感应电流大小 I=Blv/R=4A
ab棒受重力mg=0.1N, 安培力F=BIL=0.8N. 因为F>mg,ab棒加速度向上,开始做减速运动,
产生旳感应电流和受到旳安培力逐渐减小,
电磁感应中产生旳感应电流在磁场中将受 文档仅供参考,如有不当之处,请联系改正。 到安培力旳作用,所以,电磁感应问题往往跟 力学问题联络在一起,处理此类电磁感应中旳 力学问题,不但要应用电磁学中旳有关规律, 如楞次定律、法拉第电磁感应定律、左右手定 则、安培力旳计算公式等,还要应用力学中旳 有关规律,如牛顿运动定律、动量定理、动能 定理、动量守恒定律、机械能守恒定律等。要 将电磁学和力学旳知识综合起来应用。

专题 电磁感应中的动力学和能量问题

专题 电磁感应中的动力学和能量问题

专题电磁感应中的动力学和能量问题一、电磁感应中的动力学问题1.所用知识及规律(1)安培力的大小由感应电动势E=BLv→感应电流→安培力(2)安培力的方向判断(3)牛顿第二定律及功能关系2.导体的两种运动状态(1)导体的平衡状态——静止状态或匀速直线运动状态.(2)导体的非平衡状态——加速度不为零.3.电磁感应中的动力学问题分析思路(1)电路分析:导体棒相当于,感应电动势相当于,导体棒的电阻相当于(2)受力分析:导体棒受到安培力及其他力,根据牛顿第二定律列出动力学方程(3)过程分析:由于安培力是变力,导体棒做变加速或变减速运动,当加速度为,达到稳定状态,最后做,根据共点力平衡条件列平衡方程例1:如图所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab边的边长L1=1 m,bc边的边长L2=0.6 m,线框的质量m=1 kg,电阻R=0.1 Ω,线框通过细线与重物相连,重物质量M=2 kg,斜面上ef(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B=0.5 T,如果线框从静止开始运动,进入磁场的最初一段时间做匀速运动,ef和gh的距离s=11.4 m,(取g=10 m/s2),求:(1)线框进入磁场前重物的加速度;(2)线框进入磁场时匀速运动的速度v ;(3)ab 边由静止开始到运动到gh 处所用的时间t ;(4)ab 边运动到gh 处的速度大小及在线框由静止开始运动到gh 处的整个过程中产生的焦耳热. 反思总结 分析电磁感应中动力学问题的基本思路即学即练1:如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则 ( ).A .t 2=t 1B .t 1> t 2C .a 2=2 a 1D .a 2=5 a 1即学即练2:如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab ,测得其在下滑过程中的最大速度为Vm.改变电阻箱的阻值R ,得到Vm 与R 的关系如图乙所示.已知轨道间距为L =2 m ,重力加速度g 取10 m/s 2,轨道足够长且电阻不计.(1)当R =0时,求杆ab 匀速下滑过程中产生的感应电动势E 的大小及杆中电流的方向;(2)求杆ab 的质量m 和阻值r ;(3)当R =4 Ω时,求回路瞬时电功率每增加1 W 的过程中合外力对杆做的功W.二、电磁感应中的能量问题1.电磁感应中的能量转化2.求解焦耳热Q的三种方法例2:间距为L=2 m的足够长的金属直角导轨如图甲所示放置,它们各有一边在同一水平面内,另一边垂直于水平面.质量均为m=0.1 kg的金属细杆ab、cd 与导轨垂直放置形成闭合回路.杆与导轨之间的动摩擦因数均为μ=0.5,导轨的电阻不计,细杆ab、cd的电阻分别为R1=0.6 Ω,R2=0.4 Ω.整个装置处于磁感应强度大小为B=0.50 T、方向竖直向上的匀强磁场中(图中未画出).当ab 在平行于水平导轨的拉力F作用下从静止开始沿导轨匀加速运动时,cd杆也同时从静止开始沿导轨向下运动.测得拉力F与时间t的关系如图乙所示.g=10 m/s2.(1)求ab杆的加速度a.(2)求当cd杆达到最大速度时ab杆的速度大小.(3)若从开始到cd杆达到最大速度的过程中拉力F做了5.2 J的功,通过cd杆横截面的电荷量为2 C,求该过程中ab杆所产生的焦耳热.反思总结即学即练3: 如图所示,足够长的光滑平行金属导轨MN、PQ竖直放置,一匀强磁场垂直穿过导轨平面,导轨的上端M与P间连接阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,其下滑距离与时间的关系如下表所示,导轨电阻不计,重力加速度g取10 m/s2.试求:(2)金属棒ab在开始运动的0.7 s内,电阻R上产生的焦耳热;(3)从开始运动到t=0.4 s的时间内,通过金属棒ab的电荷量.。

