(含答案)电磁感应中的动力学问题
专题二十一 电磁感应中的动力学、能量和动量问题
第十二章 电磁感应专题二十一 电磁感应中的动力学、能量和动量问题核心考点五年考情命题分析预测电磁感应中的动力学问题2023:北京T18,浙江6月T19;2022:海南T18,浙江6月T21; 2021:全国甲T21,湖北T16 高考中常通过导体棒+导轨、导体框等模型考查电磁感应中力与运动、功与能、动量等力电综合问题,选择题和计算题都有考查,近年主要为计算题形式,试题综合性较强,难度较大.预计2025年高考可能会出现导体棒的受力及运动分析、电磁感应与动量定理和动量守恒定律相结合的综合性试题.电磁感应中的能量问题2023:北京T9,上海T19; 2022:全国乙T24; 2021:北京T7; 2019:北京T22电磁感应中的动量问题2023:全国甲T25,湖南T14; 2022:辽宁T15; 2019:全国ⅢT19题型1 电磁感应中的动力学问题1.导体受力与运动的动态关系2.两种运动状态状态特征处理方法平衡态 加速度为零根据平衡条件列式分析非平衡态加速度不为零根据牛顿第二定律结合运动学公式进行分析3.“四步法”分析电磁感应中的动力学问题命题点1“单棒+导轨”模型1.如图所示,水平面(纸面)内间距为l的平行金属导轨间接一电阻,质量为m、长度为l的金属杆置于导轨上.t=0时,金属杆在水平向右、大小为F的恒定拉力作用下由静止开始运动.t0时刻,金属杆进入磁感应强度大小为B、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g.求:(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值.答案(1)Blt0(Fm -μg)(2)B2l2t0m解析(1)设金属杆进入磁场前的加速度大小为a,由牛顿第二定律得F-μmg=ma设金属杆到达磁场左边界时的速度为v,由运动学公式有v=at0当金属杆以速度v在磁场中匀速运动时,由法拉第电磁感应定律得杆中的电动势为E=Blv 联立解得E=Blt0(Fm-μg)(2)设金属杆在磁场中匀速运动时,杆中的电流为I,根据闭合电路欧姆定律得I=ER式中R为电阻的阻值金属杆所受的安培力为F安=BIl因金属杆做匀速运动,由平衡条件得F-μmg-F安=0联立解得R=B 2l2t0 m.2.如图,两条平行导轨所在平面与水平面的夹角为θ,平行导轨间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并接触良好.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.金属棒和导轨的电阻可忽略不计.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系.答案(1)Q=CBLv(2)v=m(sinθ-μcosθ)m+B2L2Cgt解析(1)设金属棒下滑的速度大小为v,则产生的感应电动势为E=BLv平行板电容器两极板之间的电势差为U=E设此时电容器极板上积累的电荷量为Q,按定义有C=QU联立解得Q=CBLv(2)设经过时间t金属棒的速度大小为v,通过金属棒的电流为i.金属棒受到的安培力方向沿导轨向上,大小为f1=BLi设在时间间隔t~t+Δt内流经金属棒的电荷量为ΔQ,按定义有i=ΔQΔtΔQ也是平行板电容器在时间间隔t~t+Δt内增加的电荷量,由(1)中结果可知ΔQ=CBLΔv式中,Δv为金属棒的速度变化量,按定义有a=ΔvΔt金属棒受到的摩擦力方向沿导轨向上,大小为f2=μN式中,N是金属棒对导轨的正压力的大小,有N=mg cosθ金属棒在t时刻的加速度方向沿导轨向下,设其大小为a,根据牛顿第二定律有mg sinθ-f1-f2=ma联立解得a=m(sinθ-μcosθ)m+B2L2Cg可知金属棒做初速度为零的匀加速运动,t时刻金属棒的速度大小为v=m(sinθ-μcosθ)m+B2L2Cgt.方法点拨单棒+电阻模型物理模型水平拉力F恒定,金属棒和水平导轨的电阻不计,摩擦力不计动态分析设运动过程中某时刻棒的速度为v,加速度为a=Fm-B2L2vmR,a、v同向,随v的增大,a减小,当a=0时,v最大,I恒定最终状态运动形式匀速直线运动力学特征a=0,v最大,v m=FRB2L2电学特征I=BLv mR恒定单棒+电容器模型金属棒的初速度为零,水平拉力F恒定,棒和水平导轨的电阻不计,摩擦力不计↓运动过程分析:棒做加速运动,持续对电容器充电,则存在充电电流,有F-BIL=ma,I=ΔQΔt ,ΔQ=CΔU,ΔU=ΔE=BLΔv,联立可得F-CB2L2ΔvΔt=ma,其中ΔvΔt=a,则可得a=Fm+CB2L2↓金属棒做加速度恒定的匀加速直线运动.功能关系:W F=12mv2+E电命题点2线圈模型3.[矩形线圈]如图所示,水平匀强磁场存在于虚线框内,矩形线圈竖直下落,线圈平面始终与磁场方向垂直.如果线圈受到的磁场力总小于其重力,则它在1、2、3、4位置时的加速度大小关系为(B)A.a1>a2>a3>a4B.a1=a3>a2>a4C.a1=a3>a4>a2D.a4=a2>a3>a1解析线圈在位置3时,线圈中没有感应电流,因此只受重力作用,故a1=a3=g.线圈在位置2和位置4时都有感应电流,但在位置4时的感应电流I4大于在位置2时的感应电流I2,则F安2<F安4,而安培力均为阻力,故a4<a2<g,B正确.4.[正方形单匝线圈]如图所示,电阻为0.1Ω的正方形单匝线圈abcd的边长为0.2m,bc边与匀强磁场左边界重合.磁场的宽度等于线圈的边长,磁感应强度大小为0.5T.在水平拉力作用下,线圈以8m/s的速度向右匀速穿过磁场区域.求在上述过程中(1)线圈中感应电动势的大小E;(2)线圈所受拉力的大小F;(3)线圈中产生的热量Q.答案(1)E=0.8V(2)F=0.8N(3)Q=0.32J解析(1)感应电动势E=Blv代入数据得E=0.8V(2)感应电流I=ER拉力的大小等于线圈受到的安培力F=BIl解得F=B 2l2vR,代入数据得F=0.8N(3)运动时间t=2lv 由焦耳定律得Q=I2Rt解得Q=2B 2l3vR,代入数据得Q=0.32J.题型2电磁感应中的能量问题1.电磁感应中的能量转化闭合电路中产生感应电流的过程,是其他形式的能转化为电能的过程.电磁感应中能量问题的实质是电能的转化问题,桥梁是安培力.2.求解焦耳热的三种方法能量转化问题的分析程序:先电后力再能量命题点1 功能关系的应用5.[多选]如图,MN 和PQ 是电阻不计的平行金属导轨,其间距为L ,导轨弯曲部分光滑,平直部分粗糙,两部分平滑连接,平直部分右端接一个阻值为R 的定值电阻.平直部分导轨左边区域有宽度为d 、方向竖直向上、磁感应强度大小为B 的匀强磁场.质量为m 、电阻也为R 的金属棒从高度为h 处由静止释放,到达磁场右边界处恰好停止.已知金属棒与平直部分导轨间的动摩擦因数为μ,重力加速度大小为g ,金属棒与导轨始终垂直且接触良好,则金属棒穿过磁场区域的过程中( BD )A.通过金属棒的最大电流为Bd √2gℎ2RB.通过金属棒的电荷量为BdL 2RC.克服安培力所做的功为mghD.金属棒上产生的焦耳热为12mg (h -μd )解析 金属棒由静止释放下滑到弯曲部分底端,根据动能定理有mgh =12m v 02,金属棒在磁场中运动时产生的感应电动势E =BLv ,当金属棒刚进入磁场时,产生的感应电动势最大,感应电流最大,I max =BLv 02R=BL √2gℎ2R,A 错误;金属棒穿过磁场区域的过程中通过金属棒的电荷量q =I t =E2R t =ΔΦ2R =BdL2R ,B 正确;对整个过程由动能定理得mgh -W 克安-μmgd =0,金属棒克服安培力做的功W 克安=mgh -μmgd ,C 错误;由功能关系可得,金属棒上产生的焦耳热Q =12W 克安=12mg (h -μd ),D 正确.方法点拨常见的功能关系做功情况能量变化重力做功重力势能发生变化弹簧弹力做功弹性势能发生变化合外力做功动能发生变化做功情况能量变化除重力和系统内弹力以外的其他力做功机械能发生变化滑动摩擦力做功有内能产生静电力做功电势能发生变化安培力做正功电能转化为其他形式的能克服安培力做功(动生型电磁感应)其他形式的能转化为电能,并且克服安培力做多少功,就产生多少电能命题点2能量守恒定律的应用6.[多选]如图所示,间距为l的平行金属导轨与水平面间的夹角为θ,导轨电阻不计,与阻值为R的定值电阻相连,匀强磁场垂直穿过导轨平面,磁感应强度为B.有一质量为m、长为l的导体棒在ab位置以初速度v沿导轨向上运动,最远到达a'b'处,导体棒向上滑行的最远距离为x.已知导体棒的电阻也为R,与导轨之间的动摩擦因数为μ,重力加速度大小为g.导体棒与导轨始终保持垂直且接触良好,下列说法正确的是(BCD)A.导体棒受到的最大安培力为B2l2vRB.导体棒损失的机械能为12mv2-mgx sinθC.导体棒运动的时间为2mvR-B2l2x2mgR(sinθ+μcosθ)D.整个电路产生的焦耳热为12mv2-mgx(sinθ+μcosθ)解析根据E=Blv,可以知道速度最大时感应电动势最大,电流和安培力也最大,所以初始时刻导体棒受到的安培力最大,根据F=BIl,I=Blv2R ,可得F=B2l2v2R,故A错误;从初始位置到滑行最远时,损失的机械能为ΔE=12mv2-mgx sin θ,故B正确;导体棒向上滑动的过程,由动量定理可得B I lt+(mg sin θ+μmg cos θ)t=mv,而I t=ER t=ΔΦR=Blx2R,联立解得t=2mvR−B2l2x2mgR(sinθ+μcosθ),故C正确;导体棒上滑过程中克服重力、滑动摩擦力和安培力做功,根据能量守恒定律可得整个电路产生的焦耳热 为Q =12mv 2-mgx ( sin θ+μ cos θ),故D 正确. 命题拓展命题情境不变,命题角度变化若导轨光滑,导体棒受到一个平行于导轨向上的拉力作用,以初速度v 0沿导轨向上开始运动,可达到的最大速度为v 1.运动过程中拉力的功率恒定不变,其他条件不变,求拉力的功率.答案 P =mgv 1sinθ+B 2L 2v 122R解析 在导体棒运动过程中,拉力功率恒定,导体棒做加速度逐渐减小的加速运动,速度达到最大时,加速度为零,设此时拉力的大小为F ,安培力大小为F A ,有F -mg sin θ-F A =0.此时导体棒产生的感应电动势为E =BLv 1,回路中的感应电流为I =E2R ,导体棒受到的安培力F A =BIL ,拉力的功率P =Fv 1,联立上述各式解得P =mgv 1 sin θ+B 2L 2v 122R.7.[2023浙江6月]如图所示,质量为M 、电阻为R 、长为L 的导体棒,通过两根长均为l 、质量不计的导电细杆连在等高的两固定点上,固定点间距也为L .细杆通过开关S 可与直流电源E 0或理想二极管串接.在导体棒所在空间存在磁感应强度方向竖直向上、大小为B 的匀强磁场,不计空气阻力和其他电阻.开关S 接1,当导体棒静止时,细杆与竖直方向的夹角θ=π4;然后开关S 接2,棒从右侧开始运动完成一次振动的过程中( C )A.电源电动势E 0=√2Mg 2BLRB.棒产生的焦耳热Q =(1-√22)MglC.从左向右运动时,最大摆角小于π4D.棒两次过最低点时感应电动势大小相等解析 作出静止时导体棒的受力图如图所示,由于θ=π4,故安培力F =Mg ,又F =BIL ,电流I =E 0R ,解得E 0=MgR BL,A 错误;开关S 接2,导体棒先向左运动,回路中有电流,棒会产生焦耳热,然后由于重力的作用,棒向右运动,由于二极管的作用,此过程回路中无电流,棒不会产生焦耳热,故导体棒向右通过最低点时速度不为0,即E k >0,由能量守恒定律可知,棒完成一次振动的过程产生的焦耳热满足Q +E k =Mgl (1- cos θ),所以Q <Mgl (1- cos θ)=(1-√22)Mgl ,B 错误;导体棒从右向左摆动,会产生焦耳热,故由能量守恒定律可知,其从右向左运动到最左侧时摆角小于π4,由对称性可知导体棒从左向右摆动时,最大摆角也小于π4,C 正确;导体棒第二次通过最低点的速度小于第一次通过最低点的速度,故两次通过最低点的速度大小不等,由E =BLv 可知,产生的感应电动势大小也不相等,D 错误.题型3 电磁感应中的动量问题1.动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动,当题目中涉及速度v 、电荷量q 、运动时间t 、运动位移x 时常用动量定理求解.(1)单棒+水平导轨情境示例1水平放置的平行光滑导轨,间距为L ,左侧接有电阻R ,导体棒初速度为v 0,质量为m ,电阻不计,匀强磁场的磁感应强度为B ,导轨足够长且电阻不计,从开始运动至停下来求电荷量q-B I L Δt =0-mv 0,q =I Δt ,联立解得q =mv 0BL求位移x -B 2L 2v RΔt =0-mv 0,x =v Δt =mv 0R B 2L 2应用技巧 初、末速度已知的变加速运动,在用动量定理列出的式子中q =I Δt ,x =v Δt ;若已知q 或x 也可求末速度或初速度 (2)单棒+倾斜导轨情境示例2间距为L 的光滑平行导轨倾斜放置,倾角为θ,由静止释放质量为m 、接入电路的阻值为R 的导体棒,当通过横截面的电荷量为q 或下滑位移为x 时,速度达到v求运动时间-B I L Δt +mg sinθ·Δt =mv -0,q =I Δt ,-B 2L 2v RΔt +mg sinθ·Δt =mv -0,x=v Δt应用技巧用动量定理求时间需有其他恒力参与.若已知运动时间,也可求q 、x 、v中的任一个物理量2.动量守恒定律在电磁感应中的应用在两等长金属棒切割磁感线的系统中,两金属棒和水平平行金属导轨构成闭合回路,它们受到的安培力的合力为0,如果不计摩擦,它们受到的合力为0,满足动量守恒的条件,运用动量守恒定律解题比较方便.命题点1 动量定理在电磁感应中的应用8.[“单棒+电阻”模型]如图所示,足够长的光滑平行金属导轨固定在绝缘水平面上,导轨范围内存在磁场,其磁感应强度大小为B,方向竖直向下,导轨一端连接阻值为R的电阻.在导轨上垂直于导轨放一长度等于导轨间距L、质量为m的金属棒,其电阻为r.金属棒在水平向右的恒力F作用下从静止开始运动,经过时间t后开始匀速运动.金属棒与导轨接触良好,导轨的电阻不计.(1)求金属棒匀速运动时回路中的电流;(2)求金属棒匀速运动的速度大小以及在时间t内通过回路的电荷量;(3)若在时间t内金属棒运动的位移为x,求电阻R上产生的热量.答案(1)FBL (2)F(R+r)B2L2FtBL-mF(R+r)B3L3(3)[Fx-mF2(R+r)22B4L4]RR+r解析(1)金属棒匀速运动时,由平衡条件得F=BI m L,解得I m=FBL(2)根据闭合电路的欧姆定律得I m=BLvR+r解得v=F(R+r)B2L2通过回路的电荷量q=I t由动量定理得Ft-B I Lt=mv解得q=FtBL -mF(R+r)B3L3(3)由功能关系得Fx=Q+12mv2Q R=RR+rQ解得Q R=[Fx-mF2(R+r)22B4L4]R R+r.9.[不等间距上的双棒模型/多选]如图所示,光滑水平导轨置于匀强磁场中,磁场方向竖直向下,磁感应强度大小为B.左侧导轨间距为L,右侧导轨间距为2L,导轨均足够长.质量为m的导体棒ab和质量为2m的导体棒cd均垂直于导轨放置,处于静止状态.现瞬间给导体棒cd一水平向右的初速度v0,在此后的运动过程中,两棒始终在对应的导轨部分运动,始终与导轨垂直且接触良好.已知导体棒ab的电阻为R,cd的电阻为2R,导轨电阻不计.下列说法正确的是(AC)A.导体棒ab和cd组成的系统动量不守恒B.两棒最终以相同的速度做匀速直线运动C.导体棒ab最终的速度为23v0D.从导体棒cd 获得初速度到二者稳定运动的过程中,系统产生的焦耳热为89m v 02解析 导体棒cd 获得速度后,回路中产生感应电流,根据左手定则知导体棒cd 减速,导体棒ab 加速,当BLv ab =2BLv cd 时,回路中磁通量不变,没有感应电流,最终两棒做匀速直线运动,分别对两棒运用动量定理得-2B I Lt =2mv cd -2mv 0,B I Lt =mv ab ,联立解得v ab =23v 0,v cd =13v 0,故B 错误,C 正确;两导体棒受到的安培力大小不相等,系统受到的合力不为零,动量不守恒,A 正确;从导体棒cd 获得初速度到二者稳定运动的过程中,系统产生的焦耳热为Q =12·2m v 02-12m v ab 2-12·2m v cd 2,解得Q =23m v 02,故D 错误.10.[“电容器”模型/2024广东广州开学考试]如图所示,在水平面内固定着间距为L 的两根光滑平行金属导轨(导轨足够长且电阻忽略不计),导轨上M 、N 两点右侧处在方向垂直导轨平面向下、磁感应强度大小为B 的匀强磁场中.在导轨的左端接入电动势为E 、内阻不计的电源和电容为C 的电容器.先将金属棒a 静置在导轨上,闭合开关S 1、S 3,让a 运动速度达到v 0时断开S 1,同时将金属棒b 静置在导轨上,经过一段时间后,流经a 的电流为零.已知a 、b 的长度均为L ,电阻均为R ,质量均为m ,在运动过程中始终与导轨垂直并保持良好接触.(1)求开关S 1、S 3闭合,a 运动速度达到v 0时a 的加速度大小;(2)求b 产生的焦耳热;(3)若将棒a 、b 均静置在水平导轨上,闭合开关S 1、S 2,稍后再断开S 1同时闭合S 3,求两棒最终的速度大小.答案 (1)BL (E -BLv 0)mR(2)18m v 02(3)BLCE2m +B 2L 2C解析 (1)a 切割磁感线产生的电动势E 1=BLv 0由牛顿第二定律得B E -E 1RL =ma解得a =BL (E -BLv 0)mR(2)对a 、b 系统,由动量守恒定律得mv 0=2mv 1解得v 1=v2由能量守恒定律得系统产生的焦耳热Q =12m v 02-12·2m v 12解得Q =14m v 02b 产生的焦耳热Q b =12Q =18m v 02(3)闭合开关S1、S2,稍后再断开S1同时闭合S3,两棒同时加速,直到匀速运动.对电容器,放电量q=C(E-BLv)对a,某时刻经极短时间Δt,由动量定理得BILΔt=mΔv整个过程有∑BLΔq=∑mΔv即BL q2=mv解得两棒最终的速度v=BLCE2m+B2L2C.方法点拨无外力充电式基本模型(导体棒电阻为R,电容器电容为C,导轨光滑且电阻不计)电路特点导体棒相当于电源,电容器充电电流特点安培力为阻力,导体棒减速,E减小,有I=BLv-U CR,电容器充电U C变大,当BLv=U C时,I=0,F安=0,导体棒匀速运动运动特点和最终特征导体棒做加速度a减小的减速运动,最终做匀速运动,此时I=0,但电容器带电荷量不为零最终速度电容器充电电荷量:q=CU C最终电容器两端电压:U C=BLv对棒应用动量定理:mv-mv0=-B I L·Δt=-BLq,v=mv0m+CB2L2v-t图像无外力放电式基本模型(电源电动势为E,内阻不计,电容器电容为C,导轨光滑且电阻不计)电路特点电容器放电,相当于电源;导体棒受安培力而运动电流特点电容器放电时,导体棒在安培力作用下开始运动,同时阻碍放电,导致电流减小,直至电流为零,此时U C=BLv m运动特点和最终特征导体棒做加速度a 减小的加速运动,最终做匀速运动,此时I =0最大速度v m电容器充电电荷量:Q 0=CE放电结束时电荷量:Q =CU C =CBLv m电容器放电电荷量:ΔQ =Q 0-Q =CE -CBLv m对棒应用动量定理:mv m -0=B I L ·Δt =BL ΔQ ,v m =BLCE m +CB 2L 2v -t 图像命题点2 动量守恒定律在电磁感应中的应用11.[双棒模型——无外力/2021福建/多选]如图,P 、Q 是两根固定在水平面内的光滑平行金属导轨,间距为L ,导轨足够长且电阻可忽略不计.图中EFHG 矩形区域内有方向垂直导轨平面向上、磁感应强度大小为B 的匀强磁场.在t =t 1时刻,两均匀金属棒a 、b 分别从磁场边界EF 、GH 进入磁场,速度大小均为v 0;一段时间后,流经a 棒的电流为0,此时t =t 2,b 棒仍位于磁场区域内.已知金属棒a 、b 由相同材料制成,长度均为L ,电阻分别为R 和2R ,a 棒的质量为m .在运动过程中两金属棒始终与导轨垂直且接触良好,a 、b 棒没有相碰,则( AD )A.t 1时刻a 棒的加速度大小为2B 2L 2v 03mRB.t 2时刻b 棒的速度为0C.t 1~t 2时间内,通过a 棒横截面的电荷量是b 棒的2倍D.t 1~t 2时间内,a 棒产生的焦耳热为29m v 02解析 在t =t 1时刻,两均匀金属棒a 、b 分别从磁场边界EF 、GH 进入磁场,速度大小均为v 0,由右手定则可判断出两金属棒产生的感应电流方向都是逆时针方向,产生的感应电动势都是BLv 0,由闭合电路欧姆定律可得,t 1时刻a 金属棒中的感应电流I =2BLvR+2R =2BLv 03R,受到的安培力F =BIL =2B 2L 2v 03R,由牛顿第二定律F =ma 可得,t 1时刻a 棒的加速度大小为a =2B 2L 2v 03mR,选项A 正确;由于金属棒a 、b 串联构成回路,所以在t 1~t 2时间内,通过a 棒横截面的电荷量与b 棒的相同,选项C 错误;由于金属棒a 、b 电阻分别为R 和2R ,金属棒a 、b 串联构成回路,二者电流相等,由焦耳定律可知金属棒a 、b 产生的焦耳热之比为1∶2,设t 1~t 2时间内,a 棒产生的焦耳热为Q ,则b 棒产生的焦耳热为2Q ,又两者材料相同,由电阻定律可知,金属棒a 的横截面积为b 的2倍,故体积为b 的2倍,质量为b 的2倍,即b 的质量为0.5m ,t =t 2时刻流经a 棒的电流为0,且b 棒仍位于磁场区域内,说明金属棒a 、b 具有共同速度,由动量守恒定律有mv 0-0.5mv 0=1.5mv ,解得v =v03,由能量守恒定律有12m v 02+12×0.5m v 02=Q +2Q +12×1.5m v 2,解得Q =29m v 02,选项B 错误,D正确.12.[双棒模型——有外力]如图所示,MN 、PQ 为水平放置的足够长平行光滑导轨,导轨间距L =1m ,导轨上放置两根垂直导轨的导体棒ab 和cd ,并与导轨接触良好,每根导体棒的质量均为m =2kg ,接入导轨间的部分电阻R =2Ω,整个装置处于垂直于导轨平面向下的匀强磁场中,磁感应强度大小B =2T ,现对导体棒ab 施加向右的F =10N 的水平恒力,经过一段时间两导体棒达到恒定的速度差,若某时刻导体棒ab 的速度为10m/s ,且两导体棒距离d =2m ,此时撤去外力,最终两导体棒达到稳定状态,导轨电阻不计,试求:(1)两导体棒达到恒定的速度差时,其加速度大小;(2)撤去外力后回路中产生的热量;(3)最终达到稳定状态时两导体棒间的距离.答案 (1)2.5m/s 2 (2)12.5J (3)7m解析 (1)对两导体棒的运动状态进行分析,导体棒ab 做加速度减小、速度增大的变加速运动,导体棒cd 做加速度增大、速度增大的变加速运动,最终两导体棒达到相同加速度,有恒定的速度差.由牛顿第二定律可知,对导体棒ab 有F -F 安=ma对导体棒cd 有F 安=ma联立解得a =F2m =2.5m/s 2.(2)当导体棒ab 的速度v 1=10m/s 时,设此时导体棒cd 的速度为v 2,对导体棒cd 由牛顿第二定律有BBL (v 1-v 2)2RL =ma得v 2=5m/s撤去外力后,两导体棒在安培力作用下最终达到共同速度v ,由动量守恒定律可知mv 1+mv 2=2mv得v =7.5m/s此过程回路产生的热量Q =12m v 12+12m v 22-12×2mv 2得Q =12.5J.(3)设达到稳定状态时两导体棒间的距离为x ,对导体棒ab ,由动量定理有-B I Lt =m (v -v 1)此过程中通过回路的电荷量q =I t =BL (x -d )2R联立解得x =7m.方法点拨双棒无外力双棒有外力示意图F 为恒力动力学观点导体棒1受安培力的作用做加速度逐渐减小的减速运动,导体棒2受安培力的作用做加速度逐渐减小的加速运动,最终两棒以相同的速度做匀速直线运动导体棒1做加速度逐渐减小的加速运动,导体棒2做加速度逐渐增大的加速运动,最终两棒以相同的加速度做匀加速直线运动动量观点系统动量守恒系统动量不守恒能量观点 棒1动能的减少量=棒2动能的增加量+焦耳热力F 做的功=棒1的动能+棒2的动能+焦耳热1.[电磁感应中的动力学+能量+动量/2023北京]如图所示,光滑水平面上的正方形导线框,以某一初速度进入竖直向下的匀强磁场并最终完全穿出.线框的边长小于磁场宽度.下列说法正确的是( D )A.线框进磁场的过程中电流方向为顺时针方向B.线框出磁场的过程中做匀减速直线运动C.线框在进和出的两过程中产生的焦耳热相等D.线框在进和出的两过程中通过导线横截面的电荷量相等解析线框进入磁场→线框右侧切割磁感线电流方向为逆时针方向,A 错线框进、出磁场的过程中,F 安为阻力→v ↓→F 安↓→线框进、出磁场的过程均为加速度减小的减速运动,B 错线框进、出磁场的两过程中ΔΦ相同,q 相同,D 对安培力的冲量I 安=BI l ·Δt I 安=Blq线框进入磁场瞬间速度为v 1,完全进入磁场速度为v 2{动量定理:-Blq =mv 2-mv 1=m (v 2-v 1)能量守恒定律:Q 1=12mv 12-12mv 22=12m (v 1+v 2)(v 1-v 2)线框离开磁场瞬间速度为v 3{ 动量定理:-Blq =mv 3-mv 2=m (v 3-v 2)能量守恒定律:Q 2=12mv 22-12mv 32=12m (v 2+v 3)(v 2-v 3)v 1+v 2>v 2+v 3且v 1-v 2=v 2-v 3,则Q 1>Q 2,C 错一题多解 由楞次定律可知线框进磁场的过程中电流方向为逆时针方向,出磁场的过程中电流方向为顺时针方向,A 错;对线框进行受力分析,线框在进、出磁场时会受到安培力的作用,安培力均为阻力,线框全部在磁场中时不受安培力的作用,故线框在进、出磁场的过程中会做减速运动,全部在磁场的过程中做匀速运动,又F 安=BIl ,I =E R 总,E =Blv ,则F 安=B 2l 2v R 总,故线框进、出磁场的过程中所受安培力在减小,做加速度减小的减速运动,B 错;Q =F —安·l =B 2l 3v —R 总,且结合B 项的分析可知v —进>v —出,故线框在进磁场的过程中产生的热量大于在出磁场的过程中产生的热量,C 错;结合公式q =I —Δt 、I —=E—R 总、E —=Bl v —可得q =Blv —Δt R 总,又线框进、出磁场过程中的位移v —Δt 均为线框边长l ,故线框进、出磁场过程中通过导线横截面的电荷量相等,D 对.2.[电磁感应中的动力学+图像理解+能量/2023上海]如图(a ),单匝矩形线框cdef 位于倾角θ=30°的斜面上,斜面上有一长度为D 的匀强磁场区域,磁场方向垂直于斜面向上,磁感应强度大小为B =0.5T ,已知线框边长cd =D =0.4m ,质量m =0.1kg ,总电阻R =0.25Ω.现对线框施加一沿斜面向上的恒力F 使之向上运动,运动一段时间后,撤去外力F .线框与斜面间的动摩擦因数μ=√33,线框速度随时间变化的图像如图(b )所示.求:(重力加速度g 取9.8m/s 2)图(a ) 图(b )(1)外力F 的大小;(2)cf 的长度L ;。
电磁感应中的动力学问题(上)
02
电磁感应基础
法拉第电磁感应定律
总结词
法拉第电磁感应定律描述了磁场变化时会在导体中产生电动势的物理现象。
详细描述
法拉第通过实验发现,当磁场相对于导体发生变化时,会在导体中产生电动势, 进一步导致电流的产生。这个定律是电磁感应现象的基本规律,为电磁感应中 的动力学问题提供了理论基础。