电磁感应动力学问题归纳

电磁感应动力学问题归纳

电磁感应动力学问题归纳重、难点解析:(一)电磁感应中的动力学问题电磁感应和力学问题的综合,其联系桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系,这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一个稳定状态,故解这类问题时正确进行动态分析确定最终状态是解题的关键。

1. 动态分析:求解电磁感应中的力学问题时,要抓好受力分析和运动情况的动态分析,导体在拉力作用下运动,切割磁感线产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,周而复始地循环,当循环结束时,加速度等于零,导体达到稳定运动状态。

此时a=0,而速度v通过加速达到最大值,做匀速直线运动;或通过减速达到稳定值,做匀速直线运动.2. 两种状态的处理:当导体处于平衡态——静止状态或匀速直线运动状态时,处理的途径是:根据合外力等于零分析。

当导体处于非平衡态——变速运动时,处理的途径是:根据牛顿第二定律进行动态分析,或者结合动量的观点分析.长为L,质量m,电阻R,导轨光滑,电阻不计4. 解决此类问题的基本步骤:(1)用法拉第电磁感应定律和楞次定律(包括右手定则)求出感应电动势的大小和方向(2)依据全电路欧姆定律,求出回路中的电流强度.(3)分析导体的受力情况(包含安培力,可利用左手定则确定所受安培力的方向).(4)依据牛顿第二定律列出动力学方程或平衡方程,以及运动学方程,联立求解。

问题1、电磁感应现象中的动态与终态分析问题:例:如图甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L. M 、P 两点间接有阻值为R 的电阻. 一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。

让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b 向a 方向看到的装置如图乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图; (2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度的最大值。

4-4电磁感应中的动力学问题

4-4电磁感应中的动力学问题

电磁感应的力学综合一、静力学综合1. 如图所示,两根平行光滑艮直金属导轨,其电阻不计,导体棒ab 和cd 跨在导轨上,ab 的电阻大于cd 的电阻.当cd 棒在外力F 2作用下匀速向右滑动时,ab 棒在外力F 1,作用下保持静止,则ab 棒两端电压U ab ,和cd 棒两端电压U cd .相比,U ab ________U cd ,外力F 1和F 2相比,F 1________F 2(均选填“>”、“=”或“<”)(磁场充满导轨区域).答案:=,=考点:法拉第电磁感应定律(动生电动势),电路(闭合电路欧姆定律),安培力,平衡力 2. (2017·天津高考)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R 。

金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下。

现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是( )A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小 答案:D解析:根据楞次定律,可判断ab 中感应电流方向从a 到b ,A 错误;磁场变化是均匀的,根据法拉第电磁感应定律,感应电动势恒定不变,感应电流I 恒定不变,B 错误;安培力F =BIL ,由于I 、L 不变,B 减小,所以ab 所受的安培力逐渐减小,根据力的平衡条件,静摩擦力逐渐减小,C 错误,D 正确。