楞次定律
总结词
04
电磁感应中的动力学问题
电磁力对物体运动的影响
80%
洛伦兹力
在电磁场中,带电粒子受到的力 称为洛伦兹力,它对物体的运动 轨迹和速度产生影响。
100%
电磁阻尼
当物体在变化的磁场中运动时, 会受到电磁阻尼作用,使物体的 速度逐渐减小。
80%
电磁驱动
当变化的磁场作用于导体时,会 在导体中产生感应电流,这个电 流又会受到磁场的作用力,从而 使物体运动。
ቤተ መጻሕፍቲ ባይዱ
能量守恒定律
总结词
能量守恒定律是描述自然界中能量不会 消失也不会凭空产生的规律。
VS
详细描述
能量守恒定律表述为能量既不会凭空产生 ,也不会凭空消失,它只会从一种形式转 化为另一种形式,或者从一个物体转移到 另一个物体,而能量的总量保持不变。这 个定律是自然界中最基本的定律之一,适 用于任何形式的能量转换和转移过程。
电磁炮的应用包括军事打击、 反导系统和太空探索等,其发 展对于提高武器性能和战略威 慑力具有重要意义。
电磁悬浮的应用与原理
电磁悬浮是一种利用电磁感应原理实 现物体悬浮的技术,具有无接触、低 磨损、高稳定性和长寿命等优点。
电磁悬浮的应用包括磁悬浮列车、磁 悬浮轴承、磁悬浮陀螺仪等,对于提 高运输效率、减小机械磨损和实现高 精度测量具有重要意义。
12专题:电磁感应中的动力学、能量、动量的问题(含答案)
12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。
一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。
金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。
求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。
二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。
导轨顶端连接一个阻值为1 Ω的电阻。
在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。
质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。
金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。
(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。
三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。
2020届高考物理小题专题狂练18:电磁感应中的动力学与能量问题(附解析)
2020届高考物理小题专题狂练18:电磁感应中的动力学与能量问题(附解析)一、考点内容(1)导体棒切割磁感线运动时的动力学问题;(2)电磁感应中的能量转化问题;(2)电磁感应中的动量与能量问题。
二、考点突破1.如图所示装置,电源的电动势E=8 V,内阻r1=0.5 Ω,两光滑金属导轨平行放置,间距d=0.2 m,导体棒ab用等长绝缘细线悬挂并刚好与导轨接触,ab左侧为水平直轨道,右侧为半径R=0.2 m的竖直圆弧导轨,圆心恰好为细线悬挂点,整个装置处于竖直向下的、磁感应强度B=0.5 T的匀强磁场中。
闭合开关后,导体棒沿圆弧运动,已知=0.5 Ω,g取10 m/s2,不考虑运动过程中产生的反电导体棒的质量m=0.06 kg,电阻r2动势,则()A.导体棒ab所受的安培力方向始终与运动方向一致B.导体棒在摆动过程中所受安培力F=8 NC.导体棒摆动过程中的最大动能0.8 JD.导体棒ab速度最大时,细线与竖直方向的夹角θ=53°2.(多选)如图所示,间距为l=1 m的导轨PQ、MN由电阻不计的光滑水平导轨和与水平面成37°角的粗糙倾斜导轨组成,水平导轨和倾斜导轨都足够长。
导体棒ab、cd的质量均为m=1 kg、长度均为l=1 m、电阻均为R=0.5 Ω,ab棒静止在水平导轨上,cd棒静止在倾斜导轨上,整个装置处于方向竖直向下的匀强磁场中,磁感应强度的大小B= 2 T。
现ab棒在水平外力F作用下由静止开始沿水平导轨运动,当ab棒的运动速度达到一定值时cd棒开始滑动。
已知cd棒与倾斜导轨间的动摩擦因数为μ=0.8,且cd棒受到的最大静摩擦力等于滑动摩擦力,两导体棒与导轨始终接触良好,重力加速度g =10 m/s2,sin 37°=0.6,cos 37°=0.8。
关于该运动过程,下列说法正确的是()A.cd棒所受的摩擦力方向始终沿倾斜导轨向上B.cd棒所受的摩擦力方向先沿倾斜导轨向上后沿倾斜导轨向下C.cd棒开始滑动时,ab棒的速度大小为19.375 m/sD.cd棒开始滑动时,ab棒的速度大小为9.375 m/s3.(多选)如图所示,在光滑的水平面上,有一竖直向下的匀强磁场,分布在宽度为L滑过磁的区域内,现有一边长为d(d<L)的正方形闭合线框以垂直于磁场边界的初速度v场,线框刚好能穿过磁场,运动过程中线框靠近磁场左边界的一边始终与磁场边界平行,下列说法正确的是()A.线框在滑进磁场的过程与滑出磁场的过程均做变加速直线运动B.线框在滑进磁场的过程中与滑出磁场的过程中通过线框横截面的电荷量相同C.线框在滑进磁场的过程中速度的变化量与滑出磁场的过程中速度的变化量不同D.线框在滑进与滑出磁场的过程中产生的热量Q1与Q2之比为3∶14.(多选)在如图所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小均为B的匀强磁场区域,区域Ⅰ的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场宽度HP及PN均为L,一个质量为m、电阻为R、边长也为L的正方形导线框abcd,由静止开始沿斜面下滑,t时刻ab边刚越过GH进入磁场Ⅰ区域,此时导线框恰好以速1度v 1做匀速直线运动;t 2时刻ab 边下滑到JP 与MN 的中间位置,此时导线框又恰好以速度v 2做匀速直线运动。
高中物理新高考考点复习40 电磁感应中的动力学、能量与动量问题
考点规范练40电磁感应中的动力学、能量与动量问题一、单项选择题1.如图所示,在光滑绝缘水平面上,有一矩形线圈以一定的初速度进入匀强磁场区域,线圈全部进入匀强磁场区域时,其动能恰好等于它在磁场外面时的一半,磁场区域宽度大于线圈宽度,则( )A.线圈恰好在完全离开磁场时停下B.线圈在未完全离开磁场时即已停下C.线圈在磁场中某个位置停下D.线圈能通过场区不会停下2.如图所示,两光滑平行金属导轨间距为l ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B 。
电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计。
现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时( )A.电容器两端的电压为零B.电阻两端的电压为BlvC.电容器所带电荷量为CBlvD.为保持MN 匀速运动,需对其施加的拉力大小为B 2l 2vR3.(2021·辽宁模拟)如图所示,间距l=1 m 的两平行光滑金属导轨固定在水平面上,两端分别连接有阻值均为2 Ω的电阻R 1、R 2,轨道有部分处在方向竖直向下、磁感应强度大小为B=1 T 的有界匀强磁场中,磁场两平行边界与导轨垂直,且磁场区域的宽度为d=2 m 。
一电阻r=1 Ω、质量m=0.5 kg 的导体棒ab 垂直置于导轨上,导体棒现以方向平行于导轨、大小v 0=5 m/s 的初速度沿导轨从磁场左侧边界进入磁场并通过磁场区域,若导轨电阻不计,则下列说法正确的是( )A.导体棒通过磁场的整个过程中,流过电阻R 1的电荷量为1 CB.导体棒离开磁场时的速度大小为2 m/sC.导体棒运动到磁场区域中间位置时的速度大小为3 m/sD.导体棒通过磁场的整个过程中,电阻R 2产生的电热为1 J4.如图所示,条形磁体位于固定的半圆光滑轨道的圆心位置,一半径为R 、质量为m 的金属球从半圆轨道的一端沿半圆轨道由静止下滑,重力加速度大小为g 。
高中物理(新人教版)选择性必修二课后习题:第二章 电磁感应中的动力学、能量和动量问题【含答案及解析】
第二章电磁感应习题课:电磁感应中的动力学、能量和动量问题课后篇素养形成必备知识基础练1.(多选)如图所示,有两根和水平方向成α角的光滑平行的金属轨道,间距为l,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B。
一根质量为m的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋于一个最大速度v m,除R外其余电阻不计,则()A.如果B变大,v m将变大B.如果α变大,v m将变大C.如果R变大,v m将变大D.如果m变小,v m将变大金属杆从轨道上滑下切割磁感线产生感应电动势E=Blv,在闭合电路中形成电流I=BlvR,因此金属杆从轨道上滑下的过程中除受重力、轨道的弹力外还受安培力F作用,F=BIl=B 2l2vR,先用右手定则判定感应电流方向,再用左手定则判定出安培力方向,如图所示。
根据牛顿第二定律,得mg sin α-B 2l2vR=ma,当a=0时,v=v m,解得v m=mgRsinαB2l2,故选项B、C正确。
2.(多选)如图所示,两足够长的平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成矩形闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1。
用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后()A.金属棒ab、cd都做匀速运动B.金属棒ab上的电流方向是由b向aC.金属棒cd所受安培力的大小等于2F3D.两金属棒间距离保持不变ab、cd进行受力和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab速度小于金属棒cd速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向是由b到a,A、D错误,B正确;以两金属棒整体为研究对象有F=3ma,隔离金属棒cd分析F-F安=ma,可求得金属棒cd所受安培力的大小F安=23F,C正确。
3.如图所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速完全进入磁场,两次速度大小相同,方向均垂直于MN。
2021高考人教版物理每日一练:专题81 电磁感应中的动力学问题 (含解析)
专题81 电磁感应中的动力学问题1.如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R .金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法中正确的是( )A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小 2.如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L ,左端接有阻值为R 的电阻,一质量为m 、长度为L 的匀质金属棒cd 放置在导轨上,金属棒的电阻为r ,整个装置置于方向竖直向上的匀强磁场中,磁场的磁感应强度为B .金属棒在水平向右的外力作用下,由静止开始做加速度大小为a 的匀加速直线运动,经过的位移为s 时,则( )A .金属棒中感应电流方向由d 到cB .金属棒产生的感应电动势为BL asC .金属棒中感应电流为BL 2as R +rD .水平拉力F 的大小为B 2L 22as R +r3.(多选)如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B,及一根质量为m的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m,则()A.如果B增大,v m将变大B.如果α变大,v m将变大C.如果R变大,v m将变大D.如果m变小,v m将变大4.(多选)如图所示,光滑的“”形金属导体框竖直放置,质量为m 的金属棒MN与框架接触良好.磁感应强度分别为B1、B2的有界匀强磁场方向相反,但均垂直于框架平面,分别处在abcd和cdef区域.现从图示位置由静止释放金属棒MN,当金属棒进入磁场B1区域后,恰好做匀速运动.以下说法中正确的是()A.若B2=B1,金属棒进入B2区域后将加速下滑B.若B2=B1,金属棒进入B2区域后仍将保持匀速下滑C.若B2<B1,金属棒进入B2区域后可能先加速后匀速下滑D.若B2>B1,金属棒进入B2区域后可能先减速后匀速下滑5.(多选)不计电阻的平行金属导轨与水平面成某角度固定放置,两完全相同的金属导体棒a、b垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面,如图所示.现用一平行于导轨的恒力F 拉导体棒a,使其沿导轨向上运动.在a运动过程中,b始终保持静止,则以下说法正确的是()A.导体棒a做匀变速直线运动B.导体棒b所受摩擦力可能变为0C.导体棒b所受摩擦力可能先增大后减小D.导体棒b所受摩擦力方向可能沿导轨向下6.[2020·全国卷Ⅱ]CT扫描是计算机X射线断层扫描技术的简称,CT扫描机可用于对多种病情的探测.图(a)是某种CT机主要部分的剖面图,其中X射线产生部分的示意图如图(b)所示.图(b)中M、N之间有一电子束的加速电场,虚线框内有匀强偏转磁场;经调节后电子束从静止开始沿带箭头的实线所示的方向前进,打到靶上,产生X射线(如图中带箭头的虚线所示);将电子束打到靶上的点记为P点.则()A.M处的电势高于N处的电势B.增大M、N之间的加速电压可使P点左移C.偏转磁场的方向垂直于纸面向外D.增大偏转磁场磁感应强度的大小可使P点左移7.(多选)如图甲所示,光滑“∠”型金属支架ABC固定在水平面里,支架处在垂直于水平面向下的匀强磁场中,一金属导体棒EF放在支架上,用一轻杆将导体棒与墙固定连接,导体棒与金属支架接触良好,磁场随时间变化的规律如图乙所示,则下列说法正确的是()A.t1时刻轻杆对导体棒的作用力最大B.t2时刻轻杆对导体棒的作用力为零C.t2到t3时间内,轻杆对导体棒的作用力先增大后减小D.t2到t4时间内,轻杆对导体棒的作用力方向不变8.如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料,不同粗细的导线绕制(Ⅰ为细导线).两线圈在距磁场上界面h高处由静止开始自由下落,再进入磁场,最后落到地面.运动过程中,细圈平面始终保持在竖直平面内且下边缘平行于磁场上边界.设线圈Ⅰ、Ⅱ落地时的速度大小分别为v1、v2,在磁场中运动时产生的热量分别为Q1、Q2.不计空气阻力,则()A.v1<v2,Q1<Q2B.v2=v2,Q1=Q2C.v1<v2,Q1>Q2D.v1=v2,Q1<Q29.[2020·全国卷Ⅰ](多选)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直.ab、dc足够长,整个金属框电阻可忽略.一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行.经过一段时间后()A.金属框的速度大小趋于恒定值B.金属框的加速度大小趋于恒定值C.导体棒所受安培力的大小趋于恒定值D.导体棒到金属框bc边的距离趋于恒定值10.[2019·全国卷Ⅱ](多选)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab、cd均与导轨垂直,在ab与cd之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ、MN先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ进入磁场时加速度恰好为零.从PQ进入磁场开始计时,到MN离开磁场区域为止,流过PQ的电流随时间变化的图象可能正确的是()11.如图甲所示,一水平放置的线圈,匝数n=100匝,横截面积S=0.2 m2,电阻r=1 Ω,线圈处于水平向左的均匀变化的磁场中,磁感应强度B1随时间t的变化关系如图乙所示.线圈与足够长的竖直光滑导轨MN、PQ连接,导轨间距l=20 cm,导体棒ab与导轨始终接触良好,导体棒ab的电阻R=4 Ω,质量m=5 g,导轨的电阻不计,导轨处在与导轨平面垂直向里的匀强磁场中,磁感应强度B2=0.5 T.t =0时刻,导体棒由静止释放,g取10 m/s2,求:(1)t=0时刻,线圈内产生的感应电动势大小;(2)t=0时,导体棒ab两端的电压和导体棒的加速度大小;(3)导体棒ab达到稳定状态时,导体棒重力的瞬时功率.12.如图所示,平行金属导轨宽度L=1 m,固定在水平面内,左端A、C间接有电阻R=4 Ω.金属棒DE质量m=0.36 kg,电阻r=1 Ω,垂直导轨放置,棒与导轨间的动摩擦因数为0.5,到AC的距离x=1.5 m.匀强磁场与水平面成37°角斜向左上方,与金属棒垂直,磁感应强度随时间t变化的规律是B=(1+2t) T.设最大静摩擦力等于滑动摩擦力,不计导轨电阻,取sin37°=0.6,cos37°=0.8,g=10 m/s2.求经多长时间棒开始滑动.13.[2020·贵阳市模拟]如图所示,两光滑平行金属导轨置于水平面(纸面)内,轨道间距为l,左端连有阻值为R的电阻.一金属杆置于导轨上静止,金属杆右侧存在磁感应强度大小为B、方向竖直向下的匀强磁场区域.现给金属杆施加一水平向右的恒力,使其进入磁场区域做初速度为零的变加速直线运动,到达图中虚线位置(仍在磁场中)时速度达到最大,最大值为2 2v0,金属杆与导轨始终保持垂直且接触良好.除左端所连电阻外,其他电阻忽略不计.求:(1)给金属杆施加的水平向右恒力的大小;(2)金属杆达到最大速度时,电阻R的热功率.14.[2019·天津卷]如图所示,固定在水平面上间距为l的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN和PQ长度也为l、电阻均为R,两棒与导轨始终接触良好.MN两端通过开关S与电阻为R的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k.图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B.PQ的质量为m,金属导轨足够长,电阻忽略不计.(1)闭合S,若使PQ保持静止,需在其上加多大的水平恒力F,并指出其方向;(2)断开S,PQ在上述恒力作用下,由静止开始到速度大小为v的加速过程中流过PQ的电荷量为q,求该过程安培力做的功W.专题81 电磁感应中的动力学问题1.D 磁感应强度均匀减小,磁通量减小,根据楞次定律得ab 中的感应电流方向由a 到b ,A 错误;由于磁感应强度均匀减小,由E =ΔBS Δt 知感应电动势恒定,则ab 中的感应电流不变,B 错误;根据F =BIL 知,电流不变,B 均匀减小,则安培力减小,C 错误;金属棒在安培力和静摩擦力作用下处于平衡状态,有f =F ,安培力减小,则静摩擦力减小,D 正确.2.C 根据楞次定律可知电流I 的方向从c 到d ,A 错误;设金属棒cd 的位移为s 时速度为v ,有v 2=2as ,金属棒产生的电动势为E =BL v =BL 2as ,B 错误;金属棒中感应电流的大小为I =E R +r,得I =BL 2as R +r,C 正确;金属棒受到的安培力大小为F ′=BIL ,根据牛顿第二定律可得F -F ′=ma ,解得F =B 2L 22as R +r+ma ,D 错误. 3.BC金属杆下滑时产生感应电动势E =BL v ,闭合电路的电流:I =E R ,由安培力公式:F 安=BIL ,联立得F 安=B 2L 2v R ,以金属杆为研究对象,由牛顿第二定律有:mg sin θ-B 2L 2v R =ma ,知金属杆做加速度减小的变加速运动,当a =0时速度达最大:v m =mgR sin αB 2L 2,可知,α变大,v m将变大;R 变大,v m 将变大;B 增大,v m 将变小;m 变小,v m 将变小,故A 、D 错误,B 、C 正确.4.BCD 若B 2=B 1,金属棒进入B 2区域后,磁场反向,回路电流反向,故安培力不变,金属棒进入B 2区域后仍将匀速下滑,A 错误,B 正确;若B 2<B 1,金属棒进入B 2区域后,安培力方向不变但大小变小,由F =BIL =B BL v R L =B 2L 2v R 知金属棒进入B 2区域后可能先加速后匀速下滑,C 正确;同理,若B 2>B 1,金属棒进入B 2区域后可能先减速后匀速下滑,D 正确.5.BD 导体棒a 所受的合力为F 合=F -f -mg sin θ-BIL =F -f-mg sin θ-B 2L 2v R ,由于导体棒的速度逐渐增加,则导体棒a 做加速度逐渐减小的加速直线运动,最后达到匀速,安培力先增大后不变.导体棒b 受的安培力沿导轨向上,且不断增大,最后保持不变.导体棒b 最终受的静摩擦力有三种情况:第一种是静摩擦力为0,此时BIL =mg sin θ;第二种是静摩擦力向上,此时BIL +f ′=mg sin θ,f ′=mg sin θ-BIL ,由于最初是f =mg sin θ,故摩擦力先减小后不变;第三种是静摩擦力向下,此时BIL =f ″+mg sin θ,f ″=BIL -mg sin θ,由于最初是f =mg sin θ,所以静摩擦力的变化可能是先减小后增大,B 、D 正确.6.D电子带负电,故必须满足N 处的电势高于M 处的电势才能使电子加速,故A 选项错误;由左手定则可判定磁感应强度的方向垂直纸面向里,故C 选项错误;对加速过程应用动能定理有eU =12m v 2,设电子在磁场中运动半径为r ,由洛伦兹力提供向心力有e v B =m v 2r ,则r =m v Be ,电子运动轨迹如图所示,由几何关系可知,电子从磁场射出的速度方向与水平方向的夹角θ满足sin θ=d r (其中d 为磁场宽度),联立可得sinθ=dB e 2mU ,可见增大U 会使θ减小,电子在靶上的落点P 右移,增大B 可使θ增大,电子在靶上的落点P 左移,故B 选项错误,D 选项正确.7.BC 8.D9.BC 在F 作用下金属框加速,金属框bc 边切割磁感线,产生感应电流,由右手定则可知,电流方向为c →b →M →N ,且bc 边所受安培力向左,MN 所受安培力向右,F 为恒力,根据牛顿第二定律,对金属框受力分析有F -F 安=Ma 1;对导体棒受力分析有F 安=ma 2,导体棒速度增大;由于金属框速度增加得较快,则回路中感应电流增大,F 安增大,a 1减小,a 2增大,当a 1=a 2时,金属框和导体棒的速度差恒定,产生的感应电动势恒定,感应电流恒定,加速度恒定,速度增大,故A 错误,B 正确.由以上分析可知,产生的感应电流趋于恒定值,则导体棒所受安培力趋于恒定值,故C 正确.金属框与导体棒速度差恒定,则bc 边与导体棒间距离均匀增加,故D 错误.10.AD11.(1)2 V (2)1.6 V 2 m/s 2 (3)0.25 W解析:(1)由法拉第电磁感应定律可知E 1=n ΔΦΔt =n ΔB 1Δt S =2 V .(2)t =0时,回路中电流I =E 1R +r=0.4 A ,导体棒ab 两端的电压U =IR =1.6 V ,设此时导体棒的加速度为a ,则由mg -B 2Il =ma ,解得a =2 m/s 2.(3)当导体棒ab 达到稳定状态时,有mg =B 2I ′l ,I ′=E 1+B 2l v R +r,解得v =5 m/s ,此时,导体棒重力的瞬时功率P =mg v =0.25 W.12.12 s解析:回路中的电动势E =ΔB Δt Lx sin 37° 电流I =E R +r对金属棒受力分析如图,要开始滑动时最大静摩擦力等于滑动摩擦力F A =BILF A sin 37°=μF NF N =mg +F A cos 37°由B =(1+2t ) T解得t =12 s13.(1)2B 2l 2v 02R (2)B 2l 2v 202R解析:(1)当安培力等于水平恒力F 时速度最大,设此时的电流为I ,则F =F 安F 安=BIlI =E RE =Bl 22v 0解得F =2B 2l 2v 02R(2)设金属杆达到最大速度时,电阻R 的热功率为P ,则P =I 2R联立解得P =B 2l 2v 202R14.(1)Bkl 3R 方向水平向右 (2)12m v 2-23kq解析:本题考查电磁感应中的电路问题及能量问题,难度较大,正确解答本题需要很强的综合分析能力,体现了学生的科学推理与科学论证的素养要素. (1)设线圈中的感应电动势为E ,由法拉第电磁感应定律E =ΔΦΔt ,则E =k ①设PQ 与MN 并联的电阻为R 并,有R 并=R 2②闭合S 时,设线圈中的电流为I ,根据闭合电路欧姆定律得I =E R 并+R③ 设PQ 中的电流为I PQ ,有I PQ =12I ④设PQ 受到的安培力为F 安,有F 安=BI PQ l ⑤保持PQ 静止,由受力平衡,有F =F 安⑥联立①②③④⑤⑥式得F =Bkl 3R ⑦方向水平向右.(2)设PQ 由静止开始到速度大小为v 的加速过程中,PQ 运动的位移为x ,所用时间为Δt ,回路中的磁通量变化为ΔΦ,平均感应电动势为E ,有E =ΔΦΔt ⑧其中ΔΦ=Blx ⑨设PQ 中的平均电流为I ,有I =E 2R ⑩根据电流的定义得I =q Δt ⑪由动能定理,有Fx +W =12m v 2-0⑫联立⑦⑧⑨⑩⑪⑫式得W =12m v 2-23kq ⑬。
高中物理(新人教版)选择性必修二同步习题:电磁感应中的动力学问题(同步习题)【含答案及解析】
第二章电磁感应专题强化练5 电磁感应中的动力学问题一、选择题1.()如图所示,ab和cd是位于水平面内的平行金属轨道,间距为l,其电阻可忽略不计,a、c之间连接一阻值为R的电阻,ef为一垂直于ab和cd的金属杆,它与ab和cd接触良好并可沿轨道无摩擦地滑动,电阻可忽略。
整个装置处在匀强磁场中,磁场方向竖直向下,磁感应强度大小为B。
当施加外力使杆ef以速度v向右匀速运动时,杆ef所受的安培力为( )A.B 2l2vRB.BlvRC.B2lvRD.Bl2vR2.(2020辽宁盘锦高二上期末,)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R。
金属棒ab与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下。
现使磁感应强度随时间均匀减小,ab始终保持静止,下列说法正确的是( )A.ab中的感应电流方向由b到aB.ab中的感应电流逐渐减小C.ab所受的安培力保持不变D.ab所受的静摩擦力逐渐减小3.(2020四川广安中学高二上月考,)如图,足够长的U形光滑金属导轨平面与水平面成θ角(0°<θ<90°),其中MN与PQ平行且间距为L,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计。
金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab棒接入电路的有效电阻为R,当通过ab棒某一横截面的电荷量为q时,棒的速度大小为v,则金属棒ab在这一过程中( )A.运动的平均速度大小为12vB.下滑的位移大小为qRBLC.产生的焦耳热为qBLvD.受到的最大安培力大小为B 2L2vRsin θ4.(2020河北张家口高三上摸底,)如图所示,在光滑水平面上有宽度为d的匀强磁场区域,边界线MN、PQ平行,磁场方向垂直平面向下,磁感应强度大小为B。