考点:楞次定律,法拉第电磁感应定律,安培力,静力学3. 如图所示,水平放置的金属框架abcd ,宽度为0.5m ,匀强磁场与框架平面成30°角,磁场的磁感应强度为0.5T ,框架电阻不计,金属杆MN 置于框架上可以以无摩擦地滑动.MN 杆的质量为0.05kg ,电阻为0.2Ω,试求当MN 杆的水平速度为多大时,它对框架的压力恰为零?此时水平拉力应为多大?答案:v=3.7m/s,F=0.3N考点:法拉第电磁感应定律(动生电动势),静力学二、动力学综合〇感生电动势4. [多选]如图甲所示,竖直向上的匀强磁场的磁感应强度B 0=0.5 T ,并且以ΔBΔt =0.1 T/s的变化率均匀增加.图像如图乙所示,水平放置的导轨不计电阻,不计摩擦阻力,宽度L =0.5 m ,在导轨上放着一根金属棒MN ,电阻R 0=0.1 Ω,并且水平细线通过定滑轮悬吊着质量M =0.2 kg 的重物.导轨上的定值电阻R =0.4 Ω,与P 、Q 端点相连组成回路.又知PN 长d =0.8 m .在重物被拉起之前的过程中,下列说法中正确的是(g 取10 N/kg)( )A .电流的方向由P 到QB .电流的大小为0.1 AC .从磁感应强度为B 0开始计时,经过495 s 的时间,金属棒MN 恰能将重物拉起D .电阻R 上产生的热量约为16 J 答案:AC解析:根据楞次定律可知电流方向从M →N →P →Q →M ,故A 项正确;电流大小I =ΔB ·SΔt (R 0+R )=0.1×0.8×0.50.1+0.4A =0.08 A ,故B 项错误;要恰好把质量M =0.2 kg 的重物拉起,则F 安=T =Mg =2 N ,B ′=Mg IL =20.08×0.5 T =50 T .B ′=B 0+ΔBΔt·t =0.5+0.1t ,解得t =495s ,故C 项正确;电阻R 上产生的热量Q =I 2Rt ,故Q =(0.08)2×0.4×495 J =1.27 J ,故D 项错误.考点:法拉第电磁感应定律,动力学,图像,电路(电热) 5. (2011·浙江卷)如图甲所示,在水平面上固定有长为L =2m 、宽为d =1m 的金属“U ”型导轨,在“U ”型导轨右侧l =0.5m 范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如图乙所示.在t =0时刻,质量为m =0.1kg 的导体棒以v 0=1m /s 的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1Ω/m ,不计导体棒与导轨之间的接触电阻及地磁场的影响(取g =10m /s 2).(1)通过计算分析4s 内导体棒的运动情况; (2)计算4s 内回路中电流的大小,并判断电流方向; (3)计算4s 内回路产生的焦耳热.答案:(1)导体棒在1s 末已停止运动,以后一直保持静止,离左端位置仍为x =0.5m (2)0.2A ,电流方向是顺时针方向(3)0.04J解析:(1)导体棒先在无磁场区域做匀减速运动,有-μmg =mav 1=v 0+at x =v 0t +12at 2导体棒停止运动,即v 1=0并代入数据解得:t =1s ,x =0.5m ,导体棒没有进入磁场区域.导体棒在1s 末已停止运动,以后一直保持静止,离左端位置仍为x =0.5m (2)前2s 磁通量不变,回路电动势和电流分别为E =0,I =0后2s 回路产生的电动势为E =ΔΦΔt =ld ΔBΔt=0.1V 回路的总长度为5m ,因此回路的总电阻为R =5λ=0.5Ω电流为I =ER=0.2A 根据楞次定律,在回路中的电流方向是顺时针方向 (3)前2s 电流为零,后2s 有恒定电流,焦耳热为Q =I 2Rt =0.04J考点:法拉第电磁感应定律,动力学,电路6. (2003广东物理,18)如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r 0=0.10Ω/m ,导轨的端点P 、Q 用电阻可以忽略的导线相连,两导轨间的距离l =0.20m 。

(无答案)电磁感应中的动力学问题.docx

(无答案)电磁感应中的动力学问题.docx

电磁感应中的动力学问题分析一、基础知识1、安培力的大小p庆/2由感应电动势E = Blv,感应电流/= ”和安培力公式F = BII得F = ~^—2、安培力的方向判斷3、导体两种状态及处理方法⑴导体的平衡态——静止状态或匀速直线运动状态.处理方法:根据平衡条件(合外力等于零)列式分析.(2)导体的非平衡态——加速度不为零.处理方法:根4居牛顿第二定律进行动态分析或结合功能关系分析.4、解决电磁感应中的动力学问题的一般思路是“先电后力”,即:先做“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E和厂;再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便求解安培力;然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.二、练习1、(2012-r东理综・35)如图所示,质量为M的导体棒〃,垂直放在和距为/的平行光滑金属导轨上,导轨平面与水平面的夹角为0,并处于磁感应强度大小为3、方向垂直于导轨平而向上的匀强磁场中.左侧是水平放置、间距为d的平行金属板,R和凡分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.(1)调节R尸R,释放导体棒,当导体棒沿导轨匀速下滑时,求通过导体棒的电流/及导体棒的速率Q.⑵改变心待导体棒沿导轨再次匀速下滑后,将质量为加、带电荷量为+q的微粒水平射入金属板间,若它能匀速通过,求此时的他.2、如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂肓导轨平而向下,金属棒ab、cd与导轨构成闭合回路11都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2: 1.用一沿导轨方向的恒力F水平向右拉金属棒刃,经过足够长时间以后A.金属棒ab、cd都做匀速运动B.金属棒册上的电流方向是由b向aC.金属棒c〃所受安培力的人小等于2F/3D.两金属棒间距离保持不变3、如图所示,两根平行金属导轨固定在同一水平而内,间距为/,导轨左端连接一个电阻.一根质量为〃八电阻为F的金属杆ab垂直放置在导轨上.在杆的右方距杆为〃处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为〃.对杆施加一个大小为F、方向平行于导轨的恒力,使杆从静止开始运动,己知杆到达磁场区域时速度为s之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求:(1)导轨对杆ab的阻力大小Ff.(2)杆ab中通过的电流及其方向.(3)导轨左端所接电阻的阻值R.4、(2011•天津理综・11)如图所示,两根足够长的光滑平行金属导轨MN、PQ间距为/=0.5 m,其电阻不计,两导轨及其构成的平而均与水平面成30。