边长为L(L<d)的正方形金属线框,电阻为R,质量为m,在水平向右的恒力F作用下,从距离MN为d2处由静止开始运动,线框右边到MN时的速度与到PQ时的速度大小相等,运动过程中线框右边始终与MN平行,则下列说法正确的是( )A.线框在进磁场和出磁场的过程中,通过线框横截面的电荷量不相等B.线框的右边刚进入磁场时所受安培力的大小为B 2L2R√FdmC.线框进入磁场过程中一直做加速运动D.线框右边从MN运动到PQ的过程中,线框中产生的焦耳热小于Fd5.()(多选)如图所示,质量为m=0.04 kg、边长l=0.4 m 的正方形导体线框abcd放置在一光滑绝缘斜面上,线框用一平行于斜面的细线系于O点,斜面倾角为θ=30°。
电磁感应中的动力学和能量问题(含答案)
专题10电磁感应中的动力学和能量问题导学目标 1.会分析计算电磁感应中的安培力参与的导体的运动及平衡问题.2.会分析计算电磁感应中能量的转化与转移.考点一电磁感应中的动力学问题分析考点解读导体两种状态及处理方法(1)导体的平衡态——静止状态或匀速直线运动状态.处理方法:根据平衡条件合外力等于零列式分析.(2)导体的非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.典例剖析例1(2011·四川理综·24)如图1所示,间距l=0.3 m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内.在水平面a1b1b2a2区域内和倾角θ=37°的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4 T、方向竖直向上和B2=1 T、方向垂直于斜面向上的匀强磁场.电阻R=0.3 Ω、质量m1=0.1 kg、长为l的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好.一端系于K杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m2=0.05 kg的小环.已知小环以a=6 m/s2的加速度沿绳下滑,K杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F 作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:图1(1)小环所受摩擦力的大小;(2)Q杆所受拉力的瞬时功率.思维突破解决电磁感应中的动力学问题的一般思路是“先电后力”,即:先作“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E和r;再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力;然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;接着进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.跟踪训练1如图2所示,电阻为R,其他电阻均可忽略,ef是一电阻可不计的水平放置的导体棒,质量为m,棒的两端分别与ab、cd保图3持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的匀强磁场中,当导体棒ef 从静止下滑一段时间后闭合开关S ,则S闭合后 ( )A .导体棒ef 的加速度可能大于gB .导体棒ef 的加速度一定小于gC .导体棒ef 最终速度随S 闭合时刻的不同而不同D .导体棒ef 的机械能与回路内产生的电能之和一定守恒考点二 电磁感应中的能量问题分析 考点解读1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.(3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2.求解思路(1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算.(2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能. 典例剖析例2 如图3所示,空间存在竖直向上、磁感应强度B =1 T 的匀强磁场,ab 、cd 是相互平行间距L =1 m 的长直导轨,它们处在同一水平面内,左边通过金属杆ac 相连.质量m =1 kg 的导体棒MN 水平放置在导轨上,已知MN 与ac 的总电阻R =0.2 Ω,其他电阻 不计.导体棒MN 通过不可伸长的细线经光滑定滑轮与质量也为m 的重物相连,现将重物由静止状态释放后与导体棒MN 一起运动,并始终保持导体棒与导轨接触良好.已知导体棒与导轨间的动摩擦因数μ=0.5,其他摩擦不计,导轨足够长,重物离地面足够高,重力加速度g 取10 m/s 2.(1)请定性说明:导体棒MN 在达到匀速运动前,速度和加速度是如何变化的?达到匀速运动时MN 受到的哪些力的合力为零?并定性画出棒从静止至匀速运动的过程中所受的安培力大小随时间变化的图象(不需说明理由及计算达到匀速运动的时间);(2)若已知重物下降高度h =2 m 时,导体棒恰好开始做匀速运动,在此过程中ac 边产生的焦耳热Q =3 J ,求导体棒MN 的电阻值r .思维突破1.电磁感应过程往往涉及多种能量的转化(1)如图中金属棒ab 沿导图4图5 轨由静止下滑时,重力势能减少,一部分用来克服安培力做功,转化为感应电流的电能,最终在R 上转化为焦耳热,另一部分转化为金属棒的动能.(2)若导轨足够长,棒最终达到稳定状态匀速运动时,重力势能的减小则完全用来克服安培力做功,转化为感应电流的电能.因此,从功和能的观点入手,分析清楚电磁感应过程中能量转化的关系,是解决电磁感应中能量问题的重要途径之一.2.安培力做功和电能变化的特定对应关系“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.3.在利用功能关系分析电磁感应的能量问题时,首先应对研究对象进行准确的受力分析,判断各力做功情况,利用动能定理或功能关系列式求解.4.利用能量守恒分析电磁感应问题时,应注意明确初、末状态及其能量转化,根据力做功和相应形式能的转化列式求解.跟踪训练2 两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图4所示.除电阻R 外其余电阻不计.现将金属棒从弹簧原长位置由静止释放.则 ( )A .金属棒的动能、重力势能与弹簧的弹性势能的总和保持不变B .金属棒最后将静止,静止时弹簧伸长量为mg kC .金属棒的速度为v 时,所受的安培力大小为F =B 2L 2v RD .金属棒最后将静止,电阻R 上产生的总热量为mg ·mg k12.电磁感应中“杆+导轨”模型问题例3 (2011·天津理综·11)如图5所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为l =0.5 m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m =0.02 kg ,电阻均为R =0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B =0.2 T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止,取g =10 m/s 2,问:(1)通过棒cd 的电流I 是多少,方向如何?(2)棒ab 受到的力F 多大?图6(3)棒cd 每产生Q =0.1 J 的热量,力F 做的功W 是多少?建模感悟跟踪训练3 如图6所示,两根足够长的光滑直金属导轨MN 、PQ 平行固定在倾角θ=37°的绝缘斜面上,两导轨间距L =1m ,导轨的电阻可忽略.M 、P 两点间接有阻值为R 的电阻.一根质量m =1 kg 、电阻r =0.2 Ω的均匀直金属杆ab 放在两导轨上,与导轨垂直且接触良好.整套装置处于磁感应强度B =0.5 T 的匀强 磁场中,磁场方向垂直斜面向下.自图示位置起,杆ab 受到大小为F =0.5v +2(式中v 为杆ab 运动的速度,力F 的单位为N)、方向平行导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R 的电流随时间均匀增大.g 取10 m/s 2,sin 37°=0.6.(1)试判断金属杆ab 在匀强磁场中做何种运动,并请写出推理过程;(2)求电阻R 的阻值;(3)求金属杆ab 自静止开始下滑通过位移x =1 m 所需的时间t .A 组 电磁感应中的动力学问题图7图8图9图10 1. 如图7所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是 ()2.如图8所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F /3D .两金属棒间距离保持不变B 组 电磁感应中的能量问题3. 如图9所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程 ( ) A .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4. 如图10所示,在水平桌面上放置两条相距L 的平行且无限长的粗糙金属导轨ab 和cd ,阻值为R 的电阻与导轨的a 、c端相连,其余电路电阻不计,金属滑杆MN 垂直于导轨并可在导轨上滑动.整个装置放于匀强磁场中,磁场方向竖直向上,磁 感应强度的大小为B .滑杆的中点系一不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一质量为m 的物块相连,绳处于拉直状态,现若从静止开始释放物块,用I 表示稳定后回路中的感应电流,g 表示重力加速度,设滑杆在运动中所受阻力恒为F f ,则在物体下落过程中 ( )A .物体的最终速度(mg -F f )RB 2L 2图11 B .物体的最终速度I 2R mg -F fC .稳定后物体重力的功率I 2RD .物体重力的最大功率可能为mg (mg -F f )R B 2L 2C 组 “杆+导轨”模型应用5.(2011·全国·24)如图11,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L ,电阻不计.在导轨上端并接两个额定功率均为P 、电阻均为R 的小灯泡.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直.现将一质量为m 、电阻可以忽略的金属棒MN 从图示位置由静止开始释放.金属棒下落过程中保持水平,且与导轨接触良好.已知某时刻后两灯泡保持正常发光.重力加速度为g .求: (1)磁感应强度的大小;(2)灯泡正常发光时导体棒的运动速率.图1图2图3图4课时规范训练(限时:60分钟)一、选择题1. 如图1所示,在一匀强磁场中有一U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一电阻,ef 为垂直于ab的一根导体杆,它可以在ab 、cd 上无摩擦地滑动.杆ef 及线框中导线的电阻都可不计.开始时,给ef 一个向右的初速度,则( )A .ef 将减速向右运动,但不是匀减速B .ef 将匀减速向右运动,最后停止C .ef 将匀速向右运动D .ef 将往返运动2.如图2所示,匀强磁场的磁感应强度为B ,方向竖直向下,在磁场中有一个边长为L 的正方形刚性金属框,ab 边的质量为m ,电阻为R ,其他三边的质量和电阻均不计.cd 边上装有固定的水平轴,将金属框自水平位置由静止释放,第一次转到竖直位置时,ab 边的速度为v ,不计一切摩擦,重力加速度为g ,则在这个过 程中,下列说法正确的是 ( )A .通过ab 边的电流方向为a →bB .ab 边经过最低点时的速度v =2gLC .a 、b 两点间的电压逐渐变大D .金属框中产生的焦耳热为mgL -12m v 2 3.如图3所示,两根水平放置的相互平行的金属导轨ab 、cd 表面光滑,处在竖直向上的匀强磁场中,金属棒PQ 垂直于导轨放在上面,以速度v 向右匀速运动,欲使棒PQ 停下来,下面的措施可 行的是(导轨足够长,棒PQ 有电阻) ( )A .在PQ 右侧垂直于导轨再放上一根同样的金属棒B .在PQ 右侧垂直于导轨再放上一根质量和电阻均比棒PQ 大的金属棒C .将导轨的a 、c 两端用导线连接起来D .在导轨的a 、c 两端用导线连接一个电容器4.(2011·福建理综·17)如图4所示,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接图5图6图7入电路的电阻为R ,当流过ab 棒某一横截面的电荷量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中 ( )A .运动的平均速度大小为12v B .下滑的位移大小为qR BLC .产生的焦耳热为qBL vD .受到的最大安培力大小为B 2L 2v Rsin θ 5.如图5所示,光滑的“Π”形金属导体框竖直放置,质量为m 的金属棒MN 与框架接触良好.磁感应强度分别为B 1、B 2的有界匀强磁场方向相反,但均垂直于框架平面,分别处在abcd 和cdef 区域.现从图示位置由静止释放金属棒MN ,当金属棒进入磁场B 1区域后,恰好做匀速运动.以下说法中正确的是 ( )A .若B 2=B 1,金属棒进入B 2区域后将加速下滑B .若B 2=B 1,金属棒进入B 2区域后仍将保持匀速下滑C .若B 2<B 1,金属棒进入B 2区域后将先加速后匀速下滑D .若B 2>B 1,金属棒进入B 2区域后将先减速后匀速下滑6. 一个刚性矩形铜制线圈从高处自由下落,进入一水平的匀强磁场区域,然后穿出磁场区域继续下落,如图6所示,则 ( )A .若线圈进入磁场过程是匀速运动,则离开磁场过程也是匀速运动B .若线圈进入磁场过程是加速运动,则离开磁场过程也是加速运动C .若线圈进入磁场过程是减速运动,则离开磁场过程也是减速运动D .若线圈进入磁场过程是减速运动,则离开磁场过程是加速运动7.如图7所示,在水平面内固定着U 形光滑金属导轨,轨道间距为50 cm ,金属导体棒ab 质量为0.1 kg ,电阻为0.2 Ω,横放在导轨上,电阻R 的阻值是0.8 Ω(导轨其余部分电阻不计).现加上竖直向下的磁感应强度为0.2 T 的匀强磁场.用水 平向右的恒力F =0.1 N 拉动ab ,使其从静止开始运动,则 ( )A .导体棒ab 开始运动后,电阻R 中的电流方向是从P 流向MB .导体棒ab 运动的最大速度为10 m/sC .导体棒ab 开始运动后,a 、b 两点的电势差逐渐增加到1 V 后保持不变D .导体棒ab 开始运动后任一时刻,F 的功率总等于导体棒ab 和电阻R 的发热功率之和8.如图8所示,间距为L 的光滑平行金属导轨弯成“∠”形,底部导轨面水平,倾斜部分与水平面成θ角,导轨与固定电阻相连,图10整个装置处于竖直向上的大小为B 的匀强磁场中,导体棒ab 和cd 均垂直于导轨放置,且与导轨间接触良好.两导体棒的电阻皆与阻值为R 的固定电阻相等,其余部分电阻不计.当导体棒cd 沿底部导轨向右以速度为v 匀速滑动时,导体棒ab 恰好在倾斜导轨上处于静止状态,导体棒ab 的重力为mg ,则( )A .导体棒cd 两端电压为BL vB .t 时间内通过导体棒cd 横截面的电荷量为2BL v t 3RC .cd 棒克服安培力做功的功率为B 2L 2v 2RD .导体棒ab 所受安培力为mg sin θ9.如图9(a)所示,在光滑水平面上用恒力F 拉质量为m 的单匝均匀正方形铜线框,边长为a ,在1位置以速度v 0进入磁感应强度为B 的匀强磁场并开始计时,若磁场的宽度为b (b >3a ),在3t 0时刻线框到达2位置速度又为v 0,并开始离开匀强磁场.此过程中v -t 图象如图(b)所示,则 ()(a) (b)图9A .t =0时,线框右侧边MN 两端的电压为Ba v 0B .在t 0时刻线框的速度为v 0-2Ft 0/mC .线框完全离开磁场的瞬间位置3速度一定比t 0时刻线框的速度大D .线框完全离开磁场的瞬间位置3速度一定比t 0时刻线框的速度小10.如图10所示,水平放置的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在方向竖直向上磁感应强度大小为B 的匀强磁场中.一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ.现杆在水平向左、垂直于杆的恒力 F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直).设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g .则此过程( )A .杆运动速度的最大值为(F -μmg )RB 2d 2图11图12图13B .流过电阻R 的电荷量为BdL R +rC .恒力F 做的功与摩擦力做的功之和等于杆动能的变化量D .恒力F 做的功与安培力做的功之和大于杆动能的变化量二、非选择题11.(2010·江苏单科·13)如图11所示,两足够长的光滑金属导轨竖直放置,相距为L ,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m 、有效电阻为R 的导体棒在距磁场上边界h 处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I .整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)磁感应强度的大小B ;(2)电流稳定后,导体棒运动速度的大小v ;(3)流经电流表电流的最大值I m .12.(2011·上海单科·32)电阻可忽略的光滑平行金属导轨长s =1.15 m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上端ab 接一阻值R =1.5 Ω的电阻,磁感应强度B =0.8 T 的匀强磁场垂直轨道平面向上,如图12所示.阻值r =0.5 Ω,质量m =0.2 kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑 至底端,在此过程中金属棒产生的焦耳热Q 1=0.1 J .(取g =10 m/s 2)求:(1)金属棒在此过程中克服安培力的功W 安;(2)金属棒下滑速度v =2 m/s 时的加速度a ;(3)为求金属棒下滑的最大速度v m ,有同学解答如下:由动能定理,W G -W 安=12m v 2m, ….由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答.13.如图13所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ角固定,轨间距为d .空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B .P 、M 间所接电阻阻值为R .质量为m 的金属杆ab 水平放置在轨道上,其有效电阻为r .现从静止释放ab ,当它沿轨道下滑距离s 时,达到最大速度.若轨道足够长且电阻不计,重力加速度为g .求:(1)金属杆ab 运动的最大速度;(2)金属杆ab 运动的加速度为12g sin θ时,电阻R 上的电功率; (3)金属杆ab 从静止到具有最大速度的过程中,克服安培力所做的功.复习讲义课堂探究例1 (1)0.2 N (2)2 W跟踪训练1 AD例2 (1)见解析 (2)0.13 Ω解析 (1)当MN 棒匀速运动时,悬挂重物的细线的拉力与安培力及摩擦力三力的合力为零;在达到稳定速度前,导体棒的加速度逐 渐减小,速度逐渐增大;安培力大小随时间变化的图象如图所 示,匀速运动时,由平衡条件可知mg =F 安+μmg 得F 安=5 N. 跟踪训练2 BC例3 (1)1 A 方向由d 至c (2)0.2 N (3)0.4 J跟踪训练3 (1)匀加速运动 (2)0.3 Ω (3)0.5 s分组训练1.ACD2.BC3.AC4.ABD5.(1)mg 2L R P (2)2Pmg课进规范训练1.A2.D3.C4.B5.BCD6.C7.B8.B9.B10.BD11.(1)mg IL (2)I 2R mg (3)mg 2gh IR12.(1)0.4 J (2)3.2 m/s 2 (3)见解析13.(1)mg (R +r )sin θB 2d 2 (2)m 2g 2sin 2 θR 4B 2d 2(3)mgs sin θ-m 3g 2(R +r )2sin 2 θ2B 4d 4。
10.3 电磁感应中的动力学和能量问题
10.3 电磁感应中的动力学和能量问题考点一电磁感应中的动力学问题【例1】如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L. M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图.(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小.(3)求在下滑过程中,ab杆可以达到的速度最大值.【练习】如图所示,质量为M的导体棒ab,垂直放在相距为l的平行光滑金属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中.左侧是水平放置、间距为d的平行金属板,R和R x分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.(1)调节R x=R,释放导体棒,当导体棒沿导轨匀速下滑时,求通过导体棒的电流I及导体棒的速率v.(2)改变R x,待导体棒沿导轨再次匀速下滑后,将质量为m、带电荷量为+q的微粒水平射入金属板间,若它能匀速通过,求此时的R x.【练习】如图所示,两根平行金属导轨固定在同一水平面内,间距为l,导轨左端连接一个电阻.一根质量为m、电阻为r的金属杆ab垂直放置在导轨上.在杆的右方距杆为d处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B.对杆施加一个大小为F、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求:(1)导轨对杆ab的阻力大小F f.(2)杆ab中通过的电流及其方向.(3)导轨左端所接电阻的阻值R.考点二电磁感应中的能量问题(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功,将其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.(3)当感应电流通过用电器时,电能又转化为其他形式的能.【例1】如图所示电路,两根光滑金属导轨平行放置在倾角为θ的斜面上,导轨下端接有电阻R,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可忽略不计的金属棒ab质量为m,受到沿斜面向上且与金属棒垂直的恒力F的作用.金属棒沿导轨匀速下滑,则它在下滑高度h的过程中,以下说法正确的是()A.作用在金属棒上各力的合力做功为零B.重力做的功等于系统产生的电能C.金属棒克服安培力做的功等于电阻R上产生的焦耳热D.金属棒克服恒力F做的功等于电阻R上产生的焦耳热【练习】如图所示,竖直放置的两根足够长平行金属导轨相距L ,导轨间接有一定值电阻R ,质量为m ,电阻为r 的金属棒与两导轨始终保持垂直并良好接触,且无摩擦,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,现将金属棒由静止释放,金属棒下落高度为h 时开始做匀速运动,在此过程中( )A .导体棒的最大速度为2ghB .通过电阻R 的电荷量为BLh R +rC .导体棒克服安培力做的功等于电阻R 上产生的热量D .重力和安培力对导体棒做功的代数和等于导体棒动能的增加量【例2】如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一 匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑, 下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所 示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程 中对原磁场的影响),求:(1)磁感应强度B 的大小;(2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量;(3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量.甲 乙【练习】如图所示,倾角为θ=30°、足够长的光滑平行金属导轨MN、PQ相距L1=0.4 m,B1=5 T的匀强磁场垂直导轨平面向上.一质量m=1.6 kg的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,其电阻r=1 Ω.金属导轨上端连接右侧电路,R1=1 Ω,R2=1.5 Ω.R2两端通过细导线连接质量M=0.6 kg的正方形金属框cdef,正方形边长L2=0.2 m,每条边电阻r0为1 Ω,金属框处在一方向垂直纸面向里、B2=3 T的匀强磁场中.现将金属棒由静止释放,不计其他电阻及滑轮摩擦,g取10 m/s2.(1)若将电键S断开,求棒下滑过程中的最大速度.(2)若电键S闭合,每根细导线能承受的最大拉力为3.6 N,求细导线刚好被拉断时棒的速度.(3)若电键S闭合后,从棒释放到细导线被拉断的过程中,棒上产生的电热为2 J,求此过程中棒下滑的高度(结果保留一位有效数字).。
法拉第电磁感应定律应用
F
f2
f
B
如图所示,在水平面内固定着足够长且光滑 的平行金属轨道,轨道间距L=0.40m,轨道左 侧连接一定值电阻R=0.80Ω。将一金属直导线 ab垂直放置在轨道上形成闭合回路,导线ab 的质量m=0.10k g、电阻r=0.20Ω,回路中其 余电阻不计。整个电路处在磁感应强度 B=0.50T的匀强磁场中,B的方向与轨道平面 垂直。 d
B 2l 2vm mg 此时满足 R
F
a mg b
如图甲所示,不计电阻的平行金属导轨竖直 放置,导轨间距为L=1m,上 端 接有电阻R =3Ω,虚线OO′下方是垂直于导轨平面的匀 强磁场。现将质量 m=0.1kg、电阻r=1Ω的 金属杆ab从OO′上方某处垂直导轨由静止释 放,杆下落过程中始终与导轨保持良好接触, 杆下落过程中的v-t图象如图乙所示。
(1)磁感应强度B; (2)杆在磁场中下落0.1s过程中电阻R产生的热 量。
1.如图所示,沿水平面放G一宽50cm的U形光 滑金属框架.电路中电阻 R=2.0Ω,其余电阻 不计,匀强磁场B=0.8T,方向垂直于框架平 面向上,金属棒MN质量为30g,它与框架两 边垂直,MN的中点O用水平的绳跨过定滑轮 系一个质量为20g的砝码,自静止释放砝码后, 试求电阻R能得到的最大功率.