高考复习电磁感应中的动力学问题

高考复习电磁感应中的动力学问题

电磁感应中的动力学问题考纲 法拉第电磁感应定律(II)要求 楞次定律(II)命题 1.应用楞次定律、右手定则、左手定则或安培定则判断电流方向。

3.考查导体切割磁感线产生的感应电动势。

预测 4.电磁感应中的动力学问题。

1.楞次定律的理解和应用:(1)对楞次定律中“阻碍”的理解谁阻碍谁 感应电流的磁通量阻碍引起感应电流的磁场(原磁场)的磁通量变化阻碍什么 阻碍的是磁通量的变化,而不是阻碍磁通量本身阻碍效果 阻碍并非阻止,只是延缓了磁通量的变化,最终变化趋势不受影响(2)楞次定律可推广为,感应电流的效果总是阻碍产生感应电流的原因,具体方式:a.阻碍原磁通量的变化——增反减同;b.阻碍相对运动——来拒去留;c.使线圈有扩大或缩小的趋势——增缩减扩;d.阻碍原电流的变化(自感现象)——增反减同。

2.楞次定律、右手定则、左手定则、安培定则的比较:名称适用范围安培定则 电生磁电流的磁效应(运动电荷、电流产生的磁场)左手定则 电生动洛伦兹力、安培力左力右电判断力的方向用左手右手定则 动生电导体切割磁感线电磁感应判断电的方向用右手应试 技巧楞次定律 磁生电闭合回路中磁通量变化3.对导体切割磁感线产生感应电动势的公式 E=Blv 的理解:(1)正交性:B、l、v 两两垂直,实际问题中若不相互垂直,应取垂直的分量进行计算。

(2)有效性:l 为导体切割磁感线的有效长度,即导体在与 v、B 垂直的方向上的投影长度。

(3)平均性:导体平动切割磁感线时,若 v 为平均速度,则 E 为平均感应电动势。

(4)瞬时性:若 v 为瞬时速度,则 E 为对应的瞬时感应电动势。

(5)相对性:v 是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系。

4.电磁感应过程中力学对象与电学对象的关系:5.电磁感应中动力学问题的解题思路:(1)找准主动运动者,用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向; (2)根据等效电路图,求解回路中的感应电流大小及其方向,进而得到安培力的大小和方向; (3)分析安培力对导体运动状态的影响,定性分析导体的运动情况,从而得到感应电流的变化情况; (4)由牛顿第二定律或平衡条件列方程求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应动力学问题归纳重、难点解析:(一)电磁感应中的动力学问题电磁感应和力学问题的综合,其联系桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系,这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一个稳定状态,故解这类问题时正确进行动态分析确定最终状态是解题的关键。

1. 动态分析:求解电磁感应中的力学问题时,要抓好受力分析和运动情况的动态分析,导体在拉力作用下运动,切割磁感线产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,周而复始地循环,当循环结束时,加速度等于零,导体达到稳定运动状态。

此时a=0,而速度v通过加速达到最大值,做匀速直线运动;或通过减速达到稳定值,做匀速直线运动.2. 两种状态的处理:当导体处于平衡态——静止状态或匀速直线运动状态时,处理的途径是:根据合外力等于零分析。