电磁感应综合问题
一、电磁感应中的动力学问题
例1. 水平放置于匀强磁场中的光滑导轨上, 有一根导体棒ab,用恒力F作用在ab上,由静 止开始运动,回路总电阻为R,分析ab 的运 动情况,并求ab的最大速度。 分析:ab 在F作用下向右加速运动,切割 磁感应线,产生感应电流,感应电流又受 到磁场的作用力f,画出受力图:
3.图中MN和PQ为竖直方向的两平行长直金 属导轨,间距l为0.40m,电阻不计。导轨所 在平面与磁感应强度B为0.50T的匀强磁场垂 直。质量m为6.0×10-3kg、电阻为1.0Ω的金 属杆ab始终垂直于导轨,并与其保持光滑接 触。导轨两端分别接有滑动变阻器和阻值为 3.0Ω的电阻R1。当杆ab达到稳定状态时以速 率v匀速下滑,整个电路消耗的电功率P为 0.27W,重力加速度取10m/s2,试求速率v和 滑动变阻器接入电路部分的阻值R2。
电磁感应中的动力学问题专题练习(含解析)
电磁感应中的动力学问题专题练习(含解析)1. 如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab,cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则下列说法正确的是( A )A.ef将减速向右运动,但不是匀减速B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动2. 如图所示,C是一只电容器,先用外力使金属杆ab贴着水平平行金属导轨在匀强磁场中沿垂直磁场方向运动,到有一稳定速度过一会后突然撤去外力.不计摩擦,则ab以后的运动情况可能是( C )A.减速运动到停止B.来回往复运动C.匀速运动D.加速运动3. 如图所示,导线MN可无摩擦地沿长直导轨滑动,导轨位于水平方向的匀强磁场中,回路电阻是R,将MN由静止开始释放后的一段时间内,MN运动的加速度将( B )A.保持不变B.逐渐减小C.逐渐增大D.先增大后减小4. 如图所示,光滑平行导轨竖直放置,匀强磁场垂直导轨平面向里,导体棒ab与导轨接触良好,回路的总电阻保持为R不变.当ab以初速度v0沿导轨竖直下滑时,其运动情况是( D )A.做a=g的匀加速运动B.做a<g的变加速运动C.先做加速运动,后做匀速运动D.由于不知v0,B,L,R,m的具体值,因此无法确定其运动状态5. 如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直于导轨所在的平面向里,金属棒ab可沿导轨自由滑动,导轨一端跨接一个定值电阻R,导轨电阻不计,现将金属棒沿导轨由静止向右拉.若保持拉力恒定,当速度为v时,加速度为a1,最终以速度2v做匀速运动;若保持拉力的功率恒定,当速度为v时,加速度为a2,最终也以速度2v做匀速运动,则( C )A.a2=a1B.a2=2a1C.a2=3a1D.a2=4a16. (多选)如图所示,矩形线框A在竖直平面内从静止开始下落,匀强磁场B方向水平且垂直于线框所在的平面,当线框的下边进入磁场而上边尚未进入磁场的过程中,线框A可能做( ABC )A.匀速下落运动B.加速下落运动C.减速下落运动D.匀减速下落运动7. (2016杭州高二检测)(多选)如图所示,磁感应强度为B的匀强磁场有理想界面,用力F将矩形线圈从磁场中匀速拉出.在其他条件不变的情况下( ABC )A.速度越大时,拉力做功越多B.线圈边长L1越大时,拉力做功越多C.线圈边长L2越大时,拉力做功越多D.线圈电阻越大时,拉力做功越多8. (2016茂名高二检测)(多选)如图,固定在水平面上的U形金属框上,静止放置有一金属杆ab,整个装置处于竖直向上的磁场中.当磁感应强度B均匀减小时,杆ab总保持静止,则在这一过程中( AD )A.杆中的感应电流方向是从b到aB.杆中的感应电流大小均匀增大C.金属杆所受安培力水平向左D.金属杆受到的摩擦力逐渐减小9. (多选)光滑无电阻水平导轨上有两相同金属棒a,b垂直于导轨放置,匀强磁场方向如图所示.现给a一向右初速v,则其后a,b的运动情况是( BD )A.a做匀加速运动,b做匀减速运动,最终两者速度相等B.a做加速度变小的变减速运动,b做加速度变小的变加速运动,最终两者速度相等C.a做加速度变小的变减速运动,b做加速度变小的变加速运动,最终两者加速度相等(不为零)D.开始一段时间两者的距离逐渐减小,最终两者距离不变10. 如图所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)磁感应强度B的大小;(2)电流稳定后,导体棒运动速度v的大小;(3)流经电流表电流的最大值I m.11.如图(甲)所示,两根足够长的直金属导轨MN,PQ平行放置.两导轨间距为L,M,P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图(乙),在此图中画出ab杆下滑过程中某时刻的受力示意图;(2)在加速下滑时,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值.12. 均匀导线制成的单匝正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m.将其置于磁感应强度为B的水平匀强磁场上方h处,如图所示.线框由静止自由下落,线框平面保持在竖直平面内,且cd 边始终与水平的磁场边界平行.当cd边刚进入磁场时,(1)求线框中产生的感应电动势大小;(2)求cd两点间的电势差大小;(3)若此时线框加速度恰好为零,求线框下落的高度h.13. U形金属导轨abcd原来静止放在光滑绝缘的水平桌面上,范围足够大、方向竖直向上的匀强磁场穿过导轨平面,一根与bc等长的金属棒PQ平行bc放在导轨上,棒左边靠着绝缘的固定竖直立柱e,f.已知磁感应强度B=0.8 T,导轨质量M=2 kg,其中bc段长0.5 m,电阻r=0.4 Ω,其余部分电阻不计,金属棒PQ质量m=0.6 kg、电阻R=0.2 Ω、与导轨间的动摩擦因数μ=0.2.若向导轨施加方向向左、大小为F=2 N 的水平拉力,如图所示.求导轨的最大加速度、最大电流和最大速度(设导轨足够长,g取10 m/s2)1、解析:ef向右运动,切割磁感线,产生感应电动势和感应电流,会受到向左的安培力而做减速运动,直到停止,但不是匀减速,由F=BIL==ma知,ef做的是加速度减小的减速运动,故选项A正确.2、解析:用外力使金属杆ab在匀强磁场中沿垂直磁场方向运动时,金属杆产生感应电动势,对电容器充电,设棒向右,根据右手定则判断可知:ab中产生的感应电流方向从b到a,电容器上极板带正电,下极板带负电;稳定后速度不变,电容器充电结束,电流为零;“外力”和安培力均为零;“外力”撤去后ab保持向右匀速.故选项C正确.3、解析:导体MN速度逐渐增大,产生电流增大,MN受的安培力逐渐增大,加速度逐渐减小,选项B正确.4、解析:若v0很大,安培力很大,加速度有可能大于g,且为减速运动,故选项A,B,C均错.D正确.5、解析:按第一种模式拉动时,设恒力为F,由于最终速度为2v,即匀速,有F=BI1L,I1=,所以F=,当速度是v时ab棒所受安培力为F1.同理可得F1=,此时的加速度为a1.由牛顿第二定律得F-F1=ma1.联立以上各式得a1=.按第二种模式拉动时,设外力的恒定功率为P,最终的速度也是2v,由能量关系可知P=R=.速度为v时,ab棒所受的外力为F2,有P=F2v,此时的加速度为a2,ab棒所受的安培力仍为F1,根据牛顿第二定律得F2-F1=ma2,联立有关方程可以解得a2=,所以有a2=3a1.选项C正确.6、解析:线框下边刚进入磁场时,由于其做切割磁感线运动而产生感应电流.容易判知,此感应电流将使线框下边受到向上的安培力F安作用.由于下落高度即线框进入磁场时的速度大小不确定,因此F安可能大于、等于或小于线框重力G,故A,B,C三种情况都有可能.但线框不可能做匀减速运动.7、解析:用力F匀速拉出线圈的过程中所做的功为W=FL2,又F=F安=IBL1,I=,所以W=,可知选项A,B,C正确,D错误.8、解析:磁感应强度B减小时,由楞次定律知,感应电流由b到a,选项A正确;由E=n=n S知,B均匀减小时,电动势E不变,电流不变,选项B错误;由左手定则知,ab所受安培力水平向右,选项C错误;由F=BIL知,I,L不变,B减小,安培力减小;ab杆静止,安培力等于摩擦力,所以摩擦力减小,选项D正确.9、解析:a受安培力向左,b受安培力向右,a减速,b加速,回路中电流I=,逐渐减小,加速度都变小,当加速度等于零时,两棒匀速运动,距离不变,故选项B,D正确.10、解析:(1)电流稳定后,导体棒做匀速运动,受力平衡,有F安=G,即BIL=mg,解得B=.(2)由法拉第电磁感应定律得导体棒产生的感应电动势E=BLv,闭合电路中产生的感应电流I=,解得v=.(3)由题意知,导体棒刚进入磁场时的速度最大,设为v m,由机械能守恒定律得m=mgh,感应电动势的最大值E m=BLv m.感应电流的最大值I m=,解得I m=.答案:(1)(2)(3)11、解析: (1)如图所示,重力mg,竖直向下;支持力F N,垂直斜面向上,安培力F,沿斜面向上.(2)当ab杆速度为v时,感应电动势E=BLv,此时电路中电流I==,ab杆受到安培力F=BIL=,根据牛顿运动定律,有ma=mgsin θ-F=mgsin θ-,a=gsin θ-.(3)当a=0时,即gsin θ=时,杆达到最大速度v m,则v m=.答案:(1)见解析图(2)gsin θ-(3)12、解析:(1)cd边刚进入磁场时,线框速度v=线框中产生的感应电动势E=BLv=BL(2)此时线框中的电流I=cd切割磁感线相当于电源,cd两点间的电势差即路端电压U=I·R=BL.(3)安培力F安=BIL=根据牛顿第二定律mg-F安=ma,由a=0,解得下落高度h=.答案:(1)BL(2)BL(3)13、解析:刚拉动导轨时,I感=0,安培力为零,导轨有最大加速度a m== m/s2=0.4 m/s2.随着导轨速度的增大,感应电流增大,加速度减小,当a=0时,速度最大.设速度最大值为v m,电流最大值为I m,此时导轨受到向右的安培力F安=BI m L,F-μmg-BI m L=0,I m=,代入数据得I m= A=2 A.I=,I m=,v m== m/s=3 m/s.答案:0.4 m/s2 2 A 3 m/s。
电磁感应中的动力学问题和能量问题
析清楚电磁感应过程中能量转化的关系,是解决电磁
感应问题的重要途径之一.