当导体处于非平衡态——变速运动时,处理的途径是:根据牛顿第二定律进行动态分析,或者结合动量的观点分析.长为L,质量m,电阻R 光滑,电阻不计L,质量m,电阻R;导轨光滑,电阻不计4. 解决此类问题的基本步骤:(1)用法拉第电磁感应定律和楞次定律(包括右手定则)求出感应电动势的大小和方向(2)依据全电路欧姆定律,求出回路中的电流强度.(3)分析导体的受力情况(包含安培力,可利用左手定则确定所受安培力的方向). (4)依据牛顿第二定律列出动力学方程或平衡方程,以及运动学方程,联立求解。

问题1、电磁感应现象中的动态与终态分析问题:例:如图甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L. M 、P 两点间接有阻值为R 的电阻. 一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。

让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b 向a 方向看到的装置如图乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图; (2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度的最大值。

【解析】(1)重力mg ,竖直向下;支持力N ,垂直斜面向上;安培力F ,沿斜面向上,如图所示;(2)当ab 杆速度为v 时,感应电动势Blv E =,此时电路中电流R BlvR E I ==。

ab 杆受到安培力R vL B BIL F 22==, 根据牛顿运动定律,有R v L B sin mg ma 22-θ= mR vL B sin g a 22-θ=(3)当θ=sin mg R vL B 22时,ab 杆达到最大速度m v22m L B sin mgR v θ=变式1、【针对训练1】如图甲所示,CD 、EF 是两根足够长的固定平行金属导轨,两导轨间的距离为l ,导轨平面与水平面的夹角是θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B ,在导轨的C 、E 端连接一个阻值为R 的电阻。

一根垂直于导轨放置的金属棒ab ,质量为m ,从静止开始沿导轨下滑,求ab 棒的最大速度。

(要求画出ab 棒的受力图,已知ab 与导轨间的动摩擦因数μ,导轨和金属棒的电阻都不计)【解析】金属棒ab 下滑时电流方向及所受力如图乙所示,其中安培力R /v l B IlB F 22==,棒下滑的加速度m )R /v l B cos mg (sin mg a 22+θμ-θ=棒由静止下滑,当v 变大时,有下述过程发生;↑↓→↓→↑→v a F v 合,可知a 越来越小,当a=0时速度达到最大值,以后棒匀速运动。

当平衡时有:0R /v l B cos mg sin mg m 22=)+θμ(-θ∴.l B /R )cos (sin mg v 22m θμ-θ= 变式2、【针对训练2】如图所示,两根平滑的平行金属导轨与水平面成θ角放置。

导轨间距为L ,导轨上端接有阻值为R 的电阻,导轨电阻不计,整个电阻处在竖直向上,磁感应强度为B 的匀强磁场中,把一根质量为m 、电阻也为R 的金属圆杆MN ,垂直于两根导轨放在导轨上,从静止开始释放,求:(1)金属杆MN 运动的最大速度m v 的大小,(2)金属杆MN 达到最大速度的31时的加速度a 的大小。

【解析】金属杆MN 由静止释放后,沿导轨加速下滑时,切割磁感线产生感应电动势为θ=cos BLv E ,由MN 与电阻R 组成的闭合电路中感应电流为:θ==cos R 2BlvR E I①由右手定则可知金属杆中电流方向是从N 到M ,此时金属杆除受重力mg 、支持力N 外,还受到磁场力,即:R 2cos vL B BIL F 22θ==②金属杆受力示意图如图所示,金属杆沿斜面方向的合外力为:θ-θ=θ-θ=222cos R 2vL B sin mg cos F sin mg F 合根据牛顿第二定律有:macos R 2vL B sin mg 222=θ-θ③由③式可知,当a=0时,金属杆上滑的速度达最大值,由③式解得:θθ=cos L B tan mgR 2v 22m(2)将θθ==cos L B 3tan mgR 2v 31v 22m 代入③得: θ=θ-θ=⎪⎭⎫⎝⎛⋅θ-θ='sin mg 32sin mg 31sin mg v 31cos R 2L B sin mg F m 222合,而a m F '='合有:θ='sin g 32a【答案】①θθcos L B tan mgR 222 ②θsin g 32规律方法总结:对于滑棒类问题的动态分析问题,抓住受力情况,进行运动过程的动态分析是关键,既要注意感应电流的方向及安培力大小、方向的判断,又要善于运用牛顿运动定律与电磁学中有关力的知识综合运用。