编辑课件
题型探究
题型1 电磁感应中的动力学问题
【例1】 如图2所示,光滑斜面的倾角
=30°,在斜面上放置一矩形线框
abcd,ab边的边长l1=1 m,bc边的边长
l2=0.6 m,线框的质量m=1 kg,电阻
R=0.1 Ω,线框通过细线与重物相
s-l2=v t3+12 at32
解得t3=1.2 s
因此ab边由静止开始运动到gh线所用的时间
t=t1+t2+t3=1.2 s+0.1 s+1.2 s=2.5 s
答案 (1)6 m/s
(2)2.5 s
编辑课件
规律总结 此类问题中力现象和电磁现象相互联系,相互制
约,解决问题首先要建立“动→电→动”的思维顺 序,可概括为 (1)找准主动运动者,用法拉第电磁感应定律和 楞次定律求解电动势大小和方向. (2)根据等效电路图,求解回路中电流的大小及 方向. (3)分析导体棒的受力情况及导体棒运动后对电 路中电学参量的“反作用”,即分析由于导体棒 受到安培力,对导体棒运动速度、加速度的影响, 从而推理得出对电路中的电流有什么影响,最后定 性分析出导体棒的最终运动情况. (4)列出牛顿第二定律或编平辑衡课件方程求解.
到最大这一关键.
编辑课件
特别提示 1.对电学对象要画好必要的等效电路图. 2.对力学对象要画好必要的受力分析图和过程示 意图. 热点二 电路中的能量转化分析 从能量的观点着手,运用动能定理或能量守恒定律. 基本方法是: 受力分析→弄清哪些力做功,做正功还是负功→明确 有哪些形式的能参与转化,哪些增哪些减→由动能定 理或能量守恒定律列方程求解.
电磁感应中的动力学和能量问题
(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量
相互转化;
(3)根据能量守恒定律列式求解.
(18 分)(2012·高考天津卷)如图所示,一对光滑的平行金属 导轨固定在同一水平面内,导轨间距 l=0.5 m,左端接有阻值 R=0.3 Ω 的电阻.一质量 m=0.1 kg,电阻 r=0.1 Ω 的金属棒 MN 放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁 场的磁感应强度 B=0.4 T.棒在水平向右的外力作用下,由静
力为多大?整个过程拉力的最大值为多大?
(3)若第 4 s 末以后,拉力的功率保持不变,ab 杆能达到的最大
速度为多大?
[答案] (2)μmg μmg ma (3)(μmg+BR2l+2vrm)vm
(2012·山东潍坊一模理综)如图所示,水平地面上方矩形
虚线区域内有垂直纸面向里的匀强磁场,两个闭合线圈Ⅰ和
止开始以 a=2 m/s2 的加速度做匀加速运动,当棒的位移 x=9
m 时撤去外力,棒继续运动一段距离后停下来,已知撤去外力
前后回路中产生的焦耳热之比 Q1∶Q2=2∶1.导轨足够长且电
阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良 好接触.求:
(1)棒在匀加速运动过程中,
通过电阻 R 的电荷量 q;
一、电磁感应中的能量问题 1.能量转化 导体切割磁感线或磁通量发生变化,在回路中产生感应 电流,这个过程中机械能或其他形式的能转化为电能 .具有 感应电流的导体在磁场中受安培力作用或通过电阻发热,又 可使电能转机化械为能 内或能 .因此,电磁感应过程中总是 伴随着能量的转化. 2.能量转化的实质:电磁感应现象的能量转化实质是其 他形式能和电能之间的转化. 3.热量的计算:电流做功产生的热量用焦耳定律计算, 公式为Q= I2Rt .
法拉第电磁感应定律动力学、能量、电荷量的求法(最新整理)
一步减小,当感应电动势 E ' 与电池电动势 E 相等时,电路中电流为零,ab 所受安培力、加速度也为零,这
时 ab 的速度达到最大值,随后则以最大速度继续向右做匀速运动.
设最终达到的最大速度为
υm,根据上述分析可知: E
Bl m
0
所以m
E Bl
1.5 0.8 0.5
m/s=3.75m/s.
(2)如果 ab 以恒定速度 7.5 m/s 向右沿导轨运动,则 ab 中感应电动势
Q=I2Rt
⑦
设棒 ab 匀速运动的速度大小为 v,其产生的感应电动势
E=Blv
⑧
由闭合电路欧姆定律知
I E
⑨
2R
由运动学公式知在时间 t 内,棒 ab 沿导轨的位移
x=vt
⑩
力 F 做的功
W=Fx
○11
综合上述各式,代入数据解得
W=0.4J
○12
【答案】(1)1A 由 d 至 c (2)0.2N (3)0.4J
量 是指穿过某一面积末时刻的磁通量 2 与穿过这一面积初时刻的磁通量 1 之差,即 2 1
。在计算 时,通常只取其绝对值,如果 2 与 1 反向,那么 2 与 1 的符号相反。
线圈在匀强磁场中转动,产生交变电流,在一个周期内穿过线圈的磁通量的变化量 =0,故通过线
圈的电量 q=0。 穿过闭合电路磁通量变化的形式一般有下列几种情况:
②
由①②式,代入数据得
I=1A
③
根据楞次定律可知,棒 cd 中的电流方向由 d 至 c
(2)棒 ab 与棒 cd 受到的安培力大小相等
Fab=Fcd
④
对棒 ab,由共点力平衡知
F mg sin 30 IlB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应中的动力学问题分析一、基础知识1、安培力的大小由感应电动势E =Bl v ,感应电流I =E R 和安培力公式F =BIl 得F =B 2l 2v R. 2、安培力的方向判断3、导体两种状态及处理方法(1)导体的平衡态——静止状态或匀速直线运动状态.处理方法:根据平衡条件(合外力等于零)列式分析.(2)导体的非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.4、解决电磁感应中的动力学问题的一般思路是“先电后力”,即:先做“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ;再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便求解安培力;然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.二、练习1、(2012·广东理综·35)如图所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中.左侧是水平放置、间距为d 的平行金属板,R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.(1)调节R x =R ,释放导体棒,当导体棒沿导轨匀速下滑时,求通过导体棒的电流I 及导体棒的速率v .(2)改变R x ,待导体棒沿导轨再次匀速下滑后,将质量为m 、带电荷量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x .解析 (1)对匀速下滑的导体棒进行受力分析如图所示.导体棒所受安培力F 安=BIl ①导体棒匀速下滑,所以F 安=Mg sin θ②联立①②式,解得I =Mg sin θBl③ 导体棒切割磁感线产生感应电动势E =Bl v ④由闭合电路欧姆定律得I =E R +R x,且R x =R ,所以I =E 2R ⑤ 联立③④⑤式,解得v =2MgR sin θB 2l 2(2)由题意知,其等效电路图如图所示.由图知,平行金属板两板间的电压等于R x 两端的电压.设两金属板间的电压为U ,因为导体棒匀速下滑时的电流仍为I ,所以由欧姆定律知 U =IR x ⑥要使带电的微粒匀速通过,则mg =q U d⑦ 联立③⑥⑦式,解得R x =mBld Mq sin θ. 答案 (1)Mg sin θBl 2MgR sin θB 2l 2 (2)mBld Mq sin θ2、如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后 ( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F /3D .两金属棒间距离保持不变答案 BC解析 对两金属棒ab 、cd 进行受力分析和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向是由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有:F =3ma ,隔离金属棒cd 分析:F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确;因此答案选B 、C.3、如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求:(1)导轨对杆ab 的阻力大小F f .(2)杆ab 中通过的电流及其方向.(3)导轨左端所接电阻的阻值R .答案 (1)F -m v 22d (2)m v 22Bld ,方向由a 流向b (3)2B 2l 2d m v-r 解析 (1)杆ab 进入磁场前做匀加速运动,有F -F f =mav 2=2ad解得导轨对杆的阻力F f =F -m v 22d(2)杆ab 进入磁场后做匀速运动,有F =F f +F 安杆ab 所受的安培力F 安=IBl解得杆ab 中通过的电流I =m v 22Bld由右手定则判断杆中的电流方向自a 流向b(3)杆运动过程中产生的感应电动势E =Bl v杆中的感应电流I =E R +r解得导轨左端所接电阻阻值R =2B 2l 2d m v-r4、(2011·天津理综·11)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为l =0.5 m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m =0.02 kg ,电阻均为R =0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B =0.2 T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止,取g =10 m/s 2,问:(1)通过棒cd 的电流I 是多少,方向如何?(2)棒ab 受到的力F 多大?(3)棒cd 每产生Q =0.1 J 的热量,力F 做的功W 是多少?答案 (1)1 A 方向由d 至c (2)0.2 N (3)0.4 J解析 (1)棒cd 受到的安培力F cd =IlB棒cd 在共点力作用下受力平衡,则F cd =mg sin 30°代入数据解得I =1 A根据楞次定律可知,棒cd 中的电流方向由d 至c(2)棒ab与棒cd受到的安培力大小相等F ab=F cd对棒ab,由受力平衡知F=mg sin 30°+IlB代入数据解得F=0.2 N(3)设在时间t内棒cd产生Q=0.1 J的热量,由焦耳定律知Q=I2Rt设棒ab匀速运动的速度大小为v,其产生的感应电动势E=Bl v由闭合电路欧姆定律知I=E 2R由运动学公式知在时间t内,棒ab沿导轨的位移s=v t力F做的功W=Fs综合上述各式,代入数据解得W=0.4 J5、如图,两根足够长光滑平行金属导轨PP′、QQ′倾斜放置,匀强磁场垂直于导轨平面,导轨的上端与水平放置的两金属板M、N相连,板间距离足够大,板间有一带电微粒,金属棒ab水平跨放在导轨上,下滑过程中与导轨接触良好.现同时由静止释放带电微粒和金属棒ab,则()A.金属棒ab最终可能匀速下滑B.金属棒ab一直加速下滑C.金属棒ab下滑过程中M板电势高于N板电势D.带电微粒不可能先向N板运动后向M板运动答案BC解析 金属棒沿光滑导轨加速下滑,棒中有感应电动势而对金属板M 、N 充电,充电电流通过金属棒时金属棒受安培力作用,只有金属棒速度增大时才有充电电流,因此总有mg sin θ-BIL >0,金属棒将一直加速下滑,A 错,B 对;由右手定则可知,金属棒a 端(即M 板)电势高,C 对;若微粒带负电,则电场力向上,与重力反向,开始时电场力为0,微粒向下加速,当电场力增大到大于重力时,微粒的加速度向上,可能向N 板减速运动到零后再向M 板运动,D 错.6、如图 (a)所示为磁悬浮列车模型,质量M =1 kg 的绝缘板底座静止在动摩擦因数μ1=0.1的粗糙水平地面上.位于磁场中的正方形金属框ABCD 为动力源,其质量m =1 kg ,边长为1 m ,电阻为116Ω,与绝缘板间的动摩擦因数μ2=0.4.OO ′为AD 、BC 的中线.在金属框内有可随金属框同步移动的磁场,OO ′CD 区域内磁场如图(b)所示,CD 恰在磁场边缘以外;OO ′BA 区域内磁场如图(c)所示,AB 恰在磁场边缘以内(g =10 m/s 2).若绝缘板足够长且认为绝缘板与地面间最大静摩擦力等于滑动摩擦力,则金属框从静止释放后 ( )A .若金属框固定在绝缘板上,金属框的加速度为3 m/s 2B .若金属框固定在绝缘板上,金属框的加速度为7 m/s 2C .若金属框不固定,金属框的加速度为4 m/s 2,绝缘板仍静止D .若金属框不固定,金属框的加速度为4 m/s 2,绝缘板的加速度为2 m/s 2答案 AD解析 若金属框固定在绝缘板上,由题意得E =ΔB 1Δt ·12S ABCD =1×12×1×1 V =0.5 V ,I =E R=8 A ,F AB =B 2IL =8 N ,取绝缘板和金属框整体进行受力分析,由牛顿第二定律:F AB -μ1(M +m )g =(M +m )a ,解得a =3 m/s 2,A 对,B 错;若金属框不固定,对金属框进行受力分析,假设其相对绝缘板滑动,F f1=μ2mg =0.4×1×10 N =4 N<F AB ,假设正确.对金属框应用牛顿第二定律得F AB -F f1=ma 1,a 1=4 m/s 2;对绝缘板应用牛顿第二定律得F f1-F f2=Ma 2,F f2=μ1(M +m )g =2 N ,解得a 2=2 m/s 2,C 错,D 对.。