问题2、双棒类运动模型问题分析:例:如图所示,质量都为m 的导线a 和b 静止放在光滑的无限长水平导轨上,两导轨间宽度为L ,整个装置处于竖直向上的匀强磁场中,磁场的磁感强度为B ,现对导线b 施以水平向右的恒力F ,求回路中的最大电流.【剖析】开始时导线b 做加速运动,回路中很快产生感应电流,根据右手定则与左手定则得出导线a 也将做加速运动,但此时b 的加速度大于a 的加速度,因此a 与b 的速度差将增大,据法拉第电磁感应定律,感应电流将增大,b 的加速度减小,但只要b 的加速度仍大于a 的加速度,a 、b 的速度差就会继续增大,所以当a 与b 的加速度相等时,速度差最大,回路中产生相应的感应电流也最大,设此时导线a 与b 的共同加速度为共a ,回路中电流强度为m I ,对导线a 有共安ma F = 对导线a 与b 系统有共ma 2F = 又L BI F m =安 可解得BL 2FI m =变式3、【针对训练3】如图所示,两条平行的长直金属细导轨KL 、PQ 固定于同一水平面内,它们之间的距离为l ,电阻可忽略不计;ab 和cd 是两个质量皆为m 的金属细杆,杆与导轨垂直,且与导轨接触良好,并可沿导轨无摩擦的滑动,两杆的电阻皆为R. 杆cd 的中点系一轻绳,绳的另一端绕过轻质定滑轮悬挂一质量为M 的物体,滑轮与转轴之间的摩擦不计,滑轮与杆cd 之间的轻绳处于水平伸直状态并与导轨平行. 导轨和金属细杆都处于匀强磁场中,磁场方向垂直于导轨所在平面向上,磁感应强度的大小为B. 现两杆与悬挂物都从静止开始运动,当ab 杆和cd 杆的速度分别达到v 1和v 2时,两杆加速度大小各为多少?【解析】重物M 下落使杆cd 做切割磁感线运动,产生感应电动势,同时在abdc 回路中形成感应电流,则ab 杆受安培力作用而向右做切割磁感线运动,ab 杆也产生感应电动势. 用E 和I 分别表示adbc 回路的感应电动势和感应电流的大小. 根据法拉第电磁感应定律和闭合电路欧姆定律可知)v v (Bl E 12-= )R 2/(E I =令F 表示磁场对每根杆的安培力的大小,则BIl F =.令a 1和a 2分别表示ab 杆、cd 杆和物体M 加速度的大小,T 表示绳中张力的大小. 由牛顿定律可知1ma F =22ma F T Ma T Mg =-=-由以上各式解得)Rm 2/()v v (l B a 12221-=]R )m M (2/[)]v v (l B MgR 2[a 12222+--=变式4、【针对训练4】(15分)如图,在水平面上有两条平行导电导轨MN 、PQ,导轨间距离为l ,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B ,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为m 1、m 2和R 1、R 2,两杆与导轨接触良好,与导轨间的动摩擦因数为μ,已知:杆1被外力拖动,以恒定的速度0v 沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。

解法一:设杆2的运动速度为v ,由于两杆运动时,两杆间和导轨构成的回路中的磁通量发生变化,产生感应电动势 )v v (Bl 0-=ε ①感应电流21R R I +ε=②杆2做匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③ 以P 表示杆2克服摩擦力做功的功率 gv m P 2μ= ④ 解得)]R R (l B gm v [g m P 2122202+μ-μ= ⑤解法二:以F 表示拖动杆1的外力,以I 表示由杆1、杆2和导轨构成的回路中的电流,达到稳定时,对杆1有 0BIl g m F 1=-μ- ①对杆2有 0g m BIl 2=μ- ② 外力F 的功率 0F Fv P = ③以P 表示杆2克服摩擦力做功的功率,则有01212F gv m )R R (I P P μ-+-= ④ 由以上各式得 )]R R (lB g m v [g m P 2122202+μ-μ= ⑤变式5、【针对训练5】如图所示,两根完全相同的“V ”字形导轨OPQ 与KMN 倒放在绝缘水平面上,两导轨都在竖直平面内且正对平行放置,其间距为L ,电阻不计,两条导轨足够长,所形成的两个斜面与水平面的夹角都是α. 两个金属棒ab 和b a ''的质量都是m ,电阻都是R ,与导轨垂直放置且接触良好. 空间有分别垂直于两个斜面的匀强磁场,磁感应强度均为B.如果两条导轨皆光滑,让b a ''固定不动,将ab 释放,则ab 达到的最大速度是多少?【解析】ab 运动后切割磁感线,产生感应电流,而后受到安培力,当受力平衡时,加速度为0,速度达到最大。

相关文档
最新文档